2018年中考数学专题复习卷 反比例函数(含解析)
中考数学复习《反比例函数》专项测试卷(带答案)
中考数学复习《反比例函数》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点()1,2A x ,()2,1B x -和()3,4C x 都在反比例函数8y x=的图像上,则1x ,2x 和3x 的大小关系是( ) A.123x x x <<B.231x x x <<C.132x x x <<D.213x x x <<2.若点()26-,在反比例函数ky x=的图象上,则下列说法正确的是( ) A.该函数的图象经过点()34--,B.该函数的图象位于第一、三象限C.当0x >时,y 的值随x 值的增大而增大D.当1x >-时,4y >3.如图,在同一平面直角坐标系中函数y ax a =+与函数ay x=的图象可能是( ) A. B. C. D.4.如图,点A 是双曲线()160y x x =-<上的一点,点B 是双曲线()60y x x=-<上的一点,AB 所在直线垂直x 轴于点C ,点M 是y 轴上一点,连接MA 、MB ,则MAB △的面积为( )A.5B.6C.10D.165.如图,点A ,B 为反比例函数()0ky x x=>的图象上的两点,且满足45AOB ∠=︒,若点A 的坐标为()3,5,则点B 的坐标是( ).A.15215,2⎛⎫ ⎪ ⎪⎝⎭B.1010,2⎛ ⎝⎭C.()8,2D.()8,36.如图,已知点A 、B 分别在反比例函数y =1x (x >0),y =-4x(x >0)的图象上,且OA⊥OB ,则OBOA的值为( )A.4B.2C.14D.127.如图,在ABC 中2AC BC == 90ACB ∠=︒ AC x ∥轴 点D 是AB 的中点 点C 、D 在(k 0,x 0)ky x=≠>的图象上 则k 的值为( )A.1-B.2-C.1D.28.已知蓄电池的电压为定值(电压三星近总度阻) 使用蓄电池时 电流(单位:A )与电阻尺(单位:Ω)是反比例函数关系 它的图象如图所示 下列说法不正确的是( )A.函数解析式为60I R=B.蓄电池的电压是C.当6ΩR =时 8A I =D.当10A I ≤时 6R ≥Ω9.如图 在平面直角坐标系中直线24y x =-+与x 轴、y 轴分别交于A 、B 两点 以AB 为边在第一象限作正方形ABCD 点D 在双曲线()0ky k x=≠上.将正方形沿x 轴负方向平移a 个单位长度后 点C 恰好落在该双曲线上 则a 的值( )A.1B.2C.3D.410.如图 直线22y x =-与x 轴 y 轴分别交于点A B 与反比例函数()0ky k x=>图像交于点C .点D 为x 轴上一点(点D 在点A 右侧) 连接BD 以BA BD 为边作ABDE E 点刚好在反比例函数图像上 设(),E m n 连接EC DC 若1()2ACED S AD AD n =+四边形 则k 的值为( )A.8B.10C.12D.1611.如图 直线y kx =与双曲线3y x -=在同一坐标系中如图所示 则不等式3x-<的解集为( )A.01x <<B.1x <-C.1x <-或01x <<D.10x -<<或1x >12.智能手机已遍及生活中的各个角落 手机拍照功能也越来越强 高档智能手机还具有调焦(调整镜头和感光芯片的距离)的功能.为了验证手机摄像头的放大率(摄像头的放大率是指成像长度与实物长度的比值 也可计算为像距与物距的比值) 小明用某透镜进行了模拟成像实验 得到如图所示的像距v 随物距u 变化的关系图像 下列说法不正确的是( )A.当物距为45.0cm 时 像距为13.0cmB.当像距为15.0cm 时 透镜的放大率为2C.物距越大 像距越小D.当透镜的放大率为1时 物距和像距均为20cm13.某商家设计了一个水箱水位自动报警仪 其电路图如图1所示 其中定值电阻110ΩR =2R 是一个压敏电阻 用绝缘薄膜包好后放在一个硬质凹形绝缘盒中放入水箱底部 受力面水平 承受水压的面积S 为0.012m 压敏电阻的阻值随所受液体压力F 的变化关系如图2所示(水深h 越深 压力F 越大) 电源电压保持6V 不变 当电路中的电流为0.3A 时 报警器(电阻不计)开始报警 水的压强随深度变化的关系图象如图3所示(参考公式:UI R=1000Pa 1kPa =).则下列说法中不正确的是( )2R F pS =A.当水箱未装水()时 压强p 为0kPaB.当报警器刚好开始报警时 水箱受到的压力F 为40NC.当报警器刚好开始报警时 水箱中水的深度h 是0.8mD.若想使水深1m 时报警 应使定值电阻1R 的阻值为 二、填空题14.一个圆柱形蓄水池的底面半径为x cm 蓄水池的侧面积为40π2cm 则这个蓄水池的高h (cm )与底面半径x (cm )之间的函数关系式为_____.15.在反比例函数12my x-=的图象上的图象在二、四象限 则m 的取值范围是_______. 16.若点()11,A y -、21,4B y ⎛⎫- ⎪⎝⎭、()31,C y 都在反比例函数21x k y +=(k 为常数)的图象上 则1y 、2y 、3y 的大小关系为_____.17.如图 点(3,1)P -是反比例函数m y x =的图象上的一点 设直线y kx =与双曲my x=的两个交点分别为P 和P 当mkx x>时 写出x 的取值范围_____.18.如图 在平面直角坐标系xOy 中正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10 点D 是边AB 上靠近点A 的三等分点 将⊥OAD 沿直线OD 折叠后得到⊥OA ′D 若反比例函数y kx=(k ≠0)的图象经过A ′点 则k 的值为_____. 0m h =12Ω19.如图 在平面直角坐标系中直线12y k x =+与x 轴交于点A 与y 轴交于点B 与双曲线2(0)k y x x=>交于点C 连接OC .若52,sin 5OBC S BOC =∠=△ 则12k +的值是______.20.如图 点1A 2A 3A …在反比例函数()10y x x=>的图象上 点1B 2B 3B … n B 在y 轴上 且11212323B OA B B A B B A ∠=∠=∠=直线y x =与双曲线1y x=交于点1A 111B A OA ⊥ 2221B A B A ⊥ 3323B A B A ⊥ … 则2023B 的坐标是________.三、解答题21.如图所示 一次函数y kx b =+的图象与反比例函数my x=的图象相交于两点(1),A n (2,1)B -- 与y 轴相交于点C .(1)求反比例函数和一次函数解析式; (2)直接写出:不等式mkx b x+>解集是______; (3)依据相关数据求AOB 的面积.22.如图 菱形OABC 的边OA 在y 轴正半轴上 点B 的坐标为()48,.反比例函数11k y x=的图象经过菱形对角线AC OB ,的交点D 设直线OC 的解析式为22y k x =.(1)求反比例函数的解析式; (2)求菱形OABC 的边长;(3)请结合图象直接写出不等式120k k x x-<的解集. 23.如图▱OABC 的顶点O 与坐标原点重合 边OA 在x 轴正半轴上 60AOC ∠=︒2OC = 反比例函数()0ky x x=>的图像经过顶点C 与边AB 交于点D.(1)求反比例函数的表达式.(2)尺规作图:作OCB ∠的平分线交x 轴于点E.(保留作图痕迹 不写作法) (3)在(2)的条件下 连接DE 若DE CE ⊥ 求证:AD AE =. 24.如图 已知一次函数26y x =+与反比例函数()0ky x x=>的图象交于点()1,A m 与x 轴交于点B .(1)填空:m 的值为______ 反比例函数的解析式为______; (2)直接写出当0x >时 26kx x+<的解集; (3)点P 是线段AB 上一动点(不与A 、B 点重合) 过P 作直线PM x ∥轴交反比例函数的图象于点M 连接BM .若PMB △的面积为S 求S 的取值范围.25.如图 已知抛物线2y x bx =+与x 轴交于O (4,0)A 两点 点B 的坐标为(0,3)-. (1)求抛物线的对称轴;(2)已知点P 在抛物线的对称轴上 连接OP BP .若要使OP BP +的值最小 求出点P 的坐标;(3)将抛物线在x 轴下方的部分沿x 轴翻折 其余部分保持不变 得到一个新的图象.当直线(0)y x m m =+≠与这个新图象有两个公共点时 在反比例函数y mx=的图象中y 的值随x 怎样变化?判断并说明理由.26.如图 在平面直角坐标系中正六边形ABCDEF 的对称中心P 在反比例函数()10,0ky k x x=>>的图象上 边AB 在x 轴上 点F 在y 轴上 已知23AB =.(1)判断点E 是否在该反比例函数的图象上 请说明理由;(2)求出直线EP :()20y ax b a =+≠的解析式 并根据图象直接写出当0x >时 不等式kax b x+>的解集. 27.如图① 有一块边角料ABCDE 其中AB BC DE EA 是线段 曲线CD 可以看成反比例函数图象的一部分.测量发现:90A E ∠=∠=︒ 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4.(1)小宁把A B C D E 这5个点先描到平面直角坐标系上 记点A 的坐标为()1,0-;点B 的坐标为()1,1-.请你在图②中补全平面直角坐标系并画出图形ABCDE ; (2)求直线BC 曲线CD 的函数表达式;(3)小宁想利用这块边角料截取一个矩形MNQP 其中M N 在AE 上(点M 在点N 左侧)点P 在线段BC 上 点Q 在曲线CD 上.若矩形的面积是53则=_________.参考答案1.答案:B解析:将三点坐标分别代入函数解析式8y x=得: 182x = 解得14x =; 28-1x =解得28x =-; 384x =解得; 824-<<故选:B. 2.答案:C解析:⊥点()26-,在函数ky x=的图象上 ⊥2(6)120k =⨯-=-< ⊥函数ky x=位于第二、四象限 在每个象限内 y 的值随x 的增大增大 ⊥()341212-⨯-=≠-⊥该函数的图象不经过点()34--,把=1x -代入12y x=求得12y = ⊥当10x -<<时 12y > 综上 只有选项C 说法正确 故选:C. 3.答案:A解析:当0a >时 一次函数图像经过第一、二、三象限 反比例函数图像位于一、三象限 可知A 符合题意;32x =231x x x ∴<<当0a <时 一次函数图像经过第二、三、四象限 反比例函数图像位于二、四象限 可知B C D 不符合题意.故选:A.4.答案:A解析:如图所示 作MN BA ⊥交BA 的延长线于N则12AMB S BA MN =⋅设点A 的坐标为16a a ⎛⎫- ⎪⎝⎭, <0aAB 所在直线垂直x 轴于点CB ∴点坐标为6a a ⎛⎫- ⎪⎝⎭,16610AB a a a ⎛⎫∴=---=- ⎪⎝⎭ MN a =()11101105222ABM S AB MN a a a a ⎛⎫⎛⎫∴=⋅=⨯-⨯=⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭故选:A.5.答案:A解析:将OA 绕O 点顺时针旋转90︒到OC 连接AB 、CB作AM y ⊥轴于MCN x ⊥轴于N点A 的坐标为()3,53AM ∴= 5OM =45AOB ∠=︒45BOC ∠=︒∴在AOB 和COB △中OA OC AOB COBOB OB =⎧⎪∠=∠⎨⎪=⎩(SAS)AOB COB ∴△≌△AB CB ∴=90AOM AON CON AON ∠+∠=︒=∠+∠AOM CON ∴∠=∠ 在AOM 和CON 中AOM CON AMO ONCOA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩ (AAS)AOM CON ∴△≌△3CN AM ∴== 5ON OM == (5,3)C ∴-点A 为反比例函数(0)k y x x=>图象上的点 3515k ∴=⨯= 15y x ∴=设B 点的坐标为15(,)m m AB CB =22221515(3)(5)(5)(3)m m m m ∴-+-=-++解得215m =(负数舍去)15215,B ⎛∴ ⎝⎭故选A.6.答案:B解析:作AC y ⊥轴于C BD y ⊥轴于D 如图点A 、B 分别在反比例函数1(0)y x x => 4(0)y x x=->的图象上 11122OAC S ∆∴=⨯= 1|4|22OBD ∆=⨯-=OA OB ⊥90AOB ∠=︒∴90AOC BOD ∴∠+∠=︒AOC DBO ∴∠=∠Rt AOC Rt OBD ∴∆∆∽ ∴212()2AOC OBD S OA S OB ∆∆== ∴12OA OB =. ∴2OB OA=. 故答案为B. 7.答案:B解析:设(0,)A b 根据题意(2,)C b - (2,2)B b -+点D 是AB 的中点(1,1)D b ∴-+点C 、D 在(k 0,x 0)k y x=≠>的图象上 2(1)k b b ∴=-=-+解得1b =22k b ∴=-=-故选:B.8.答案:C解析:设图象过蓄电池的电压是A 、B 选项正确 不符合题意;当=6ΩR 时 (A 6010)6I ==∴C 选项错误 符合题意;当10I =时 6R =由图象知:当10A I ≤时 6R ≥Ω∴D 选项正确 不符合题意;故选:C.9.答案:B解析:作CE y ⊥轴于点E 交双曲线于点G 作DF x ⊥轴于点F在24y x =-+中令0x = 解得4y =∴B 的坐标是(0,4)令0y = 解得2x =∴A 的坐标是(2,0)kI R =(5,12)60k ∴=60I R ∴=∴60V ∴4OB ∴= 2OA =90BAD ∠=︒90BAO DAF ∴∠+∠=︒直角ABO △中90BAO OBA ∠+∠=︒DAF OBA ∴∠=∠在OAB △和FDA △中DAF OBA BOA AFD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)OAB FDA ∴≌△△同理 OAB FDA BEC ≌≌△△△ 4AF OB EC ∴=== 2DF OA BE ===∴D 的坐标是(6,2) C 的坐标是(4,6)点D 在双曲线(0)k y k x=≠上 6212k ∴=⨯=∴函数的解析式是:12y x =把6y =代入12y x=得:2x = 422a ∴=-=故选B.10.答案:C解析:直线与x 轴 y 轴分别交于点A B(1,0)A ∴ (0,2)B -作EF x ⊥轴于F 如图所示:22y x =-四边形是平行四边形在和中E 点刚好在反比例函数图像上设C 的纵坐标为hABDE AE BD ∴=//DE AB DAE ADB ∴∠=∠AEF △DBO △EAF BDO AFE DOB AE BD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)AEF DBO ∴≌△△2EF OB ∴==AF OD =1DF OA ∴==(,)E m n 2m AD ∴=+2n =2(2)k mn AD ∴==+122AD k ∴=-//DE BC AED CED S S ∴=△△()11122222ACD CED ACD AED ACED S S S S S AD h AD AD h ∴=+=+=⋅+⋅=+四边形△△△△()12ACED S AD AD n =+四边形122h AD k ∴==-C 的纵坐标为代入得解得反比例函数图像经过点C 解得 20k =(舍去) 12k∴=故选:C.11.答案:D解析:有题意可知 当3y =时 33x= 解得=1x - ∴直线y kx =与双曲线3y x=在第二象限交点的坐标为1,3)- 由中心对称可得 直线y kx =与双曲线3y x=在第四象限交点的坐标为3)- ∴观察图象可得 不等式3kx x<的解集为10x <<或1x >. 故选:D.12.答案:B解析:由函数图象可知:当物距为45.0cm 时 像距为13.0cm 故选项A 说法正确;由函数图象可知:当像距为15.0cm 时 物距为300cm . 放大率为15.00.530.0= 故选项B 说法错误;由函数图象可知:物距越大 像距越小 故选项C 说法正确;由题意可知:当透镜的放大率为1时 物距和像距均为20cm 故选项D 说法正确 故选:B.13.答案:B解析:A.由图3得:当0h =时 0p = 故此项说法正确;122-22y x =-12222x -=-14x k =11(,2)42C k k ∴-(0)k y k x=>11(2)42k k k ∴-=112k =B.当报警器刚好开始报警时 260.310R =+ 解得210R =Ω 由图2可求得:2800R F =80010F∴= 解得80F N = 故此项说法错误; C.当报警器刚好开始报警时 由上得80F N = 则有800.01p =⨯ 8P p k a ∴= 由图3求得10p h = 810h = 解得:0.8h = 故此项说法正确;D.当报警器刚好开始报警时:1260.3R R =+ 1220R R ∴+=Ω 当1h =时 10110kPa p =⨯= 100000.01100F N ∴=⨯= 28008100R ==Ω 120812R ∴=-=Ω 故此项说法正确. 故选:B.14.答案:20h x = 解析:根据题意 得240x h ππ⋅= ⊥20h x=. 故答案为:20h x=. 15.答案:12m > 解析:由题意得 反比例函数12m y x -=的图象在二、四象限内 则120m -< 解得12m >. 故答案为12m >. 16.答案:213y y y << 解析:反比例函数2(1k k y x+=为常数) 210k +> ∴该函数图象在第一、三象限 在每个象限内y 随x 的增大而减小点1(1,)A y -、1(4B 2)y 、3(1,)C y 都在反比例函数2(1k k y x +=为常数)的图象上 114-<- 点A 、B 在第三象限 点C 在第一象限213y y y ∴<<故答案为:213y y y <<.17.答案:-3<x <0或x >3 解析:⊥直线y =kx 与双曲线y =m x的两个交点分别为P 和P ′ P (-3 1) ⊥P ′的坐标为(3 -1)当mx >kx 时 x 的取值范围为-3<x <0或x >3故答案为:-3<x <0或x >3. 18.答案:48解析:如图所示:过A '作EF OC ⊥于F 交AB 于E⊥90OA D '∠=︒90OA F DA E ∴∠'+∠'=︒⊥90A F AOF O ∠'+∠'=︒D AOF AE ∴'=∠'∠D A FO AE '=∠∠'A OF DA E ∴''∠△△设A '(m n )OF m ∴= A F n '=.正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10点D 是边AB 上靠近点A 的三等分点∴ 103DE m = 10A E n '=-.310103m n m m ==-- 解得:m =6 n =8. ∴A '(6,8) ∴ 反比例函数中k =xy (0k ≠)=48 故答案为:48.19.答案:9解析:据题意可知(0,2)B 设(,)Cx y 52,sin OBC S BOC =∠=△1222x ∴⨯= 52xOC = 解得2,25x OC ==2225OC x y =+=即2425y +=得4y = 故(2,4)C 将(2,4)C 代入直线12y k x =+ 双曲线2(0)k y x x => 得到 121,8k k == 故12189k k +=+= 故答案为:9.20.答案:(0,22023解析:联立1y xy x =⎧⎪⎨=⎪⎩解得1x =由题意可知145AOB ∠=︒111B A OA ⊥11OA B ∴△为等腰直角三角形1122OB OA ∴==过2A 作22A H OB ⊥交y 轴于H 则容易得到21A H B H = 设21A H B H x == 则()2,2A x x +()21x x ∴+=解得121x = 221x =-(舍去)2121A H B H ∴== 1212222B B B H ==2222222OB ∴=+=同理可得323OB =则2n OB n =即(0,2n B n(20230,22023B ∴故答案为:(0,22023. 21.答案:(1)2y x = 1y x =+ (2)1x >或20x -<<(3)32解析:(1)反比例函数m y x =的图象过(2,1)--∴反比例函数的解析式为:2y x = 点(1),A n 在反比例函数图象上∴12n ⨯=∴2n =∴点A 的坐标为(1,2)将点A B 坐标代入一次函数y kx b =+中得221k b k b +=⎧⎨-+=-⎩解得11k b =⎧⎨=⎩∴一次函数的解析式为:1y x =+.(2)根据图象可知 不等式0m kx b x+>>的解集是:1x >或20x -<<. 故答案为:1x >或20x -<<; (3)过点A 作AG y ⊥轴于点G 过点B 作BH y ⊥轴于点H 如下图所示:一次函数1y x =+与y 轴相交于点C∴C 点坐标为(0,1)∴1OC =A 点坐标为(1,2)∴1AG =B 点坐标为(2,1)--∴2BH =∴11123222AOB AOC BOC S S S ⨯⨯=+=+=△△△. 22.答案:(1)18y x = (2)5 (3)463x <或63x << 解析:(1)⊥菱形OABC 的对角线交于点D⊥OD DB =⊥点B 的坐标为()48,⊥点D 的坐标为()24, 又⊥反比例函数11k y x=经过点D ⊥1248k =⨯= ⊥18y x =; (2)过点B 作BE y ⊥轴于点E设OA AB a == 则8AE a =- 4BE =在Rt ABE 中222BE AE AB += 即()22248x x +-= 解得:5x =⊥菱形OABC 的边长为5;(3)⊥点B 的坐标为()48, 5BC =⊥点C 的坐标为()43,代入22y k x =得:234k = 解得:234k =⊥234y x =令1y y = 则834x x = 解得:63x =±结合图象 不等式120k k x x -<的解集为463x <或463x <<.23.答案:(1))30y x =>(2)见解析(3)见解析解析:(1)过点C 作CF OA ⊥于点F 如解图所示.在Rt COF △中2OC = 60COF ∠=︒30sin 6023CF C ∴=⋅==︒1cos60212OF OC =⋅︒=⨯=.(1,3C ∴. 把(3C 代入反比例函数()0ky x x =>中得3k =∴反比例函数的表达式为)30y x =>.(2)如解图所示 所作射线CE 即为所求.(3)证明:在OABC 中//OC AB //CB OA .60AOC ∠=︒120OCB OAB ∴∠=∠=︒. CE 平分OCB ∠60OCE BCE OEC ∴∠=∠=∠=︒.DE CE ⊥90CED ∴∠=︒.180609030AED ∴∠=︒-︒-︒=︒.1801203030ADE ∴∠=︒-︒-︒=︒.AED ADE ∴∠=∠.AD AE ∴=.24.答案:(1)8 8y x= (2)01x << (3)S 的取值范围是2504S <≤ 解析:(1)⊥一次函数26y x =+的图象经过点()1,A m ⊥268m =+=⊥点()18A ,⊥反比例函数()0k y x x =>的图象经过点()18A , ⊥188k =⨯=⊥反比例函数的解析式为8y x=; 故答案为:8 8y x =;(2)观察图象得 26k x x+<的解集为1x <<; (3)设点P 的纵坐标为n ⊥点P 在线段AB 上 点M 在8y x =的图象上 ⊥0n << 点P 的横坐标为62n -⊥PM x ∥轴⊥点M 的坐标为8n n ⎛⎫ ⎪⎝⎭, ⊥862n MP n -=. ⊥()21186125322244PMBn S MP n n n n -⎛⎫=⨯⨯=⨯-⨯=--+ ⎪⎝⎭. ⊥08n << 且104-<⊥当03n <<时 S 随n 的增大而增大 当38n ≤<时 S 随n 的增大而减小. ⊥当3n =时 △的面积最大 最大值为254 ⊥S 的取值范围是2504S <≤. 25.答案:(1)抛物线的对称轴为直线2x =(2)点P 的坐标为32,2⎛⎫- ⎪⎝⎭ (3)y 的值随x 的增大而增大解析:(1)由题意得:2440b +=4b ∴=-∴函数关系式为:24y x x =-∴对称轴为:4222b x a -=-=-=; (2)由题意得:OP PB +的值最小 实际就是在同一直线一旁有两点 在直线上求点只要取O 点关于直线2x =对称的点 过AB 的直线与直线的交点就是点P设过AB 的直线为 由在上()4,0A 2x =3y kx =-()4,0B 3y kx =-得34k =334AB y x =-P 在直线2x =上332342y ∴=⨯-=-32,2P ⎛⎫∴- ⎪⎝⎭; (3)24y x x =-在x 轴下方的部分沿x 轴翻转当直线()0y x m m =+≠有两个不相同的解0∴∆> 2340m -⨯> 得94m <又0> 904m ∴<< 在反比例函数m y x=中 904m k <=< y 随x 的增大而减小. 26.答案:(1)点E 在该反比例函数的图象上 理由见解析(2)39y x =+ 323x <<解析:(1)六边形ABCDEF 为正六边形 23AB =23AB AF ∴== 60FAO =︒cos 603OA AF ∴=⋅︒= sin603AF =⋅︒=()0,3F ∴ )3,0A 连接PF PA六边形ABCDEF 为正六边形PE PF PA PB ∴=== 60EPF FPA APB ∠=∠=∠=︒EFP ∴△ FAP △ ABP △为等边三角形23AF PF ∴==()23,3P ∴ 把()23,3P 代入1k y x =得:23=解得:63k =043k ∴=-∴反比例函数表达式为163y x=. EFP △ FAP △为等边三角形∴点E 和点A 关于PF 对称)3,6E ∴ 把3x =代入163y x =得:13663y == ∴点E 在该反比例函数的图象上; (2)把()3,6E ()23,3P 代入()20y ax b a =+≠得: 6333a b a b ⎧=+⎪⎨=+⎪⎩ 解得:39a b ⎧=-⎪⎨=⎪⎩∴直线EP 的解析式为:39y x =+()3,6E ()23,3P由图可知 当323x <<时 k b x +>. 27.答案:(1)见解析(2)直线BC 的函数表达式3522y x =曲线的函数表达式4y x= (3)72 解析:(1)根据点A 的坐标为()1,0- 点B 的坐标为()1,1- 补全x 轴和y 轴 90A E ∠︒∠== 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4 ()1,4C ∴ ()4,1D根据AB BC DE EA 是线段 曲线CD 是反比例函数图象的一部分 画出图形ABCDE如图所示 (2)设线段BC 的解析式为y kx b =+ 把()1,1B - ()1,4C 代入得 14k b k b -+=⎧⎨+=⎩解得 3252k b ⎧=⎪⎪⎨⎪=⎪⎩3522y x ∴=+设曲线CD 的解析式为'k y x =把()1,4C 代入得 '41k = '4= 4y x ∴=; (3)设(),0M m 则35,22P m m ⎛⎫+ ⎪⎝⎭ 435,352222Q m m ⎛⎫ ⎪+ ⎪ ⎪+⎝⎭3522PM m ∴=+ 43522m m =-+354352222PM PQ m m m ⎛⎫ ⎪⎛⎫⋅=+- ⎪ ⎪⎝⎭ ⎪+⎝⎭23554223m m ∴--= 2915140m m ∴+-= 23m ∴= 或73m =-(舍去) 32572322PM ∴=⨯+=. 故答案为:72.。
2018年广东省深圳市中考数学试卷(含答案解析版)
2018年广东省深圳市中考数学试卷(含答案解析版)12.(3.00分)(2018•深圳)如图,A、B是函数y=12x上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)(2018•湘西州)分解因式:a2﹣9= .14.(3.00分)(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.15.(3.00分)(2018•深圳)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是.16.(3.00分)(2018•深圳)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=√2,则AC= .三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)(2018•深圳)计算:(12)﹣1﹣2sin45°+|﹣√2|+(2018﹣π)0.18.(6.00分)(2018•深圳)先化简,再求值:(xx−1−1)÷x2+2x+1x2−1,其中x=2.19.(7.00分)(2018•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为人,a= ,b= .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?20.(8.00分)(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于12AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.21.(8.00分)(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?22.(9.00分)(2018•深圳)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=√10 10.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.23.(9.00分)(2018•深圳)已知顶点为A抛物线y=a(x−12)2−2经过点B(−32,2),点C(52,2).(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.2018年广东省深圳市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)(2018•深圳)6的相反数是()A.﹣6 B.−16 C.16D.6【考点】14:相反数.【专题】1 :常规题型.【分析】直接利用相反数的定义进而分析得出答案.【解答】解:6的相反数是:﹣6.故选:A.【点评】此题主要考查了相反数的定义,正确把握相关定义是解题关键.2.(3.00分)(2018•深圳)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×107【考点】1I:科学记数法—表示较大的数.【专题】1 :常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:260000000用科学记数法表示为2.6×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)(2018•深圳)图中立体图形的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55:几何图形.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有两个小正方体,在右边两个.故选:B.【点评】本题考查了三视图,关键是根据学生的思考能力和对几何体三种视图的空间想象能力进行解答.4.(3.00分)(2018•深圳)观察下列图形,是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形.【专题】27 :图表型.【分析】根据中心对称图形的概念对各选项分析判断即可得解【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误.故选:D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3.00分)(2018•深圳)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10 B.85,5 C.80,85 D.80,10【考点】W5:众数;W6:极差.【专题】1 :常规题型.【分析】根据一组数据中出现次数最多的数据叫做众数,极差是指一组数据中最大数据与最小数据的差进行计算即可.【解答】解:众数为85,极差:85﹣75=10,故选:A.【点评】此题主要考查了众数和极差,关键是掌握众数定义,掌握极差的算法.6.(3.00分)(2018•深圳)下列运算正确的是()A.a2•a3=a6 B.3a﹣a=2a C.a8÷a4=a2D.√a+√b=√ab【考点】35:合并同类项;46:同底数幂的乘法;48:同底数幂的除法;78:二次根式的加减法.【专题】1 :常规题型.【分析】直接利用二次根式加减运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、3a﹣a=2a,正确;C、a8÷a4=a4,故此选项错误;D、√a+√b无法计算,故此选项错误.故选:B.【点评】此题主要考查了二次根式加减运算以及同底数幂的乘除运算、合并同类项,正确掌握运算法则是解题关键.7.(3.00分)(2018•深圳)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)【考点】F8:一次函数图象上点的坐标特征;F9:一次函数图象与几何变换.【专题】53:函数及其图象.【分析】根据平移的性质得出解析式,进而解答即可.【解答】解:∵该直线向上平移3的单位,∴平移后所得直线的解析式为:y=x+3;把x=2代入解析式y=x+3=5,故选:D.【点评】本题考查的是一次函数的图象与几何变换,熟知一次函数图象平移的法则是解答此题的关键.8.(3.00分)(2018•深圳)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°【考点】JA:平行线的性质.【专题】551:线段、角、相交线与平行线.【分析】依据两直线平行,同位角相等,即可得到正确结论.【解答】解:∵直线a,b被c,d所截,且a∥b,∴∠3=∠4,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.9.(3.00分)(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .{x +y =708x +6y =480 B .{x +y =706x +8y =480 C .{x +y =4806x +8y =70D .{x +y =4808x +6y =70【考点】99:由实际问题抽象出二元一次方程组.【专题】1 :常规题型.【分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.【解答】解:设大房间有x 个,小房间有y 个,由题意得:{x +y =708x +6y =480,故选:A .【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题意,找出题目中的等量关系.10.(3.00分)(2018•深圳)如图,一把直尺,60°的直角三角板和光盘如图摆放,A 为60°角与直尺交点,AB=3,则光盘的直径是( )A .3B .3√3C .6D .6√3【考点】MC :切线的性质.【专题】1 :常规题型;55A :与圆有关的位置关系.【分析】设三角板与圆的切点为C ,连接OA 、OB ,由切线长定理得出AB=AC=3、∠OAB=60°,根据OB=ABtan∠OAB可得答案.【解答】解:设三角板与圆的切点为C,连接OA、OB,由切线长定理知AB=AC=3,OA平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=ABtan∠OAB=3√3,∴光盘的直径为6√3,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握切线长定理和解直角三角形的应用.11.(3.00分)(2018•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根【考点】H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【专题】53:函数及其图象.【分析】根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣b2a,得到b>0,由抛物线与y轴的交点位置得到c>0,进而解答即可.【解答】解:∵抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣b2a,得到b>0,由抛物线与y轴的交点位置得到c>0,A、abc<0,错误;B、2a+b>0,错误;C、3a+c<0,正确;D、ax2+bx+c﹣3=0无实数根,错误;故选:C.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab <0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x 轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(3.00分)(2018•深圳)如图,A、B是函数y=12x上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④【考点】GB:反比例函数综合题.【专题】15 :综合题.【分析】由点P 是动点,进而判断出①错误,设出点P 的坐标,进而得出AP ,BP ,利用三角形面积公式计算即可判断出②正确,利用角平分线定理的逆定理判断出③正确,先求出矩形OMPN=4,进而得出mn=4,最后用三角形的面积公式即可得出结论.【解答】解:∵点P 是动点,∴BP 与AP 不一定相等,∴△BOP 与△AOP 不一定全等,故①不正确;设P (m ,n ),∴BP ∥y 轴,∴B (m ,12m), ∴BP=|12m ﹣n|,∴S △BOP =12|12m ﹣n|×m=12|12﹣mn|∵PA ∥x 轴,∴A (12n ,n ),∴AP=|12n ﹣m|,∴S △AOP =12|12n ﹣m|×n=12|12﹣mn|,∴S △AOP =S △BOP ,故②正确;如图,过点P 作PF ⊥OA 于F ,PE ⊥OB 于E ,∴S △AOP =12OA ×PF ,S △BOP =12OB ×PE ,∵S △AOP =S △BOP ,∴OB ×PE=OA ×PE ,∵OA=OB ,∴PE=PF ,∵PE ⊥OB ,PF ⊥OA ,∴OP 是∠AOB 的平分线,故③正确;如图1,延长BP 交x 轴于N ,延长AP 交y 轴于M ,∴AM ⊥y 轴,BN ⊥x 轴,∴四边形OMPN 是矩形,∵点A ,B 在双曲线y=12x上,∴S △AMO =S △BNO =6, ∵S △BOP =4,∴S △PMO =S △PNO =2,∴S 矩形OMPN =4,∴mn=4, ∴m=4n, ∴BP=|12m﹣n|=|3n ﹣n|=2|n|,AP=|12n﹣m|=8|n|,∴S △APB=12AP ×BP=12×2|n|×8|n|=8,故④错误;∴正确的有②③,故选:B .【点评】此题是反比例函数综合题,主要考查了反比例函数的性质,三角形面积公式,角平分线定理逆定理,矩形的判定和性质,正确作出辅助线是解本题的关键.二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)(2018•湘西州)分解因式:a2﹣9= (a+3)(a﹣3).【考点】54:因式分解﹣运用公式法.【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.14.(3.00分)(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:12.【考点】X4:概率公式.【专题】17 :推理填空题.【分析】根据题意可知正六面体的骰子六个面三个奇数、三个偶数,从而可以求得相应的概率.【解答】解:个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:3 6=1 2,故答案为:1 2.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.15.(3.00分)(2018•深圳)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是8 .【考点】KD:全等三角形的判定与性质;LE:正方形的性质.【专题】11 :计算题.【分析】根据正方形的性质得到AC=AF ,∠CAF=90°,证明△CAE ≌△AFB ,根据全等三角形的性质得到EC=AB=4,根据三角形的面积公式计算即可.【解答】解:∵四边形ACDF 是正方形,∴AC=AF ,∠CAF=90°,∴∠EAC+∠FAB=90°, ∵∠ABF=90°, ∴∠AFB+∠FAB=90°, ∴∠EAC=∠AFB , 在△CAE 和△AFB 中,{∠CAE =∠AFB∠AEC =∠FBA AC =AF ,∴△CAE ≌△AFB ,∴EC=AB=4,∴阴影部分的面积=12×AB ×CE=8,故答案为:8.【点评】本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.16.(3.00分)(2018•深圳)在Rt △ABC 中,∠C=90°,AD 平分∠CAB ,BE 平分∠ABC ,AD 、BE 相交于点F ,且AF=4,EF=√2,则AC= 8√105.【考点】IJ :角平分线的定义;KQ :勾股定理;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】先求出∠EFG=45°,进而利用勾股定理即可得出FG=EG=1,进而求出AE ,最后判断出△AEF ∽△AFC ,即可得出结论.【解答】解:如图,∵AD ,BE 是分别是∠BAC 和∠ABC 的平分线,∴∠1=∠2,∠3=∠4, ∵∠ACB=90°,∴2(∠2+∠4)=90°,∴∠2+∠4=45°,∴∠EFG=∠2+∠4=45°,过点E 作EG ⊥AD 于G ,在Rt △EFG 中,EF=√2,∴FG=EG=1,∵AF=4,∴AG=AF ﹣FG=3,根据勾股定理得,AE=√AG 2+EG 2=√10,连接CF ,∵AD 平分∠CAB ,BE 平分∠ABC , ∴CF 是∠ACB 的平分线,∴∠ACF=45°=∠AFE ,∵∠CAF=∠FAE ,∴△AEF ∽△AFC , ∴AE AF =AF AC, ∴AC=AF 2AE =√10=8√105,故答案为8√105.【点评】此题主要考查了角平分线定义,勾股定理,相似三角形的判定和性质,求出AE 是解本题的关键.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)(2018•深圳)计算:(12)﹣1﹣2sin45°+|﹣√2|+(2018﹣π)0.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2×√22+√2+1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6.00分)(2018•深圳)先化简,再求值:(xx−1−1)÷x2+2x+1x2−1,其中x=2.【考点】6D:分式的化简求值.【专题】11 :计算题.【分析】根据分式的运算法则即可求出答案,【解答】解:原式=x−x+1x−1⋅(x+1)(x−1)(x+1)2=1x+1把x=2代入得:原式=1 3【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(7.00分)(2018•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为100 人,a= 0.25 ,b= 15 .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?【考点】V5:用样本估计总体;V7:频数(率)分布表;VC:条形统计图.【专题】1 :常规题型;542:统计的应用.【分析】(1)根据“频率=频数÷总数”求解可得;(2)根据频数分布表即可补全条形图;(3)用总人数乘以样本中“艺术”类频率即可得.【解答】解:(1)总人数为40÷0.4=100人,a=25÷100=0.25、b=100×0.15=15,故答案为:100、0.25、15;(2)补全条形图如下:(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.【点评】此题主要考查了条形统计图的应用以及利用样本估计总体,根据题意求出样本总人数是解题关键.20.(8.00分)(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于12AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.【考点】N3:作图—复杂作图;S9:相似三角形的判定与性质;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】(1)根据折叠和已知得出AC=CD,AB=DB,∠ACB=∠DCB,求出AC=AB,根据菱形的判定得出即可;(2)根据相似三角形的性质得出比例式,求出菱形的边长和高,根据菱形的面积公式求出即可.【解答】(1)证明:∵由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的角平分线,∴∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB,∴∠ACB=∠ABC,∴AC=AB,又∵AC=CD,AB=DB,∴AC=CD=DB=BA ∴四边形ACDB 是菱形,∵∠ACD 与△FCE 中的∠FCE 重合,它的对角∠ABD 顶点在EF 上,∴四边形ACDB 为△FEC 的亲密菱形;(2)解:设菱形ACDB 的边长为x ,∵四边形ABCD 是菱形,∴AB ∥CE ,∴∠FAB=∠FCE ,∠FBA=∠E ,△EAB ∽△FCE则:FA FC =AB CE ,即x 12=6−x 6,解得:x=4,过A 点作AH ⊥CD 于H 点,∵在Rt △ACH 中,∠ACH=45°,∴AH =AC√2=2√2,∴四边形ACDB 的面积为:4×2√2=8√2.【点评】本题考查了菱形的性质和判定,解直角三角形,相似三角形的性质和判定等知识点,能求出四边形ABCD 是菱形是解此题的关键.21.(8.00分)(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【专题】34 :方程思想;522:分式方程及应用;524:一元一次不等式(组)及应用.【分析】(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据单价=总价÷单价结合第二批饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设销售单价为m元,根据获利不少于1200元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3•1600x=6000x+2,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥1200,解得:m≥11.答:销售单价至少为11元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.22.(9.00分)(2018•深圳)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=√10 10.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.【考点】MR:圆的综合题.【专题】15 :综合题;559:圆的有关概念及性质.【分析】(1)作AM垂直于BC,由AB=AC,利用三线合一得到CM等于BC的一半,求出CM的长,再由cosB的值,利用锐角三角函数定义求出AB的长即可;(2)连接DC,由等边对等角得到一对角相等,再由圆内接四边形的性质得到一对角相等,根据一对公共角,得到三角形EAC与三角形CAD相似,由相似得比例求出所求即可;(3)在BD上取一点N,使得BN=CD,利用SAS得到三角形ACD与三角形ABN全等,由全等三角形对应边相等及等量代换即可得证.【解答】解:(1)作AM⊥BC,∵AB=AC,AM⊥BC,BC=2BM,∴CM=12BC=1,∵cosB=BMAB=√1010,在Rt△AMB中,BM=1,∴AB=BMcosB=√10;(2)连接DC,∵AB=AC,∴∠ACB=∠ABC,∵四边形ABCD内接于圆O,∴∠ADC+∠ABC=180°,∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE,∵∠CAE公共角,∴△EAC∽△CAD,∴AC AD =AE AC,∴AD•AE=AC 2=10;(3)在BD 上取一点N ,使得BN=CD ,在△ABN 和△ACD 中{AB =AC∠3=∠1BN =CD,∴△ABN ≌△ACD (SAS ),∴AN=AD ,∵AN=AD ,AH ⊥BD , ∴NH=HD ,∵BN=CD ,NH=HD ,∴BN+NH=CD+HD=BH .【点评】此题属于圆的综合题,涉及的知识有:圆周角定理,圆内接四边形的性质,全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的性质是解本题的关键.23.(9.00分)(2018•深圳)已知顶点为A 抛物线y =a(x −12)2−2经过点B(−32,2),点C(52,2).(1)求抛物线的解析式;(2)如图1,直线AB 与x 轴相交于点M ,y 轴相交于点E ,抛物线与y 轴相交于点F ,在直线AB 上有一点P ,若∠OPM=∠MAF ,求△POE 的面积;(3)如图2,点Q 是折线A ﹣B ﹣C 上一点,过点Q 作QN ∥y 轴,过点E 作EN ∥x 轴,直线QN 与直线EN 相交于点N ,连接QE ,将△QEN 沿QE 翻折得到△QEN 1,若点N 1落在x 轴上,请直接写出Q 点的坐标.【考点】HF :二次函数综合题.【专题】15 :综合题;537:函数的综合应用.【分析】(1)将点B 坐标代入解析式求得a 的值即可得;(2)由∠OPM=∠MAF 知OP ∥AF ,据此证△OPE ∽△FAE 得OP FA=OE FE=134=43,即OP=43FA ,设点P (t ,﹣2t ﹣1),列出关于t 的方程解之可得;(3)分点Q 在AB 上运动、点Q 在BC 上运动且Q 在y 轴左侧、点Q 在BC 上运动且点Q 在y 轴右侧这三种情况分类讨论即可得.【解答】解:(1)把点B(−32,2)代入y =a(x −12)2−2,解得:a=1,∴抛物线的解析式为:y =(x −12)2−2;(2)由y =(x −12)2−2知A (12,﹣2),设直线AB 解析式为:y=kx+b ,代入点A ,B 的坐标,得:{−2=12k +b 2=−32k +b,解得:{k =−2b =−1,∴直线AB 的解析式为:y=﹣2x ﹣1,易求E (0,1),F(0,−74),M(−12,0),若∠OPM=∠MAF , ∴OP ∥AF ,∴△OPE ∽△FAE ,∴OP FA =OE FE =134=43,∴OP =43FA =43√(12−6)2+(−2+74)2=√53,设点P (t ,﹣2t ﹣1),则:√t 2+(−2t −1)2=√53解得t 1=−215,t 2=−23,由对称性知;当t 1=−215时,也满足∠OPM=∠MAF ,∴t 1=−215,t 2=−23都满足条件,∵△POE 的面积=12OE ⋅|l|,∴△POE 的面积为115或13.(3)若点Q 在AB 上运动,如图1,设Q (a ,﹣2a ﹣1),则NE=﹣a 、QN=﹣2a ,由翻折知QN′=QN=﹣2a 、N′E=NE=﹣a ,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴QR N′S =RN′ES =QN′EN′,即QR 1=−2a−1ES =−2a −a=2,∴QR=2、ES=−2a−12,由NE+ES=NS=QR 可得﹣a+−2a−12=2,解得:a=﹣54,∴Q (﹣54,32);若点Q 在BC 上运动,且Q 在y 轴左侧,如图2,设NE=a ,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=√5、SE=√5﹣a ,在Rt △SEN′中,(√5﹣a )2+12=a 2,解得:a=3√55,∴Q (﹣3√55,2);若点Q 在BC 上运动,且点Q 在y 轴右侧,如图3,第31页(共31页)设NE=a ,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=√5、SE=√5﹣a ,在Rt △SEN′中,(√5﹣a )2+12=a 2, 解得:a=3√55, ∴Q (3√55,2).综上,点Q 的坐标为(﹣54,32)或(﹣3√55,2)或(3√55,2). 【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.。
2018年云南中考数学试卷(含解析)
2018年云南省中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.(2018云南,1,3分)-1的绝对值是________.【答案】1.【解析】根据“负数的绝对值等于它的相反数”知,-1的绝对值是1.2.(2018云南,2,3分)已知点P (a ,b )在反比例函数y =2x的图象上,则ab =________. 【答案】2.【解析】因为点P (a ,b )在反比例函数y =2x 的图象上,所以b =2a,即ab =2. 3.(2018云南,3,3分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员有3 451人.将3 451用科学记数法表示为________.【答案】3.451×310.【解析】用科学记数法表示3 451,就是将3 451写成a ×10n (其中1≤a <10,n 为整数)的形式.因为1≤a <10,所以a =3.541;因为3 451一共有4位整数数位,所以n =3.所以3 451用科学记数法表示为3.541×310.4.(2018云南,4,3分)分解因式:24x -=________.【答案】(2)(2)x x +-.【解析】多项式24x -可运算平方公式分解,即24x -=(2)(2)x x +-,而因式2x +与2x -不能再分解,所以(2)(2)x x +-就是因式分解的结果.5.(2018云南,5,3分)如图,已知AB ∥CD ,若AB CD =14,则OA OC=________. 【答案】14. 【解析】因为AB ∥CD ,所以△OAB ∽△OCD ,所以OA OC =AB CD =14. 6.(2018云南,6,3分)在△ABC 中,AB =34,AC =5.若BC 边上的高等于3,则BC 边的长为________.【答案】1或9.【解析】设边BC 上的高为AD .当边BC 上的高AD 在△ABC 的内部时,如答图1所示,在Rt △ABD 中,由勾股定理得BD =22AB AD -=22(34)3-=5,在Rt △ACD 中,由勾股定理得CD =22AC AD -=2253-=4,所以BC =5+4=9.在边BC 上的高AD 在△ABC 的外部时,如答图2所示,同理BD =5,CD =4,所以BC =5-4=1.(第5题图) C DAB O(第6题答图1) CD A B (第6题答图2) CDA B二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共计32分)7.(2018云南,7,4分)函数y =1x -的自变量x 取值范围为 ········································ ( )A .x ≤0B .x ≤1C .x ≥0D .x ≥1【答案】B .【解析】函数y =1x -自变量x 满足1x -≥0,解得x ≤1..8.(2018云南,8,4分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图)。
中考数学总复习《反比例函数与一次函数综合》专题训练-附含答案
中考数学总复习《反比例函数与一次函数综合》专题训练-附含答案学校:___________班级:___________姓名:___________考号:___________ 1.如图,在平面直角坐标系xOy 中,一次函数1y ax b (a ,b 为常数,且0a ≠)与反比例函数2m y x=(m 为常数,且0m ≠)的图象交于点()2,1A -和()1,B n .(1)求反比例函数与一次函数的解析式.(2)连接OA 、OB ,求△AOB 的面积.(3)直接写出当12y y <时,自变量x 的取值范围.2.定义:在平面直角坐标系中,如果一个点的纵坐标等于它的横坐标的三倍,则称该点为“纵三倍点”.例如()()()1,3,2,6,2,32--都是“纵三倍点”. (1)下列函数图象上只有一个“纵三倍点”的是______;(填序号)△21y x =-+;△21y x=;△21y x x =++. (2)已知抛物线2y x mx n =++(,m n 均为常数)与直线4y x =+只有一个交点,且该交点是“纵三倍点”,求抛物线的解析式;(3)若抛物线232y ax bx (,a b 是常数,0a >)的图象上有且只有一个“纵三倍点”,令226w b b a =-+,是否存在一个常数t ,使得当1t b t ≤≤+时,w 的最小值恰好等于t ,若存在,求出t 的值;若不存在,请说明理由.3.如图,点A 在反比例函数()0k y x x=>的图象上,AB y ⊥轴于点B ,且24OB AB ==.(1)求反比例函数的解析式; (2)点C 在这个反比例函数图象上,连接AC 并延长交x 轴于点D ,且45ADO ∠=︒,求点C 的坐标. 4.如图,在平面直角坐标系中,一次函数3yx 的图象与反比例函数(0)k y x x=>的图象交于点(,4)A a ,求此反比例函数的表达式.5.如图,一次函数()10y mx n m =+≠的图象与反比例函数()20k y k x=≠的图象交于(),1A a -,()1,3B -两点,且一次函数的图象交x 轴于点C ,交y 轴于点D .(1)求一次函数和反比例函数的解析式;(2)在第四象限的反比例图象上有一点P ,使得4=△△OCP OBD S S ,请求出点P 的坐标;(3)对于反比例函数()20k y k x=≠,当3y ≤时,直接写出x 的取值范围. 6.如图,已知反比例函数11k y x =的图象与直线22y k x b =+相交于()1,3A -,(3,)B n 两点.(1)求反比例函数与一次函数的解析式; (2)求△AOB 的面积;(3)直接写出当12y y >时,对应的x 的取值范围.7.如图,在平面直角坐标系中,一次函数1y k x b =+(10k ≠)的图象与反比例函数2k y x=(20k ≠)的图象相交于()3,4A ,()4,B m -两点.(1)求一次函数和反比例函数的解析式,并直接写出一次函数的值大于反比例函数的值时x 的取值范围;(2)若点D 在x 轴上,位于原点右侧,且OA OD =,求:ABO ABD S S △△.8.如图,一次函数5y x =-+的图象与函数(0,0)n y n x x=>>的图象交于点(4,)A a 和点B .(1)求n 的值;(2)若0x >,根据图象直接写出当5n x x-+>时x 的取值范围; (3)点P 在线段AB 上,过点P 作x 轴的垂线,交函数n y x =的图象于点Q ,若POQ △的面积为1,求点P 的坐标.9.如图,一次函数()110y k x b k =+≠与反比例函数()220k y k x=≠的图象交于点()2,3A 和(),1B a -,设直线AB 交x 轴于点C .(1)求反比例函数和一次函数的表达式;(2)若点P 是反比例函数图象上的一点,且POC △是以OC 为底边的等腰三角形,求P 点的坐标. 10.如图,在平面直角坐标系xOy 中,一次函数1152y x =+和22y x =-的图象相交于点A ,反比例函数3k y x =的图象经过点A .(1)则反比例函数的表达式为________;(2)当13y y <时,x 的取值范围为________.(3)求AOB 的面积.11.如图,已知反比例函数k y x=的图象与一次函数y mx =图象的一个交点为()4,,A m AB x ⊥轴,且AOB 的面积为4.(1)求k 和m 的值;(2)若两函数图象的另一交点为C ,直接写出点C 的坐标__________.12.已知 ()()4428A B --,,,是一次函数y kx b =+的图象和反比例函数m y x=的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的关系式;(2)求AOC 的面积;(3)结合图象直接写出不等式m kx b x +>的解集. 13.如图,直线32y x =与双曲线(0)k y k x=≠交于A ,B 两点,点A 的坐标为(,3)m -,点C 是双曲线第一象限分支上的一点,连结BC 并延长交x 轴于点D ,且2BC CD =.(1)求k 的值,并直接写出点B 的坐标;(2)点G 是y 轴上的动点,连结GB ,GC ,求GB GC +的最小值和点G 坐标;(3)P 是坐标轴上的点,Q 是平面内一点,是否存在点P ,Q ,使得四边形ABPQ 是矩形?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.14.如图,直线3y x b =+与x 轴交于点()1,0A -,与反比例函数()0ky x x=>的图象相交于点()1,B m .(1)求反比例函数的表达式;(2)C 是反比例函数()0k y x x=>的图象上的一点,连接AC ,若45CAO ∠=︒,求直线BC 的函数表达式. 15.如图,一次函数1=y ax b +的图象过点()40A -,,与y 轴交于点B ,与反比例函数(2>0)k y x x =的图象交于点C .D 为AB 的中点,过点D 作x 轴的平行线,交反比例函数的图象于点E ,连接OE .(1)当=3OB ,=6DE 时,求k 的值;(2)若635OB OE ==,,求一次函数的解析式和点C 的坐标.参考答案: 1.(1)2y x=- =1y x -- (2)1.5(3)20x -<<或1x >2.(1)△△(2)238y x x =-+(3)1t =3.(1)8y x= (2)()4,2C4.反比例函数的表达式为4y x =. 5.(1)一次函数的解析式为12y x =-+;(2)点P 的坐标为3,44⎛⎫- ⎪⎝⎭(3)1x ≤-或0x >6.(1)13y x=- 22y x =-+; (2)4;(3)10x -<<或3x >.7.(1)一次函数的关系式为1y x =+;40x -<<或3x >(2)1:68.(1)4(2)14x <<(3)(2,3)P 或(3,2)9.(1)6y x = 122y x =+(2)()2,3P --10.(1)38y x =-(2)8x <-或20x -<<(3)1511.(1)18,2k m ==(2)()4,2--12.(1)16y x = 24y x =+(2)8(3)40x -<<或2x >13.(1)623k B =,,(2)217(3)存在,点P 的坐标为1302⎛⎫ ⎪⎝⎭, 或1303⎛⎫⎪⎝⎭,14.(1)反比例函数的表达式为6y x =;(2)直线BC 的函数表达式为39y x =-+.15.(1)6k =(2)162y x =+,点C 的坐标为()29,。
中考数学专题复习7反比例函数及其运用(解析版)
反比例函数及其运用复习考点攻略考点一 反比例函数的概念1.反比例函数的概念:一般地.函数ky x=(k 是常数.k ≠0)叫做反比例函数.反比例函数的解析式也可以写成1y kx -=的形式.自变量x 的取值范围是x ≠0的一切实数.函数的取值范围也是一切非零实数. 2.反比例函数k y x =(k 是常数.k ≠0)中x .y 的取值范围:反比例函数ky x=(k 是常数.k ≠0)的自变量x 的取值范围是不等于0的任意实数.函数值y 的取值范围也是非零实数. 【例1】下列函数中.y 与x 之间是反比例函数关系的是 A .xyB .3x +2y =0C .y =D .y =【答案】A考点二 反比例函数的图象和性质1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线.它有两个分支.这两个分支分别位于第一、三象限.或第二、四象限.由于反比例函数中自变量x ≠0.函数y ≠0.所以.它的图象与x 轴、y 轴都没有交点.即双曲线的两个分支无限接近坐标轴.但永远达不到坐标轴.(2)性质:当k >0时.函数图象的两个分支分别在第一、三象限.在每个象限内.y 随x 的增大而减小.当k <0时.函数图象的两个分支分别在第二、四象限.在每个象限内.y 随x 的增大而增大.2kx 21x +表达式 ky x=(k 是常数.k ≠0) kk >0k <0大致图象所在象限 第一、三象限第二、四象限增减性在每个象限内.y 随x 的增大而减小在每个象限内.y 随x 的增大而增大反比例函数的图象既是轴对称图形.又是中心对称图形.其对称轴为直线y =x 和y =-x .对称中心为原点. 【注意】(1)画反比例函数图象应多取一些点.描点越多.图象越准确.连线时.要注意用平滑的曲线连接各点.(2)随着|x |的增大.双曲线逐渐向坐标轴靠近.但永远不与坐标轴相交.因为反比例函数ky x=中x ≠0且y ≠0. (3)反比例函数的图象不是连续的.因此在谈到反比例函数的增减性时.都是在各自象限内的增减情况.当k >0时.在每一象限(第一、三象限)内y 随x 的增大而减小.但不能笼统地说当k >0时.y 随x 的增大而减小.同样.当k <0时.也不能笼统地说y 随x 的增大而增大.【例2】一次函数与反比例函数在同一坐标系中的图象可能是( ) A . B .C .D .y ax a =-(0)ay a x=≠【答案】D【解析】当时..则一次函数经过一、三、四象限.反比例函数经过一 、三象限.故排除A.C 选项; 当时..则一次函数经过一、二、四象限.反比例函数经过二、四象限.故排除B 选项.故选:D .【例3】若点.在反比例函数的图象上.且.则的取值范围是( )A .B .C .D .或【答案】B【解析】解:∵反比例函数.∴图象经过第二、四象限.在每个象限内.y 随x 的增大而增大.①若点A 、点B 同在第二或第四象限.∵.∴a -1>a+1.此不等式无解;②若点A 在第二象限且点B 在第四象限.∵.∴.解得:; ③由y 1>y 2.可知点A 在第四象限且点B 在第二象限这种情况不可能. 综上.的取值范围是.故选:B .考点三 反比例函数解析式的确定1.待定系数法:确定解析式的方法仍是待定系数法.由于在反比例函数ky x=中.只有一个待定系数.因此只需要一对对应值或图象上的一个点的坐标.即可求出k 的值.从而确定其解析式.2.待定系数法求反比例函数解析式的一般步骤 (1)设反比例函数解析式为ky x=(k ≠0); (2)把已知一对x .y 的值代入解析式.得到一个关于待定系数k 的方程; (3)解这个方程求出待定系数k ;(4)将所求得的待定系数k 的值代回所设的函数解析式.【例4】点A 为反比例函数图象上一点.它到原点的距离为5.到x 轴的距离为3.若点A 在第二象限内.则这个函数的解析式为( )0a >0a -<y ax a =-(0)ay a x=≠0a <0a ->y ax a =-(0)ay a x=≠()11,A a y -()21,B a y +(0)ky k x=<12y y >a 1a <-11a -<<1a >1a <-1a >(0)ky k x=<12y y >12y y >1010a a -⎧⎨+⎩<>11a -<<a 11a -<<A.y=12xB.y=-12xC.y=112xD.y=-112x【答案】B【解析】设A点坐标为(x.y).∵A点到x轴的距离为3.∴|y|=3.y=±3.∵A点到原点的距离为5.∴x2+y2=52.解得x=±4.∵点A在第二象限.∴x=-4.y=3.∴点A的坐标为(-4.3).设反比例函数的解析式为y=.∴k=-4×3=-12.∴反比例函数的解析式为y=.故选B.考点四反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时.可通过面积作和或作差的形式来求解.(1)正比例函数与一次函数所围成的三角形面积.如图①.S△ABC=2S△ACO=|k|;(2)如图②.已知一次函数与反比例函数kyx=交于A、B两点.且一次函数与x轴交于点C.则S△AOB=S△AOC+S△BOC=1||2AOC y⋅+1||2BOC y⋅=1(||||)2A BOC y y⋅+;(3)如图③.已知反比例函数kyx=的图象上的两点.其坐标分别为()A Ax y,.k x 12 x-()B B x y ,.C 为AB 延长线与x 轴的交点.则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-.【例5】如图.已知双曲线经过直角三角形OAB 斜边OB 的中点D .与直角边AB 相交于点C .若△OBC 的面积为9.则k =__________.【答案】6【解析】如图.过点D 作x 轴的垂线交x 轴于点E .∵△ODE 的面积和△OAC 的面积相等.∴△OBC 的面积和四边形DEAB 的面积相等且为9. 设点D 的横坐标为x .纵坐标就为. ∵D 为OB 的中点.∴EA =x .AB =. ∴四边形DEAB 的面积可表示为:(+)x =9;k =6. 故答案为:6.【例6】如图.A 、B 两点在双曲线y x=的图象上.分别经过A 、B 两点向轴作垂线段.已知1S =阴影.则12S S +=ky x=k x 2k x12k x 2k xA .8B .6C .5D .4【答案】B【解析】∵点A 、B 是双曲线y =上的点.分别经过A 、B 两点向x 轴、y 轴作垂线段.则根据反比例函数的图象的性质得两个矩形的面积都等于|k |=4.∴S 1+S 2=4+4-1×2=6.故选B .考点五 反比例函数与一次函数的综合1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时.联立两个解析式.构造方程组.然后求出交点坐标.针对12y y >时自变量x 的取值范围.只需观察一次函数的图象高于反比例函数图象的部分所对应的x 的范围.例如.如下图.当12y y >时.x 的取值范围为A x x >或0B x x <<;同理.当12y y <时.x 的取值范围为0A x x <<或B x x <.2.求一次函数与反比例函数的交点坐标(1)从几何角度看.一次函数与反比例函数的交点由k 值的符号来决定. ①k 值同号.两个函数必有两个交点;②k 值异号.两个函数可能无交点.可能有一个交点.也可能有两个交点;(2)从代数角度看.一次函数与反比例函数的交点主要取决于两函数所组成的方程组的解的情况.【例7】已知抛物线y =x 2+2x +k +1与x 轴有两个不同的交点.则一次函数y =kx ﹣k 与反比例函数y =在同一坐标系内的大致图象是( )4xA.B.C.D.【解析】∵抛物线y=x2+2x+k+1与x轴有两个不同的交点.∴△=4﹣4(k+1)>0.解得k<0.∴一次函数y=kx﹣k的图象经过第一二四象限.反比例函数y=的图象在第二四象限.故选:D.考点六反比例函数的实际应用解决反比例函数的实际问题时.先确定函数解析式.再利用图象找出解决问题的方案.特别注意自变量的取值范围.【例8】如图.△OAC和△BAD都是等腰直角三角形.∠ACO=∠ADB=90°.反比例函数y=k在第一象限的图象经过点B.若xOA2−AB2=12.则k的值为______.【解析】设B点坐标为(a,b).∵△OAC和△BAD都是等腰直角三角形.∴OA=√2AC.AB=√2AD.OC=AC.AD=BD.∵OA2−AB2=12.∴2AC2−2AD2=12.即AC2−AD2=6.∴(AC+AD)(AC−AD)=6.∴(OC+BD)⋅CD=6.∴a⋅b=6.∴k=6.故答案为:6..(其中mk≠0)图象交于【例9】如图.一次函数y=kx+b与反比例函数y=mxA(−4,2).B(2,n)两点.(1)求一次函数和反比例函数的表达式;(2)求△ABO的面积;(3)请直接写出当一次函数值大于反比例函数值时x 的取值范围.【解析】(1)∵一次函数y =kx +b 与反比例函数y =m x(mk ≠0)图象交于A(−4,2).B(2,n)两点.根据反比例函数图象的对称性可知.n =−4. ∴{2=−4k +b−4=2k +b .解得{k =−1b =−2.故一次函数的解析式为y =−x −2. 又知A 点在反比例函数的图象上.故m =−8. 故反比例函数的解析式为y =−8x ; (2)在y =−x −2中.令y =0.则x =−2. ∴OC =2.∴S △AOB =12×2×2+12×2×4=6; (3)根据两函数的图象可知:当x <−4或0<x <2时.一次函数值大于反比例函数值.第一部分 选择题一、选择题(本题有10小题.每题4分.共40分)1.下列函数:①2x y =;②2y x =;③12y x=-;④12y x -=中.是反比例函数的有( ) A .1个 B .2个 C .3个D .4个【答案】C【解析】①不是正比例函数.②③④是反比例函数.故选C .2.点A 为反比例函数图象上一点.它到原点的距离为5.则x 轴的距离为3.若点A 在第二象限内.则这个函数的解析式为( )A .y =12xB .y =-12xC .y =112xD .y =-112x【答案】C【解析】∵反比例函数y =-中.k =-6.∴只需把各点横纵坐标相乘.结果为-6的点在函数图象上.四个选项中只有C 选项符合.故选C . 3. 已知点A (1.m ).B (2.n )在反比例函数(0)ky k x=<的图象上.则( ) A .0m n << B .0n m << C .0m n >>D .0n m >>【答案】A【解析】∵反比例函数(0)k y k x =<.它的图象经过A (1.m ).B (2.n )两点.∴m =k <0.n =2k<0.∴0m n <<.故选A .4. 如图.等腰三角形ABC 的顶点A 在原点.顶点B 在x 轴的正半轴上.顶点C 在函数y =kx(x >0)的图象上运动.且AC =BC .则△ABC 的面积大小变化情况是( )A .一直不变B .先增大后减小C .先减小后增大D .先增大后不变【答案】A【解析】如图.作CD ⊥AB 交AB 于点D .则S △ACD =.∵AC =BC .∴AD =BD .∴S △ACD =S △BCD . ∴S △ABC =2S △ACD =2×=k .∴△ABC 的面积不变.故选A .6x 2k2k5.如图.点.点都在反比例函数的图象上.过点分别向轴、轴作垂线.垂足分别为点..连接...若四边形的面积记作.的面积记作.则( )A .B .C .D .【答案】C【解析】解:点P (m.1).点Q (−2.n )都在反比例函数y =的图象上. ∴m×1=−2n =4.∴m =4.n =−2.∵P (4.1).Q (−2.−2).∵过点P 分别向x 轴、y 轴作垂线.垂足分别为点M.N.∴S 1=4.作QK ⊥PN.交PN 的延长线于K.则PN =4.ON =1.PK =6.KQ =3. ∴S 2=S △PQK −S △PON −S 梯形ONKQ =×6×3−×4×1−(1+3)×2=3.∴S 1:S 2=4:3.故选:C .6. 已知一次函数y 1=kx +b 与反比例函数y 2=kx在同一直角坐标系中的图象如图所示.则当y 1<y 2时.x 的取值范围是( )(,1)P m (-2,)Q n 4y x=P x y M N OP OQ PQ OMPN 1S POQ △2S 12:2:3S S =12:1:1S S =12:4:3S S =12:5:3S S =4x121212A .x <-1或0<x <3B .-1<x <0或x >3C .-1<x <0D .x >3【答案】B【解析】根据图象知.一次函数y 1=kx +b 与反比例函数y 2=kx的交点是(-1.3).(3.-1).∴当y 1<y 2时.-1<x <0或x >3.故选B .7.如图.在平面直角坐标系xOy 中.函数()0y kx b k =+≠与()0my m x=≠的图象相交于点()()2,3,6,1A B --.则不等式mkx b x+>的解集为( )A .6x <-B 60x -<<.或2x >C .2x >D 6x <-.或02x <<8. 如图.直线l ⊥x 轴于点P .且与反比例函数y 1=1k x(x >0)及y 2=2k x (x >0)的图象分别交于点A .B .连接OA .OB .已知△OAB 的面积为2.则k 1-k 2的值为( )A .2B .3C .4D .-4【答案】C【解析】根据反比例函数k 的几何意义可知:△AOP 的面积为12k .△BOP 的面积为22k. ∴△AOB 的面积为12k −22k . ∴12k −22k =2.∴k 1–k 2=4.故选C . 9. 一次函数y =ax +b 与反比例函数a by x-=.其中ab <0.a 、b 为常数.它们在同一坐标系中的图象可以是( )A .B .C .D .【答案】C【解析】A .由一次函数图象过一、三象限.得a >0.交y 轴负半轴.则b <0.满足ab <0. ∴a −b >0.∴反比例函数y =a bx-的图象过一、三象限.所以此选项不正确; B .由一次函数图象过二、四象限.得a <0.交y 轴正半轴.则b >0.满足ab <0. ∴a −b <0.∴反比例函数y =a bx-的图象过二、四象限.所以此选项不正确; C .由一次函数图象过一、三象限.得a >0.交y 轴负半轴.则b <0.满足ab <0.∴a −b >0.∴反比例函数y =a bx的图象过一、三象限.所以此选项正确; D .由一次函数图象过二、四象限.得a <0.交y 轴负半轴.则b <0.满足ab >0.与已知相矛盾. 所以此选项不正确.故选C .10. 如图.一次函数与x 轴.y 轴的交点分别是A(−4,0).B(0,2).与反比例函数的图象交于点Q .反比例函数图象上有一点P 满足:①PA ⊥x 轴;②PO =√17(O 为坐标原点).则四边形PAQO 的面积为( )A. 7B. 10C. 4+2√3D. 4−2√3【答案】C【解析】∵一次函数y =ax +b 与x 轴.y 轴的交点分别是A(−4,0).B(0,2). ∴−4a +b =0.b =2. ∴a =12.∴一次函数的关系式为:y =12x +2. 设P(−4,n).∴√(−4)2+n 2=√17. 解得:n =±1.由题意知n =−1.n =1(舍去). ∴把P(−4,−1)代入反比例函数y =mx . ∴m =4.反比例函数的关系式为:y =4x .解{y =12x +2y =4x 得.{x =−2+2√3y =√3+1.{x =−2−2√3y =1−√3. ∴Q(−2+2√3,√3+1).∴四边形PAQO 的面积=12×4×1+124×2+12×2×(−2+2√3)=4+2√3. 故选:C .第二部分 填空题二、填空题(本题有6小题.每题4分.共24分)11.若正比例函数的图象与某反比例函数的图象有一个交点的纵坐标是2.则该反比例函数的解析式为________. 【答案】 【解析】令y=2x 中y=2.得到2x=2.解得x=1.∴正比例函数的图象与某反比例函数的图象交点的坐标是(1,2). 设反比例函数解析式为.将点(1,2)代入.得. ∴反比例函数的解析式为.故答案为:. 12.如图.直线y =x 与双曲线()0ky k x=>的一个交点为A .且OA =2.则k 的值为__________.【答案】2【解析】∵点A 在直线y =x 上.且OA =2.∴点A的坐标为把得.∴k=2.故答案为:2. 13. 已知(),3A m 、()2,B n -在同一个反比例函数图像上.则m n =__________.【答案】23-【解析】设反比例函数解析式为()0ky k x=≠.将(),3A m 、()2,B n -分别代入.得 3k m =.2k n =-. 2y x =2y x=2y x =ky x=122k =⨯=2y x =2y x=(22),(22),ky x=22=∴2332k m k n ==--. 故答案为:23-. 14.平面直角坐标系xOy 中.点A (a .b )(a >0.b >0)在双曲线y =上.点A 关于x 轴的对称点B 在双曲线y =.则k 1+k 2的值为__________. 【答案】0【解析】∵点A (a .b )(a >0.b >0)在双曲线y =上.∴k 1=ab ; 又∵点A 与点B 关于x 轴对称.∴B (a .–b ).∵点B 在双曲线y =上.∴k 2=–ab ;∴k 1+k 2=ab +(–ab )=0.故答案为:0. 15.如图.点A 是反比例函数图象上的一点.过点A 作轴.垂足为点C .D 为AC 的中点.若的面积为1.则k 的值是【答案】4【解析】点A 的坐标为(m.2n ).∴.∵D 为AC 的中点.∴D (m.n ). ∵AC ⊥轴.△ADO 的面积为1.∴. ∴.∴ 16. 如图.反比例函数y =24x(x >0)的图象与直线y =32x 相交于点A .与直线y =kx(k ≠0)相交于点B .若△OAB 的面积为18.则k 的值为______.【答案】41k x2k x1k x2k x y x=AC x ⊥AOD ∆2mn k =x ()ADO11121222S AD OC n n m mn =⋅=-⋅==2mn =24k mn ==【解析】:由题意得.{y =24xy =32x .解得:{x 1=4y 1=6.{x 2=−4y 2=−6(舍去). ∴点A(4,6).(1)如图1.当y =kx 与反比例函数的交点B 在点A 的下方. 过点A 、B 分别作AM ⊥x 轴.BN ⊥x 轴.垂足分别为M 、N . 设点B 坐标为(b,24b ).则ON =b .BN =24b.∴点A(4,6).∴OM =4.AM =6;∵S △AOB =S △AOM +S 梯形AMNB −S △BON =S 梯形AMNB . ∴18=12(6+24b)(b −4).解得.b 1=8.b 2=−2(舍去) ∴点B(8,3).代入y =kx 得. k =38; (2)如图2.当y =kx 与反比例函数的交点B 在点A 的上方. 过点A 、B 分别作AM ⊥y 轴.BN ⊥y 轴.垂足分别为M 、N . 设点B 坐标为(b,24b ).则ON =24b.BN =b .∴点A(4,6).∴OM =6.AM =4;∵S △AOB =S △AOM +S 梯形AMNB −S △BON =S 梯形AMNB . ∴18=12(b +4)(24b −6). 解得.b 1=2.b 2=−8(舍去) ∴点B(2,12).代入y =kx 得. k =6;故答案为:6或38.第三部分 解答题三、解答题(本题有6小题.共56分)17. 如图.已知A (–4.n ).B (2.–4)是一次函数y =kx +b 和反比例函数y =的图象的两个交点.(1)求一次函数和反比例函数的解析式; (2)求△AOB 的面积.【答案】(1)y =–x –2.y =–;(2)6【解析】(1)∵B (2.–4)在y =图象上. ∴m =–8.∴反比例函数的解析式为y =–. ∵点A (–4.n )在y =–图象上. ∴n =2. ∴A (–4.2).∵一次函数y =kx +b 图象经过A (–4.2).B (2.–4).∴.解得.∴一次函数的解析式为y =–x –2;(2)如图.令一次函数y =–x –2的图象与y 轴交于C 点.mx8xmx 8x8x4224k b k b -+=+=-⎧⎨⎩12k b =-=-⎧⎨⎩当x=0时.y =–2. ∴点C (0.–2). ∴OC =2.∴S △AOB =S △ACO +S △BCO =×2×4+×2×2=6. 18.如图.已知反比例函数y x=与一次函数y =x +b 的图象在第一象限相交于点A (1.-k +4). (1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B 的坐标.并根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.【答案】(1).y =x +1;(2)B 的坐标为(-2.-1).x <-2或0<x <1 【解析】(1)∵已知反比例函数经过点A (1.-k +4). ∴.即-k +4=k . ∴k =2.∴A (1.2).∵一次函数y =x +b 的图象经过点A (1.2). ∴2=1+b .∴b =1.∴反比例函数的表达式为. 一次函数的表达式为y =x +1.12122y x=ky x=41kk -+=2y x=(2)由.消去y .得x 2+x -2=0. 即(x +2)(x -1)=0. ∴x =-2或x =1. ∴y =-1或y =2.∴或.∵点B 在第三象限. ∴点B 的坐标为(-2.-1).由图象可知.当反比例函数的值大于一次函数的值时.x 的取值范围是x <-2或0<x <1. 19.如图.一次函数的图象与反比例函数(为常数且)的图象相交于.两点.(1)求反比例函数的表达式;(2)将一次函数的图象沿轴向下平移个单位.使平移后的图象与反比例函数的图象有且只有一个交点.求的值.【答案】(1);(2)b 的值为1或9. 【解析】(1)由题意.将点代入一次函数得: 将点代入得:.解得 则反比例函数的表达式为; (2)将一次函数的图象沿轴向下平移个单位得到的一次函数的解析式为联立整理得: 12y x y x ⎧=+⎪⎨=⎪⎩21x y ⎧=-⎨=-⎩12x y ⎧=⎨=⎩5y x =+ky x=k 0k ≠(1,)A m -B 5y x =+y b (0)b >ky x=b 4y x=-(1,)A m -5y x =+154m =-+=(1,4)A -∴(1,4)A -ky x=41k =-4k =-4y x =-5y x =+y b 5y x b =+-54y x by x =+-⎧⎪⎨=-⎪⎩2(5)40x b x +-+=一次函数的图象与反比例函数的图象有且只有一个交点 关于x 的一元二次方程只有一个实数根此方程的根的判别式解得则b 的值为1或9.20.如图.一次函数y =kx +b (k 、b 为常数.k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点.且与反比例函数y =(n 为常数.且n ≠0)的图象在第二象限交于点C .CD ⊥x 轴.垂足为D .若OB =2OA =3OD =12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E .求△CDE 的面积; (3)直接写出不等式kx +b ≤的解集.【答案】(1)y =–2x +12;(2)140;(3)x ≥10.或–4≤x <0 【解析】(1)由已知.OA =6.OB =12.OD =4.∵CD ⊥x 轴.∴OB ∥CD .∴△ABO ∽△ACD . ∴=.∴=.∴CD =20. ∴点C 坐标为(–4.20).∴n =xy =–80. ∴反比例函数解析式为:y =–. 把点A (6.0).B (0.12)代入y =kx +b 得:.解得.∴一次函数解析式为:y =–2x +12; (2)当–=–2x +12时.解得x 1=10.x 2=–4; 当x =10时.y =–8.∴点E 坐标为(10.–8). ∴S △CDE =S △CDA +S △EDA =×20×10+×8×10=140; 5y x b =+-4y x=-∴2(5)40x b x +-+=∴2(5)440b ∆=--⨯=121,9b b ==nxnxOA AD OBCD 61012CD80x0612k b b =+=⎧⎨⎩212k b =-=⎧⎨⎩80x1212(3)不等式kx +b ≤.从函数图象上看.表示一次函数图象不高于反比例函数图象; ∴由图象得.x ≥10.或–4≤x <0. 21.如图.一次函数y =k 1x +b 的图象与反比例函数y=的图象相交于A 、B 两点.其中点A 的坐标为(–1.4).点B 的坐标为(4.n ).(1)根据图象.直接写出满足k 1x +b >的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上.且S △AOP ∶S △BOP =1∶2.求点P 的坐标. 【答案】(1)x <–1或0<x <4;(2)y =–(3)P (.)【解析】(1)∵点A 的坐标为(–1.4).点B 的坐标为(4.n ).由图象可得:k 1x +b >的x 的取值范围是x <–1或0<x <4; (2)∵反比例函数y =的图象过点A (–1.4).B (4.n ). ∴k 2=–1×4=–4.k 2=4n .∴n =–1.∴B (4.–1). ∵一次函数y =k 1x +b 的图象过点A .点B .∴. 解得k =–1.b =3.∴直线解析式y =–x +3.反比例函数的解析式为y =–; (3)设直线AB 与y 轴的交点为C .∴C (0.3).∵S △AOC =×3×1=. ∴S △AOB =S △AOC +S △BOC =×3×1+×3×4=. n x2k x 2k xx 332k x2k x 11441k b k b -+=+=-⎧⎨⎩4x 12321212152∵S△AOP :S △BOP =1:2.∴S △AOP =×=. ∴S △COP =–=1.∴×3x P =1.∴x P =. ∵点P 在线段AB 上.∴y =–+3=.∴P (.).22.如图.反比例函数1k y x=和一次函数2y mx n =+相交于点()1,3A .()3,B a -. (1)求一次函数和反比例函数解析式;(2)连接OA.试问在x 轴上是否存在点P.使得OAP ∆为以OA 为腰的等腰三角形.若存在.直接写出满足题意的点P 的坐标;若不存在.说明理由.【答案】(1)22y x =+(2)见解析【解析】(1)∵反比例函数1k y x =和一次函数2y mx n =+相交于点()1,3A .()3,B a -. ∴k=1×3=3.∴13y x=. ∴-3a=3.解得:a=-1.∴B(-3.-1).∴331m n m n +=⎧⎨-+=-⎩.解得:12m n =⎧⎨=⎩. ∴22y x =+;(2)设P(t.0).∵()1,3A .∴222(1)(03)(1)9t t -+-=-+t 221310+. 15213525232122323732373∵OAP ∆为以OA 为腰的等腰三角形.∴OA=AP 或OA=OP.当OA=AP 时.22(1)9(10)t -+=.解得:1220t t ==,(不符合题意.舍去). ∴P(2.0);当OA=OP 时.t 10解得:10.∴10.0)或P(10.0).综上所述:存在点P.使OAP ∆为以OA 为腰的等腰三角形.点P 坐标为:(2.0) 或10.0)或(10.0).。
中考数学总复习《反比例函数》专项测试卷及答案
中考数学总复习《反比例函数》专项测试卷及答案(测试时长:60分钟;总分:100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(本题共8小题,共40分)1.已知点(﹣2,a)(2,b)(3,c)在函数y=kx(k>0)的图象上,则下列判断正确的是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a2.已知反比例函数6yx=,则下列描述不正确的是()A.图象位于第一,第三象限B.图象必经过点3 4,2⎛⎫ ⎪⎝⎭C.图象不可能与坐标轴相交D.y随x的增大而减小3.在反比例函数2yx=中,当1x=-时,y的值为()A.2 B.2-C.12D.12-4.反比例函数y=kx 与一次函数y=815x+1615的图形有一个交点B(12,m),则k的值为()A.1 B.2 C.23D.435.如图,在同一平面直角坐标系中,直线y=t(t为常数)与反比例函数y14x=,y21x=-的图象分别交于点A,B,连接OA,OB,则△OAB的面积为()A.5t B.52tC.52D.56.关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征.甲:函数图像经过点(1,1)-;乙:函数图像经过第四象限;丙:当0x >时,y 随x 的增大而增大.则这个函数表达式可能是( ) A .y x =-B .1y x=C .2yx D .1y x=-7.如图,O 是坐标原点,点B 在x 轴上,在OAB 中,AO =AB =5,OB =6,点A 在反比例函数y =kx(k ≠0)图象上,则k 的值( )A .﹣12B .﹣15C .﹣20D .﹣308.如图,在平面直角坐标系中,直线y =x 与反比例函数y =4x(x >0)的图象交于点A ,将直线y =x 沿y 轴向上平移b 个单位长度,交y 轴于点B ,交反比例函数图象于点C .若OA =2BC ,则b 的值为( )A .1B .2C .3D .4二、填空题(本题共5小题,每空3分,共15分)9.如图,在平面直角坐标系中,点A 的坐标为()3,2,AB x ⊥轴于点B ,点C 是线段OB 上的点,连结AC .点P 在线段AC 上,且2=AP PC .函数()0k y x x=>的图象经过点P .当点C 在线段OB 上运动时,k 的取值范围是_________.10.已知点()1,A a y ,()21,B a y +在反比例函数21m y x+=(m是常数)的图象上,且12y y <,则a 的取值范围是__________.11.以正方形ABCD 两条对角线的交点O 为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D ,则正方形ABCD 的面积是_________.12.如图,在平面直角坐标系中,O 是坐标原点,在OAB 中,,AO AB AC OB =⊥于点C ,点A 在反比例函数(0)ky k x=≠的图象上,若OB =4,AC =3,则k 的值为__________.13.如图,在直角坐标系xOy 中,点A ,B 分别在x 轴和y 轴,=.∠AOB 的角平分线与OA 的垂直平分线交于点C ,与AB 交于点D ,反比例函数y=的图象过点C .当以CD 为边的正方形的面积为时,k 的值是_________.三、解答题(本题共4小题,共45分)14.一次函数y 1=k 1x +b(k 1≠0)的图象与反比例函数y 2=k 2x(k 2≠0)的图象相交于点A(2,−1),B(1,n)两点.(1)分别求出一次函数和反比例函数的解析式,并在给出的平面直角坐标系中,直接画出一次函数和反比例函数的图象;(2)连接AO 并延长交双曲线于点C ,连接BC ,求△ABC 的面积; (3)直接写出当y 1>y 2时,x 的取值范围.15.如图,在平面直角坐标系中,直线11y k x b =+与双曲线22k y x=相交于()()2,3,,2A B m --两点.(1)求12,y y 对应的函数表达式;(2)过点B 作//BP x 轴交y 轴于点P ,求ABP △的面积; (3)根据函数图象,直接写出关于x 的不等式21k k x b x+<的解集.16.如图,一次函数()1y kx b k 0=+≠的图象与反比例函数()2my m 0x=≠的图象交于()1,A n -,()3,2B -两点.(1)求一次函数和反比例函数的解析式;(2)点P 在x 轴上,且满足ABP △的面积等于4,请直接写出点P 的坐标.17.如图,在平面直角坐标系xoy 中,函数(0)ky x x=<的图象经过点(-6,1),直线y mx m =+与y 轴交于点(0,-2).(1)求k ,m 的值;(2)过第二象限的点P(n ,-2n )作平行于x 轴的直线,交直线y =mx+m 于点A ,交函数(0)ky x x=<的图象于点B . ①当n =-1时,判断线段PA 与PB 的数量关系,并说明理由; ②若PB ≥2PA ,结合函数的图象,直接写出n 的取值范围.参考答案:1.C2.D3.B4.C5.C6.D7.A8.C9.232k ≤≤10.10a -<< 11.12 12.6 13.714.(1)解:把A(2,−1)代入y 2=k 2x得k =−2∴反比例函数的解析式为y 2=−2x . 当x=1时,y =−2; ∴B(1,−2)把A(2,−1),B(1,−2)代入y 1=k 1x +b 得{2k 1+b =−1k 1+b =−2解得{k 1=1b =−3∴一次函数的解析式为y 1=x −3 图象如图所示(2)解:如图,设BC 交y 轴于点D ,连接AD∵A ,C 关于原点对称∴C(−2,1) ∵B(1,−2)设直线BC 的解析式为y =kx +b 则{−2=k +b 1=−2k +b 解得{k =−1b =−1∴直线BC 的解析式为y =−x −1 令x =0,则y =−1∴D(0,−1) ∵A(2,−1)∴AD ⊥x 轴∴S △ABC =S △ABD +S △ADC =12AD ×|y C −y B |=12×2×(1+2)=3(3)解:根据函数图象可知,当y 1>y 2时 15. (1)11y x =-+ 26y x=-;(2)152ABPS=;(3)20x -<<或3x > 16. (1)124y x =-+ 26y x=-;(2)(1,0)或(3,0) 17.解:(1)∵函数(0)ky x x=<图象经过点(-6,1) ∴k=-6×1=-6∵直线y mx m =+与y 轴交于点(0,-2) ∴m=-2;(2)①PB=2PA,理由如下:当n=-1时,点P坐标为(-1,2)∴点A坐标为(-2,-2),点B坐标为(-3,-2)∴PA=1,PB=2∴PB=2PA;②∵点P坐标为(n,-2n),PA平行于x轴把y=-2n分别代入6(0)y xx=-<和y=-2x-2得点B坐标为3,2nn⎛⎫-⎪⎝⎭,点A坐标为(n-1,-2n)∴PA=n-(n-1)=1,PB=3 nn -当PB=2PA时,则32 nn-=如图1,当32nn-=解得121,3x x=-=(不合题意,舍去)如图2,当32nn-=解得123,1x x=-=(不合题意,舍去)∴PB≥2PA时,3-10n n≤-≤<或.。
专题. 反比例函数(中考真题专练)(培优篇)(专项练习)八年级数学下册基础知识专项讲练(苏科版)
专题11.37反比例函数(中考真题专练)(培优篇)(专项练习)一、单选题1.(2018·四川乐山·中考真题)如图,曲线C 2是双曲线C 1:y=6x(x >0)绕原点O 逆时针旋转45°得到的图形,P 是曲线C 2上任意一点,点A 在直线l :y=x 上,且PA=PO ,则△POA 的面积等于()A B .6C .3D .122.(2020·广西·统考中考真题)如图,点,A B 是直线y x =上的两点,过,A B 两点分别作x 轴的平行线交双曲线()10y x x=>于点,C D .若AC =,则223OD OC -的值为()A .5B .C .4D .3.(2020·江苏常州·中考真题)如图,点D 是OABC 内一点,CD 与x 轴平行,BD 与y 轴平行,135,2ABD BD ADB S =∠=︒= .若反比例函数()0k y x x =>的图像经过A 、D 两点,则k 的值是()A .B .4C .D .64.(2019·山东济宁·统考中考真题)如图,点A 的坐标是(-2,0),点B 的坐标是(0,6),C 为OB 的中点,将△ABC 绕点B 逆时针旋转90°后得到A B C '''∆.若反比例函数k y x=的图象恰好经过A B '的中点D ,则k 的值是()A .9B .12C .15D .185.(2018·广东深圳·统考中考真题)如图,A 、B 是函数12y x =上两点,P 为一动点,作//PB y 轴,//PA x 轴,下列说法正确的是()①AOP BOP ∆≅∆;②AOP BOP S S ∆∆=;③若OA OB =,则OP 平分AOB ∠;④若4BOP S ∆=,则16ABP S ∆=A .①③B .②③C .②④D .③④6.(2021·江苏南通·统考中考真题)平面直角坐标系xOy 中,直线2y x =与双曲线()2k y k x =>相交于A ,B 两点,其中点A 在第一象限.设(),2M m 为双曲线()2k y k x=>上一点,直线AM ,BM 分别交y 轴于C ,D 两点,则OC OD -的值为()A .2B .4C .6D .87.(2019·重庆·统考中考真题)如图,在平面直角坐标系中,矩形ABCD 的顶点A 点,D 点分别在x 轴、y 轴上,对角线BD ∥x 轴,反比例函数(0,0)k y k x x=>>的图象经过矩形对角线的交点E ,若点A(2,0),D(0,4),则k 的值为()A .16B .20C .32D .408.(2021·重庆·统考中考真题)如图,在平面直角坐标系中,菱形ABCD 的顶点D 在第二象限,其余顶点都在第一象限,AB ∥X 轴,AO ⊥AD ,AO =A D .过点A 作AE ⊥CD ,垂足为E ,DE =4CE .反比例函数()0k y x x =>的图象经过点E ,与边AB 交于点F ,连接OE ,OF ,EF .若118EOF S = ,则k 的值为()A .73B .214C .7D .2129.(2020·湖北鄂州·中考真题)如图,点123,,A A A 在反比例函数1(0)y x x =>的图象上,点123,,n B B B B 在y 轴上,且11212323B OA B B A B B A ∠=∠=∠= ,直线y x =与双曲线1y x=交于点111122123322,,A B A OA B A B A B A B A ⊥⊥⊥ ,,则n B (n 为正整数)的坐标是()A .B .C .D .10.(2013·重庆·中考真题)如图,在直角坐标系中,正方形OABC 的顶点O 与原点重合,顶点A .C 分别在x 轴、y 轴上,反比例函数()k y k 0x 0x=≠>,的图象与正方形的两边AB 、BC 分别交于点M 、N ,ND ⊥x 轴,垂足为D ,连接OM 、ON 、MN .下列结论:①△OCN ≌△OAM ;②ON=MN ;③四边形DAMN 与△MON 面积相等;④若∠MON=450,MN=2,则点C 的坐标为()01.其中正确的个数是【】A .1B .2C .3D .4二、填空题11.(2019·江苏南通·统考中考真题)如图,过点C(3,4)的直线2y x b =+交x 轴于点A ,∠ABC=90°,AB=CB ,曲线0k y x x=>()过点B ,将点A 沿y 轴正方向平移a 个单位长度恰好落在该曲线上,则a 的值为________.12.(2018·湖北孝感·统考中考真题)如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为(1,1)-,点B 在x 轴正半轴上,点D 在第三象限的双曲线6y x=上,过点C 作//CE x 轴交双曲线于点E ,连接BE ,则BCE ∆的面积为__________.13.(2021·四川阿坝·统考中考真题)如图,在平面直角坐标系xOy 中,一次函数1y x =+的图象与反比例函数2y x=的图象交于A ,B 两点,若点P 是第一象限内反比例函数图象上一点,且ABP 的面积是AOB 的面积的2倍,则点P 的横坐标...为________.14.(2020·浙江衢州·统考中考真题)如图,将一把矩形直尺ABCD 和一块含30°角的三角板EFG 摆放在平面直角坐标系中,AB 在x 轴上,点G 与点A 重合,点F 在AD 上,三角板的直角边EF 交BC 于点M ,反比例函数y =k x(x >0)的图象恰好经过点F ,M .若直尺的宽CD =3,三角板的斜边FG =83,则k =_____.15.(2018·广东·统考中考真题)如图,已知等边△OA1B1,顶点A1在双曲线y=3xx >0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x 轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x 轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为_____.16.(2019·四川眉山·统考中考真题)如图,反比例函数()0k y x x=>的图象经过矩形OABC 对角线的交点M ,分别交AB ,BC 于点D 、E .若四边形ODBE 的面积为12,则k 的值为______.17.(2019·浙江湖州·中考真题)如图,已知在平面直角坐标系xOy 中,直线112y x =-分别交x 轴,y 轴于点A 和点B ,分别交反比例函数()1k y k x x =>0,>0,()220k y x x =<的图象于点C 和点D ,过点C 作CE x ⊥轴于点E ,连结,OC OD .若COE ∆的面积与DOB ∆的面积相等,则k 的值是_____.18.(2021·山东潍坊·统考中考真题)如图,在直角坐标系中,O 为坐标原点a y x =与b y x =(a >b >0)在第一象限的图象分别为曲线C 1,C 2,点P 为曲线C 1上的任意一点,过点P 作y 轴的垂线交C 2于点A ,作x 轴的垂线交C 2于点B ,则阴影部分的面积S △AOB =_______.(结果用a ,b 表示)19.(2021·浙江宁波·统考中考真题)在平面直角坐标系中,对于不在坐标轴上的任意一点(),A x y ,我们把点11,B x y ⎛⎫ ⎪⎝⎭称为点A 的“倒数点”.如图,矩形OCDE 的顶点C 为()3,0,顶点E 在y 轴上,函数()20=>y x x的图象与DE 交于点A .若点B 是点A 的“倒数点”,且点B 在矩形OCDE 的一边上,则OBC △的面积为_________.三、解答题20.(2020·湖南株洲·中考真题)如图所示,OAB 的顶点A 在反比例函数(0)k y k x=>的图像上,直线AB 交y 轴于点C ,且点C 的纵坐标为5,过点A 、B 分别作y 轴的垂线AE 、BF ,垂足分别为点E 、F ,且1AE =.(1)若点E 为线段OC 的中点,求k 的值;(2)若OAB 为等腰直角三角形,90AOB ∠=︒,其面积小于3.①求证:OAE BOF ≌△△;②把1212x x y y -+-称为()11,M x y ,()22,N x y 两点间的“ZJ 距离”,记为,()d M N ,求(,)(,)d A C d A B +的值.21.(2021·湖南株洲·统考中考真题)如图所示,在平面直角坐标系Oxy 中,一次函数2y x =的图像l 与函数()0,0k y k x x=>>的图像(记为Γ)交于点A ,过点A 作AB y ⊥轴于点B ,且1AB =,点C 在线段OB 上(不含端点),且OC t =,过点C 作直线1//l x 轴,交l于点D ,交图像Γ于点E .(1)求k 的值,并且用含t 的式子表示点D 的横坐标;(2)连接OE 、BE 、AE ,记OBE △、ADE V 的面积分别为1S 、2S ,设12U S S =-,求U 的最大值.22.(2020·四川广元·统考中考真题)如图所示,一次函数y kx b =+的图象与反比例函数m y x=的图象交于(3,4), (,-1)A B n .(1)求反比例函数和一次函数的解析式;(2)在x 轴上存在一点C ,使AOC 为等腰三角形,求此时点C 的坐标;(3)根据图象直接写出使一次函数的值大于反比例函数的值的x 的取值范围.23.(2022·四川绵阳·统考中考真题)如图,一次函数1y k x b =+与反比例函数2k y x =在第一象限交于(2,8)M 、N 两点,NA 垂直x 轴于点A ,O 为坐标原点,四边形OANM 的面积为38.(1)求反比例函数及一次函数的解析式;(2)点P 是反比例函数第三象限内的图象上一动点,请简要描述使PMN 的面积最小时点P 的位置(不需证明),并求出点P 的坐标和PMN 面积的最小值.24.(2022·江苏徐州·统考中考真题)如图,一次函数(0)y kx b k =+>的图像与反比例函数8(0)y x x=>的图像交于点A ,与x 轴交于点B ,与y 轴交于点C ,AD x ⊥轴于点D ,CB CD =,点C 关于直线AD 的对称点为点E .(1)点E 是否在这个反比例函数的图像上?请说明理由;(2)连接AE 、DE ,若四边形ACDE 为正方形.①求k 、b 的值;②若点P 在y 轴上,当PE PB -最大时,求点P 的坐标.25.(2022·山东济南·统考中考真题)如图,一次函数112y x =+的图象与反比例函数()0k y x x =>的图象交于点(),3A a ,与y 轴交于点B .(1)求a ,k 的值;(2)直线CD 过点A ,与反比例函数图象交于点C ,与x 轴交于点D ,AC =AD ,连接C B .①求△ABC 的面积;②点P 在反比例函数的图象上,点Q 在x 轴上,若以点A ,B ,P ,Q 为顶点的四边形是平行四边形,请求出所有符合条件的点P 坐标.参考答案1.B【分析】将双曲线逆时针旋转使得l 与y 轴重合,等腰三角形△PAO 的底边在y 轴上,应用反比例函数比例系数k 的性质解答问题.解:如图,将C 2及直线y=x 绕点O 逆时针旋转45°,则得到双曲线C 3,直线l 与y 轴重合.双曲线C 3,的解析式为y=-6x,过点P 作PB ⊥y 轴于点B ,∵PA=PO ,∴B 为OA 中点.∴S △PAB =S △POB ,由反比例函数比例系数k 的性质,S △POB =3,∴△POA 的面积是6.故选B .【点拨】本题为反比例函数综合题,考查了反比例函数的轴对称性以及反比例函数比例系数k 的几何意义.2.C【分析】设点A 的坐标为(a ,a ),则点C 的坐标为(1a ,a ),设点B 的坐标为(b ,b ),则点D 的坐标为(1b,b ),根据即可得到a ,b 的关系,然后利用勾股定理,即可用a ,b 表示出所求的式子从而求解.解:∵点A 、B 在直线y x =上,点C 、D 在双曲线1y x =上,∴设点A 的坐标为(a ,a ),则点C 的坐标为(1a ,a ),设点B 的坐标为(b ,b ),则点D 的坐标为(1b,b ),∴BD=1 b b -,AC=1a a -,∵,∴11 a b a b ⎫-=-⎪⎭,两边同时平方,得22113a b a b ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,整理得:222211232a b a b ⎛⎫+-=-- ⎪⎝⎭,由勾股定理知:2221OC a a =+,2221OD b b =+,∴()22232OC OD -=-,∴2234OD OC -=.故选:C .【点拨】本题考查了反比例函数与勾股定理的综合应用,正确利用得到a b ,的关系是解题的关键.3.D【分析】作AE BD ⊥交BD 的延长线于点E ,作AF x ⊥轴于点F ,计算出AE 长度,证明BCD AOF ≅△△,得出AF 长度,设出点A 的坐标,表示出点D 的坐标,使用D D A A x y x y =,可计算出k 值.解:作AE BD ⊥交BD 的延长线于点E ,作AF x ⊥轴于点F∵135ADB ︒∠=∴45ADE ︒∠=∴ADE V 为等腰直角三角形∵2BD S ABD ==△∴122ABD S BD AE =⋅=△,即AE =∴DE=AE=∵BC=AO ,且//BC AO ,//CD OF∴BCD AOF∠=∠∴BCD AOF≅△△∴AF BD ==∴D y =设点A (m ,(D m -(m =-⋅解得:m =∴3226k =⨯=故选:D .【点拨】本题考查了反比例函数与几何图形的综合,利用点A和点D表示出k的计算是解题的关键.4.C【分析】作'A H y ⊥轴于.H 证明AOB ≌()'BHA AAS ,推出OA BH =,'OB A H =,求出点'A 坐标,再利用中点坐标公式求出点D 坐标即可解决问题.解:作A H y '⊥轴于H .∵90AOB A HB ABA ∠=∠'=∠'=︒,∴90ABO A BH ∠+∠'=︒,90ABO BAO ∠+∠=︒,∴BAO A BH ∠=∠',∵BA BA =',∴()AOB BHA AAS ' ≌,∴OA BH =,OB A H =',∵点A 的坐标是()2,0-,点B 的坐标是()0,6,∴2OA =,6OB =,∴2BH OA ==,6A H OB '==,∴4OH =,∴()6,4A ',∵BD A D =',∴()3,5D ,∵反比例函数k y x =的图象经过点D ,∴15k =.故选C .【点拨】本题考查反比例函数图形上的点的坐标特征,坐标与图形的变化-旋转等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.5.B【分析】①显然AO 与BO 不一定相等,由此可判断①错误;②延长BP ,交x 轴于点E ,延长AP ,交y 轴于点F ,根据矩形的性质以及反比例函数的性质判断②正确;③过P 作PM ⊥BO ,垂足为M ,过P 作PN ⊥AO ,垂足为N ,由已知可推导得出PM=PN ,继而可判断③正确;④设P (a ,b ),则B (a ,12a ),A (12b ,b ),根据S △BOP =4,可得ab=4,继而可判断④错误.解:①显然AO 与BO 不一定相等,故△AOP 与△BOP 不一定全等,故①错误;②延长BP ,交x 轴于点E ,延长AP ,交y 轴于点F ,∵AP//x 轴,BP//y 轴,∴四边形OEPF 是矩形,S △EOP =S △FOP ,∵S △BOE =S △AOF =12k=6,∴S △AOP =S △BOP ,故②正确;③过P 作PM ⊥BO ,垂足为M ,过P 作PN ⊥AO ,垂足为N ,∵S △AOP =12OA•PN ,S △BOP =12BO•PM ,S △AOP =S △BOP ,AO=BO ,∴PM=PN ,∴PO 平分∠AOB ,即OP 为∠AOB 的平分线,故③正确;④设P (a ,b ),则B (a ,12a),A (12b ,b ),∵S △BOP =12BP•EO=112·2b a a ⎛⎫⨯- ⎪⎝⎭=4,∴ab=4,∴S △ABP =12AP•BP=11212·2b a a b ⎛⎫⎛⎫⨯-- ⎪ ⎪⎝⎭⎝⎭=8,故④错误,综上,正确的为②③,故选B .【点拨】本题考查了反比例函数的综合题,正确添加辅助线、熟知反比例函数k 的几何意义是解题的关键.6.B【分析】根据直线2y x =与双曲线()2k y k x=>相交于A ,B 两点,其中点A 在第一象限求得222k A k ⎛ ⎝,2,22k B k ⎛⎫- ⎪ ⎪⎝,再根据(),2M m 为双曲线()2k y k x =>上一点求得,22k M ⎛⎫ ⎪⎝⎭;根据点A 与点M 的坐标求得直线AM 解析式为222422k k y x k k k k -=+--进而求得222k k OC k k =-B 与点M 的坐标求得直线BM 解析式为22222kk y x k k k k -=+++2222k k k OD k k -=+OC OD -即可.解:∵直线2y x =与双曲线()2k y k x=>相交于A ,B 两点,∴联立可得:2,,y x k y x =⎧⎪⎨=⎪⎩解得:11222k x y k ⎧⎪⎨⎪⎩.或22222k x y k ⎧=⎪⎨⎪=-⎩.∵点A 在第一象限,∴222k A k ⎛ ⎝,2,22k B k ⎛⎫- ⎪ ⎪⎝.∵(),2M m 为双曲线()2k y k x=>上一点,∴2k m =.解得:2k m =.∴,22k M ⎛⎫ ⎪⎝⎭.设直线AM 的解析式为11y k x b =+,将点A ⎝与点,22k M ⎛⎫ ⎪⎝⎭代入解析式可得:1111,2·,2k b k k b =⎨⎪=+⎪⎩解得:11k b ⎧=⎪⎪⎨⎪⎪⎩∴直线AM的解析式为y x =.∵直线AM 与y 轴交于C 点,∴0C x =.∴0C y =+.∴C ⎛ ⎝.∵2k >,∴OC ==设直线BM 的解析式为22y k x b =+,将点B ⎛ ⎝与点,22k M ⎛⎫ ⎪⎝⎭代入解析式可得:2222·,2·,2k b k k b ⎧⎛=-+⎪ ⎪⎝⎭⎨⎪=+⎪⎩解得:22k b ⎧=⎪⎪⎨⎪=⎪⎩∴直线BM的解析式为y x =.∵直线BM 与y 轴交于D 点,∴0D x =.∴0Dy=.∴D⎛⎝.∵2k>,∴OD==∴OC OD-=2k k k==22842k kk k-=-()22422k kk k-=-=4.故选:B.【点拨】本题考查了一次函数和反比例函数的综合应用,涉及到分式方程,一元二次方程和二元一次方程组的求解,正确求出点的坐标和直线解析式是解题关键.7.B【分析】根据平行于x轴的直线上任意两点纵坐标相同,可设B(x,4)利用矩形的性质得出E为BD中点,∠DAB=90°,根据线段中点坐标公式得出E(12x,4).由勾股定理得出AD2+AB2=BD2,列出方程22+42+(x-2)2+42=x2,求出x,得到E点坐标,代入kyx=,利用待定系数法求出k.解:∵BD//x轴,D(0,4),∴B、D两点纵坐标相同,都为4,∴可设B(x,4).∵矩形ABCD的对角线的交点为E,.∴E为BD中点,∠DAB=90°.∴E(12x,4)∵∠DAB=90°,∴AD 2+AB 2=BD 2,∵A (2,0),D (0,4),B (x ,4),∴22+42+(x-2)2+42=x 2,解得x=10,∴E (5,4).又∵反比例函数k y x=(k>0,x>0)的图象经过点E ,∴k=5×4=20;故选B.【点拨】本题考查了矩形的性质,勾股定理,反比例函数图象上点的坐标特征,线段中点坐标公式等知识,求出E 点坐标是解题的关键.8.A【分析】延长EA 交x 轴于点G ,过点F 作x 轴的垂线,垂足分别为H ,则可得△DEA ≌△AGO ,从而可得DE =AG ,AE =OG ,若设CE =a ,则DE =AG =4a ,AD =DC =DE +CE =5a ,由勾股定理得AE =OG =3a ,故可得点E 、A 的坐标,由AB 与x 轴平行,从而也可得点F 的坐标,根据EOF EOG FOH EGHF S S S S =+- 梯形,即可求得a 的值,从而可求得k 的值.解:如图,延长EA 交x 轴于点G ,过点F 作x 轴的垂线,垂足分别为H∵四边形ABCD 是菱形∴CD =AD =AB ,CD ∥AB∵AB ∥x 轴,AE ⊥CD∴EG ⊥x 轴,∠D +∠DAE =90゜∵OA ⊥AD∴∠DAE +∠GAO =90゜∴∠GAO =∠D∵OA =OD∴△DEA ≌△AGO (AAS )∴DE =AG ,AE =OG设CE =a ,则DE =AG =4CE =4a ,AD =AB =DC =DE +CE =5a在Rt △AED 中,由勾股定理得:AE =3a∴OG =AE =3a ,GE =AG +AE =7a∴A (3a ,4a ),E (3a ,7a )∵AB ∥x 轴,AG ⊥x 轴,FH ⊥x 轴∴四边形AGHF 是矩形∴FH =AG =3a ,AF =GH∵E 点在双曲线()0k y x x=>上∴221k a =即221a y x=∵F 点在双曲线221a y x =上,且F 点的纵坐标为4a ∴214ax =即214aOH =∴94aGH OH OG =-=∵EOF EOG FOHEGHF S S S S =+- 梯形∴1191211137(74)4224248a a a a a a a ⨯⨯++⨯-⨯⨯=解得:219a =∴217212193k a ==⨯=故选:A .【点拨】本题是反比例函数与几何的综合题,考查了菱形的性质,矩形的判定与性质,三角形全等的判定与性质等知识,关键是作辅助线及证明△DEA ≌△AGO ,从而求得E 、A 、F 三点的坐标.9.D【分析】先求出1A 的坐标,由题意容易得到11OA B ∆为等腰直角三角形,即可得到1OB ,然后过2A 作22A H OB ⊥交y 轴于H ,21A H B H x ==,通过反比例函数解析式可求出x ,从而能够得到2OB ,再同样求出3OB ,即可发现规律.解:联立1y x y x =⎧⎪⎨=⎪⎩,解得1x =,∴1(1,1)A,1OA ,由题意可知11=45A OB ︒∠,∵111B A OA ⊥,∴11OA B ∆为等腰直角三角形,∴112OB ==,过2A 作22A H OB ⊥交y 轴于H ,则容易得到21A H B H =,设21A H B H x ==,则2(,2)A x x +,∴()21x x +=,解得11x =,21x =(舍),∴211A H B H ==,12122B B B H ==,∴222OB =-+=用同样方法可得到3OB =,因此可得到n OB =(0,n B 故选:D .【点拨】本题考查了反比例函数的性质,属于规律问题,求出n OB =10.C【分析】设正方形OABC 的边长为a ,通过△OCN ≌△OAM (SAS )判定结论①正确,求出ON 和MN 不一定相等判定结论②错误,而MON ODN OAM DAMN DAMNS S S S S ∆∆∆=+-=四边形四边形可得结论③正确,列式求出C点的坐标为()01+可知结论④正确.解:设正方形OABC 的边长为a ,则A (a ,0),B (a ,a ),C (0,a ),M (a ,k a ),N (k a ,a ).∵CN=AM=k a,OC=OA=a ,∠OCN=∠OAM=900,∴△OCN ≌△OAM (SAS ).结论①正确.根据勾股定理,ON =,,∴ON 和MN 不一定相等.结论②错误.∵ODN OAM S S ∆∆=,∴MON ODN OAM DAMN DAMN S S S S S ∆∆∆=+-=四边形四边形.结论③正确.如图,过点O 作OH ⊥MN 于点H ,则∵△OCN ≌△OAM ,∴ON=OM ,∠CON=∠AOM .∵∠MON=450,MN=2,∴NH=HM=1,∠CON=∠NOH=∠HOM=∠AOM=22.50.∴△OCN ≌△OHN (ASA ).∴CN=HN=1.∴k 1k a a=⇒=.由2MN k =-得,()222222a 4a 2a a a 2a 10=-⇒=-⇒--=.解得:2a 12±==∴点C 的坐标为()01+.结论④正确.∴结论正确的为①③④3个.故选C .【点拨】本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、比例系数的几何意义和正方形的性质;熟练运用勾股定理和等腰直角三角形的性质进行几何计算.11.4【分析】分别过点B 、点C 作y 轴和x 轴的平行线,两条平行线相交于点M ,与x 轴的交点为N .将C(3,4)代入2y x b =+可得b=-2,然后求得A 点坐标为(1,0),证明△ABN ≌△BCM ,可得AN=BM=3,CM=BN=1,可求出B(4,1),即可求出k=4,由A 点向上平移后落在4y x=上,即可求得a 的值.解:分别过点B 、点C 作y 轴和x 轴的平行线,两条平行线相交于点M ,与x 轴的交点为N ,则∠M=∠ANB=90°,把C(3,4)代入2y x b =+,得4=6+b ,解得:b=-2,所以y=2x-2,令y=0,则0=2x-2,解得:x=1,所以A(1,0),∵∠ABC=90°,∴∠CBM+∠ABN=90°,∵∠ANB=90°,∴∠BAN+∠ABN=90°,∴∠CBM=∠BAN ,又∵∠M=∠ANB=90°,AB=BC ,∴△ABN ≌△BCM ,∴AN=BM ,BN=CM ,∵C(3,4),∴设AN=m ,CM=n ,则有413m n m n +=⎧⎨+-=⎩,解得31m n =⎧⎨=⎩,∴ON=3+1=4,BN=1,∴B(4,1),∵曲线0k y x x=>()过点B ,∴k=4,∴4y x=,∵将点A 沿y 轴正方向平移a 个单位长度恰好落在该曲线上,此时点A 移动后对应点的坐标为(1,a),∴a=4,故答案为4.【点拨】本题考查了反比例函数与几何图形的综合,涉及了待定系数法,全等三角形的判定与性质,点的平移等知识,正确添加辅助线,利用数形结合思想灵活运用相关知识是解题的关键.12.7解:分析:作辅助线,构建全等三角形:过D作GH⊥x轴,过A作AG⊥GH,过B 作BM⊥HC于M,证明△AGD≌△DHC≌△CMB,根据点D的坐标表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论.详解:如图,过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,设D(x,6 x),∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB,∴AG=DH=-x-1,∴DG=BM,∴1-6x=-1-x-6x,x=-2,∴D(-2,-3),CH=DG=BM=1-62=4,∵AG=DH=-1-x=1,∴点E的纵坐标为-4,当y=-4时,x=-3 2,∴E (-32,-4),∴EH=2-32=12,∴CE=CH-HE=4-12=72,∴S △CEB =12CE•BM=12×72×4=7.故答案为7.点睛:本题考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题,属于中考填空题的压轴题.13.2或32-.【分析】分两种情况讨论,(1)当点P 在AB 下方时,作//l AB ,使点O 到直线AB 和到直线l 的距离相等;(2)当点P 在AB 上方时,作//l AB ,使点O 到直线AB 的距离的2倍,是到点O 到直线l 的距离,再分别求得直线AB 与x 轴的交点坐标为(1,0)-,从而得到直线l 与x 轴的交点坐标C ,再分别求出直线l 的解析式,联立直线l 的解析式与反比例函数2y x=,转化为解二元一次方程组,即可得到交点P 的坐标从而解题.解:分两种情况讨论:(1)当点P 在AB 下方时,作//l AB ,使点O 到直线AB 和到直线l 的距离相等,则ABP 的面积是AOB 的面积的2倍,对于y=x+1,当x=0时,y=1;当y=0时,x=-1;即直线AB 与x 轴的交点坐标为(1,0)-,直线l 与x 轴的交点坐标为(1,0)C ,设直线l 的表达式为:y x b =+,将点(1,0)C 代入得,1b =-∴直线l 的表达式为:1y =x -联立方程组12y x y x =-⎧⎪⎨=⎪⎩解得,1112x y =-⎧⎨=-⎩(舍去),2221x y =⎧⎨=⎩,此时点()21P ,;(2)当点P 在AB上方时,如图,作//l AB ,使点O 到直线AB 的距离的2倍,是到点O 到直线l 的距离,直线AB 与x 轴的交点坐标为(1,0)-,直线l 与x 轴的交点坐标为()3,0C -,设直线l 的表达式为:y x b =+,将点()3,0C -代入得,3b =∴直线l 的表达式为:+3y x =联立方程组+32y x y x =⎧⎪⎨=⎪⎩解得,113232x y ⎧-+=⎪⎪⎨+⎪=⎪⎩,2232x y ⎧-=⎪⎪⎨⎪=⎪⎩(舍去),此时点P∴点P 的横坐标为:2.故答案为:2.【点拨】本题主要考查了反比例函数与一次函数的交点问题,涉及解二元一次方程组、分类讨论、数形结合等数学思想,正确作出辅助图形、掌握相关知识是解题的关键.14.【分析】通过作辅助线,构造直角三角形,求出MN,FN,进而求出AN、MB,表示出点F、点M的坐标,利用反比例函数k的意义,确定点F的坐标,进而确定k的值即可.解:过点M作MN⊥AD,垂足为N,则MN=AD=3,在Rt△FMN中,∠MFN=30°,∴FN∴AN=MB设OA=x,则OB=x+3,∴F(x,M(x+3,∴=(x+3)∴F(5,∴k故答案为:【点拨】考查反比例函数的图象上点的坐标特征,把点的坐标代入函数关系式是常用的方法.15.(,0).解:【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标.解:如图,作A2C⊥x轴于点C,设B1C=a,则A2,OC=OB1+B1C=2+a,A2(2+a).∵点A2在双曲线y=(x>0)上,x∴(2+a)解得1,或a=1(舍去),∴OB 2=OB 1+2B 1﹣∴点B 2的坐标为(0);作A3D ⊥x 轴于点D ,设B 2D=b ,则A 3,OD=OB2+B 2,A 2(+b ).∵点A 3在双曲线(x >0)上,∴()解得b=b=∴OB 3=OB 2+2B 2∴点B 3的坐标为(0);同理可得点B 4的坐标为(0)即(4,0);…,∴点Bn 的坐标为(,0),∴点B 6的坐标为(0),故答案为(,0).【点拨】本题考查了规律题,反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B 2、B 3、B 4的坐标进而得出点B n 的规律是解题的关键.16.4【分析】本题可从反比例函数图象上的点E 、M 、D 入手,分别找出OCE ∆、OAD ∆、OABC X 的面积与k 的关系,列出等式求出k 值.解:∵E 、M 、D 位于反比例函数图象上,∴12OCE S k ∆=,12OAD S k ∆=,过点M 作MG y ⊥轴于点G ,作MN x ⊥轴于点N ,∴四边形ONMG 是矩形,∴ONMG S k =矩形,∵M 为矩形ABCO 对角线的交点,∴44ABCO ONMG S S k ==矩形矩形,∵函数图象在第一象限,∴0k >,∴ABCO S =矩形OCE S ∆+OAD S ∆+S 四边形ODBE =12422k k k ++=,解得:4k =.故答案为4【点拨】本题考查了反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.17.2.【分析】过点D 作DF y ⊥轴于F .根据k 的几何意义,结合三角形面积之间的关系,求出交点D 的坐标,代入()220k y x x=<即可求得k 的值.解:如图,过点D 作DF y ⊥轴于F .把y=0代入112y x =-得:x=2,故OA=2由反比例函数比例系数的几何意义,可得12COE k S ∆=,DOF S k ∆=.∵12DOB COE S S k ∆∆==,∴12DBF DOF DOB DOB S S S k S ∆∆∆∆=-==,∴OB FB =.易证DBF ABO ∆∆≌,从而2DF AO ==,即D 的横坐标为2-,而D 在直线AC 上,∴()2,2D --∴()(22)122k ⨯=⨯--=.故答案为2【点拨】本题是一次函数与反比例函数的交点问题,主要考查了一次函数和反比例函数的图象与性质,反比例函数“k“的几何意义,一次函数图象与反比例函数图象的交点问题,关键是根据两个三角形的面积相等列出k 的方程.18.12a 22b a-【分析】设B (m ,b m ),A (b n ,n ),则P (m ,n ),阴影部分的面积S △AOB =矩形的面积﹣三个直角三角形的面积可得结论.解:设B (m ,b m ),A (b n,n ),则P (m ,n ),∵点P 为曲线C 1上的任意一点,∴mn =a ,∴阴影部分的面积S △AOB =mn 12-b 12-b 12-(m b n -)(n b m-)=mn ﹣b 12-(mn ﹣b ﹣b 2b mn+)=mn ﹣b 12-mn +b 22b mn -12=a 22b a-.故答案为:12a 22b a-.【点拨】本题考查了反比例函数的系数k 的几何意义,矩形的面积,反比例函数图象上点的坐标特征等知识,本题利用参数表示三角形和矩形的面积并结合mn =a 可解决问题.19.14或32【分析】根据题意,点B 不可能在坐标轴上,可对点B 进行讨论分析:①当点B 在边DE 上时;②当点B 在边CD 上时;分别求出点B 的坐标,然后求出OBC △的面积即可.解:根据题意,∵点11,B x y ⎛⎫ ⎪⎝⎭称为点(),A x y 的“倒数点”,∴0x ≠,0y ≠,∴点B 不可能在坐标轴上;∵点A 在函数()20=>y x x的图像上,设点A 为2(,x x ,则点B 为1(,)2x x ,∵点C 为()3,0,∴3OC =,①当点B 在边DE 上时;点A 与点B 都在边DE 上,∴点A 与点B 的纵坐标相同,即22x x =,解得:2x =,经检验,2x =是原分式方程的解;∴点B 为1(,1)2,∴OBC △的面积为:133122S =⨯⨯=;②当点B 在边CD 上时;点B 与点C 的横坐标相同,∴13x=,解得:13x =,经检验,13x =是原分式方程的解;∴点B 为1(3,)6,∴OBC △的面积为:1113264S =⨯⨯=;故答案为:14或32.【点拨】本题考查了反比例函数的图像和性质,矩形的性质,解分式方程,坐标与图形等知识,解题的关键是熟练掌握反比例函数的性质,运用分类讨论的思想进行分析.20.(1)52;(2)①见分析;②8.【分析】(1)由点E 为线段OC 的中点,可得E 点坐标为50,2⎛⎫ ⎪⎝⎭,进而可知A 点坐标为:51,2A ⎛⎫ ⎪⎝⎭,代入解析式即可求出k ;(2)①由OAB 为等腰直角三角形,可得AO OB =,再根据同角的余角相等可证AOE FBO ∠=∠,由AAS 即可证明OAE BOF ≌△△;②由“ZJ 距离”的定义可知,()d M N 为MN 两点的水平距离与垂直距离之和,故(,)(,)d A C d A B BF CF +=+,即只需求出B 点坐标即可,设点(1,)A m ,由OAE BOF ≌△△可得(,1)B m -,进而代入直线AB 解析式求出k 值即可解答.解:(1)∵点E 为线段OC 的中点,OC=5,∴1522OE OC ==,即:E 点坐标为50,2⎛⎫ ⎪⎝⎭,又∵AE ⊥y 轴,AE=1,∴51,2A ⎛⎫ ⎪⎝⎭,∴55122k =⨯=.(2)①在OAB 为等腰直角三角形中,AO OB =,90AOB ∠=︒,∴90AOE FOB ∠+∠=︒,又∵BF ⊥y 轴,∴90FBO FOB ∠+∠=︒,∴AOE FBO∠=∠在OAE △和BOF 中90AEO OFB AOE FBO AO OB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴()OAE BOF AAS ≌△△,②解:设点A 坐标为(1,)m ,∵OAE BOF≌△△∴BF OE m ==,1OF AE ==,∴(,1)B m -,设直线AB 解析式为::5AB l y kx =+,将AB 两点代入得:则551k m km +=⎧⎨+=-⎩.解得1132k m =-⎧⎨=⎩,2223k m =-⎧⎨=⎩.当2m =时,2OE =,OA =532AOB S =<△,符合;∴(,)(,)()()d A C d A B AE CE BF AE OE OF +=++-++111CE OE OE =++-++12CE OE=++1CO OE=++152=++8=,当3m =时,3OE =,OA =53AOB S =>△,不符,舍去;综上所述:(,)(,)8d A C d A B +=.【点拨】此题属于代几综合题,涉及的知识有:反比例函数、一次函数的性质及求法、三角形全等的判定及性质、等腰直角三角形性质等,熟练掌握三角形全等的性质和判定和数形结合的思想是解本题的关键.21.(1)=2k ,D 点横坐标为2t ;(2)54【分析】(1)先求出A 点坐标,再利用待定系数法即可求出k 的值,利用OC =t 和D 点在直线l 上即可得到D 点横坐标;(2)分别用含t 的式子表示出1S 、2S ,得到U 关于t 的二次函数,求函数的最大值即可.解:(1)∵1AB =,∴A 点横坐标为1,∵A 点在一次函数2y x =的图像上,∴21=2⨯,∴()1,2A ,∵A 点也在反比例函数图像上,∴=21=2k ⨯,∴反比例函数解析式为:2y x =,∵OC t =,直线1//l x 轴,∴D 点纵坐标为t ,∵D 点在直线l 上,∴D 点横坐标为2t ,综上可得:=2k ,D 点横坐标为2t .(2)直线1//l x 轴,交l 于点D ,交图像Γ于点E ,∴E 点纵坐标为t ,将纵坐标t 代入反比例函数解析式中得到E 点坐标为2,t t ⎛⎫ ⎪⎝⎭,∴22t DE t =-,A 点到DE 的距离为2t -,∴()22122212242t t t t t S t ⎛⎫=⨯--=+-- ⎪⎝⎭,∵AB y ⊥轴于点B ,∴2OB =,∴11122222OB E S C t t=⨯=⨯⨯=,∴2221222115114242224t t t t U S S t t t ⎛⎫⎛⎫=-=-+=-++=--+ ⎪ ⎪⎝⎭⎝⎭,∴当1t =时,U 最大=54;∴U 的最大值为54.【点拨】本题综合考查了反比例函数和一次函数,涉及到了用待定系数法求函数解析式、用点的坐标表示线段的长、平面直角坐标系中三角形的面积表示、平行于x 轴的直线上的点的坐标特征等内容,本题综合性较强,要求学生对概念的理解和掌握应做到深刻与扎实,本题蕴含了数形结合的思想方法等.22.(1)12y x =,133y x =+;(2)()60,,()50,,2506⎛⎫ ⎪⎝⎭,()50-,;(3)-12<x<0或x>3【分析】(1)因为反比例函数过A 、B 两点,所以可求其解析式和n 的值,从而知B 点坐标,进而求一次函数解析式;(2)分三种情况:OA=OC ,AO=AC ,CA=CO ,分别求解即可;(3)根据图像得出一次函数图像在反比例函数图像上方时x 的取值范围即可.解:(1)把A (3,4)代入m y x =,∴m =12,∴反比例函数是12y x=;把B (n ,-1)代入12y x =得n =−12.把A (3,4)、B (-12,−1)分别代入y =kx +b 中:得34121k b k b +=⎧⎨-+=-⎩,解得133k b ⎧=⎪⎨⎪=⎩,∴一次函数的解析式为133y x =+;(2)∵A (3,4),△AOC 为等腰三角形,5=,分三种情况:①当OA=OC 时,OC=5,此时点C 的坐标为()50,,()50-,;②当AO=AC 时,∵A (3,4),点C 和点O 关于过A 点且垂直于x 轴的直线对称,此时点C 的坐标为()60,;③当CA=CO 时,点C 在线段OA 的垂直平分线上,过A 作AD ⊥x 轴,垂足为D ,由题意可得:OD=3,AD=4,AO=5,设OC=x ,则AC=x ,在△ACD 中,()22243x x +-=,解得:x=256,此时点C 的坐标为2506⎛⎫ ⎪⎝⎭;综上:点C 的坐标为:()60,,()50,,2506⎛⎫ ⎪⎝⎭,,()50-,;(3)由图得:当一次函数图像在反比例函数图像上方时,-12<x<0或x>3,即使一次函数的值大于反比例函数的值的x 的取值范围是:-12<x<0或x>3.【点拨】本题考查了反比例函数与一次函数的交点,待定系数法求函数解析式,等腰三角形的性质,利用了数形结合及分类讨论的思想.23.(1)16y x=,10y x =-+;(2)(4,4)P --,=54PMN S △.【分析】(1)利用待定系数法即可求出反比例函数解析式,再利用四边形OANM 的面积为38.求出()8,2N ,进一步利用待定系数法即可求出一次函数解析式;(2)平移一次函数与16y x=在第三象限有唯一交点P ,此时P 到MN 的距离最短,PMN 的面积最小,设平移后的一次函数解析式为:y x a =-+,联立16y x =,解得:=8-a ,进一步求出:=4x -,即(4,4)P --,连接PM ,PN ,过点P 作⊥PB NA 的延长线交于点B ,作MC PB ⊥交于点C ,根据PMN PMC PNB MCBN S S S S 四边形=+-△△△以及点的坐标即可求出PMN 的面积.(1)解:∵(2,8)M 在2k y x=上,∴216k =,即反比例函数解析式为:16y x =,设16(,)N n n,∵四边形OANM 的面积为38.∴()111628823822⎛⎫⨯⨯++⨯-= ⎪⎝⎭n n ,整理得:221580--=n n ,解得:1=2-n (舍去),=8n ,∴()8,2N ,将()8,2N 和(2,8)M 代入1y k x b =+可得:112882k b k b +=⎧⎨+=⎩解得:1110k b =-⎧⎨=⎩,∴一次函数解析式为:10y x =-+.(2)解:平移一次函数10y x =-+到第三象限,与16y x=在第三象限有唯一交点P ,此时P 到MN 的距离最短,PMN 的面积最小,设平移后的一次函数解析式为:y x a =-+,联立16y x =可得:16-+=x a x ,整理得:216=0-+x ax ,∵有唯一交点P ,∴2=416=01∆-⨯⨯a ,解得:=8-a 或=8a (舍去),将=8-a 代入216=0-+x ax 得:2168=0-+x x ,解得:=4x -经检验:=4x -是分式方程16-+=x a x的根,∴(4,4)P --,连接PM ,PN ,过点P 作⊥PB NA 的延长线交于点B ,作MC PB ⊥交于点C ,则:PMN PMC PNB MCBN S S S S 四边形=+-△△△,∵(4,4)P --,()8,2N ,(2,8)M ,∴()()1=4284=362⨯+⨯+PMC S △,()1=6126=542MCBN S 四边形⨯+⨯,()()1=2484=362⨯+⨯+PNB S △,∴=365436=54PMN PMC PNB MCBN S S S S 四边形=+-+-△△△.【点拨】本题考查一次函数和反比例函数的综合,难度较大,解题的关键是掌握待定系数法求函数解析式,掌握平行线之间的距离,解分式方程,解一元二次方程知识点.24.(1)点E 在这个反比例函数的图像上,理由见分析;(2)①1k =,2b =;②点P 的坐标为(0,2)-【分析】(1)设点A 的坐标为8(,)m m,根据轴对称的性质得到AD CE ⊥,AD 平分CE ,如图,连接CE 交AD 于H ,得到CH EH =,再结合等腰三角形三线合一得到CH 为ACD ∆边AD 上的中线,即AH HD =,求出4,H m m ⎛⎫ ⎪⎝⎭,进而求得4(2,E m m ,于是得到点E 在这个反比例函数的图像上;(2)①根据正方形的性质得到AD CE =,AD 垂直平分CE ,求得12CH AD =,设点A 的坐标为8(,m m ,得到2m =(负值舍去),求得(2,4)A ,(0,2)C ,把(2,4)A ,(0,2)C 代入y kx b =+。
中考数学专题练习:反比例函数(含答案)
中考数学专题练习:反比例函数(含答案)1.(·海南)已知反比例函数y=kx的图象经过点P(-1,2),则这个函数的图象位于( )A.二、三象限B.一、三象限C.三、四象限D.二、四象限2.(·哈尔滨)已知反比例函数y=2k-3x的图象经过点(1,1),则k的值为( )A.-1 B.0 C.1 D.23.(·湖州)如图,已知直线y=k1x(k1≠0)与反比例函数y=k2x(k2≠0)的图象交于M,N两点,若点M的坐标是(1,2),则点N的坐标是( )A.(-1,-2) B.(-1,2)C.(1,-2) D.(-2,-1)4.(·临沂)如图,正比例函数y1=k1x与反比例函数y2=k2x的图象相交于A、B两点,其中点A的横坐标为1,当y1<y2时,x的取值范围是( )A.x<-1或x>1B.-1<x<0或x>1 C.-1<x<0或0<x<1 D.x<-1或0<x<15.(·无锡)已知点P(a,m)、Q(b,n)都在反比例函数y=-2x的图象上,且a<0<b,则下列结论一定成立的是( ) A .m +n<0B .m +n>0C .m<nD .m>n6.(原创)如图是反比例函数y =kx图象的一支,则一次函数y =-kx +k 的图象大致是( )7.(·怀化)函数y =kx -3与y =kx(k≠0)在同一坐标系内的图象可能是( )8.(·安庆一模)对于反比例函数y =2x ,下列说法不正确...的是( ) A .点(-2,-1)在它的图象上 B .它的图象在第一、三象限 C .当x >0时,y 随x 的增大而增大 D .当x <0时,y 随x 的增大而减小9.(·郴州) 如图,A,B 是反比例函数y =4x 在第一象限内的图象上的两点,且A,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .110.(·嘉兴) 如图,点C 在反比例函数y =kx (x>0)的图象上,过点C 的直线与x 轴,y 轴分别交于点A 、B,且AB =BC,△AOB 的面积为1.则k 的值为( )A .1B .2C .3D .411.(·台州)如图,点 A,B 在反比例函数y =1x (x>0)的图象上,点 C,D 在反比例函数y =kx (k>0)的图象上, AC∥BD∥y 轴. 已知点 A,B 的横坐标分别为 1,2,△OAC 与△ABD 的面积之和为32,则 k 的值为( )A .4B .3C .2D. 3212.(·重庆B 卷)如图,菱形ABCD 的边AD⊥y 轴,垂足为点E,顶点A 在第二象限,顶点B 在y 轴的正半轴上,反比例函数y =kx (k≠0,x >0)的图象同时经过顶点C,D.若点C 的横坐标为5,BE=3DE,则k 的值为( )A.52B.3 C.154D.513.(·南京)已知反比例函数y=kx的图象经过点(-3,-1),则k=________.14.(·云南省卷)已知点P(a,b)在反比例函数y=2x的图象上,则ab=________.15.(·宜宾)已知:点P(m,n)在直线 y=-x+2上,也在双曲线 y =-1x上,则m2+n2的值为________.16.(·随州)如图,一次函数y=x-2的图象与反比例函数y=kx(k>0)的图象相交于A、B两点,与x轴交于点C,若tan∠AOC=13,则k的值为________.17.(·泰安)如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y=mx的图象经过点E,与AB交于点F.(1)若点B的坐标为(-6,0),求m的值及图象经过A、E两点的一次函数的表达式;(2)若AF-AE=2,求反比例函数的表达式.18.(·杭州)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货.设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时). (1)求v 关于t 的函数表达式;(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?19.(·山西)如图,一次函数y 1=k 1x +b(k 1≠0)的图象分别与x 轴,y 轴相交于点A,B,与反比例函数y 2=k 2x (k 2≠0)的图象相交于点C(-4,-2),D(2,4).(1)求一次函数和反比例函数的表达式; (2)当x 为何值时,y 1>0;(3)当x 为何值时,y 1<y 2,请直接写出x 的取值范围.20.(·甘肃省卷)如图,一次函数y=x+4的图象与反比例函数y=kx(k为常数且k≠0)的图象交于A(-1,a),B两点,与x轴交于点C.(1)求此反比例函数的表达式;(2)若点P在x轴上,且S△ACP =32S△BOC,求点P的坐标.21.(·绵阳)如图,一次函数y=-12x+52的图象与反比例函数y=kx(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM的面积为1.(1)求反比例函数的解析式;(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点的坐标.22.(·改编)某公司从2014年开始投入技术改进资金,经技术改进后,其产品的成本不断降低,具体数据如下表:年度2014 2015 2016 2017投入技改资金x(万元) 2.5 3 4 4.5产品成本y(万元/件) 7.2 6 4.5 4(1)请你认真分析表中数据,从一次函数和反比例函数中确定哪一个函数能表示其变化规律,给出理由,并求出其表达式;(2)按照这种变化规律,若2018年已投入资金5万元. ①预计生产成本每件比2017年降低多少万元?②若打算在2018年把每件产品成本降低到3.2万元,则还需要投入资金多少万元?(结果精确到0.01万元).1.(·瑶海区二模)如图,已知点A 是反比例函数y =1x (x>0)的图象上的一个动点,连接OA,OB⊥OA ,且OB =2OA.那么经过点B 的反比例函数图象的表达式为( )A .y =-2xB .y =2xC .y =-4xD .y =4x2.(·宿迁)如图,在平面直角坐标系中,反比例函数y=2x(x>0)的图象与正比例函数y=kx,y=1kx(k>1)的图象分别交于点A,B.若∠AOB=45°,则△AOB的面积是________.3.(·北京)在平面直角坐标系xOy中,函数y=kx(x>0)的图象G经过点A(4,1),直线l:y=14x+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W.①当b=-1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.4.(·杭州)设一次函数y=kx+b(k,b是常数,k≠0)的图象过A(1,3),B(-1,-1)两点.(1)求该一次函数的表达式;(2)若点(2a+2,a2)在该一次函数图象上,求a的值;(3)已知点C(x 1,y 1),D(x 2,y 2)在该一次函数图象上,设m =(x 1-x 2)(y 1-y 2),判断反比例函数y =m +1x 的图象所在的象限,说明理由.参考答案【基础训练】1.D 2.D 3.A 4.D 5.D 6.A 7.B 8.C 9.B 10.D 11.B 12.C13.3 14.2 15.6 16.317.解:(1)∵B(-6,0),AD =3,AB =8,E 为CD 的中点, ∴E(-3,4),A(-6,8).∵反比例函数的图象过点E(-3,4), ∴m=-3×4=-12.设图象经过A 、E 两点的一次函数表达式为:y =kx +b,∴⎩⎨⎧-6k +b =8,-3k +b =4,解得⎩⎨⎧k =-43,b =0,∴y=-43x ;(2)∵AD=3,DE =4,∴AE=5. ∵AF-AE =2,∴AF=7.∴BF=1.设E 点坐标为(a,4),则F 点坐标为(a -3,1). ∵E ,F 两点在y =mx的图象上,∴4a=a -3,解得a =-1.∴E(-1,4),∴m=-4,∴y=-4x .18.解:(1)根据题意,得vt =100 (t>0),所以v =100t (t>0);(2)由题意知,v =100t (0<t ≤5),而100>0,所以当t>0 时,v 随着t 的增大而减小,当0<t≤5时,v≥1005=20,所以平均每小时至少要卸货20吨.19.解:(1)∵一次函数y 1=k 1x +b(k 1≠0)的图象经过点C(-4,-2),D(2,4),∴⎩⎨⎧-2=-4k 1+b 4=2k 1+b ,解得:⎩⎨⎧k1=1b =2,∴一次函数的表达式为:y 1=x +2.∵反比例函数y 2=k 2x (k 2≠0)的图象经过点D(2,4),∴4=k 22,即k 2=8,∴反比例函数的表达式为:y 2=8x ;(2)令y 1=x +2中y 1>0,即x +2>0,解得x >-2,∴当x >-2时,y 1>0;(3)由图象可知:当x <-4或0<x <2时,y 1<y 2.20.解:(1)把点A(-1,a)代入y =x +4,得a =3,∴ A(-1,3).把A(-1,3)代入反比例函数y =k x ,得k =-3,∴ 反比例函数的表达式为y =-3x ;(2)联立两个函数表达式得 ⎩⎨⎧y =x +4,y =-3x , 解得⎩⎨⎧x =-1,y =3,⎩⎨⎧x =-3,y =1.∴ 点B 的坐标为B(-3,1).当y =x +4=0时,得x =-4.∴ 点C(-4,0).设点P 的坐标为(x,0).∵S △ACP =32S △BOC ,∴12×3×|x-(-4)|=32×12×4×1.即|x +4|=2,解得 x 1=-6,x 2=-2.∴ 点P(-6,0)或(-2,0).21.解:(1)∵△AOM 的面积为1,∴12||k =1,∵k>0,∴k=2.∴y=2x ;(2)如解图,作点A 关于y 轴的对称点C,连接BC 交y 轴于P 点.∵A ,B 是两个函数图象的交点,第21题解图∴⎩⎪⎨⎪⎧y =2x ,y =-12x +52,解得:⎩⎨⎧x 1=1,y 1=2,⎩⎨⎧x 2=4,y 2=12.∴A(1,2),B(4,12).∴C(-1,2).设y BC =kx +b,则⎩⎨⎧-k +b =2,4k +b =12, 解得⎩⎪⎨⎪⎧k =-310,b =1710,∴y=-310x +1710,∴P(0,1710),∴PA+PB =BC =52+(32)2=1092.22.解:(1)∵2.5×7.2=18,3×6=18,4×4.5=18,4.5×4=18,∴x 与y 的乘积为定值18,∴反比例函数能表示其变化规律,其表达式为y =18x ;(2)①当x =5时,y =3.6.4-3.6=0.4(万元),∴生产成本每件比2017年降低0.4万元.②当y =3.2时,3.2=18x ,x =5.625≈5.63,5.63-5=0.63(万元).∴还需投入0.63万元.【拔高训练】1.C 2.23.解:(1)∵点A(4,1)在y =kx (x>0)的图象上.∴k4=1,∴k=4.(2)① 3个.(1,0),(2,0),(3,0).② a.如解图1,当直线过(4,0)时:14×4+b =0,解得b =-1, b .如解图2,当直线过(5,0)时:14×5+b =0,解得b =-54,c .如解图3,当直线过(1,2)时,14×1+b =2,解得b =74, d .如解图4,当直线过(1,3)时14×1+b =3,解得b =114,∴综上所述:-54≤b<-1或74<b≤114. 4.解:(1)将A(1,3),B(-1,-1)的坐标分别代入y =kx +b,得⎩⎨⎧k +b =3,-k +b =-1,解得⎩⎨⎧k =2,b =1, 故一次函数的表达式为y =2x +1.(2)∵点(2a +2,a 2)在该一次函数图象上,∴a 2=2(2a +2)+1,∴a 2-4a -5=0,解得a1=5,a2=-1.(3)由题意知,y1-y2=(2x1+1)-(2x2+1)=2(x1-x2).∴m=(x1-x2)(y1-y2)=2(x1-x2)2≥0,∴m+1≥1>0,∴反比例函数y=m+1x的图象在第一、三象限.。
2018年江西省中考数学试卷(含答案解析版)
2018年江西省中考数学试卷一、选择题(本大共6分,每小题3分,共18分。
每小题只有一个正确选项)1.(3.00分)(2018•江西)﹣2的绝对值是()A.﹣2 B.2 C.﹣D.2.(3.00分)(2018•江西)计算(﹣a)2•的结果为()A.b B.﹣b C.ab D.3.(3.00分)(2018•江西)如图所示的几何体的左视图为()A.B.C.D.4.(3.00分)(2018•江西)某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10%5.(3.00分)(2018•江西)小军同学在网络纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形、如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个B.4个C.5个D.无数个6.(3.00分)(2018•江西)在平面直角坐标系中,分别过点A(m,0),B(m+2,0)作x轴的垂线l1和l2,探究直线l1,直线l2与双曲线y=的关系,下列结论错误的是()A.两直线中总有一条与双曲线相交B.当m=1时,两直线与双曲线的交点到原点的距离相等C.当﹣2<m<0时,两直线与双曲线的交点在y轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2二、填空题(本大题共6小题,每小题3分,共18分)7.(3.00分)(2018•江西)若分式有意义,则x的取值范围为.8.(3.00分)(2018•江西)2018年5月13口,中国首艘国产航空母舰首次执行海上试航任务,共排水量超过6万吨,将数60000用科学记数法表示应为.9.(3.00分)(2018•江西)中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为.10.(3.00分)(2018•江西)如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=FF,则AB的长为.11.(3.00分)(2018•江西)一元二次方程x2﹣4x+2=0的两根为x1,x2.则x12﹣4x1+2x1x2的值为.12.(3.00分)(2018•江西)在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD=2AP,则AP的长为.三、(本大题共5小题,每小题6分,共30分)13.(6.00分)(2018•江西)(1)计算:(a+1)(a﹣1)﹣(a﹣2)2;(2)解不等式:x﹣1≥+3.14.(6.00分)(2018•江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD 交AC于点E,求AE的长.15.(6.00分)(2018•江西)如图,在四边形ABCD中,AB∥CD,AB=2CD,E为AB的中点,请仅用无刻度直尺分别按下列要求画图(保留画图痕迹).(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD,画出△ABD的AD边上的高.16.(6.00分)(2018•江西)今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.17.(6.00分)(2018•江西)如图,反比例函数y=(k ≠0)的图象与正比例函数y=2x的图象相交于A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及点B的坐标;(2)求tanC的值.四、(本大题共3小题,每小题8分,共24分)18.(8.00分)(2018•江西)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人漱养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)用于课外阅读时间的情况等级为;(2)如果该校现有学生400人,估计等级为“B”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?19.(8.00分)(2018•江西)图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框上,通过推动左侧活页门开关.图2是其俯视简化示意图,已知轨道AB=120cm,两扇活页门的宽OC=OB=60m,点B固定,当点C在AB上左右运动时,OC与OB的长度不变.(所有的结果保留小数点后一位)(1)若∠OBC=50°,求AC的长;(2)当点C从点A向右运动60cm时,求点O在此过程中运动的路径长.参考数据:sn50°≈0.77.cos50°≈0.64,tan50°≈1.19,π取3.14.20.(8.00分)(2018•江西)如图,在△ABC中,O为AC上一点,以点O为圆心,OC为半径做圆,与BC 相切于点C,过点A作AD⊥BO交BO的廷长线于点D,且∠AOD=∠BAD.(1)求证:AB为⊙O的切线;(2)若BC=6,tan∠ABC=,求AD的长.五、(本大题共2小题,每小题9分,共18分)21.(9.00分)(2018•江西)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.22.(9.00分)(2018•江西)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是,CE与AD 的位置关系是;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB=2,BE=2,求四边形ADPE的面积.六、(本大题共12分23.(12.00分)(2018•江西)小资与小杰在探究某类二次函数问题时,经历了如下过程:求解体验:(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b= ,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们又称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决:(1)已知抛物线y=ax2+2ax﹣b(a≠0)①若抛物线y的衍生抛物线为y′=bx2﹣2bx+a2(b≠0),两个抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1;其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)的衍生抛物线为y n;其顶点为A n…(n为正整数)求A n A n+1的长(用含n的式子表示).2018年江西省中考数学试卷参考答案与试题解析一、选择题(本大共6分,每小题3分,共18分。
近年中考数学试题分类汇编考点15反比例函数(含解析)(2021年整理)
2018中考数学试题分类汇编考点15 反比例函数(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018中考数学试题分类汇编考点15 反比例函数(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018中考数学试题分类汇编考点15 反比例函数(含解析)的全部内容。
2018中考数学试题分类汇编:考点15 反比例函数一.选择题(共21小题)1.(2018•玉林)等腰三角形底角与顶角之间的函数关系是()A.正比例函数B.一次函数C.反比例函数D.二次函数【分析】根据一次函数的定义,可得答案.【解答】解:设等腰三角形的底角为y,顶角为x,由题意,得y=﹣x+90°,故选:B.2.(2018•怀化)函数y=kx﹣3与y=(k≠0)在同一坐标系内的图象可能是()A.B.C.D.【分析】根据当k>0、当k<0时,y=kx﹣3和y=(k≠0)经过的象限,二者一致的即为正确答案.【解答】解:∵当k>0时,y=kx﹣3过一、三、四象限,反比例函数y=过一、三象限,当k<0时,y=kx﹣3过二、三、四象限,反比例函数y=过二、四象限,∴B正确;故选:B.3.(2018•永州)在同一平面直角坐标系中,反比例函数y=(b≠0)与二次函数y=ax2+bx(a ≠0)的图象大致是()A.B.C.D.【分析】直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案.【解答】解:A、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的右侧,则a、b异号,即b<0.所以反比例函数y=的图象位于第二、四象限,故本选项错误;B、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的左侧,则a、b同号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;C、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a、b异号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;D、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a、b异号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项正确;故选:D.4.(2018•菏泽)已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.【分析】直接利用二次函数图象经过的象限得出a,b,c的取值范围,进而利用一次函数与反比例函数的性质得出答案.【解答】解:∵二次函数y=ax2+bx+c的图象开口向上,∴a>0,∵该抛物线对称轴位于y轴的右侧,∴a、b异号,即b<0.∵当x=1时,y<0,∴a+b+c<0.∴一次函数y=bx+a的图象经过第一、二、四象限,反比例函数y=的图象分布在第二、四象限,故选:B.5.(2018•大庆)在同一直角坐标系中,函数y=和y=kx﹣3的图象大致是()A.B. C.D.【分析】根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论.当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【解答】解:分两种情况讨论:①当k>0时,y=kx﹣3与y轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限;②当k<0时,y=kx﹣3与y轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限.故选:B.6.(2018•香坊区)对于反比例函数y=,下列说法不正确的是()A.点(﹣2,﹣1)在它的图象上 B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小【分析】根据反比例函数的性质用排除法解答.【解答】解:A、把点(﹣2,﹣1)代入反比例函数y=得﹣1=﹣1,故A选项正确;B、∵k=2>0,∴图象在第一、三象限,故B选项正确;C、当x>0时,y随x的增大而减小,故C选项错误;D、当x<0时,y随x的增大而减小,故D选项正确.故选:C.7.(2018•衡阳)对于反比例函数y=﹣,下列说法不正确的是( )A.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C.图象经过点(1,﹣2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【解答】解:A、k=﹣2<0,∴它的图象在第二、四象限,故本选项正确;B、k=﹣2<0,当x>0时,y随x的增大而增大,故本选项正确;C、∵﹣=﹣2,∴点(1,﹣2)在它的图象上,故本选项正确;D、点A(x1,y1)、B(x2、y2)都在反比例函数y=﹣的图象上,若x1<x2<0,则y1<y2,故本选项错误.故选:D.8.(2018•柳州)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2 B.a≠﹣2 C.a≠±2 D.a=±2【分析】根据反比例函数解析式中k是常数,不能等于0解答即可.【解答】解:由题意可得:|a|﹣2≠0,解得:a≠±2,故选:C.9.(2018•德州)给出下列函数:①y=﹣3x+2;②y=;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A.①③B.③④C.②④D.②③【分析】分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案.【解答】解:①y=﹣3x+2,当x>1时,函数值y随自变量x增大而减小,故此选项错误;②y=,当x>1时,函数值y随自变量x增大而减小,故此选项错误;③y=2x2,当x>1时,函数值y随自变量x增大而减小,故此选项正确;④y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项正确;故选:B.10.(2018•嘉兴)如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y 轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为( )A.1 B.2 C.3 D.4【分析】根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据△AOB的面积为1,即可求得k的值.【解答】解:设点A的坐标为(a,0),∵过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,∴点C(﹣a,),∴点B的坐标为(0,),∴=1,解得,k=4,故选:D.11.(2018•温州)如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为()A.4 B.3 C.2 D.【分析】先求出点A,B的坐标,再根据AC∥BD∥y轴,确定点C,点D的坐标,求出AC,BD,最后根据,△OAC与△ABD的面积之和为,即可解答.【解答】解:∵点A,B在反比例函数y=(x>0)的图象上,点A,B的横坐标分别为1,2,∴点A的坐标为(1,1),点B的坐标为(2,),∵AC∥BD∥y轴,∴点C,D的横坐标分别为1,2,∵点C,D在反比例函数y=(k>0)的图象上,∴点C的坐标为(1,k),点D的坐标为(2,),∴AC=k﹣1,BD=,∴S△OAC=(k﹣1)×1=,S△ABD=•×(2﹣1)=,∵△OAC与△ABD的面积之和为,∴,解得:k=3.故选:B.12.(2018•宁波)如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为( )A.8 B.﹣8 C.4 D.﹣4【分析】设A(a,h),B(b,h),根据反比例函数图象上点的坐标特征得出ah=k1,bh=k2.根据三角形的面积公式得到S△ABC=AB•y A=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,求出k1﹣k2=8.【解答】解:∵AB∥x轴,∴A,B两点纵坐标相同.设A(a,h),B(b,h),则ah=k1,bh=k2.∵S△ABC=AB•y A=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,∴k1﹣k2=8.故选:A.13.(2018•郴州)如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.1【分析】先根据反比例函数图象上点的坐标特征及A,B两点的横坐标,求出A(2,2),B(4,1).再过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,根据反比例函数系数k的几何意义得出S△AOC=S△BOD=×4=2.根据S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,得出S△AOB=S梯形ABDC,利用梯形面积公式求出S梯形ABDC=(BD+AC)•CD=(1+2)×2=3,从而得出S△AOB=3.【解答】解:∵A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,∴当x=2时,y=2,即A(2,2),当x=4时,y=1,即B(4,1).如图,过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,则S△AOC=S△BOD=×4=2.∵S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,∴S△AOB=S梯形ABDC,∵S梯形ABDC=(BD+AC)•CD=(1+2)×2=3,∴S△AOB=3.故选:B.14.(2018•无锡)已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n【分析】根据反比例函数的性质,可得答案.【解答】解:y=的k=﹣2<0,图象位于二四象限,∵a<0,∴P(a,m)在第二象限,∴m>0;∵b>0,∴Q(b,n)在第四象限,∴n<0.∴n<0<m,即m>n,故D正确;故选:D.15.(2018•淮安)若点A(﹣2,3)在反比例函数y=的图象上,则k的值是()A.﹣6 B.﹣2 C.2 D.6【分析】根据待定系数法,可得答案.【解答】解:将A(﹣2,3)代入反比例函数y=,得k=﹣2×3=﹣6,故选:A.16.(2018•岳阳)在同一直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为()A.1 B.m C.m2D.【分析】三个点的纵坐标相同,由图象可知y=x2图象上点横坐标互为相反数,则x1+x2+x3=x3,再由反比例函数性质可求x3.【解答】解:设点A、B在二次函数y=x2图象上,点C在反比例函数y=(x>0)的图象上.因为AB两点纵坐标相同,则A、B关于y轴对称,则x1+x2=0,因为点C(x3,m)在反比例函数图象上,则x3=∴ω=x1+x2+x3=x3=故选:D.17.(2018•遵义)如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为( )A.y=﹣B.y=﹣C.y=﹣D.y=【分析】直接利用相似三角形的判定与性质得出=,进而得出S△AOD=2,即可得出答案.【解答】解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∴=tan30°=,∴=,∵×AD×DO=xy=3,∴S△BCO=×BC×CO=S△AOD=1,∴S△AOD=2,∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣.故选:C.18.(2018•湖州)如图,已知直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点.若点M的坐标是(1,2),则点N的坐标是()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(﹣2,﹣1)【分析】直接利用正比例函数的性质得出M,N两点关于原点对称,进而得出答案.【解答】解:∵直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点,∴M,N两点关于原点对称,∵点M的坐标是(1,2),∴点N的坐标是(﹣1,﹣2).故选:A.19.(2018•江西)在平面直角坐标系中,分别过点A(m,0),B(m+2,0)作x轴的垂线l1和l2,探究直线l1,直线l2与双曲线y=的关系,下列结论错误的是( )A.两直线中总有一条与双曲线相交B.当m=1时,两直线与双曲线的交点到原点的距离相等C.当﹣2<m<0时,两直线与双曲线的交点在y轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2【分析】A、由m、m+2不同时为零,可得出:两直线中总有一条与双曲线相交;B、找出当m=1时两直线与双曲线的交点坐标,利用两点间的距离公式可得出:当m=1时,两直线与双曲线的交点到原点的距离相等;C、当﹣2<m<0时,0<m+2<2,可得出:当﹣2<m<0时,两直线与双曲线的交点在y轴两侧;D、由y与x之间一一对应结合两交点横坐标之差为2,可得出:当两直线与双曲线都有交点时,这两交点的距离大于2.此题得解.【解答】解:A、∵m、m+2不同时为零,∴两直线中总有一条与双曲线相交;B、当m=1时,点A的坐标为(1,0),点B的坐标为(3,0),当x=1时,y==3,∴直线l1与双曲线的交点坐标为(1,3);当x=3时,y==1,∴直线l2与双曲线的交点坐标为(3,1).∵=,∴当m=1时,两直线与双曲线的交点到原点的距离相等;C、当﹣2<m<0时,0<m+2<2,∴当﹣2<m<0时,两直线与双曲线的交点在y轴两侧;D、∵m+2﹣m=2,且y与x之间一一对应,∴当两直线与双曲线都有交点时,这两交点的距离大于2.故选:D.20.(2018•铜仁市)如图,已知一次函数y=ax+b和反比例函数y=的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为()A.x<﹣2或0<x<1 B.x<﹣2 C.0<x<1 D.﹣2<x<0或x>1【分析】根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.【解答】解:观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,∴不等式ax+b<的解集是﹣2<x<0或x>1.故选:D.21.(2018•聊城)春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min 的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y (mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3B.室内空气中的含药量不低于8mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2mg/m3开始,需经过59min后,学生才能进入室内【分析】利用图中信息一一判断即可;【解答】解:A、正确.不符合题意.B、由题意x=4时,y=8,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;C、y=5时,x=2。
2018中考数学专题训练 ---函数(含解析)
阶段综合检测(三)(函数)(120分钟120分)一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.(2017·泸州中考)下列曲线中不能表示y是x的函数的是( )【解析】选C.当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.选项C中的图象中存在对于一个自变量的值,图象对应两个点,即y有两个值与x的值对应,因而不是函数关系.2.函数y=+中自变量x的取值范围是( )A.2≤x≤3B.x<3C.x<2且x≠3D.x≤3且x≠2【解析】选D.根据题意得,3-x≥0且x-2≠0,解得x≤3且x≠2.3.在平面直角坐标系中,点(-2,-2m+3)在第三象限,则m的取值范围是( )A.m<B.m>C.m<-D.m>-【解析】选B.∵点在第三象限,∴点的横坐标是负数,纵坐标也是负数,即-2m+3<0,解得m>.4.象棋在中国有着三千多年的历史,属于二人对抗性游戏的一种.由于用具简单,趣味性强,成为流行极为广泛的棋艺活动.如图是一方的棋盘,如果“帅”的坐标是(0,1),“卒”的坐标是(2,2),那么“马”的坐标是( )A.(-2,1)B.(2,-2)C.(-2,2)D.(2,2)【解析】选C.如图所示:“马”的坐标是(-2,2).5.(2017·枣庄中考)如图,O是坐标原点,菱形OABC的顶点A的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为( )A.-12B.-27C.-32D.-36【解析】选C.因为A(-3,4),所以OA==5,因为四边形OABC是菱形,所以AO=CB=OC=AB=5,则点B的横坐标为-3-5=-8,故B的坐标为(-8,4),将点B的坐标代入y=得,4=,解得k=-32.6.(2017·广安中考)如图所示,抛物线y=ax2+bx+c的顶点为B(-1,3),与x轴的交点A在点(-3,0)和(-2,0)之间,以下结论:①b2-4ac=0;②a+b+c>0;③2a-b=0;④c-a=3其中正确的有( )A.1个B.2个C.3个D.4个【解析】选B.因为抛物线与x轴有两个交点,所以Δ>0,所以b2-4ac>0,故①错误; 由于对称轴为直线x=-1,所以x=-3与x=1所对应的抛物线上的点关于直线x=-1对称,因为x=-3时,y<0, 所以x=1时,y=a+b+c<0,故②错误;因为对称轴为直线x=-=-1,所以2a-b=0,故③正确;因为顶点为B(-1,3),所以y=a-b+c=3,所以y=a-2a+c=3,即c-a=3,故④正确.7.在反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当0<x1<x2时,有y1>y2,则k的取值范围是( )A.k>B.k<C.k≥D.k≤【解析】选B.∵当0<x1<x2时,有y1>y2,∴该反比例函数在x>0时,y值随x的增大而减小,∴1-3k>0,解得k<.8.已知二次函数y=ax2-bx-2(a≠0)的图象的顶点在第四象限,且过点(-1,0),当a-b为整数时,ab的值为( )A.或1B.或1C.或D.或【解析】选A.依题意知a>0,>0,a+b-2=0,故b>0,且b=2-a,a-b=a-(2-a)=2a-2,于是0<a<2,∴-2<2a-2<2,又∵a-b为整数,∴2a-2=-1,0,1,故a=,1,,b=,1,,∴ab=或1.9.周末,小明骑自行车从家里出发到野外郊游,从家出发0.5小时后到达甲地,游玩一段时间后,按原速前往乙地,小明离家1h20min后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象,已知妈妈驾车速度是小明的3倍.下列说法正确的有( )①小明骑车的速度是20 km/h,在甲地游玩1h;②小明从家出发h后被妈妈追上;③妈妈追上小明时离家25km;④若妈妈比小明早10min到达乙地,则从家到乙地30km.A.1个B.2个C.3个D.4个【解析】选C.小明骑车速度为10÷0.5=20(km/h),1-0.5=0.5(h),即①不成立;妈妈驾车的速度为20×3=60(km/h),妈妈出发时小明离家的路程为10+×20=(km),妈妈追上小明需要的时间为÷(60-20)=(h),此时小明离家时间为+=(h),即②成立;妈妈追上小明时离家的距离为60×=25(km),③成立;10分钟=小时,设总路程为S,由题意可知:=-,解得S=30.从家到乙地的距离为30km,④成立.10.一次函数y=3x+b和y=ax-3的图象如图所示,其交点为P(-2,-5),则不等式3x+b>ax-3的解集在数轴上表示正确的是( )【解析】选C.从图象得到,当x>-2时,y=3x+b的图象对应的点在函数y=ax-3的图象上面,∴不等式3x+b>ax-3的解集为x>-2.11.(2017·兰州中考)如图,反比例函数y=(k<0)与一次函数y=x+4的图象交于A,B两点,A,B两点的横坐标分别为-3,-1.则关于x的不等式<x+4(x<0)的解集为( )A.x<-3B.-3<x<-1C.-1<x<0D.x<-3或-1<x<0【解析】选B.观察图象可知,当-3<x<-1时,一次函数的图象在反比例函数图象的上方,所以关于x的不等式<x+4(x<0)的解集为-3<x<-1.12.(2017·泰安一模)如图,是抛物线y=ax2+bx+c(a≠0)图象的一部分,已知抛物线的对称轴为x=2,与x轴的一个交点是(-1,0).下列结论:①ac<0;②4a-2b+c>0;③抛物线与x轴的另一个交点是(4,0);④点(-3,y1),(6,y2)都在抛物线上,则有y1<y2.其中正确的个数为( )A.1B.2C.3D.4【解析】选B.因为抛物线开口向上,所以a>0,由图象知c<0,所以ac<0,故①正确;由抛物线的单调性知:当x=-2时,y>0,即4a-2b+c>0,故②正确;因为对称轴方程为x=2,抛物线与x轴的一个交点是(-1,0).所以抛物线与x轴的另一个交点是(5,0),故③错误;因为抛物线的对称轴为x=2,点(-3,y1)到对称轴的距离为5,(6,y2)到对称轴的距离为4,所以点(6,y2)在点(-3,y1)的下方,由抛物线的对称性及单调性知:y1>y2,故④错误;故正确的为①②,共2个.13.如图,已知正△ABC的边长为2,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是( )【解析】选D.根据题意,有AE=BF=CG,且正△ABC的边长为2,故BE=CF=AG=2-x;故△AEG,△BFE,△CGF三个三角形全等.在△AEG中,AE=x,AG=2-x,则S△AEG=AE×AG×sinA=x(2-x);故y=S△ABC-3S△AEG=-3×x(2-x)=(3x2-6x+4).故可得其图象为二次函数,且开口向上.14.如图,点M(2,a)在反比例函数y=的图象上,连接MO并延长交图象的另一分支点N,则线段MN的长是( )A.3B.C.6D.2【解析】选D.过M作x轴的垂线,过N作y轴的垂线,两线交于E,把(2,a)代入反比例函数y=得a=3,即M的坐标为(2,3),所以N的坐标为(-2,-3),则ME=3-(-3)=6,NE=2-(-2)=4,所以MN==2.15.在平面直角坐标系中,二次函数y=x2+2x-3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中-3≤x1<x2≤0,则下列结论正确的是( )A.y1<y2B.y1>y2C.y的最小值是-3D.y的最小值是-4【解析】选D.二次函数的对称轴是x=-=-1,而-3≤x1<x2≤0,不能确定两点A,B是否在对称轴的同侧或异侧,因此无法比较y1与y2的大小;二次函数的最小值为:===-4.16.如图,点A的坐标为(-,0),点B在直线y=x上运动,当线段AB最短时点B 的坐标为( )A.B.C.D.(0,0)【解析】选A.过A作AB⊥直线y=x于B,则此时AB最短,过B作BC⊥OA于C,∵直线y=x,∴∠AOB=45°=∠OAB,∴AB=OB,∵BC⊥OA,∴C为OA中点,∵∠ABO=90°,∴BC=OC=AC=OA=,∴B.17.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b;如max{4,-2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,-x+1},则该函数的最小值是( )A.0B.2C.3D.4【解析】选B.当x+3≥-x+1,即x≥-1时,y=x+3,所以当x=-1时,y min=2,当x+3<-x+1.即x<-1时,y=-x+1,因为x<-1,所以-x>1,所以-x+1>2.所以y>2,所以y min=2.18.(2017·广州中考)a≠0,函数y=与y=-ax2+a在同一直角坐标系中的大致图象可能是( )【解析】选D.当a>0时,函数y=的图象位于一、三象限,y=-ax2+a的开口向下,交y轴于正半轴,没有符合的选项,当a<0时,函数y=的图象位于二、四象限,y=-ax2+a的开口向上,交y轴于负半轴,D选项符合题意.19.如图1,在矩形MNPQ中,动点R从点N出发,沿着N→P→Q→M方向运动至点M 处停止,设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则下列说法不正确的是( )A.当x=2时,y=5B.矩形MNPQ的面积是20C.当x=6时,y=10D.当y=时,x=10【解析】选D.由题图2可知:PN=4,PQ=5.A、当x=2时,y=×MN×RN=×5×2=5,故A正确,与要求不符;B、矩形的面积=MN·PN=4×5=20,故B正确,与要求不符;C、当x=6时,点R在QP上,y=×MN×PN=10,故C正确,与要求不符;D、当y=时,x=3或x=10,故D错误,与要求相符.20.(2017·岱岳区模拟)山东全省2016年国庆假期旅游人数增长12.5%,其中尤其是乡村旅游最为火爆.泰山脚下的某旅游村,为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费100元时,床位可全部租出,若每张床位每天收费提高20元,则相应的减少了10张床位租出,如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是( )A.140元B.150元C.160元D.180元【解析】选C.设每张床位每天收费提高x个20元,每天收入为y元.则有y=(100+20x)(100-10x)=-200x2+1000x+10000.当x=-==2.5时,可使y 有最大值.又x为整数,则x=2时,y=11200;x=3时,y=11200;则为使租出的床位少且租金高,每张床收费=100+3×20=160(元).二、填空题(本大题共4小题,满分12分,只要求填写最后结果,每小题填对得3分)21.(2017·东平县一模)抛物线y=x2+mx+n可以由抛物线y=x2向上平移2个单位,再向左平移3个单位得到,则mn值为________.【解析】抛物线y=x2向上平移2个单位,再向左平移3个单位后函数的解析式是y=(x+3)2+2.即y=x2+6x+11,则m=6,n=11,则mn=66.答案:6622.如图,点A在函数y=(x>0)的图象上,且OA=4,过点A作AB⊥x轴于点B,则△ABO的周长为________.【解析】∵点A在函数y=(x>0)的图象上,∴设点A的坐标为(n>0).在Rt△ABO中,∠ABO=90°,OA=4,∴OA2=AB2+OB2,又∵AB·OB=·n=4,∴(AB+OB)2=AB2+OB2+2AB·OB=42+2×4=24,∴AB+OB=2,或AB+OB=-2(舍去).∴C△ABO=AB+OB+OA=2+4.答案:2+423.(2017·岱岳区模拟)如图,正方形AOBC的两边在坐标轴上,D是OB的中点,直线CD的函数解析式为y=2x-6,则△CDE的面积为________.【解析】在y=2x-6中,令y=0时,x=3,即D(3,0),因为D是OB的中点,所以OD=BD=3,所以OB=OA=6,即A(0,6),C(6,6),由A(0,6),D(3,0)可得直线AD的解析式是y=-2x+6,由C(6,6)可得直线OC解析式为y=x,解方程组可得所以E(2,2),所以点E与AC的距离为4,所以△CDE的面积=△ACD的面积-△ACE的面积=×6×6-×6×4=6.答案:624.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2017次运动后,动点P的坐标是______.【解析】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,2),第4次运动到点(4,0),第5次运动到点(5,1),…,∴运动后点的横坐标等于运动的次数,第2017次运动后点P的横坐标为2017,纵坐标以1,0,2,0每4次为一个循环组循环,∵2017÷4=504……1,∴第2017次运动后动点P的纵坐标是第505个循环组的第1次运动,与第1次运动的点的纵坐标相同,为1,∴经过2017次运动后点P的坐标为(2017,1).答案:(2017,1)三、解答题(本大题共5个小题,满分48分.解答应写出必要的文字说明、证明过程或推演步骤)25.(8分)(2016·巴中中考)已知,如图,一次函数y=kx+b(k,b为常数,k≠0)的图象与x轴、y轴分别交于A,B两点,且与反比例函数y=(n为常数且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式.(2)求两函数图象的另一个交点坐标.(3)直接写出不等式:kx+b≤的解集.【解析】(1)∵OB=2OA=3OD=6,∴OB=6,OA=3,OD=2,∵CD⊥OA,∴DC∥OB,∴=,∴=,∴CD=10,∴点C坐标(-2,10),B(0,6),A(3,0),∴解得∴一次函数解析式为y=-2x+6.∵反比例函数y=经过点C(-2,10),∴n=-20,∴反比例函数解析式为y=-.(2)由解得或故另一个交点坐标为(5,-4).(3)kx+b≤的解集为:{x|-2≤x<0或x≥5}.26.(8分)某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系的图象如图2中线段AB所示.(1)求经销成本p(万元)与销售额y(万元)之间的函数关系式.(2)分别求该公司3月,4月的利润.(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额-经销成本)【解析】(1)设p=ky+b,把(100,60),(200,110)代入得,解得,∴p=y+10.(2)∵y=150时,p=85,∴3月份利润为150-85=65万元.∵y=175时,p=97.5,∴4月份的利润为175-97.5=77.5万元.(3)设最早到第x个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元,∵5月份以后的每月利润为90万元,∴65+77.5+90(x-2)-40x≥200,∴x≥4.75,∴最早到第5个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元.27.(10分)去学校食堂就餐,经常会在一个买菜窗口前等待.经调查发现,同学的舒适度指数y与等待时间x(分)之间存在如下的关系:y=,求:(1)若等待时间x=5分钟时,求舒适度y的值.(2)舒适度指数不低于10时,同学才会感到舒适.函数y=的图象如图(x>0),请根据图象说明,作为食堂的管理员,让每个在窗口买菜的同学最多等待多少时间?【解析】(1)当x=5时,舒适度y===20.(2)舒适度指数不低于10时,由图象y≥10时,0<x≤10所以作为食堂的管理员,让每个在窗口买菜的同学最多等待10分钟.28.(10分)某商店原来平均每天可销售某种水果200千克,每千克可盈利6元,为减少库存,经市场调查,如果这种水果每千克降价1元,则每天可多售出20千克.(1)设每千克水果降价x元,平均每天盈利y元,试写出y关于x的函数解析式.(2)若要平均每天盈利960元,则每千克应降价多少元?【解析】(1)根据题意得:y=(200+20x)×(6-x)=-20x2-80x+1200.(2)令y=-20x2-80x+1200中y=960,则有960=-20x2-80x+1200.即x2+4x-12=0.解得:x=-6(舍去)或x=2.答:若要平均每天盈利960元,则每千克应降价2元.29.(12分)(2017·东平县一模)已知:如图一次函数y=x+1的图象与x轴交于点A,与y轴交于点B;二次函数y=x2+bx+c的图象与一次函数y=x+1的图象交于B,C两点,与x轴交于D,E两点且D点坐标为(1,0).(1)求二次函数的解析式.(2)求四边形BDEC的面积S.(3)在x轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由.【解析】(1)将B(0,1),D(1,0)的坐标代入y=x2+bx+c,得解得所以二次函数的解析式为y=x2-x+1.(2)设C(x0,y0)(x0≠0,y0≠0),则有解得2018中考数学专题训练 ---函数(含解析)- 21 - / 21 所以C(4,3),由图可知:S 四边形BDEC =S △ACE -S △ABD ,又由对称轴为x=可知E(2,0), 所以S 四边形BDEC =AE ·y 0-AD ×OB=×4×3-×3×1=.(3)设符合条件的点P 存在,令P(a,0),当P 为直角顶点时,如图:过C 作CF ⊥x 轴于点F; 因为∠BPO+∠OBP=90°,∠BPO+∠CPF=90°,所以∠OBP=∠FPC,所以Rt △BOP ∽Rt △PFC, 所以=,即=,整理得a 2-4a+3=0,解得a=1或a=3;所以所求的点P 的坐标为(1,0)或(3,0),综上所述:满足条件的点P 共有2个,为P(1,0)或P(3,0).。
2018年四川省绵阳市中考数学试卷(含答案与解析)
数学试卷 第1页(共36页)数学试卷 第2页(共36页)绝密★启用前四川省绵阳市2018年高中阶段学校招生暨初中学业水平考试数 学(本试卷满分140分,考试时间120分钟)第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.0(2018)-的值是( ) A .2018-B .2018C .0D .12.四川省公布了2017年经济数据GDP 排行榜,绵阳市排名全省第二,GDP 总量为2 075亿元.将2 075亿元用科学计数法表示为 ( ) A .120.207510⨯ B .112.07510⨯ C .1020.7510⨯ D .122.07510⨯3.如图,有一块含有30角的直角三角板的两个顶点放在直尺的对边上.如果244∠=,那么1∠的度数是 ( )A .14B .15C .16D .17 4.下列运算正确的是( )A .236a a a =B .325a a a +=C .248()a a =D .32a a a -= 5.下列图形是中心对称图形的是( )ABCD 6.等式3311x x x x --=++成立的x 的取值范围在数轴上可表示为( )AB C D 7.在平面直角坐标系中,以原点为对称中心,把点(3,4)A 逆时针旋转90,得到点B ,则点B 的坐标为 ( ) A .(4,3)- B .(4,3)- C .(3,4)- D .(3,4)-- 8.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )A .9人B .10人C .11人D .12人9.如图,蒙古包可近似地看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25π m 2,圆柱高为3 m ,圆锥高为2 m 的蒙古包,则需要毛毡的面积是( )A .2(30529)πm +B .240πmC .2(30521)πm +D .255πm10.一艘在南北航线上的测量船,于A 点处测得海岛B 在点A 的南偏东30方向,继续向南航行30海里到达C 点时,测得海岛B 在C 点的北偏东15方向,那么海岛B 离此航线的最近距离是(结果保留小数点后两位)(参考数据:3 1.732≈,2 1.414≈) ( ) A .4.64海里 B .5.49海里 C .6.12海里 D .6.21海里11.如图,ACB △和ECD △都是等腰直角三角形,CA CB =,CE CD =,ACB △的顶点A 在ECD △的斜边DE 上,若2AE =,6AD =,则两个三角形重叠部分的面积为( )A .2B .32-C .31-D .33-12.将全体正奇数排成一个三角形数阵: 1 3 57 9 11 13 15 17 19 21 23 25 27 29 ……按照以上排列规律,第25行第20个数是( )A .639B .637C .635D .633毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共36页) 数学试卷 第4页(共36页)第Ⅱ卷(非选择题 共104分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上) 13.因式分解:234x y y -= .14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,)1-和(3,1)-,那么“卒”的坐标为 .15.现有长分别为1,2,3,4,5的木条各一根,从这5根木条中任取3根,能构成三角形的概率是 .16.如图是抛物线型拱桥,当拱顶离水面2 m 时,水面宽4 m ,水面下降2 m ,水面宽度增加 m .17.已知0a b >>,且2130a b b a ++=-,则b a= . 18.如图,在ABC △中,3AC =,4BC =,若AC ,BC 边上的中线BE ,AD 垂直相交于O 点,则AB = .三、解答题(本大题共7小题,共86分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分16分,每题8分) (1)4sin60|23+(2)解分式方程:13222x x x-+=--.20.(本小题满分11分)绵阳某公司销售部统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x (单位:万元).销售部规定:当16x <时为“不称职”,当1620x ≤<时为“基本称职”,当2025x ≤<时为“称职”,当25x ≥时为“优秀”.根据以上信息,解答下列问题: (1)补全折线统计图和扇形统计图;(2)求所有“称职”和“优秀”的销售员月销售额的中位数和众数;(3)为了调动销售员的积极性,销售部决定制定一个月销售额奖励标准,凡月销售额达到或超过这个标准的销售员将获得奖励.如果要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为多少万元(结果取整数)?并简述其理由.21.(本小题满分11分)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完.其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?数学试卷 第5页(共36页) 数学试卷 第6页(共36页)22.(本小题满分11分)如图,一次函数1522y x =-+的图象与反比例函数()k y k x =>0的图象交于A ,B 两点,过A 点做x 轴的垂线,垂足为M ,AOM △面积为1. (1)求反比例函数的解析式;(2)在y 轴上求一点P ,使PA PB +的值最小,并求出其最小值和P 点坐标.23.(本小题满分11分)如图,AB 是O 的直径,点D 在O 上(点D 不与A ,B 重合),直线AD 交过点B 的切线于点C ,过点D 作O 的切线DE 交BC 于点E . (1)求证:BE CE =;(2)若DE AB ∥,求sin ACO ∠的值.24.(本小题满分12分)如图,已知ABC △的顶点坐标分别为(3,0)A ,(0,4)B ,(3,0)C -.动点M ,N 同时从A 点出发,M 沿A C →,N 沿折线A B C →→,均以每秒1个单位长度的速度移动,当一个动点到达终点C 时,另一个动点也随之停止移动,移动时间记为t 秒.连接MN . (1)求直线BC 的解析式;(2)移动过程中,将AMN △沿直线MN 翻折,点A 恰好落在BC 边上点D 处,求此时t 值及点D 的坐标;(3)当点M ,N 移动时,记ABC △在直线MN 右侧部分的面积为S ,求S 关于时间t 的函数关系式.备用图25.(本小题满分14分)如图,已知抛物线2(0)y ax bx a =+≠过点3)A -和B .过点A 作直线AC x ∥轴,交y 轴与点C .(1)求抛物线的解析式;(2)在抛物线上取一点P ,过点P 作直线AC 的垂线,垂足为D .连接OA ,使得以A ,D ,P 为顶点的三角形与AOC △相似,求出对应点P 的坐标;(3)抛物线上是否存在点Q ,使得13AOC AOQ S S =△△?若存在,求出点Q 的坐标;若不存在,请说明理由.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第7页(共36页)数学试卷第8页(共36页)数学试卷 第9页(共36页) 数学试卷 第10页(共36页)四川省绵阳市2018年高中阶段学校招生暨初中学业水平考试数学答案解析一、选择题 1.【答案】D【解析】解:∵020181=,故答案为:D . 【考点】零次幂的运算 2.【答案】B【解析】解:∵112075 2.07510=⨯亿,故答案为:B . 【考点】科学记数法 3.【答案】C 【解析】解:如图:依题可得:244∠=,60ABC ∠=,BE CD ∥,∴1CBE ∠=∠,又∵60ABC ∠=,∴2CBE ABC ∠=∠-∠604416=-=,即116∠=.故答案为:C .【考点】平行线的性质 4.【答案】C【解析】解:A .∵235a a a =,故错误,A 不符合题意;B .a 3与a 2不是同类项,故不能合并,B 不符合题意;C .∵248()a a =,故正确,C 符合题意;D .a 3与a 2不是同类项,故不能合并,D 不符合题意;故答案为:C . 【考点】整式的运算 5.【答案】D【解析】解:A .不是中心对称图形,A 不符合题意;B .是轴对称图形,B 不符合题意;C .不是中心对称图形,C 不符合题意;D .是中心对称图形,D 符合题意;故答案为:D .【考点】中心对称图形的概念 6.【答案】B【解析】解:依题可得:30x -≥且10x +>,∴3x ≥,故答案为:B . 【考点】分式和根式有意义的条件,不等式在数轴上的表示 7.【答案】B 【解析】解:如图:由旋转的性质可得:AOC BOD △≌△, ∴OD OC =,BD AC =, 又∵(3,4)A ,∴3OD OC ==,4BD AC ==,∵B 点在第二象限, ∴B (4,3)-. 故答案为:B . 【考点】旋转的性质 8.【答案】C【解析】解:设参加酒会的人数为x 人,依题可得:1(1)552x x -=, 化简得:21100x x --=, 解得:111x =,210x =-(舍去), 故答案为:C . 【考点】一元二次方程数学试卷 第11页(共36页) 数学试卷 第12页(共36页)9.【答案】A【解析】解:设底面圆的半径为r ,圆锥母线长为l ,依题可得: 2π25πr =,∴5r =,∴圆锥的母线l ==∴圆锥侧面积2112ππ(m )2S r l rl ===,圆柱的侧面积222π2π5330π(m )S r h ==⨯⨯⨯=,∴需要毛毡的面积230π(m )=+,故答案为:A .【考点】圆柱和圆锥的侧面积 10.【答案】B【解析】解:根据题意画出图如图所示:作BD AC ⊥,取BE CE =,∵30AC =,30CAB ︒∠=,15ACB ︒∠=,∴135ABC ∠=, 又∵BE CE =, ∴15ACB EBC ∠=∠=, ∴120ABE ∠=, 又∵30CAB ∠=, ∴BA BE =,AD DE =, 设BD x =,在Rt ABD △中,∴AD DE ==,2AB BE CE x ===,∴230AC AD DE EC x =++=+=,∴1)5.492x =≈,故答案为:B .【考点】解直角三角形的应用 11.【答案】D【解析】解:连接BD ,作CH DE ⊥,∵ACB △和ECD △都是等腰直角三角形, ∴90ACB ECD ∠=∠=,45ADC CAB ∠=∠=, 即90ACD DCB ACD ACE ∠+∠=∠+∠=, ∴DCB ACE ∠=∠, 在DCB △和ECA △中,DC EC DCB ACE AC BC =⎧⎪∠=∠⎨⎪=⎩, ∴DCB ECA △≌△,∴DB EA =45CDB E ∠=∠=, ∴90CDB ADC ADB ∠+∠=∠=, 在Rt ABD △中,∴AB ==,在Rt ABC △中, ∴2228AC AB ==, ∴2AC BC ==, 在Rt ECD △中,数学试卷 第13页(共36页) 数学试卷 第14页(共36页)∴2222CDDE ==,∴1CD CE =,∵ACO DCA ∠=∠,CAO CDA ∠=∠, ∴CAO CDA △∽△,∴221)4CAO ACD S S ===-=-△△ 又∵11222ECD S CE DE CH ==△,∴22CH ==∴1122ACD A C S DH =⨯==△, ∴(43CAOACD S S =-⨯=-△△即两个三角形重叠部分的面积为3 故答案为:D .【考点】等腰直角三角形的性质,勾股定理,相似三角形的判定和性质 12.【答案】A【解析】解:依题可得:第25行的第一个数为:(124)24124682*********+⨯+++++⋯⋯+⨯=+⨯=,∴第25行的第第20个数为:601219639+⨯=. 故答案为:A . 【考点】规律的探究13.【答案】(2)(2)y x y x y +-【解析】解:原式(2)(2)y x y x y =++-, 故答案为:(2)(2)y x y x y +-. 【考点】因式分解 14.【答案】(2,2)--【解析】解:建立平面直角坐标系(如图),∵相(3,1)-,兵(3,1)-, ∴卒(2,2)--, 故答案为:(2,2)--. 【考点】平面直角坐标系15.【答案】310【解析】解:从5根木条中任取3根的所有情况为:1、2、3;1、2、4;1、2、5;1、3、4;1、3、5;1、4、5;2、3、4;2、3、5;2、4、5;3、4、5;共10种情况; ∵能够构成三角形的情况有:2、3、4;2、4、5;3、4、5;共3种情况;∴能够构成三角形的概率为:310.故答案为:310.【考点】概率的计算 16.【答案】4【解析】解:根据题意以AB 为x 轴,AB 的垂直平分线为y 轴建立平面直角坐标系(如图),依题可得:(2,0)A -,(2,0)B ,(0,2)C ,设经过A、B 、C 三点的抛物线解析式为:(2)(2)y a x x =-+, ∵(0,2)C 在此抛物线上,数学试卷 第15页(共36页) 数学试卷 第16页(共36页)∴12a =-, ∴此抛物线解析式为:1(2)(2)2y x x =--+,∵水面下降2 m ,∴1(2)(2)22x x --+=-,∴1x =2x =-,∴下降之后的水面宽为:∴水面宽度增加了:4.故答案为:4.【考点】二次函数的图象与性质17.【解析】解:∵2130a b b a ++=-,两边同时乘以()ab b a -得: 22220a ab b --=,两边同时除以a 2得:22()210b ba a +-=, 令(0)bt t a =>,∴22210t t +-=,∴t =,∴b t a ==.【考点】解分式方程,换元法 18.【解析】解:连接DE ,∵AD 、BE 为三角形中线,∴DE AB ∥,12DE AB =,∴DOE AOB △∽△, ∴12DO OE DE OA OB AB ===, 设OD x =,OE y =, ∴2OA x =,2OB y =, 在Rt BOD △中,2244x y += ①,在Rt AOE △中,22944x y += ②,∴+①②得:2225554x y +=, ∴2254x y +=,在Rt AOB △中,∴222225444()44AB xy x y =+=+=⨯,即AB =.【考点】勾股定理,三角形中位线的性质,三角形相似的判定与性质 三、解答题19.【答案】(1)1423=⨯原式,2=+,数学试卷 第17页(共36页) 数学试卷 第18页(共36页)2=.(2)方程两边同时乘以2x -得:12(2)3x x -+-=-, 去括号得:1243x x -+-=-, 移项得:2314x x +=-++,合并同类项得:32x =,系数化为1得:23x =.检验:将23x =代入最简公分母不为0,故是原分式方程的根,∴原分式方程的解为:23x =.【解析】(1)1423=⨯原式, 2=+, 2=.(2)方程两边同时乘以2x -得:12(2)3x x -+-=-, 去括号得:1243x x -+-=-, 移项得:2314x x +=-++,合并同类项得:32x =, 系数化为1得:23x =.检验:将23x =代入最简公分母不为0,故是原分式方程的根,∴原分式方程的解为:23x =.【考点】实数的运算,解分式方程 20.【答案】(1)解:依题可得: “不称职”人数为:224()+=人,“基本称职”人数为:233210()+++=人, “称职”人数为:4543420()++++=人, ∴总人数为:2050%40()÷=人, ∴不称职”百分比:44010%a =÷=,“基本称职”百分比:104025%b =÷=,“优秀”百分比:110%25%50%15%d =---=, ∴“优秀”人数为:4015%6()⨯=人, ∴得26分的人数为:62112()---=人, 补全统计图如图所示:(2)由折线统计图可知:“称职”20万4人,21万5人,22万4人,23万3人,24万4人, “优秀”25万2人,26万2人,27万1人,28万1人; “称职”的销售员月销售额的中位数为:22万,众数:21万; “优秀”的销售员月销售额的中位数为:26万,众数:25万和26万; (3)由(2)知月销售额奖励标准应定为22万.∵“称职”和“优秀”的销售员月销售额的中位数为:22万,∴要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为22万元.【解析】(1)解:依题可得: “不称职”人数为:224()+=人,“基本称职”人数为:233210()+++=人, “称职”人数为:4543420()++++=人, ∴总人数为:2050%40()÷=人, ∴不称职”百分比:44010%a =÷=, “基本称职”百分比:104025%b =÷=,“优秀”百分比:110%25%50%15%d =---=, ∴“优秀”人数为:4015%6()⨯=人,数学试卷 第19页(共36页) 数学试卷 第20页(共36页)∴得26分的人数为:62112()---=人, 补全统计图如图所示:(2)由折线统计图可知:“称职”20万4人,21万5人,22万4人,23万3人,24万4人, “优秀”25万2人,26万2人,27万1人,28万1人; “称职”的销售员月销售额的中位数为:22万,众数:21万; “优秀”的销售员月销售额的中位数为:26万,众数:25万和26万; (3)由(2)知月销售额奖励标准应定为22万.∵“称职”和“优秀”的销售员月销售额的中位数为:22万,∴要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为22万元.【考点】扇形统计图,折线统计图,中位数,众数,数据分析21.【答案】(1)解:设1辆大货车一次可以运货x 吨,1辆小货车一次可以运货y 吨,依题可得:3418217x y x y +=⎧⎨+=⎩,, 解得:43.2x y =⎧⎪⎨=⎪⎩,答:1辆大货车一次可以运货4吨,1辆小货车一次可以运货32吨. (2)解:设大货车有m 辆,则小货车10m -辆,依题可得: 34(10)332m m +-≥,0m ≥,10m -≥0,解得:36105m ≤≤,∴8,9,10m =;∴当大货车8辆时,则小货车2辆; 当大货车9辆时,则小货车1辆; 当大货车10辆时,则小货车0辆;设运费为13010010)30100(0W m m m =+-=+,∵300k =>,∴W 随x 的增大而增大, ∴当8m =时,运费最少, ∴30810001240()W =⨯+=元,答:货运公司应安排大货车8辆时,小货车2辆时最节省费用.【解析】(1)解:设1辆大货车一次可以运货x 吨,1辆小货车一次可以运货y 吨,依题可得:3418217x y x y +=⎧⎨+=⎩,, 解得:43.2x y =⎧⎪⎨=⎪⎩,答:1辆大货车一次可以运货4吨,1辆小货车一次可以运货32吨. (2)解:设大货车有m 辆,则小货车10m -辆,依题可得: 34(10)332m m +-≥,0m ≥,10m -≥0,解得:36105m ≤≤,∴8,9,10m =;∴当大货车8辆时,则小货车2辆;当大货车9辆时,则小货车1辆;当大货车10辆时,则小货车0辆;设运费为13010010)30100(0W m m m=+-=+,∵300k=>,∴W随x的增大而增大,∴当8m=时,运费最少,∴30810001240()W=⨯+=元,答:货运公司应安排大货车8辆时,小货车2辆时最节省费用.【考点】二元一次方程组解决实际问题,一次函数的应用22.【答案】(1)解:设(,)A x y,∵A点在反比例函数上,∴k xy=,又∵1111 222AOMS OM AM x y k====,∴2k=.∴反比例函数解析式为:2 yx =.(2)解:作A关于y轴的对称点A',连接A B'交y轴于点P,PA PB+的最小值即为A B'.∴21522yxy x⎧=⎪⎪⎨⎪=-+⎪⎩,,∴12xy=⎧⎨=⎩,或41.2xy=⎧⎪⎨=⎪⎩,∴(1,2)A,1 (4,)2 B,∴(1,2) A'-,∴PA PB A B'+==.设A B'直线解析式为:y ax b=+,∴2142a ba b-+=⎧⎪⎨+=⎪⎩,∴3101710ab⎧=-⎪⎪⎨⎪=⎪⎩,∴A B'直线解析式为:3171010y x=-+,∴17(0,)10P.【解析】(1)解:设(,)A x y,∵A点在反比例函数上,∴k xy=,又∵1111222AOMS OM AM x y k====,∴2k=.∴反比例函数解析式为:2yx=.(2)解:作A关于y轴的对称点A',连接A B'交y轴于点P,PA PB+的最小值即为A B'.∴21522yxy x⎧=⎪⎪⎨⎪=-+⎪⎩,,∴12xy=⎧⎨=⎩,或41.2xy=⎧⎪⎨=⎪⎩,∴(1,2)A,1 (4,)2 B,∴(1,2)A '-,∴PA PB A B '+==.设A B '直线解析式为:y ax b =+,∴2142a b a b -+=⎧⎪⎨+=⎪⎩,∴3101710a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴A B '直线解析式为:3171010y x =-+, ∴17(0,)10P .【考点】一次函数和反比例函数的图象与性质,待勾股定理 23.【答案】(1)证明:连接OD 、BD , ∵EB 、ED 分别为圆O 的切线, ∴ED EB =, ∴EDB EBD ∠=∠, 又∵AB 为圆O 的直径, ∴BD AC ⊥,∴BDE CDE EBD DCE ∠+∠=∠+∠, ∴CDE DCE ∠=∠, ∴ED EC =, ∴EB EC =.(2)解:过O 作OH AC ⊥,设圆O 半径为r ,∵DE AB ∥,DE 、EB 分别为圆O 的切线, ∴四边形ODEB 为正方形,∵O 为AB 中点,∴D 、E 分别为AC 、BC 的中点, ∴2BC r =,AC =, 在Rt COB △中,∴OC =,又∵1122ACO S AO BC ACOH ==,∴2r r OH⨯=⨯, ∴OH =,在Rt COH△中,∴sin OH ACO OC ∠===. 【解析】(1)证明:连接OD 、BD , ∵EB 、ED 分别为圆O 的切线, ∴ED EB =, ∴EDB EBD ∠=∠, 又∵AB 为圆O 的直径, ∴BD AC ⊥,∴BDE CDE EBD DCE ∠+∠=∠+∠, ∴CDE DCE ∠=∠,∴ED EC =, ∴EB EC =.(2)解:过O 作OH AC ⊥,设圆O 半径为r ,∵DE AB ∥,DE 、EB 分别为圆O 的切线, ∴四边形ODEB 为正方形, ∵O 为AB 中点,∴D 、E 分别为AC 、BC 的中点, ∴2BC r =,AC =, 在Rt COB △中,∴OC =,又∵1122ACO S AO BC ACOH ==,∴2r rOH ⨯=⨯, ∴OH =,在RtCOH △中,∴sin OH ACO OC ∠=. 【考点】圆的性质,全等三角形的判定和性质,等腰三角形的判定和性质,勾股定理 24.【答案】(1)解:设直线BC 解析式为:y kx b =+, ∵(0,4)B ,(3,0)C -,∴430b k b =⎧⎨-+=⎩,解得:434k b ⎧=⎪⎨⎪=⎩, ∴直线BC 解析式为:443y x =+. (2)解:依题可得:AM AN t ==,∵AMN △沿直线MN 翻折,点A 与点点D 重合, ∴四边形AMDN 为菱形,作NF x ⊥轴,连接AD 交MN 于O ′,∵(3,0)A ,(0,4)B , ∴3OA =,4OB =, ∴5AB =, ∴(3,0)M t -, 又∵ANF ABO △∽△,∴AN AF NF AB AO OB ==, ∴534t AF NF ==, ∴35AF t =,45NF t =,∴34(3,)55N t t -,∴32(3,)55O t t '-,设(,)D x y ,∴34325x t +=-,0225y t +=, ∴835x t =-,45y t =,∴4(3)8,55t D t -,又∵D 在直线BC 上, ∴484(3)4355t t ⨯-+=, ∴3011t =,∴1524(,)1111D -.(3)①当05t <≤时(如图),ABC △在直线MN 右侧部分为AMN △,∴211422255AMN S S AM DF t t t ===⨯⨯=△,②当56t <≤时,ABC △在直线MN 右侧部分为四边形ABNM ,如图∵AM AN t ==,5AB BC ==,∴5BN t =-,5(5)10CN t t =---=-, 又∵CNF CBO △∽△,∴CN NF CB OB =, ∴1054t NF -=, ∴4(10)5NF t =-,∴1122ABC CNM S S S AC OB CM NF =-=-△,11464(6)(10)225t t =⨯⨯-⨯-⨯⨯-, 22321255t t =-+-.【解析】(1)解:设直线BC 解析式为:y kx b =+,∵(0,4)B ,(3,0)C -, ∴430b k b =⎧⎨-+=⎩,解得:434k b ⎧=⎪⎨⎪=⎩, ∴直线BC 解析式为:443y x =+. (2)解:依题可得:AM AN t ==,∵AMN △沿直线MN 翻折,点A 与点点D 重合,∴四边形AMDN 为菱形,作NF x ⊥轴,连接AD 交MN 于O ',∵(3,0)A ,(0,4)B ,∴3OA =,4OB =, ∴5AB =, ∴(3,0)M t -, 又∵ANF ABO △∽△,∴AN AF NF AB AO OB ==, ∴534t AF NF ==, ∴35AF t =,45NF t =,∴34(3,)55N t t -,∴32(3,)55O t t '-,设(,)D x y , ∴34325x t +=-,0225y t +=,∴835x t =-,45y t =,∴4(3)8,55t D t -,又∵D 在直线BC 上, ∴484(3)4355t t ⨯-+=, ∴3011t =,∴1524(,)1111D -.(3)①当05t <≤时(如图),ABC △在直线MN 右侧部分为AMN △,∴211422255AMN S S AM DF t t t ===⨯⨯=△,②当56t <≤时,ABC △在直线MN 右侧部分为四边形ABNM ,如图∵AM AN t ==,5AB BC ==,∴5BN t =-,5(5)10CN t t =---=-, 又∵CNF CBO △∽△, ∴CN NF CB OB =, ∴1054t NF -=, ∴4(10)5NF t =-,∴1122ABC CNM S S S AC OB CM NF =-=-△,11464(6)(10)225t t =⨯⨯-⨯-⨯⨯-, 22321255t t =-+-.【考点】直线的解析式,全等三角形的判定和性质,相似三角形的判定和性质,三角形和四边形的面积,动点问题25.【答案】(1)解:∵点A 、B 在抛物线上, ∴33270aa ⎧+=-⎪⎨+=⎪⎩, 解得:12a b ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线解析式为:212y x=. (2)解:设(,)P x y , ∵3)A -,(0,3)C -,∴(,3)D x -,∴3PD y=+,3CO =,AD x =AC =, ①当ADP ACO Rt △∽△时,∴AD DP =,33y +=,∴6y=-,又∵P 在抛物线上, ∴2126yx y ⎧=-⎪⎨⎪=-⎩,,∴2120x -+=, ∴((0xx --=,∴1x =,2x =,∴6x y ⎧=⎪⎨=⎪⎩3x y ⎧=⎪⎨=-⎪⎩,,∵3)A -,∴P .②当PDA ACO △∽△时, ∴PD DA AC=,=∴4y=-, 又∵P 在抛物线上, ∴2124y x y ⎧=⎪⎪⎨⎪=-⎪⎩,,, 2110x -+=, ∴8)(0x -=,∴1x =2x =解得:43x y⎧=⎪⎪⎨⎪=-⎪⎩或3xy ⎧=⎪⎨=-⎪⎩,∵3)A -,∴4)3P -.综上,P 点坐标为或4)3-. (3)解:∵3)A -,∴AC =,3OC =,∴OA =,∴1133222AOC S OC AC OA h ===△, ∴32h =, 又∵13AOC AOQ S S =△△,∴AOQ △边OA 上的高932h ==, 过O 作OM OA ⊥,截取92OM =,过点M 作MN OA ∥交y 轴于点N ,过M 作HM x⊥轴,(如图),∵3AC =,23OA =, ∴30AOC ∠=, 又∵MN OA ∥,∴30MNO AOC ∠=∠=,OM MN ⊥, ∴29ON OM ==,60NOM ∠=, 即(0,9)N ,∴30MOB ∠=,∴1924MH OM ==,∴OH ==, ∴9)4M , 设直线MN 解析式为:y kx b =+,∴949b b ⎪=⎩+=,,∴9k b ==⎪⎩⎧⎪⎨,, ∴直线MN解析式为:9y =+,∴2912y x y ⎧=⎪⎨⎪=⎩+,,∴2180x --=,()()0x x -+=,∴1x =2x =-∴0x y ⎧=⎪⎨=⎪⎩或15x y ⎧=-⎪⎨=⎪⎩,∴Q点坐标)或()-,∴抛物线上是否存在点Q ,使得13AOCAOQ S S =△△. 【解析】(1)解:∵点A 、B 在抛物线上,∴33270a a ⎧+=-⎪⎨+=⎪⎩,解得:12a b ⎧=⎪⎪⎨⎪=⎪⎩∴抛物线解析式为:212y x =. (2)解:设(,)P x y ,∵3)A -,(0,3)C -,∴(,3)D x -,∴3PD y =+,3CO =,AD x =AC = ①当ADP ACO Rt △∽△时, ∴AD DP AC CO =,33y +=,∴6y =-,又∵P 在抛物线上,∴2126y x y ⎧=-⎪⎨⎪=-⎩,,∴2120x -+=, ∴((0x x --=,∴1x =,2x =,∴6x y ⎧=⎪⎨=⎪⎩3x y ⎧=⎪⎨=-⎪⎩,,∵3)A -,∴P .②当PDA ACO △∽△时, ∴PD DA AC CO =,3x -=∴4y =-, 又∵P 在抛物线上,∴2124y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,,,2110x -+=,∴8)(0x -=,∴1x =2x =,解得:433x y ⎧=⎪⎪⎨⎪=-⎪⎩或3x y ⎧=⎪⎨=-⎪⎩,∵3)A -,∴4)3P -.综上,P点坐标为或4)3-. (3)解:∵3)A -,∴AC =,3OC =,∴OA =,∴1133222AOC S OC AC OA h ===△, ∴32h =,又∵13AOC AOQ S S =△△,∴AOQ △边OA 上的高932h ==,过O 作OM OA ⊥,截取92OM =,过点M 作MN OA ∥交y 轴于点N ,过M 作HM x⊥轴,(如图),∵3AC =,23OA =, ∴30AOC ∠=, 又∵MN OA ∥,∴30MNO AOC ∠=∠=,OM MN ⊥, ∴29ON OM ==,60NOM ∠=, 即(0,9)N ,∴30MOB ∠=,∴1924MH OM ==,∴OH ==, ∴9)4M , 设直线MN 解析式为:y kx b =+,∴949b b ⎪=⎩+=,, ∴9k b ==⎪⎩⎧⎪⎨,, ∴直线MN 解析式为:9y =+,∴2912y x y ⎧=-⎪⎨⎪=⎩+,, ∴2180x --=,()()0x x -+=,∴1x =2x =-∴0x y ⎧=⎪⎨=⎪⎩或15x y ⎧=-⎪⎨=⎪⎩,∴Q 点坐标)或()-,∴抛物线上是否存在点Q ,使得13AOC AOQ S S =△△.【考点】二次函数的图象与性质,三角形相似的判定与性质。
中考数学复习----反比例函数之定义、图像与性质知识点总结与练习题(含答案解析)
中考数学复习----反比例函数之定义、图像与性质知识点总结与练习题(含答案解析)知识点总结1. 反比例函数的定义:形如()0≠=k xky 的函数叫做反比例函数。
有时也用k xy =或1−=kx y 表示。
2. 反比例函数的图像:反比例函数的图像是双曲线。
3. 反比例函数的性质与图像:反比例函数()0≠=k xky k 的符号0>k0<k所在象限一、三象限二、四象限大致图像增减性在一个支上(每一个象限内),y 随x 的增大而减小。
在一个支上(每一个象限内),y 随x 的增大而增大。
对称性图像关于原点对称练习题1.(2022•黔西南州)在平面直角坐标系中,反比例函数y =xk(k ≠0)的图像如图所示,则一次函数y =kx +2的图像经过的象限是( ) A .一、二、三 B .一、二、四C .一、三、四D .二、三、四【分析】先根据反比例函数的图像位于二,四象限,可得k <0,由一次函数y =kx +2中,k <0,2>0,可知它的图像经过的象限. 【解答】解:由图可知:k <0,∴一次函数y =kx +2的图像经过的象限是一、二、四. 故选:B .2.(2022•上海)已知反比例函数y =xk(k ≠0),且在各自象限内,y 随x 的增大而增大,则下列点可能在这个函数图像上的为( ) A .(2,3)B .(﹣2,3)C .(3,0)D .(﹣3,0)【分析】根据反比例函数的性质判断即可.【解答】解:因为反比例函数y =(k ≠0),且在各自象限内,y 随x 的增大而增大, 所以k <0,A .2×3=6>0,故本选项不符合题意;B .﹣2×3=﹣6<0,故本选项符合题意;C .3×0=0,故本选项不符合题意;D .﹣3×0=0,故本选项不符合题意; 故选:B .3.(2022•广东)点(1,y 1),(2,y 2),(3,y 3),(4,y 4)在反比例函数y =x4图像上,则y 1,y 2,y 3,y 4中最小的是( ) A .y 1B .y 2C .y 3D .y 4【分析】根据k >0可知增减性:在每一象限内,y 随x 的增大而减小,根据横坐标的大小关系可作判断. 【解答】解:∵k =4>0,∴在第一象限内,y 随x 的增大而减小,∵(1,y 1),(2,y 2),(3,y 3),(4,y 4)在反比例函数y =图像上,且1<2<3<4, ∴y 4最小. 故选:D .4.(2022•云南)反比例函数y =x6的图像分别位于( ) A .第一、第三象限 B .第一、第四象限 C .第二、第三象限D .第二、第四象限【分析】根据反比例函数的性质,可以得到该函数图像位于哪几个象限,本题得以解决.【解答】解:反比例函数y =,k =6>0, ∴该反比例函数图像位于第一、三象限, 故选:A .5.(2022•镇江)反比例函数y =xk(k ≠0)的图像经过A (x 1,y 1)、B (x 2,y 2)两点,当x 1<0<x 2时,y 1>y 2,写出符合条件的k 的值 (答案不唯一,写出一个即可). 【分析】先根据已知条件判断出函数图像所在的象限,再根据系数k 与函数图像的关系解答即可.【解答】解:∵反比例函数y =(k ≠0)的图像经过A (x 1,y 1)、B (x 2,y 2)两点,当x 1<0<x 2时,y 1>y 2,∴此反比例函数的图像在二、四象限, ∴k <0,∴k 可为小于0的任意实数,例如,k =﹣1等. 故答案为:﹣1.6.(2022•福建)已知反比例函数y =xk的图像分别位于第二、第四象限,则实数k 的值可以是 .(只需写出一个符合条件的实数)【分析】根据图像位于第二、四象限,易知k <0,写一个负数即可. 【解答】解:∵该反比例图像位于第二、四象限, ∴k <0,∴k 取值不唯一,可取﹣3, 故答案为:﹣3(答案不唯一).7.(2022•成都)在平面直角坐标系xOy 中,若反比例函数y =xk 2−的图像位于第二、四象限,则k 的取值范围是 .【分析】根据反比例函数的性质列不等式即可解得答案. 【解答】解:∵反比例函数y =的图像位于第二、四象限,∴k ﹣2<0, 解得k <2, 故答案为:k <2.8.(2022•襄阳)二次函数y =ax 2+bx +c 的图像如图所示,则一次函数y =bx +c 和反比例函数y =xa在同一平面直角坐标系中的图像可能是( ) A . B .C .D .【分析】根据二次函数图像开口向下得到a <0,再根据对称轴确定出b ,根据与y 轴的交点确定出c <0,然后确定出一次函数图像与反比例函数图像的情况,即可得解. 【解答】解:∵二次函数图像开口方向向下, ∴a <0,∵对称轴为直线x =﹣>0,∴b >0,∵与y 轴的负半轴相交, ∴c <0,∴y =bx +c 的图像经过第一、三、四象限, 反比例函数y =图像在第二四象限, 只有D 选项图像符合. 故选:D .9.(2022•菏泽)根据如图所示的二次函数y =ax 2+bx +c 的图像,判断反比例函数y =xa与一次函数y =bx +c 的图像大致是( )A .B .C .D .【分析】先根据二次函数的图像,确定a 、b 、c 的符号,再根据a 、b 、c 的符号判断反比例函数y =与一次函数y =bx +c 的图像经过的象限即可. 【解答】解:由二次函数图像可知a >0,c <0, 由对称轴x =﹣>0,可知b <0,所以反比例函数y =的图像在一、三象限,一次函数y =bx +c 图像经过二、三、四象限. 故选:A .10.(2022•安顺)二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,则一次函数y =ax +b 和反比例函数y =xc(c ≠0)在同一直角坐标系中的图像可能是( ) A . B .C .D .【分析】直接利用二次函数图像经过的象限得出a ,b ,c 的取值范围,进而利用一次函数与反比例函数的性质得出答案.【解答】解:∵二次函数y =ax 2+bx +c 的图像开口向上, ∴a >0,∵该抛物线对称轴位于y 轴的右侧, ∴a 、b 异号,即b <0. ∵抛物线交y 轴的负半轴,∴c <0,∴一次函数y =ax +b 的图像经过第一、三、四象限,反比例函数y =(c ≠0)在二、四象限. 故选:A .11.(2022•西藏)在同一平面直角坐标系中,函数y =ax +b 与y =axb(其中a ,b 是常数,ab ≠0)的大致图像是( )A .B .C .D .【分析】根据a 、b 的取值,分别判断出两个函数图像所过的象限,要注意分类讨论. 【解答】解:若a >0,b >0,则y =ax +b 经过一、二、三象限,反比例函数y =(ab ≠0)位于一、三象限,若a >0,b <0,则y =ax +b 经过一、三、四象限,反比例函数数y =(ab ≠0)位于二、四象限, 若a <0,b >0,则y =ax +b 经过一、二、四象限,反比例函数y =(ab ≠0)位于二、四象限, 若a <0,b <0,则y =ax +b 经过二、三、四象限,反比例函数y =(ab ≠0)位于一、三象限, 故选:A .12.(2022•张家界)在同一平面直角坐标系中,函数y =kx +1(k ≠0)和y =xk(k ≠0)的图像大致是( )A.B.C.D.【分析】分k>0或k<0,根据一次函数与反比例函数的性质即可得出答案.【解答】解:当k>0时,一次函数y=kx+1经过第一、二、三象限,反比例函数y=位于第一、三象限;当k<0时,一次函数y=kx+1经过第一、二、四象限,反比例函数y=位于第二、四象限;故选:D.13.(2022•绥化)已知二次函数y=ax2+bx+c的部分函数图像如图所示,则一次函数y=ax+b2﹣4ac与反比例函数y=xc ba++24在同一平面直角坐标系中的图像大致是()A.B.C.D.【分析】由二次函数y=ax2+bx+c的部分函数图像判断a,b2﹣4ac及4a+2b+c的符号,即可得到答案.【解答】解:∵二次函数y=ax2+bx+c的部分函数图像开口向上,∴a>0,∵二次函数y =ax 2+bx +c 的部分函数图像顶点在x 轴下方,开口向上, ∴二次函数y =ax 2+bx +c 的图像与x 轴有两个交点,b 2﹣4ac >0, ∴一次函数y =ax +b 2﹣4ac 的图像位于第一,二,三象限,由二次函数y =ax 2+bx +c 的部分函数图像可知,点(2,4a +2b +c )在x 轴上方, ∴4a +2b +c >0, ∴y =的图像位于第一,三象限,据此可知,符合题意的是B , 故选:B .14.(2022•贺州)已知一次函数y =kx +b 的图像如图所示,则y =﹣kx +b 与y =xb的图像为( )A .B .C .D .【分析】本题形数结合,根据一次函数y =kx +b 的图像位置,可判断k 、b 的符号;再由一次函数y =﹣kx +b ,反比例函数y =中的系数符号,判断图像的位置.经历:图像位置﹣系数符号﹣图像位置.【解答】解:根据一次函数y =kx +b 的图像位置,可判断k >0、b >0. 所以﹣k <0.再根据一次函数和反比例函数的图像和性质, 故选:A .15.(2022•广西)已知反比例函数y =xb(b ≠0)的图像如图所示,则一次函数y =cx ﹣a (c ≠0)和二次函数y =ax 2+bx +c (a ≠0)在同一平面直角坐标系中的图像可能是( )A .B .C .D .【分析】本题形数结合,根据反比例函数y =(b ≠0)的图像位置,可判断b >0;再由二次函数y =ax 2+bx +c (a ≠0)的图像性质,排除A ,B ,再根据一次函数y =cx ﹣a (c ≠0)的图像和性质,排除C .【解答】解:∵反比例函数y =(b ≠0)的图像位于一、三象限, ∴b >0;∵A 、B 的抛物线都是开口向下,∴a <0,根据同左异右,对称轴应该在y 轴的右侧, 故A 、B 都是错误的.∵C 、D 的抛物线都是开口向上,∴a >0,根据同左异右,对称轴应该在y 轴的左侧, ∵抛物线与y 轴交于负半轴, ∴c <0由a >0,c <0,排除C . 故选:D .16.(2022•滨州)在同一平面直角坐标系中,函数y =kx +1与y =﹣xk(k 为常数且k ≠0)的图像大致是( )A .B .C .D .【分析】根据一次函数和反比例函数的性质即可判断.【解答】解:当k >0时,则﹣k <0,一次函数y =kx +1图像经过第一、二、三象限,反比例函数图像在第二、四象限,所以A 选项正确,C 选项错误;当k <0时,一次函数y =kx +1图像经过第一、二,四象限,所以B 、D 选项错误. 故选:A .17.(2022•德阳)一次函数y =ax +1与反比例函数y =﹣xa在同一坐标系中的大致图像是( )A .B .C .D .【分析】根据一次函数与反比例函数图像的特点,可以从a >0,和a <0,两方面分类讨论得出答案.【解答】解:分两种情况:(1)当a >0,时,一次函数y =ax +1的图像过第一、二、三象限,反比例函数y =﹣图像在第二、四象限,无选项符合;(2)当a <0,时,一次函数y =ax +1的图像过第一、二、四象限,反比例函数y =﹣图像在第一、三象限,故B 选项正确. 故选:B .18.(2022•阜新)已知反比例函数y =x k (k ≠0)的图像经过点(﹣2,4),那么该反比例函数图像也一定经过点( )A .(4,2)B .(1,8)C .(﹣1,8)D .(﹣1,﹣8)【分析】先把点(﹣2,4)代入反比例函数的解析式求出k 的值,再对各选项进行逐一判断即可.【解答】解:∵反比例函数y =(k ≠0)的图像经过点(﹣2,4),∴k =﹣2×4=﹣8,A 、∵4×2=8≠﹣8,∴此点不在反比例函数的图像上,故本选项错误;B 、∵1×8=8≠﹣8,∴此点不在反比例函数的图像上,故本选项错误;C 、﹣1×8=﹣8,∴此点在反比例函数的图像上,故本选项正确;D 、(﹣1)×(﹣8)=8≠﹣8,∴此点不在反比例函数的图像上,故本选项错误. 故选:C .19.(2022•襄阳)若点A (﹣2,y 1),B (﹣1,y 2)都在反比例函数y =x2的图像上,则y 1,y 2的大小关系是( )A .y 1<y 2B .y 1=y 2C .y 1>y 2D .不能确定 【分析】根据反比例函数图像上点的坐标特征即可求解.【解答】解:∵点A (﹣2,y 1),B (﹣1,y 2)都在反比例函数y =的图像上,k =2>0,∴在每个象限内y 随x 的增大而减小,∵﹣2<﹣1,∴y 1>y 2,故选:C .20.(2022•海南)若反比例函数y =xk (k ≠0)的图像经过点(2,﹣3),则它的图像也一定经过的点是( )A .(﹣2,﹣3)B .(﹣3,﹣2)C .(1,﹣6)D .(6,1) 【分析】将(2,﹣3)代入y =(k ≠0)即可求出k 的值,再根据k =xy 解答即可.【解答】解:∵反比例函数y =(k ≠0)的图像经过点(2,﹣3),∴k =2×(﹣3)=﹣6,A 、﹣2×(﹣3)=6≠﹣6,故A 不正确,不符合题意;B 、(﹣3)×(﹣2)=6≠﹣6,故B 不正确,不符合题意;C 、1×(﹣6)=﹣6,故C 正确,符合题意,D 、6×1=6≠﹣6,故D 不正确,不符合题意.故选:C .21.(2022•武汉)已知点A (x 1,y 1),B (x 2,y 2)在反比例函数y =x6的图像上,且x 1<0<x 2,则下列结论一定正确的是( )A .y 1+y 2<0B .y 1+y 2>0C .y 1<y 2D .y 1>y 2 【分析】先根据反比例函数y =判断此函数图像所在的象限,再根据x 1<0<x 2判断出A (x 1,y 1)、B (x 2,y 2)所在的象限即可得到答案.【解答】解:∵反比例函数y =中的6>0,∴该双曲线位于第一、三象限,且在每一象限内y 随x 的增大而减小,∵点A (x 1,y 1),B (x 2,y 2)在反比例函数y =的图像上,且x 1<0<x 2,∴点A 位于第三象限,点B 位于第一象限,∴y 1<y 2.故选:C .22.(2022•天津)若点A (x 1,2),B (x 2,﹣1),C (x 3,4)都在反比例函数y =x8的图像上,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 2<x 3<x 1C .x 1<x 3<x 2D .x 2<x 1<x 3 【分析】根据函数解析式算出三个点的横坐标,再比较大小.【解答】解:点A (x 1,2),B (x 2,﹣1),C (x 3,4)都在反比例函数y =的图像上, ∴x 1==4,x 2==﹣8,x 3==2. ∴x 2<x 3<x 1,故选:B .23.(2022•淮安)在平面直角坐标系中,将点A (2,3)向下平移5个单位长度得到点B ,若点B 恰好在反比例函数y =xk 的图像上,则k 的值是 .【分析】点A (2,3)向下平移5个单位长度得到点B (2,﹣2),代入y =利用待定系数法即可求得k 的值.【解答】解:将点A (2,3)向下平移5个单位长度得到点B ,则B (2,﹣2), ∵点B 恰好在反比例函数y =的图像上,∴k =2×(﹣2)=﹣4,故答案为:﹣4.24.(2022•北京)在平面直角坐标系xOy 中,若点A (2,y 1),B (5,y 2)在反比例函数y =xk (k >0)的图像上,则y 1 y 2(填“>”“=”或“<”). 【分析】先根据函数解析式中的比例系数k 确定函数图像所在的象限,再根据各象限内点的坐标特征及函数的增减性解答.【解答】解:∵k >0,∴反比例函数y =(k >0)的图像在一、三象限,∵5>2>0,∴点A (2,y 1),B (5,y 2)在第一象限,y 随x 的增大而减小,∴y 1>y 2,故答案为:>.。
2018年山东威海市中考数学试卷(含解析)
2018年山东山东威海初中毕业考试数学学科(满分150分,考试时间120分钟)一、选择题:本大题共12小题,每小题3分,共36分.在每个小题所给出的四个选项中,只有一个是正确的,每小题选对得3分,选错、不选或多选,均不得分.1.(2018山东威海,1,3分)﹣2的绝对值是()A.2 B.-1 2C.12D.-2【答案】A【解析】根据“负数的绝对值是它的相反数”得,﹣2的绝对值是-(-2)=2,故选A.【知识点】绝对值.2.(2018山东威海,2,3分)下列运算结果正确的是( )A.a2·a3=a6B.-(a-b)=-a+b C.a2+a2=2a4D.a8÷a4=a2【答案】B【解析】根据“同底数幂的乘法,底数不变,指数相加”,a2·a3=a5,选项A错误;根据去括号法则,-(a -b)=-a+b,选项B正确;根据合并同类项法则,a2+a2=2a2,选项C错误;根据“同底数幂的除法,底数不变,指数相减”,8a÷a4=a4,选项D错误.故选B.【知识点】同底数幂的乘法法则、去括号法则、合并同类项法则、同底数幂的除法法则.3.(2018山东威海,3,3分)若点(-2,y1),(-1,y2),(3,y3)在双曲线y=xk(k<0)上,则y1,y2,y3的大小关系是( )A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【答案】D【解析】如图,反比例函数y=xk(k<0)的图象位于第二、四象限;在每个象限内,y随x的增大而增大,而-2<-1<0<3,∴y3<y1<y2.故选D.【知识点】反比例函数的图象与性质4.(2018山东威海,4,3分)下图是某圆锥的主视图和左视图,该圆锥的侧面积是( )左视图3主视图8A.25πB.24πC.20πD.15π【答案】C【解析】根据圆锥的主视图、左视图知,该圆锥的轴截面是一个底边长为8,高为3的等腰三角形(如图),AB =2234+=5,底面半径=4,底面周长=8π,∴侧面积=12×8π×5=20π,故选C . 【知识点】三视图、圆锥的侧面积5.(2018山东威海,5,3分)已知5x =3,5y =2,则52x -3y =( )A .34B .1C .23D .98【答案】D 【解析】逆用幂的乘方、同底数幂的除法法则,得52x-3y=52x ÷53y =(5x )2÷(5y )3=32÷23=98.故选D .【知识点】幂的乘方法则、同底数幂的除法法则、求代数式的值 6.(2018山东威海,6,3分)如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数y =4x -21x 2 刻画,斜坡可以用一次函数y =21x 刻画,下列结论错误的是( )A .当小球抛出高度达到7.5时,小球距O 点水平距离为3mB .小球距O 点水平距离超过4米呈下降趋势C .小球落地点距O 点水平距离为7米D .斜坡的坡度为1∶2 【答案】A【解析】根据函数图象可知,当小球抛出的高度为7.5时,二次函数y =4x -12x 2的函数值为7.5,即4x -12x 2=7.5,解得x 1=3,x 2=5,故当抛出的高度为7.5时,小球距离O 点的水平距离为3m 或5m ,A 结论错误;由y =4x -21x 2 得y =-21(x -4)2+8,则抛物线的对称轴为直线x =4,当x >4时,y 随x 值的增大而减小,B 结论正确;联立方程y =4x -12x 2与y =21x 解得⎩⎨⎧==00y x ,或⎪⎩⎪⎨⎧==277y x ;则抛物线与直线的交点坐标为(0,0)或(7,27),C 结论正确;由点(7,27)知坡度为27∶7=1∶2(也可以根据y =21x 中系数21的意义判断坡度为1∶2),D结论正确;故选A .【知识点】抛物线的函数值、二次函数与一次函数的结合,斜坡的坡度7.(2018山东威海,7,分)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1,卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是( )A .14B .13C .12D .34【答案】B 【解析】列表如图,故所取两数的积为负数的概率为412=13. 两数积 -2 -1 0 1 -2 2 0 -2 -1 2 0 -1 0 0 0 0 1-2-1【知识点】求随机事件的概率8.(2018山东威海,8,3分)化简(a -1)+(a1-1)·a 的结果是( ) A .-a 2B .1C .a 2D .-1【答案】A【解析】根据分式的加减乘除法则进行运算,运算时,要注意运算顺序. 原式=(a -1)÷(a a -1).a =(a -1).aa-1.a =-a 2. 【知识点】分式的混合运算9.(2018山东威海,9,3分) 二次函数y =ax 2+bx +c 图象如图所示,下列结论错误的是( )A .abc <0B .a +c <bC .b 2+8a >4acD .2a +b >0【答案】D【解析】由函数图象的开口向下,判断a <0;由函数图象与y 轴交点在y 轴的正半轴上,判断c >0;由对称轴在y 轴的右侧,判断2ba->0,所以b <0,所以abc <0,A 结论正确;当x =-1时,函数值为负,故a -b +c <0,所以a +c <b ,B 结论正确;若C 正确,则有b 2>4ac -8a ,b 2>4a (c -2),24b a<c -2,根据图象可知,c >2,则c -2>0,故此时24b a >0不成立,则C 结论错误;2b a-<1,所以-b >2a ,即2a +b <0,故D 结论错误;故选D .【知识点】抛物线y =ax 2+bx +c 与系数a 、b 、c 的关系10.(2018山东威海,10,3分)如图,⊙O 的半径为5,AB 为弦,点C 为»AB 的中点,若∠ABC =30°,则弦AB的长为( )C BA OA.12B.5 C.532D.53【答案】D【解析】如图,连接OA、OC,OC 交AB于点M.根据垂径定理可知OC垂直平分AB,因为∠ABC=30°,故∠AOC=60°,在Rt△AOM中,sin60°=AM AM3==OA32,故AM=235,即AB=35.故选D.【知识点】垂径定理、锐角三角函数11.(2018山东威海,11,3分)矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH,若BC=EF=2,CD=CE=1,则GH=( )A.1B.23C.22D.52【答案】C【思路分析】若要求GH的长,应先将其转化到三角形中,过点H作HM垂直于CG于点M,在Rt△GHM中,只要求出GM、HM,即可解决问题.【解题过程】过点H作HM垂直于CG于点M,设AF交CG于点O.OHG FEDMCBA根据题意可知△GOF∽△DOA,∴GF OG OF1===AD OD OA2,所以OF=12OA=13AF,即AF=3OF,因为点H是AF 的中点,所以OH=12AF-13AF=16AF,即AF=6OH,所以OH=12OF.根据已知条件可知△HOM∽△GOF,可以推出HM =12;同理,通过△HOM ∽△AOD ,可以推出DM =12DG ,即GM =12DG =12,在Rt △GHM 中,GH =222HM +GM =2。
中考数学-反比例函数专题练习(含答案)
中考数学-反比例函数专题练习(含答案)一、单选题1.已知ab<0,点P(a、b)在反比例函数的图象上,则直线y=ax+b不经过(不经过( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限2.方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象与函数 的图象交点的横坐标,那么用此方法可推断出方程x2+2x﹣1=0的实数根x0所在的范围是()A. ﹣1<x0<0B. 0<x0<1C. 1<x0<2D. 2<x0<33.小兰画了一个函数y= 的图象如图,那么关于x的分式方程的分式方程 =2的解是()A. x=1B. x=2C. x=3D. x=44.反比例函数y= 的图象,在每个象限内,y的值随x值的增大而增大,则k可以为()A. 0B. 1C. 2D. 35.若y=(5+m)x 2+n是反比例函数,则m、n的取值是(的取值是()A. m=﹣5,n=﹣3B. B. m≠m≠﹣5,n=﹣3 C. C. m≠m≠﹣5,n=3 D. D. m≠m≠﹣5,n=﹣4 6.若是反比例函数,则a的取值为的取值为A. 1B. ﹣1C. ±1D. 任意实数任意实数 7.如图,如图,已知点已知点A是函数y=x与y=的图象在第一象限内的交点,点B在x轴负半轴上,轴负半轴上,且且OA=OB,则△AOB的面积为()A. 2B.C. 2D. 48.直线y=﹣ x﹣1与反比例函数与反比例函数 (x<0)的图象交于点A,与x轴相交于点B,过点B作x轴垂线交双曲线于点C,若AB=AC,则k的值为()A. ﹣2B. ﹣4C. ﹣6D. ﹣89.如图,直线y=-x与双曲线y=相交于A(-2,1)、B两点,则点B坐标为( )A. (2,-1)B. (1,-2)C. (1,-)D. (,-1)10.已知(x1 , y1),(x2 , y2),(x3 , y3)是反比例函数的图象上的三个点,是反比例函数且x1<x2<0,x3>0,则y1 , y2 , y3的大小关系是()A. y3<y1<y2B. y2<y1<y3C. y1<y2<y3D. y3<y2<y111.下列关于y与x的表达式中,表示y是x的反比例函数的是(的反比例函数的是( )A. y=4xB. =﹣2C. xy=4D. y=4x﹣312.已知函数y=的图象如图,当x≥﹣1时,y的取值范围是(的取值范围是( )A. y<﹣1B. B. y≤y≤﹣1C. C. y≤y≤﹣1或y>0D. y<﹣1或y≥013.已知反比例函数y= 的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是( )A. (﹣6,1)B. (1,6)C. (2,﹣3)D. (3,﹣2)14.某反比例函数(k≠0)的图象经过(-2, 1 ),则它也经过的点是 ( )A. (1,-2)B. (1,2)C. (2,1)D. (4,-2)15.在反比例函数y=图象的每条曲线上,y 都随x 的增大而增大,则k 的取值范围是( )A. k >1B. k >0C. C. k≥1k≥1k≥1D. ﹣l≤k <116.计划修建铁路lkm ,铺轨天数为t (d ),每日铺轨量s (km/d ),则在下列三个结论中,正确的是(确的是( )①当l 一定时,t 是s 的反比例函数;的反比例函数;②当l 一定时,l 是s 的反比例函数;的反比例函数;③当s 一定时,l 是t 的反比例函数.的反比例函数.A. 仅①B. 仅②C. 仅③D. D. ①①,②,③17.根据下表中,反比例函数的自变量x 与函数y 的对应值,可得p 的值为(的值为( )x -2 1y 3 pA. 3B. 1C. -2D. -618.对于函数y= (k >0),下列说法正确的是( )A. y 随x 的增大而减小B. y 随x 的增大而增大的增大而增大C. 当x <0时,y 随x 的增大而减小D. 图象在第二、四象限内图象在第二、四象限内二、填空题19.图象经过点(﹣1,2)的反比例函数的表达式是________.20.如图,△ABC 三个顶点分别在反比例函数三个顶点分别在反比例函数 , 的图像上,若∠C =90°,AC ∥y轴,BC ∥x 轴,S △ABC =8,则k 的值为________.21.一批零件600个,一个工人每小时做15个,用关系式表示人数x 与完成任务所需的时间y 之间的函数关系式为之间的函数关系式为 ________ .22.反比例函数y=﹣ ,当y 的值小于﹣3时,x 的取值范围是________.三、解答题23.当m 为何值时,函数y=(m ﹣3)x 2﹣|m|是反比例函数?当m 为何值时,此函数是正比例函数?函数?24.如图,在平面直角坐标系中,正比例函数y =kx (k >0)与反比例函数y =的图象分别交于A 、C 两点,已知点B 与点D 关于坐标原点O 成中心对称,且点B 的坐标为(m , 0).其中m >0.(1)四边形ABCD 的是________.(填写四边形ABCD 的形状)(2)当点A 的坐标为(n ,3)时,四边形ABCD 是矩形,求mn 的值.的值.(3)试探究:随着k 与m 的变化,四边形ABCD 能不能成为菱形?若能,请直接写出k 的值;若不能,请说明理由.值;若不能,请说明理由.25.如图,已知A (﹣4,2)、B (n ,﹣4)是一次函数y=kx+b 的图象与反比例函数y=的图象的两个交点.象的两个交点.(1)求此反比例函数和一次函数的解析式;)求此反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.的取值范围.26.已知函数已知函数 y=(5m ﹣3)x 2﹣n +(n+m ), (1)当m ,n 为何值时是一次函数?为何值时是一次函数?(2)当m,n为何值时,为正比例函数?为何值时,为正比例函数?(3)当m,n为何值时,为反比例函数?为何值时,为反比例函数?27.已知一个长方体的体积是100cm3 , 它的长是ycm,宽是10cm,高是xcm. (1)写出y与x之间的函数关系式;之间的函数关系式;(2)当x=2cm时,求y的值.的值.答案解析部分一、单选题 1.已知ab<0,点P (a 、b )在反比例函数的图象上,则直线y=ax+b 不经过(不经过() A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】C【考点】一次函数与系数的关系,反比例函数图象上点的坐标特征【考点】一次函数与系数的关系,反比例函数图象上点的坐标特征【解析】【分析】点P (a 、b)在反比例函数的图象上,b=1,可知a <0,继而即可判断.断.【解答】∵点P (a 、b)在反比例函数的图象上,的图象上, 代入求得:b=1,又ab <0,∴a <0,y=ax+b=ax+1经过一、二和四象限,不经过第三象限.经过一、二和四象限,不经过第三象限.故选C .【点评】本题考查了一次函数图象与系数的关系及反比例函数图象上点的坐标特征,本题考查了一次函数图象与系数的关系及反比例函数图象上点的坐标特征,难度不难度不大,同时注意数形结合思想的应用.大,同时注意数形结合思想的应用.2.方程x 2+3x ﹣1=0的根可视为函数y=x+3的图象与函数的图象与函数 的图象交点的横坐标,那么用此方法可推断出方程x 2+2x ﹣1=0的实数根x 0所在的范围是( )A. ﹣1<x 0<0B. 0<x 0<1C. 1<x 0<2D. 2<x 0<3【答案】B【考点】反比例函数与一次函数的交点问题【考点】反比例函数与一次函数的交点问题【解析】【解答】解:方程x 2+2x-1=0的实数根可以看作函数y=x+2和y=的交点坐标,的交点坐标,函数大体图象如图所示:函数大体图象如图所示:A 、由图可得,第三象限内图象交点的横坐标小于-2,故-1<x 0<0,不符合题意;,不符合题意;B 、当x=1时,y 1=1+2=3,y 2==1,而3>1,根据函数的增减性可知,第一象限内的交点的横坐标小于1,故,0<x 0<1,符合题意;,符合题意; C 、当x=1时,y 1=1+2=3,y 2==1,而3>1,根据函数的增减性可知,第一象限内的交点的横坐标小于1,故,1<x 0<2,不符合题意;,不符合题意;D 、当x=2时,y 1=2+2=4,y 2=, 而4>, 根据函数的增减性可知,第一象限内的交点的横坐标小于2,故,2<x 0<3,不符合题意;故答案为:B【分析】【分析】方程x2+2x ﹣1=0,可变为x+2=,根据函数的观点来看它的根可视为y=x+2和y=的交点的横坐标;函数大体图象如图所示:由图像可知第三象限内图象交点的横坐标小于-2,当x=1时,y 1=1+2=3,y 2= =1,而3>1,根据函数的增减性可知,第一象限内的交点的横坐标小于1,从而即可得出答案。
中考数学专题复习《反比例函数与几何综合》测试卷-附带答案
中考数学专题复习《反比例函数与几何综合》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________1.如图 在直角坐标系中 A B C D 四点在反比例函数k y x=线段AC BD ,都过原点O ()4,2A 点B 点纵坐标为4 连接AB CD DA ,,.(1)求该反比例函数的解析式(2)当-2y ≥时 写出x 的取值范围(3)求四边形ABCD 的面积.2.如图 在平面直角坐标系中 直线2y x b =+经过点()2,0A - 与y 轴交于点B 与反比例函数()0k y x x =>的图象交于点(),6C m 过点B 作BD y ⊥轴 交反比例函数()0k y x x=>的图象于点D 连接AD CD 、.(1)b =______ k =______(2)求ACD 的面积.3.如图 一次函数y kx b =+与反比例函数m y x=的图象相交于A B 两点(点A 在点B 的左侧) 与x 轴相交于点C 已知点()1,4A 连接OB .(1)求反比例函数的解析式(2)若BOC 的面积为3 求AOB 的面积(3)在(2)的条件下 根据图象 直接写出m kx b x>+的解集. 4.小明借助反比例函数图象设计“鱼形”图案.如图 在平面直角坐标系中 以反比例函数ky x =图象上的点()2A 和点B 为顶点 分别作菱形AOCD 和荾形OBEF 点D E 在x 轴上 以点O 为圆心 OA 长为半径作AC 连接BF(1)求k 值(2)计算图形阴影部分面积之和.5.在平面直角坐标系xOy 中 反比例函数()0k y x x=>的图象与等腰直角三角形OAB 相交 90OBA ∠=︒ 6OA =.(1)如图1 若反比例函数的图象恰好经过OAB 的顶点B 时 求反比例函数的表达式(2)在(1)的前提下 过点A 作AQ OB 交反比例函数的图象于点Q 连接BQ 求OBQ △的面积和点Q 的坐标(3)如图2 若反比例函数的图象交OAB 的边OB 于点C 且13BC OB = 点P 是反比例函数图象上的一动点 满足OCP △的面积是3 请直接写出点P 的坐标.6.平面直角坐标系xOy 中 横坐标为a 的点A 在反比例函数()10k y x x=>的图象上 点A '与点A 关于点O 对称 一次函数2y mx n =+的图象经过点A '.(1)设2a = 点()4,2B 在函数1y 2y 的图象上 分别求函数1y 2y 的表达式.(2)如图① 设函数1y 2y 的图象相交于点B 点B 的横坐标为3aAA B '的面积为16 求k 的值(3)设12m = 如图① 过点A 作AD x ⊥轴 与函数2y 的图象相交于点D 以AD 为一边向右侧作正方形ADEF 试说明函数2y 的图象与线段EF 的交点P 一定在函数1y 的图象上. 7.如图 在矩形OABC 中 3OA = 2OC = F 是AB 上的一个动点(F 不与A B 重合) 过点F 的反比例函数()0ky x x=>的图象与BC 边交于点E .(1)当F 为AB 的中点时 求该反比例函数的解析式和点E 的坐标.(2)当k 为何值时 CEF △的面积最大 最大面积是多少?8.已知直线11y x =+与双曲线22y x=相交于点A 和点B 如图所示 过点B 作BD y ⊥轴于点D 设直线AB 交x 轴于点C 连接CD .(1)求:BCD △的面积(2)求:当12y y ≥时 x 的取值范围.9.如图 在平面直角坐标系中 O 为坐标原点 ABO 的边AB 垂直x 轴于点B 反比例函数()0k y x x=>的图象经过AO 的中点C 与边AB 相交于点D 若D 的坐标为()4,m 3AD =.(1)反比例函数k y x=的解析式是 (2)设点E 是线段CD 上的动点 过点E 且平行y 轴的直线与反比例函数的图象交于点F 则OEF 面积的最大值是 .10.如图 一次函数1y kx b =+的图象与x 轴 y 轴分别交于点A B 与反比例函数()20m y x x=>的图象交于点()1,2C ()2,D n .(1)分别求出两个函数的解析式(2)连接OC OD 求COD △的面积(3)点P 是反比例函数上一点 PQ x ∥轴交直线AB 于Q 且3PQ = 求点P 的坐标. 11.如图 反比例函数(0)k y x x =<的图像与直线3x =-交于点P AOP 的面积等于3.(1)求反比例函数的表达式(2)利用图像 求当30x -<<时 y 的取值范围.12.如图 ABC 中 60CAB ∠= 45ABC ∠= 点A B 在x 轴上 反比例函数k y x =的图象经过点(123C , 且与BC 边交于另一点D CE x ⊥轴 垂足为点E .(1)求反比例函数的解析式(2)求点D 的坐标(3)在x 轴上是否存在点P 使得BDP △与BCE 相似 若存在 请直接写出满足条件点P 的坐标 若不存在 请说明理由.13.如图 Rt OAB 的直角顶点B 在x 轴的正半轴上 点A 在第一象限内 已知反比例函数()0k y x x =>的图象经过线段OA 的中点D 交直线AB 于点C .若OAB 的面积为6.(1)求k 的值(2)若AC OB = 求点A 的坐标.14.如图 在Rt ABO △中 直角顶点B 在x 轴正半轴上 反比例函数n y x=(0n >)的图象分别与边AO 边AB 交于点C D .(1)如果点C 的坐标为()23,且8AD = 求n 的值及点B 的坐标 (2)连结CB 如果AD DB = 求OAB OCB S S :的值.15.如图 一次函数y ax b =+与反比例函数k y x =的图象交于D E 两点 CD x ⊥轴 垂足为C 过C 作CB DE ∥交y 轴于B 已知四边形ABCD 的面积为12 E 点纵坐标为2-.(1)求反比例函数的解析式(2)当6AB =时 求一次函数的解析式(3)在(2)的条件下 直接写出k ax b x+<的自变量x 的取值范围. 参考答案:1.(1)8y x= (2)4x ≤-或0x >(3)242.(1)4 6 (2)92.3.(1)4y x= (2)3AOB S =△(3)01x <<或2x >4.(1)43(2)833π5.(1)9y x = (2)9 点Q 的坐标为()332,323+(3)()1,4或()4,16.(1)18y x=22y x =- (2)6k =7.(1)3y x = 3,22E ⎛⎫ ⎪⎝⎭ (2)3k =时 CEF S △最大为348.(1)BCD △的面积为1(2)20x -≤<或1x ≥9.(1)4y x= (2)1410.(1)13y x =-+ 22y x= (2)32(3)(3P 或(3P11.(1)()60y x x=-< (2)2y >12.(1)y =(2)()D(3)()P 或()10P ,13.(1)3(2)()3,414.(1)()660n B =,,15.(1)反比例函数的解析式为12y x=- (2)一次函数的解析式为4y x =-+(3)20x -<<或6x >.。
中考数学压轴题专题复习——反比例函数的综合及答案
中考数学压轴题专题复习——反比例函数的综合及答案一、反比例函数1.如图,反比例函数y= 的图象经过点A(﹣1,4),直线y=﹣x+b(b≠0)与双曲线y= 在第二、四象限分别相交于P,Q两点,与x轴、y轴分别相交于C,D两点.(1)求k的值;(2)当b=﹣2时,求△OCD的面积;(3)连接OQ,是否存在实数b,使得S△ODQ=S△OCD?若存在,请求出b的值;若不存在,请说明理由.【答案】(1)解:∵反比例函数y= 的图象经过点A(﹣1,4),∴k=﹣1×4=﹣4;(2)解:当b=﹣2时,直线解析式为y=﹣x﹣2,∵y=0时,﹣x﹣2=0,解得x=﹣2,∴C(﹣2,0),∵当x=0时,y=﹣x﹣2=﹣2,∴D(0,﹣2),∴S△OCD= ×2×2=2(3)解:存在.当y=0时,﹣x+b=0,解得x=b,则C(b,0),∵S△ODQ=S△OCD,∴点Q和点C到OD的距离相等,而Q点在第四象限,∴Q的横坐标为﹣b,当x=﹣b时,y=﹣x+b=2b,则Q(﹣b,2b),∵点Q在反比例函数y=﹣的图象上,∴﹣b•2b=﹣4,解得b=﹣或b= (舍去),∴b的值为﹣.【解析】【分析】(1)根据反比例函数的图象上点的坐标特征易得k=﹣4;(2)当b=﹣2时,直线解析式为y=﹣x﹣2,则利用坐标轴上点的坐标特征可求出C(﹣2,0),D(0,﹣2),然后根据三角形面积公式求解;(3)先表示出C(b,0),根据三角形面积公式,由于S△ODQ=S△OCD,所以点Q和点C到OD的距离相等,则Q的横坐标为(﹣b,0),利用直线解析式可得到Q(﹣b,2b),再根据反比例函数的图象上点的坐标特征得到﹣b•2b=﹣4,然后解方程即可得到满足条件的b的值.2.已知点A,B分别是x轴、y轴上的动点,点C,D是某个函数图象上的点,当四边形ABCD(A,B,C,D各点依次排列)为正方形时,我们称这个正方形为此函数图象的“伴侣正方形”.例如:在图1中,正方形ABCD是一次函数y=x+1图象的其中一个“伴侣正方形”.(1)如图1,若某函数是一次函数y=x+1,求它的图象的所有“伴侣正方形”的边长;(2)如图2,若某函数是反比例函数(k>0),它的图象的“伴侣正方形”为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数的解析式;(3)如图3,若某函数是二次函数y=ax2+c(a≠0),它的图象的“伴侣正方形”为ABCD,C,D中的一个点坐标为(3,4),请你直接写出该二次函数的解析式.【答案】(1)解:(I)当点A在x轴正半轴、点B在y轴负半轴上时:正方形ABCD的边长为.(II)当点A在x轴负半轴、点B在y轴正半轴上时:设正方形边长为a,易得3a= ,解得a= ,此时正方形的边长为.∴所求“伴侣正方形”的边长为或(2)解:如图,作DE⊥x轴,CF⊥y轴,垂足分别为点E、F,易证△ADE≌△BAO≌△CBF.∵点D的坐标为(2,m),m<2,∴DE=OA=BF=m,∴OB=AE=CF=2﹣m.∴OF=BF+OB=2,∴点C的坐标为(2﹣m,2).∴2m=2(2﹣m),解得m=1.∴反比例函数的解析式为y=(3)解:实际情况是抛物线开口向上的两种情况中,另一个点都在(3,4)的左侧,而开口向下时,另一点都在(3,4)的右侧,与上述解析明显不符合a、当点A在x轴正半轴上,点B在y轴正半轴上,点C坐标为(3,4)时:另外一个顶点为(4,1),对应的函数解析式是y=﹣ x2+ ;b、当点A在x 轴正半轴上,点 B在 y轴正半轴上,点D 坐标为(3,4)时:不存在,c、当点A 在 x 轴正半轴上,点 B在 y轴负半轴上,点C 坐标为(3,4)时:不存在d、当点A在x 轴正半轴上,点B在y轴负半轴上,点D坐标为(3,4)时:另外一个顶点C为(﹣1,3),对应的函数的解析式是y= x2+ ;e、当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D的坐标是(7,﹣3)时,对应的函数解析式是y=﹣ x2+ ;f、当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D 的坐标是(﹣4,7)时,对应的抛物线为y= x2+ ;故二次函数的解析式分别为:y= x2+ 或y=﹣ x2+ 或y=﹣ x2+ 或y= x2+【解析】【分析】(1)先正确地画出图形,再利用正方形的性质确定相关点的坐标从而计算正方形的边长.(2)因为ABCD为正方形,所以可作垂线得到等腰直角三角形,利用点D(2,m)的坐标表示出点C的坐标,可求出m的值,即可得到反比例函数的解析式.(3)由抛物线开口既可能向上,也可能向下.当抛物线开口向上时,正方形的另一个顶点也是在抛物线上,这个点既可能在点(3,4)的左边,也可能在点(3,4)的右边,过点(3,4)向x轴作垂线,利用全等三角形确定线段的长即可确定抛物线上另一个点的坐标;当抛物线开口向下时也是一样地分为两种情况来讨论,即可得到所求的结论.3.【阅读理解】对于任意正实数a、b,因为≥0,所以≥0,所以≥2 ,只有当时,等号成立.【获得结论】在≥2 (a、b均为正实数)中,若为定值,则≥2 ,只有当时,有最小值2 .(1)根据上述内容,回答下列问题:若 >0,只有当 =________时,有最小值________.(2)【探索应用】如图,已知A(-3,0),B(0,-4),P为双曲线(>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.【答案】(1)1;2(2)解:设P(x,),则C(x,0),D(0,),∴CA=x+3,BD= +4,∴S四边形= CA×BD= (x+3)( +4),化简得:S=2(x+ )+12.∵x>0,>0,∴x+ ≥2 ABCD=6,只有当x= ,即x=3时,等号成立,∴S≥2×6+12=24,∴四边形ABCD的面积有最小值24,此时,P(3,4),C(3,0),D(0,4),AB=BC=CD=DA=5,∴四边形ABCD是菱形.【解析】【解答】解:(1)根据题目所给信息可知m+ ≥2 ,且当m= 时等号,∴当m=1时,m+ ≥2,即当m=1时,m+ 有最小值2.故答案为:1,2;【分析】(1)此题是一道阅读题,根据题中所给的信息可知:,只有当m=时等号成立,一个正数只有1和它的倒数相等,从而得出答案;(2)根据双曲线上点的坐标特点设出P点的坐标,根据垂直于坐标轴上的点的坐标特点表示出C,D两点的坐标,从而表示出AC,BD的长,根据对角线互相垂直的四边形的面积等于两对角线积的一半建立出S与x的函数关系式,根据题干提供的信息得出得出,只有在,即x=3时,等号成立,从而得出S的最小值,从而得出P,C,D三点的坐标,进而算出AB=BC=CD=DA=5,根据四边相等的四边形是菱形得出结论。
2018年中考数学专题训练反比例函数与一次函数的综合
2018级中考数学专题复习—反比例函数与一次函数的综合1.在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y=(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,﹣2).(1)求△AHO的周长;(2)求该反比例函数和一次函数的解析式.2.如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.3.如图,直线y=x+2与双曲线相交于点A(m,3),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.4.如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?5.如图,已知反比例函数与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.6.如图,已知反比例函数y1=的图象与一次函数y2=kx+b的图象交于两点A(﹣2,1)、B(a,﹣2).(1)求反比例函数和一次函数的解析式;(2)若一次函数y2=kx+b的图象交y轴于点C,求△AOC的面积(O为坐标原点);(3)求使y1>y2时x的取值范围.7.已知:如图,反比例函数y=的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.8.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及三角形AOB的面积.9.如图,已知点A(﹣4,2)、B( n,﹣4)是一次函数y=kx+b的图象与反比例函数图象的两个交点:(1)求点B的坐标和一次函数的解析式;(2)求△AOB的面积;(3)根据图象写出使一次函数的值小于反比例函数值的x的取值范围.10.如图,一次函数y=ax+b的图象与反比例函数y=的图象交于A、B两点,与x轴交于点C,与y轴交于点D.已知OA=,tan∠AOC=,点B的坐标为(,m).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.11.如图,已知一次函数y=kx+b的图象与反比例函数的图象交于A,B两点,且点A的横坐标和点B的纵坐标都是﹣2,求:(1)一次函数的解析式;(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.12.已知:如图所示,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数的图象交于一、三象限内的A、B两点,与x交于点C,与y轴交于点D,OC=1,BC=5,.(1)求该反比例函数和一次函数的解析式;(2)连接BO,AO,求△AOB的面积.(3)观察图象,直接写出不等式的解集.13.如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数y2=﹣的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣2.(1)求一次函数的解析式;(3)观察图象,直接写出y1>y2时x的取值范围.14.如图,一次函数y=kx+b与反比例函数的图象相交于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式.(2)根据所给条件,请直接写出不等式kx+b>的解集.(3)连接OA、OB,求S△ABO.15.如图,已知一次函数y=ax+b的图象与反比例函数y=的图象相交于点A(﹣2,m)和点B(4,﹣2),与x轴交于点C(1)求一次函数与反比例函数的解析式;16.如图,一次函数y=mx+n(m≠0)与反比例函数y=(k≠0)的图象相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积.17.如图,一次函数y1=ax+b(a≠0)的图象与反比例函数y2=(k≠0)的图象交于A、B两点,与x轴、y轴分别交于C、D两点.已知:OA=,tanAOC=,点B的坐标为(,m)(1)求该反比例函数的解析式和点D的坐标;(2)点M在射线CA上,且MA=2AC,求△MOB的面积.18.已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数交于一象限内的P(,n),Q(4,m)两点,且tan∠BOP=:(1)求反比例函数和直线的函数表达式;(2)求△OPQ的面积.19.如图,已知一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于A、B两点,与x轴、y轴交于点C、D两点,点B的横坐标为1,OC=OD,点P在反比例函数图象上且到x轴、y轴距离相等.(1)求一次函数的解析式;(2)求△APB的面积.20.如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于B、A两点,与反比例函数的图象交于点C,连接CO,过C作CD⊥x轴于D,已知tan∠ABO=,OB=4,OD=2.(1)求直线AB和反比例函数的解析式;(2)在x轴上有一点E,使△CDE与△COB的面积相等,求点E的坐标.21.如图,在平面直角坐标系中,点A是反比例函数y=(k≠0)图象上一点,AB⊥x轴于B点,一次函数y=ax+b(a≠0)的图象交y轴于D(0,﹣2),交x轴于C点,并与反比例函数的图象交于A,E两点,连接OA,若△AOD的面积为4,且点C为OB中点.(1)分别求双曲线及直线AE的解析式;(2)若点Q在双曲线上,且S△QAB=4S△BAC,求点Q的坐标.22.如图,已知一次函数y=k1x+b的图象分别x轴,y轴交于A、B两点,且与反比例函数y=交于C、E 两点,点C在第二象限,过点C作CD⊥x轴于点D,OD=1,OE=,cos∠AOE=(1)求反比例函数与一次函数的解析式;(2)求△OCE的面积.23.如图,一次函数y=x+2的图象与x轴交于点B,与反比例函数y=(k≠0)的图象的一个交点为A(2,m).(1)求反比例函数的表达式;(2)过点A作AC⊥x轴,垂足为点C,设点D在反比例函数图象上,且△DBC的面积等于6,请求出点D的坐标;(3)请直接写出不等式x+2<成立的x取值范围.24.如图,已知反比例函数y1=的图象与一次函数y2=k2x+b的图象交于A、B两点,A(2,n),B(﹣1,﹣4).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式y1>y2的解集.25.如图,已知反比例函数y=(k<0)的图象经过点A(﹣2,m),过点A作AB⊥x轴于点B,且△AOB的面积为2.(1)求k和m的值;(2)若一次函数y=ax+1的图象经过点A,并且与x轴的交点为点C,试求出△ABC的面积.26.如图,已知一次函数y=k1x+b的图象分别与x轴、y轴的正半轴交于A、B两点,且与反比例函数y=交于C、E两点,点C在第二象限,过点C作CD⊥x轴于点D,OA=OB=2,OD=1.(1)求反比例函数与一次函数的解析式;(2)求△OCE的面积.27.如图,已知直线y=mx+b(m≠0)与双曲线y=(k≠0)交于A(﹣3,﹣1)与B(n,6)两点,连接OA、OB.(1)求直线与双曲线的表达式;(2)求△AOB的面积.28.如图,直线y=﹣2和双曲线y=相交于A(b,1),点P在直线y=x﹣2上,且P点的纵坐标为﹣1,过P作PQ∥y轴交双曲线于点Q.(1)求Q点的坐标;(2)求△APQ的面积.29.如图,在一次函数y=ax+b的图象与反比例函数y=的图象相交于A(﹣4,﹣2),B(m,4),与y轴相交于点C.(1)求反比例函数与一次函数的表达式;(2)求△AOB的面积.30.已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数y=交于一象限内的P(,n),Q (4,m)两点,且tan∠BOP=.(1)求双曲线和直线AB的函数表达式;(2)求△OPQ的面积;(3)当kx+b>时,请根据图象直接写出x的取值范围.2018级中考数学专题复习-反比例函数与一次函数的交点参考答案与试题解析一.解答题(共30小题)1.(2016•重庆)在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y=(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,﹣2).(1)求△AHO的周长;(2)求该反比例函数和一次函数的解析式.【分析】(1)根据正切函数,可得AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案;(2)根据待定系数法,可得函数解析式.【解答】解:(1)由OH=3,tan∠AOH=,得AH=4.即A(﹣4,3).由勾股定理,得AO==5,△AHO的周长=AO+AH+OH=3+4+5=12;(2)将A点坐标代入y=(k≠0),得k=﹣4×3=﹣12,反比例函数的解析式为y=;当y=﹣2时,﹣2=,解得x=6,即B(6,﹣2).将A、B点坐标代入y=ax+b,得,解得,一次函数的解析式为y=﹣x+1.【点评】本题考查了反比例函数与一次函数的交点问题,利用待定系数法是解题关键.2.(2016•重庆)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.【分析】(1)过点A作AE⊥x轴于点E,设反比例函数解析式为y=.通过解直角三角形求出线段AE、OE的长度,即求出点A的坐标,再由点A的坐标利用待定系数法求出反比例函数解析式即可;(2)由点B在反比例函数图象上可求出点B的坐标,设直线AB的解析式为y=ax+b,由点A、B的坐标利用待定系数法求出直线AB的解析式,令该解析式中y=0即可求出点C的坐标,再利用三角形的面积公式即可得出结论.【解答】解:(1)过点A作AE⊥x轴于点E,如图所示.设反比例函数解析式为y=.∵AE⊥x轴,∴∠AEO=90°.在Rt△AEO中,AO=5,sin∠AOC=,∠AEO=90°,∴AE=AO•sin∠AOC=3,OE==4,∴点A的坐标为(﹣4,3).∵点A(﹣4,3)在反比例函数y=的图象上,∴3=,解得:k=﹣12.∴反比例函数解析式为y=﹣.(2)∵点B(m,﹣4)在反比例函数y=﹣的图象上,∴﹣4=﹣,解得:m=3,∴点B的坐标为(3,﹣4).设直线AB的解析式为y=ax+b,将点A(﹣4,3)、点B(3,﹣4)代入y=ax+b中得:,解得:,∴一次函数解析式为y=﹣x﹣1.令一次函数y=﹣x﹣1中y=0,则0=﹣x﹣1,解得:x=﹣1,即点C的坐标为(﹣1,0).S△AOB=OC•(y A﹣y B)=×1×[3﹣(﹣4)]=.【点评】本题考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式以及三角形的面积公式,解题的关键是:(1)求出点A的坐标;(2)求出直线AB的解析式.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标利用待定系数法求出函数解析式是关键.3.(2016•南充)如图,直线y=x+2与双曲线相交于点A(m,3),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.【分析】(1)把A坐标代入直线解析式求出m的值,确定出A坐标,即可确定出双曲线解析式;(2)设P(x,0),表示出PC的长,高为A纵坐标,根据三角形ACP面积求出x的值,确定出P坐标即可.【解答】解:(1)把A(m,3)代入直线解析式得:3=m+2,即m=2,∴A(2,3),把A坐标代入y=,得k=6,则双曲线解析式为y=;(2)对于直线y=x+2,令y=0,得到x=﹣4,即C(﹣4,0),设P(x,0),可得PC=|x+4|,∵△ACP面积为3,∴|x+4|•3=3,即|x+4|=2,解得:x=﹣2或x=﹣6,则P坐标为(﹣2,0)或(﹣6,0).【点评】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:待定系数法确定函数解析式,坐标与图形性质,以及三角形面积求法,熟练掌握待定系数法是解本题的关键.4.(2014•资阳)如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?【分析】(1)根据待定系数法,可得函数解析式;(2)根据二元一次方程组,可得函数图象的交点,根据一次函数图象位于反比例函数图象的下方,可得答案.【解答】解:(1)一次函数y=kx+b(k≠0)的图象过点P(﹣,0)和A(﹣2,1),∴,解得,∴一次函数的解析式为y=﹣2x﹣3,反比例函数y=(m≠0)的图象过点A(﹣2,1),∴,解得m=﹣2,∴反比例函数的解析式为y=﹣;(2),解得,或,∴B(,﹣4)由图象可知,当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法是求函数解析式的关键.5.(2010•成都)如图,已知反比例函数与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.【分析】(1)把A(1,﹣k+4)代入解析式y=,即可求出k的值;把求出的A点坐标代入一次函数y=x+b的解析式,即可求出b的值;从而求出这两个函数的表达式;(2)将两个函数的解析式组成方程组,其解即为另一点的坐标.当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围.【解答】解:(1)∵已知反比例函数经过点A(1,﹣k+4),∴,即﹣k+4=k,∴k=2,∴A(1,2),∵一次函数y=x+b的图象经过点A(1,2),∴2=1+b,∴b=1,∴反比例函数的表达式为.一次函数的表达式为y=x+1.(2)由,消去y,得x2+x﹣2=0.即(x+2)(x﹣1)=0,∴x=﹣2或x=1.∴y=﹣1或y=2.∴或.∵点B在第三象限,∴点B的坐标为(﹣2,﹣1),由图象可知,当反比例函数的值大于一次函数的值时,x的取值范围是x<﹣2或0<x<1.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式和反比例函数中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.6.(2010•泸州)如图,已知反比例函数y1=的图象与一次函数y2=kx+b的图象交于两点A(﹣2,1)、B(a,﹣2).(1)求反比例函数和一次函数的解析式;(2)若一次函数y2=kx+b的图象交y轴于点C,求△AOC的面积(O为坐标原点);(3)求使y1>y2时x的取值范围.【分析】(1)先根据点A的坐标求出反比例函数的解析式为y1=﹣,再求出B的坐标是(1,﹣2),利用待定系数法求一次函数的解析式;(2)在一次函数的解析式中,令x=0,得出对应的y2的值,即得出直线y2=﹣x﹣1与y轴交点C的坐标,从而求出△AOC的面积;(3)当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围﹣2<x<0或x>1.【解答】解:(1)∵函数y1=的图象过点A(﹣2,1),即1=;∴m=﹣2,即y1=﹣,又∵点B(a,﹣2)在y1=﹣上,∴a=1,∴B(1,﹣2).又∵一次函数y2=kx+b过A、B两点,即.解之得.∴y2=﹣x﹣1.(2)∵x=0,∴y2=﹣x﹣1=﹣1,即y2=﹣x﹣1与y轴交点C(0,﹣1).设点A的横坐标为x A,∴△AOC的面积S△OAC==×1×2=1.(3)要使y1>y2,即函数y1的图象总在函数y2的图象上方.∴﹣2<x<0,或x>1.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式.这里体现了数形结合的思想.7.(2008•甘南州)已知:如图,反比例函数y=的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.【分析】(1)反比例函数y=的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点,把A点坐标代入反比例函数解析式,即可求出k,得到反比例函数的解析式.将B(n,﹣1)代入反比例函数的解析式求得B点坐标,然后再把A、B点的坐标代入一次函数的解析式,利用待定系数法求出一次函数的解析式;(2)根据图象,分别在第一、三象限求出反比例函数的值大于一次函数的值时x的取值范围.【解答】解:(1)∵A(1,3)在y=的图象上,∴k=3,∴y=.又∵B(n,﹣1)在y=的图象上,∴n=﹣3,即B(﹣3,﹣1)∴解得:m=1,b=2,∴反比例函数的解析式为y=,一次函数的解析式为y=x+2.(2)从图象上可知,当x<﹣3或0<x<1时,反比例函数的值大于一次函数的值.【点评】本类题目的解决需把点的坐标代入函数解析式,灵活利用方程组求出所需字母的值,从而求出函数解析式,另外要学会利用图象,确定x的取值范围.8.(2008•南充)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及三角形AOB的面积.【分析】(1)把A(﹣4,n),B(2,﹣4)分别代入一次函数y=kx+b和反比例函数y=,运用待定系数法分别求其解析式;(2)把三角形AOB的面积看成是三角形AOC和三角形OCB的面积之和进行计算.【解答】解:(1)∵B(2,﹣4)在y=上,∴m=﹣8.∴反比例函数的解析式为y=﹣.∵点A(﹣4,n)在y=﹣上,∴n=2.∴A(﹣4,2).∵y=kx+b经过A(﹣4,2),B(2,﹣4),∴.解之得.∴一次函数的解析式为y=﹣x﹣2.(2)∵C是直线AB与x轴的交点,∴当y=0时,x=﹣2.∴点C(﹣2,0).∴OC=2.∴S△AOB=S△ACO+S△BCO=×2×2+×2×4=6.【点评】本题考查了用待定系数法确定反比例函数的比例系数k,求出函数解析式;要能够熟练借助直线和y轴的交点运用分割法求得不规则图形的面积.9.(2007•资阳)如图,已知点A(﹣4,2)、B( n,﹣4)是一次函数y=kx+b的图象与反比例函数图象的两个交点:(1)求点B的坐标和一次函数的解析式;(2)求△AOB的面积;(3)根据图象写出使一次函数的值小于反比例函数值的x的取值范围.【分析】(1)由A和B都在反比例函数图象上,故把两点坐标代入到反比例解析式中,列出关于m与n的方程组,求出方程组的解得到m与n的值,确定出A的坐标及反比例函数解析式,把确定出的A坐标及B的坐标代入到一次函数解析式中,得到关于k与b的方程组,求出方程组的解得到k与b的值,确定出一次函数解析式;(2)令一次函数解析式中x为0,求出此时y的值,即可得到一次函数与y轴交点C的坐标,得到OC的长,三角形AOB的面积分为三角形AOC及三角形BOC面积之和,且这两三角形底都为OC,高分别为A和B的横坐标的绝对值,利用三角形的面积公式即可求出三角形ABC的面积;(3)根据图象和交点坐标即可得出结果.【解答】解:(1)∵m=﹣8,∴n=2,则y=kx+b过A(﹣4,2),B(n,﹣4)两点,∴解得k=﹣1,b=﹣2.故B(2,﹣4),一次函数的解析式为y=﹣x﹣2;(2)由(1)得一次函数y=﹣x﹣2,令x=0,解得y=﹣2,∴一次函数与y轴交点为C(0,﹣2),∴OC=2,∴S△AOB=S△AOC+S△BOC=OC•|y点A横坐标|+OC•|y点B横坐标|=×2×4+×2×2=6.S△AOB=6;(3)一次函数的值小于反比例函数值的x的取值范围:﹣4<x<0或x>2.【点评】此题考查了一次函数与反比例函数的交点问题,涉及的知识有利用待定系数法求函数解析式,两函数交点坐标的意义,一次函数与坐标轴交点的求法,以及三角形的面积公式,利用了数形结合的思想.第一问利用的方法为待定系数法,即根据题意把两交点坐标分别代入两函数解析式中,得到方程组,求出方程组的解确定出函数解析式中的字母常数,从而确定出函数解析式,第二问要求学生借助图形,找出点坐标与三角形边长及边上高的关系,进而把所求三角形分为两三角形来求面积.10.(2005•四川)如图,一次函数y=ax+b的图象与反比例函数y=的图象交于A、B两点,与x轴交于点C,与y轴交于点D.已知OA=,tan∠AOC=,点B的坐标为(,m).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.【分析】(1)根据tan∠AOC=,且OA=,结合勾股定理可以求得点A的坐标,进一步代入y=中,得到反比例函数的解析式;然后根据反比例函数的解析式得到点B的坐标,再根据待定系数法求一次函数解析式;(2)三角形AOB的面积可利用,求和的方法即等于S△AOC+S△COB来求.【解答】解:(1)过点A作AH⊥x于点H.在RT△AHO中,tan∠AOH==,所以OH=2AH.又AH2+HO2=OA2,且OA=,所以AH=1,OH=2,即点A(﹣2,1).代入y=得k=﹣2.∴反比例函数的解析式为y=﹣.又因为点B的坐标为(,m),代入解得m=﹣4.∴B(,﹣4).把A(﹣2,1)B(,﹣4)代入y=ax+b,得,∴a=﹣2,b=﹣3.∴一次函数的解析式为y=﹣2x﹣3.(2)在y=﹣2x﹣3中,当y=0时,x=﹣.即C(,0).∴S△AOB=S△AOC+S△COB=(1+4)×=.【点评】此题综合考查了解直角三角形、待定系数法、和函数的基本知识,难易程度适中.11.(2016•乐至县一模)如图,已知一次函数y=kx+b的图象与反比例函数的图象交于A,B两点,且点A的横坐标和点B的纵坐标都是﹣2,求:(1)一次函数的解析式;(2)△AOB的面积;(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.【分析】(1)把点A(﹣2,4),B(4,﹣2)代入一次函数y=kx+b即可求出k及b的值;(2)先求出C点的坐标,根据S△AOB=S△AOC+S△BOC即可求解;(3)由图象即可得出答案;【解答】解:(1)由题意A(﹣2,4),B(4,﹣2),∵一次函数过A、B两点,∴,解得,∴一次函数的解析式为y=﹣x+2;(2)设直线AB与y轴交于C,则C(0,2),∵S△AOC=×OC×|A x|,S△BOC=×OC×|B x|∴S△AOB=S△AOC+S△BOC=•OC•|A x|+•OC•|B x|==6;(3)由图象可知:一次函数的函数值大于反比例函数的函数值时x的取值范围是x<﹣2或0<x<4.【点评】本题考查了反比例函数与一次函数的交点问题,属于基础题,关键是掌握用待定系数法求解函数解析式.12.(2016•重庆校级模拟)已知:如图所示,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数的图象交于一、三象限内的A、B两点,与x交于点C,与y轴交于点D,OC=1,BC=5,.(1)求该反比例函数和一次函数的解析式;(2)连接BO,AO,求△AOB的面积.(3)观察图象,直接写出不等式的解集.【分析】(1)先根据解直角三角形求得点D和点B的坐标,再利用C、D两点的坐标求得一次函数解析式,利用点B的坐标求得反比例函数解析式;(2)先根据解方程组求得两个函数图象的交点A的坐标,再将x轴作为分割线,求得△AOB的面积;(3)根据函数图象进行观察,写出一次函数图象在反比例函数图象下方时所有点的横坐标的集合即可.【解答】解:(1)∵∴直角三角形OCD中,=,即CD=OD又∵OC=1∴12+OD2=(OD)2解得OD=,即D(0,﹣)将C(1,0)和D(0,﹣)代入一次函数y=ax+b,可得,解得∴一次函数的解析式为y=x﹣过B作BE⊥x轴,垂足为E∵直角三角形BCE中,BC=5,∴BE=3,CE==4∴OE=4﹣1=3,即B(﹣3,﹣3)将B(﹣3,﹣3)代入反比例函数,可得k=9∴反比例函数的解析式为y=;(2)解方程组,可得,∴A(4,)∴S△AOB=S△AOC+S△COB=×1×+×1×3=+=;(3)根据图象可得,不等式的解集为:x<﹣3或0<x<4.【点评】本题主要考查了反比例函数与一次函数的交点问题,需要掌握待定系数法求函数解析式的方法,以及根据两个函数图象的交点坐标求有关不等式解集的方法.解答此类试题的依据是:①函数图象上点的坐标满足函数解析式;②不等式的解集就是其所对应的函数图象上满足条件的所有点的横坐标的集合.13.(2016•重庆校级一模)如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数y2=﹣的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣2.(1)求一次函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出y1>y2时x的取值范围.【分析】(1)先根据反比例函数解析式求得两个交点坐标,再根据待定系数法求得一次函数解析式;(2)将两条坐标轴作为△AOB的分割线,求得△AOB的面积;(3)根据两个函数图象交点的坐标,写出一次函数图象在反比例函数图象上方时所有点的横坐标的集合即可.【解答】解:(1)设点A坐标为(﹣2,m),点B坐标为(n,﹣2)∵一次函数y1=kx+b(k≠0)的图象与反比例函数y2=﹣的图象交于A、B两点∴将A(﹣2,m)B(n,﹣2)代入反比例函数y2=﹣可得,m=4,n=4∴将A(﹣2,4)、B(4,﹣2)代入一次函数y1=kx+b,可得,解得∴一次函数的解析式为y1=﹣x+2;(2)在一次函数y1=﹣x+2中,当x=0时,y=2,即N(0,2);当y=0时,x=2,即M(2,0)∴S△AOB=S△AON+S△MON+S△MOB=×2×2+×2×2+×2×2=2+2+2=6;(3)根据图象可得,当y1>y2时,x的取值范围为:x<﹣2或0<x<4【点评】本题主要考查了反比例函数与一次函数的交点问题,解决问题的关键是掌握根据函数图象的交点坐标求一次函数解析式和有关不等式解集的方法.解答此类试题的依据是:①函数图象的交点坐标满足两个函数解析式;②不等式的解集就是其所对应的函数图象上满足条件的所有点的横坐标的集合.14.(2016•重庆校级模拟)如图,一次函数y=kx+b与反比例函数的图象相交于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式.(2)根据所给条件,请直接写出不等式kx+b>的解集.(3)连接OA、OB,求S△ABO.【分析】(1)根据反比例函数图象上点的坐标特征求出m和n,利用待定系数法求出一次函数的解析式;(2)根据函数图象得到答案;(3)求出直线与x轴的交点坐标,根据三角形的面积公式计算即可.【解答】解:(1)∵反比例函数的图象经过A(2,3),∴m=2×3=6,∴反比例函数的解析式为:y=,∵反比例函数的图象经过于B(﹣3,n),∴n==﹣2,∴点B的坐标(﹣3,﹣2),由题意得,,解得,,∴一次函数的解析式为:y=x+1;(2)由图象可知,不等式kx+b>的解集为:﹣3<x<0或x>2;(3)直线y=x+1与x轴的交点C的坐标为(﹣1,0),则OC=1,则S△ABO=S△OBC+S△ACO=×1×2+×1×3=.【点评】本题考查的是反比例函数与一次函数的交点问题,掌握待定系数法求函数解析式的一般步骤是解题的关键,注意数形结合思想的运用.15.(2016•成华区模拟)如图,已知一次函数y=ax+b的图象与反比例函数y=的图象相交于点A(﹣2,m)和点B(4,﹣2),与x轴交于点C(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.【分析】(1)由B点的坐标根据待定系数法即可求得在反比例函数的解析式,代入A(﹣2,m)即可求得m,再由待定系数法求出一次函数解析式;(2)由直线解析式求得C点的坐标,从而求出△AOB的面积.【解答】解:(1)∵B(4,﹣2)在反比例函数y=的图象上,∴k=4×(﹣2)=﹣8,又∵A(﹣2,M)在反比例函数y=的图象上,∴﹣2m=﹣8,∴m=4,∴A(﹣2,4),又∵AB是一次函数y=ax+b的上的点,∴解得,a=﹣1,b=2,∴一次函数的解析式为y=﹣x+2,反比例函数的解析式y=﹣;(2)由直线y=﹣x+2可知C(2,0),所以△AOB的面积=×2×4+×2×2=6.【点评】本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.16.(2016•重庆校级一模)如图,一次函数y=mx+n(m≠0)与反比例函数y=(k≠0)的图象相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积.【分析】(1)把A点坐标代入反比例函数解析式可求得k,再把B点坐标代入可求得b,再利用待定系数法可求得一次函数解析式;(2)可先求得D点坐标,再利用三角形的面积计算即可.【解答】解:(1)∵反比例函数y=(k≠0)的图象过A(﹣1,2),∴k=﹣1×2=﹣2,∴反比例函数解析式为y=﹣,当x=2时,y=﹣1,即B点坐标为(2,﹣1),∵一次函数y=mx+n(m≠0)过A、B两点,∴把A、B两点坐标代入可得,解得,∴一次函数解析式为y=﹣x+1;(2)在y=﹣x+1中,当x=0时,y=1,∴C点坐标为(0,1),∵点D与点C关于x轴对称,∴D点坐标为(0,﹣1),∴CD=2,∴S△ABD=S△ACD+S△BCD=×2×1+×2×2=3.【点评】本题主要考查一次函数和反比例函数的交点,掌握两函数图象的交点坐标满足每一个函数解析式是解题的关键.。
2018年吉林省中考数学试卷(含答案与解析)
数学试卷 第1页(共46页) 数学试卷 第2页(共46页)绝密★启用前吉林省2018年初中毕业生学业水平考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共12分)一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算(1)(2)-⨯-的结果是( ) A .2B .1C .2-D .3- 2.图是由4个相同的小正方体组成的立体图形,它的主视图是( )ABCD 3.下列计算结果为6a 的是( )A .23a a B .122a a ÷ C .23()aD .23()a -4.如图,将木条a ,b 与c 钉在一起,170︒=∠,250︒∠=,要使木条a 与b 平行,木条a 旋转的度数至少是 ( )A .10︒B .20︒C .50︒D .70︒5.如图,将ABC △折叠,使点A 与BC 边中点D 重合,折痕为MN ,若9AB =,6BC =,则DNB △的周长为( )A .12B .13C .14D .156.国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x 只,兔y 只,可列方程组为( )A .35,2294x y x y +=⎧⎨+=⎩B .35,4294x y x y +=⎧⎨+=⎩C .35,4494x y x y +=⎧⎨+=⎩D .35,2494x y x y +=⎧⎨+=⎩ 第Ⅱ卷(非选择题 共108分)二、填空题(本大题共8小题,每小题3分,共24分.请把答案填在题中的横线上) 7..8.买单价3元的圆珠笔m 支,应付 元.9.若4a b +=,1ab =,则22a b ab += .10.若关于x 的一元二次方程220x x m +-=有两个相等的实数根,则m 的值为 .11.如图,在平面直角坐标系中,(4,0)A ,(0,3)B ,以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,则点C 坐标为 .12.如图是测量河宽的示意图,AE 与BC 相交于点D ,90B C ︒==∠∠,测得120 mBD =,60 m DC =,50 m EC =,求得河宽AB = m .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共46页) 数学试卷 第4页(共46页)13.如图,A ,B ,C ,D 是O 上的四个点,AB BC =,若58AOB ︒=∠,则BDC =∠ 度.14.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k .若12k =,则该等腰三角形的顶角为 度.三、解答题(本大题共12小题,共84分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分5分)某同学化简(2)()()a a b a b a b +-+-出现了错误,解答过程如下: 原式222()2a ab a b =+--(第一步)2222a a b a b=--+(第二步) 22a b b =-(第三步)(1)该同学解答过程从第 步开始出错,错误原因是 ; (2)写出此题正确的解答过程. 16.(本小题满分5分)如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,且BE CF =. 求证:ABE BCF △≌△.17.(本小题满分5分)一个不透明的口袋中有三个小球,上面分别标有字母A ,B ,C ,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.18.(本小题满分5分)在平面直角坐标系中,反比例函数(0)ky k x=≠图象与一次函数2y x =+图象的一个交点为P ,且点P 的横坐标为1,求该反比例函数的解析式.19.(本小题满分7分)根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x 表示 ,庆庆同学所列方程中的y 表示 ; (2)两个方程中任选一个,并写出它的等量关系; (3)解(2)中你所选择的方程,并回答老师提出的问题.数学试卷 第5页(共46页) 数学试卷 第6页(共46页)20.(本小题满分7分)如图是由边长为1的小正方形组成的84⨯网格,每个小正方形的顶点叫做格点,点A ,B ,C ,D 均在格点上,在网格中将点D 按下列步骤移动:第一步:点D 绕点A 顺时针旋转180︒得到点1D ; 第二步:点1D 绕点B 顺时针旋转得90︒到点2D ; 第三步:点2D 绕点C 顺时针旋转90︒回到点D . (1)请用圆规画出点12D D D D →→→经过的路径; (2)所画图形是 对称图形; (3)求所画图形的周长(结果保留π).21.(本小题满分7分)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺.请帮助组长林平完成方案内容,用含a ,b ,α的代数式表示旗杆AB 的高度. 数学活动方案活动时间:2018年4月2日 活动地点:学校操场 填表人:林平22.(本小题满分7分)为了调查甲、乙两台包装机分装标准质量为400 g 奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题. 收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g )如下: 甲:400,400,408,406,410,409,400,393,394,395 乙:403,404,396,399,402,402,405,397,402,398 整理数据:表一分析数据:表二-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共46页) 数学试卷 第8页(共46页)得出结论:包装机分装情况比较好的是 (填甲或乙),说明你的理由. 23.(本小题满分8分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30 min .小东骑自行车以300 m/min 的速度直接回家,两人离家的路程(m)y 与各自离开出发地的时间(min)x 之间的函数图象如图所示 (1)家与图书馆之间的路程为 m ,小玲步行的速度为 m/min ; (2)求小东离家的路程y 关于x 的函数解析式,并写出自变量的取值范围; (3)求两人相遇的时间.24.(本小题满分8分)如图1,在ABC △中,AB AC =,过AB 上一点D 作DE AC ∥交BC 于点E ,以E 为顶点,ED 为一边,作DEF A =∠∠,另一边EF 交AC 于点F . (1)求证:四边形ADEF 为平行四边形;(2)当点D 为AB 中点时,ADEF 的形状为 ;(3)延长图1中的DE 到点G ,使EG DE =,连接AE ,AG ,FG ,得到图2,若AD AG =,判断四边形AEGF 的形状,并说明理由.图1图225.(本小题满分10分)如图,在矩形ABCD 中, 2 cm AB =,30ADB ︒=∠.P ,Q 两点分别从A ,B 同时出发,点P 沿折线AB BC -运动,在AB 上的速度是2 cm/s ,在BC 上的速度是;点Q 在BD 上以2 cm/s 的速度向终点D 运动,过点P 作PN AD ⊥,垂足为点N .连接PQ ,以PQ ,PN 为邻边作□PQMN .设运动的时间为(s)x ,□PQMN 与矩形ABCD 重叠部分的图形面积为2)(cm y(1)当PQ AB ⊥时,x = ;(2)求y 关于x 的函数解析式,并写出x 的取值范围;(3)直线AM 将矩形ABCD 的面积分成1:3两部分时,直接写出x 的值.备用图26.(本小题满分10分)如图,在平面直角坐标系中,抛物线223(0)y ax ax a a =+-<与x 轴相交于A ,B 两点,与y 轴相交于点C ,顶点为D ,直线DC 与x 轴相交于点E . (1)当1a =-时,抛物线顶点D 的坐标为 ,OE = ; (2)OE 的长是否与a 值有关,说明你的理由; (3)设DEO β=∠,4560β︒︒≤≤,求a 的取值范围;(4)以DE 为斜边,在直线DE 的左下方作等腰直角三角形PDE .设(,)P m n ,直接写出n关于m的函数解析式及自变量m的取值范围.数学试卷第9页(共46页)数学试卷第10页(共46页)6吉林省2018年初中毕业生学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】(1)(2)2-⨯-= 故选A . 【考点】有理数的运算. 2.【答案】B【解析】从正面看已知几何体,得到的平面图形是,故选B .【考点】几何体的主视图. 3.【答案】C【解析】23235 a a a a +==,12210122=a a a a -=÷,36223)=(a a a ⨯=,236()a a -=-,故选C . 【考点】整式的运算. 4.【答案】B【解析】根据题意,若使木条a 与b 平行,且木条a 旋转度数最少,则木条a 应按顺时针方向旋转的度数为1220︒-=∠∠,故选B .【考点】平行线的性质、旋转的性质. 5.【答案】A【解析】由翻折可知AN DN =,∴DNB △的周长为DN NB BD AN NB BD AB BD ++=++=+,∵9AB =,6BC =,点D 是BC 的中点,∴3BD =,∴DNB △的周长为9312+=,故选A .【考点】轴对称的性质、中点定义. 6.【答案】D【解析】根据题意,因为每只鸡有1个头和2只脚,每只免有1个头和4只脚,由“鸡兔共有35个头”得35x y +=,由“鸡兔共有94只脚”得2494x y +=,列出方程组为35,2494,x y x y +=⎧⎨+=⎩故选D .【考点】列方程组解应用题.第Ⅱ卷二.填空题7.【答案】4.【考点】二次根式的运算.8.【答案】3m【解析】根据题意,每支圆珠笔3元,m支圆珠笔3m元,则应付3m元.【考点】列代数式表示数.9.【答案】4【解析】∵4a b+=,1ab=,∴22()144a b ab ab a b+=+=⨯=.【考点】分解因式,求代数式的值.10.【答案】1-【解析】由题意知2241(=)0m⨯⨯--=∆,解得1m=-,即m的值为1-.【考点】]一元二次方程的根的判别式.11.【答案】(1,0)-【解析】根据题意,由点A的坐标(4,0)得4OA=,由点B的坐标(0,3)得3OB=,在Rt OAB△中,由勾股定理可得5AB=,∴5AC=,∴1OC AC OA=-=,又∵点C在x轴的负半轴上,∴点C的坐标为(1,0)-.【考点】勾股定理、平面直角坐标系内点的坐标.12.【答案】100【解析】∵90B C︒==∠∠,ADB EDC=∠∠,∴ABD ECD△∽△,∵AB BDEC CD=,又120 mBD=,60 mDC=,50 mEC=,则可得100 mAB=,即河宽AB为100 m.【考点】相似三角形的判定和性质.13.【答案】29【解析】如图,作AB所对的圆周角AEB∠,则1=2AEB AOB∠∠,∵°=58AOB∠,°=29AEB∠,又∵AB BC=,∴°29BDC AEB==∠∠.7 / 238【考点】圆周角定理及其推论. 14.【答案】36【解析】由题意可知当12k =时,设这个等腰三角形的顶角为°x .则它的一个底角为°(2)x ,根据三角形的内角和定理得22180x x x ++=,解得36x =,则这个等腰三角形的顶角是°36. 【考点】新定义、等腰三角形的性质、三角形的内角和定理. 三、解答题 15.【答案】(1)二; 去括号法则用错(2)原式222()2a ab a b =+--222()2a a b a b =+--22a b b =+【解析】(1)二; 去括号法则用错(2)原式222()2a ab a b =+--222()2a a b a b =+--22a b b =+评分说明:第(1)题,与“去括号法则用错”等同的说法均给分. 【考点】整式的化简16.【答案】证明:在正方形ABCD 中,9 / 23AB BC =,°90ABC C ==∠∠∵BE CF = ∴ABE BCF △≌△.【解析】证明:在正方形ABCD 中,AB BC =,°90ABC C ==∠∠∵BE CF = ∴ABE BCF △≌△.【考点】正方形的性质、全等三角形的判定. 17.【答案】13【解析】解法一:根据题意.可以画出如下树状图:从树状图可以看出,所有可能出现的结果共有9种,其中小球上字母相同的结果有3种,所以()3193P ==字母相同.10从表中可以看出,所有可能出现的结果共有9种,其中小球上字母相同的结果有3种,所以()3193P ==字母相同. 【考点】随机事件发生的概率.18.【答案】解:∵点P 的横坐标为1,∴1x =, ∵点P 在直线2y x =+上,∴3y =. ∴(1,3)P 将(1,3)P 代人ky x=中,∴3k =. ∴该反比例函数的解析式为3y x=. 【解析】解:∵点P 的横坐标为1,∴1x =, ∵点P 在直线2y x =+上,∴3y =. ∴(1,3)P 将(1,3)P 代人ky x=中,∴3k =. ∴该反比例函数的解析式为3y x=. 【考点】]一次函数、反比例函数的图象与性质. 19.【答案】解:(1)甲队每天修路的长度;甲队修路400米所用的天数(乙队修路600米所的天数). (2)选冰冰所列方程(选第一个方程),甲队修路400米与乙队修路800米所用时间相等; 选庆庆所列方程(选第二个方程),乙队每天修路长度与甲队每天修路长度的差等于20米. (3)选第一个方程:40060020x x =+解方程,得40x =. 经检验:40x =是原分式方程的解且符合题意. ∴40x =.答:甲队每天修路40米. 选第二个方程:11 / 2360040020y y-=.解方程,得10y =. 经检验:10y =是原分式方程的解且符合题意. ∴400=4010. 答:甲队每天修路40米.【解析】解:(1)甲队每天修路的长度;甲队修路400米所用的天数(乙队修路600米所的天数). (2)选冰冰所列方程(选第一个方程),甲队修路400米与乙队修路800米所用时间相等; 选庆庆所列方程(选第二个方程),乙队每天修路长度与甲队每天修路长度的差等于20米. (3)选第一个方程:40060020x x =+解方程,得40x =. 经检验:40x =是原分式方程的解且符合题意. ∴40x =.答:甲队每天修路40米. 选第二个方程:60040020y y-=.解方程,得10y =. 经检验:10y =是原分式方程的解且符合题意. ∴400=4010. 答:甲队每天修路40米. 【考点】列分式方程解应用题. 20.【答案】解:(1)(2)轴.(3)所画图形周长2π42π4=+2=4π+4π=8π24⨯⨯⨯. 【解析】解:(1)(2)轴.(3)所画图形周长2π42π4=+2=4π+4π=8π24⨯⨯⨯. 【考点】]基本作图一一作弧、轴对称图形和中心对称图形的概念、扇形的弧长. 21.【答案】【解析】测量步骤:(1)测角仪. (2)皮尺.计算过程:如图,ADE α=∠,DE BC a ==,BE CD b ==.在Rt ADE △中,角°90AED =∠. ∵tan AE ADE DE=∠. ∴ tan AE ED ADE =∠. ∴ tan αAE a =.∴( tan α)AB AE EB b a =+=+(米). 【解析】测量步骤:(1)测角仪. (2)皮尺.13 / 23计算过程:如图,ADE α=∠,DE BC a ==,BE CD b ==.在Rt ADE △中,角°90AED =∠. ∵tan AEADE DE=∠. ∴ tan AE ED ADE =∠. ∴ tan αAE a =.∴( tan α)AB AE EB b a =+=+(米).【考点】]基本作图一一作弧、轴对称图形和中心对称图形的概念、扇形的弧长. 22.【答案】表二甲,理由:从中位数(众数)角度说,甲的中位数(众数)为标准质量400 g . 乙,理由:从方差角度说,乙的方差小,分装情况更稳定 从平均数角度说,乙的平均数更接近标准质量400 g.【解析】表一表二甲,理由:从中位数(众数)角度说,甲的中位数(众数)为标准质量400 g.乙,理由:从方差角度说,乙的方差小,分装情况更稳定从平均数角度说,乙的平均数更接近标准质量400 g【考点】数据的整理、统计知识的应用.23.【答案】(1)4 000100(2)如图,∵小东从图书馆到家的时间4 00040(h)3003x==,∴40(,0)3D.15 / 23设CD 的解析式为(0)y kx b k =+≠, ∵图像过40(,0)3D 和(0,4 000)C 两点. ∴400,3 4 000.k b b ⎧+=⎪⎨⎪=⎩解得300,4 000.k b =-⎧⎨=⎩∴CD 的解析式为300 4 000y x =-+.∴小乐离家的路程y 与x 的解析式为40300 4 000(0)3y x x =-+≤≤. (3)设OA 的解析式为(0)y k x k ''=≠. ∵图象过点(10,2 000)A , ∴10 2 000k '=,∴200k '=. ∴OA 的解析式为200(010)y x x =≤≤∴200,300 4 000.y x y x =⎧⎨=-+⎩解得8,1 600.x y =⎧⎨=⎩答:两人出发后8分钟相遇. 【解析】(1)4 000 100(2)如图,∵小东从图书馆到家的时间 4 00040(h)3003x ==,∴40(,0)3D .设CD 的解析式为(0)y kx b k =+≠, ∵图像过40(,0)3D 和(0,4 000)C 两点.∴400,3 4 000.k b b ⎧+=⎪⎨⎪=⎩解得300,4 000.k b =-⎧⎨=⎩∴CD 的解析式为300 4 000y x =-+.∴小乐离家的路程y 与x 的解析式为40300 4 000(0)3y x x =-+≤≤. (3)设OA 的解析式为(0)y k x k ''=≠. ∵图象过点(10,2 000)A , ∴10 2 000k '=,∴200k '=. ∴OA 的解析式为200(010)y x x =≤≤∴200,300 4 000.y x y x =⎧⎨=-+⎩解得8,1 600.x y =⎧⎨=⎩ 答:两人出发后8分钟相遇. 【考点】一次函数的应用.24.【答案】(1)如图1,∵DE AC ∥,∴DEF EFC =∠∠图1∵DEF A =∠∠,∴A EFC =∠∠. ∴EF AB ∥.∴四边形ADEF 为平行四边形. (2)菱形(3)结论:四边形AEGF 为矩形.理由:如图2,由(1)知,四边形ADEF 为平行四边形.图2∴AF DE ∥,AD EF =,17 / 23∵EG ED =,∴AF EG ∥, ∴四边形AEGF 是平行四边形, ∵AD AG =,∴AG EF = ∴四边形AEGF 是矩形.【解析】(1)如图1,∵DE AC ∥,∴DEF EFC =∠∠图1∵DEF A =∠∠,∴A EFC =∠∠. ∴EF AB ∥.∴四边形ADEF 为平行四边形. (2)菱形(3)结论:四边形AEGF 为矩形.理由:如图2,由(1)知,四边形ADEF 为平行四边形.图2∴AF DE ∥,AD EF =, ∵EG ED =,∴AF EG ∥, ∴四边形AEGF 是平行四边形, ∵AD AG =,∴AG EF = ∴四边形AEGF 是矩形.【考点】平行线的性质、特殊四边形的判定. 25.【答案】(1)23(2)当203x ≤<时,如图1,过点Q 作QH AB ⊥于H .由题意得QH ,2AP x =.2 2PQMNAP QH S===.∴2y =.当01x ≤<时,如图2,设QM 与AD 交于点G ∴1() 2PQGA y S QG AP QH ==+梯形1(22) 32x x x =-+2+∴2y图1图2图3当12x ≤≤时,如图3∴1() 2PQGA y S QG PN GN ==+梯形1(22) 31)2x x x ⎡⎤=-+--⎣⎦2x -+∴2y -+19 / 23(3)25或47(如图4,如图5)图4图5【解析】(1)23(2)当203x ≤<时,如图1,过点Q 作QH AB ⊥于H .由题意得QH ,2AP x =.2 2PQMNAP QH S===.∴2y =.当01x ≤<时,如图2,设QM 与AD 交于点G ∴1() 2PQGA y S QG AP QH ==+梯形1(22) 32x x x =-+2+∴22y x =图1图2图3当12x ≤≤时,如图3∴1() 2PQGA y S QG PN GN ==+梯形1(22) 31)2x x x ⎡⎤=-+--⎣⎦2x -+∴2y -+ (3)25或47(如图4,如图5)图4图5【考点】矩形的性质、函数的应用、图形的面积. 26.【答案】(1)(1,4)- 3(2)OE 的长与a 值无关21 / 23理由:如图1,∵223y ax ax a =+-,图1∴(0,3)C a -,(1,4)D a ,∴直线CD 的解析式为3y ax a =-,当0y =时,3x =,∴3OE =,∴OE 的长与a 值无关.(3)当45β︒=时,在Rt OCE △中,OC OE =,∵3OE =,3OC a =-∴33a -=,∴1a =-.当60β︒=时,在Rt OCE △中,OC ,∵3OE =,3OC a =-∴3a -=∴a =∴当4560β︒︒≤≤,a的取值范围为1a ≤≥-.(4)1(1)n m m =--<.(如图2)22图1【解析】(1)(1,4)-3(2)OE 的长与a 值无关理由:如图1,∵223y ax ax a =+-,图1∴(0,3)C a -,(1,4)D a ,∴直线CD 的解析式为3y ax a =-,当0y =时,3x =,∴3OE =,23 / 23∴OE 的长与a 值无关.(3)当45β︒=时,在Rt OCE △中,OC OE =,∵3OE =,3OC a =-∴33a -=,∴1a =-.当60β︒=时,在Rt OCE △中,OC ,∵3OE =,3OC a =-∴3a -=∴a =∴当4560β︒︒≤≤,a的取值范围为1a ≤≥-.(4)1(1)n m m =--<.(如图2)图1【考点】在二次函数的图象与性质行分三角函数的运用、等腰直角三角形的性质、数形结合思想.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数一、选择题1.已知点P(1,-3)在反比例函数(k≠0)的图象上,则k的值是()A. 3B.C.-3 D.2.如果点(3,-4)在反比例函数的图象上,那么下列各点中,在此图象上的是()A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)3.在双曲线y= 的任一支上,y都随x的增大而增大,则k的值可以是()A. 2 B . 0 C.﹣2 D. 1 4.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(-6,4),则△AOC的面积为( )A. 4B. 6C. 9D. 125.如图所示双曲线y= 与分别位于第三象限和第二象限,A是y轴上任意一点,B是上的点,C是y= 上的点,线段BC⊥x轴于D,且4BD=3CD,则下列说法:①双曲线y= 在每个象限内,y随x的增大而减小;②若点B的横坐标为-3,则C点的坐标为(-3, );③k=4;④△ABC的面积为定值7.正确的有()A. I个 B. 2个 C. 3个 D. 4个6.如图,已知反比例函数y= 与正比例函数y=kx(k<0)的图象相交于A,B两点,AC垂直x轴于C,则△ABC的面积为()A. 3B. 2C. kD. k27.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.图表示的是该电路中电流I 与电阻R之间函数关系的图象,则用电阻R表示电流I的函数解析式为()A. B.C.D.8.如图,在平面直角坐标系中,四边形是菱形,,反比例函数的图象经过点,若将菱形向下平移2个单位,点恰好落在反比例函数的图象上,则反比例函数的表达式为()A. B.C.D.9.如图,在平面直角坐标系中,过点0的直线AB交反比例函数y= 的图象于点A,B,点c在反比例函数y= (x>0)的图象上,连结CA,CB,当CA=CB且Cos∠CAB= 时,k1, k2应满足的数量关系是()A. k2=2k lB. k2=-2k1C. k2=4k1D. k2=-4k110.已知如图,菱形ABCD四个顶点都在坐标轴上,对角线AC、BD交于原点O,DF垂直AB交AC于点G,反比例函数,经过线段DC的中点E,若BD=4,则AG的长为()A. B. +2C. 2+1 D. +1二、填空题11.反比例函数的图像经过点(2,3),则的值等于________.12.若一个反比例函数的图象经过点A(m,m)和B(2m,-1),则这个反比例函数的表达式为________13.若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y= (k为常数)的图象上,则y1、y2、y3的大小关系为________.14.如图,点为矩形的边的中点,反比例函数的图象经过点,交边于点.若的面积为1,则________。
15.如图,在平面直角坐标系中,函数y=kx+b(k≠0)与(m≠0)的图象相交于点A(2,3),B(−6,−1)。
则关于x的不等式kx+b> 的解集是________16.如图,已知直线y=x+4与双曲线y= (x<0)相交于A、B两点,与x轴、y轴分别相交于D、C两点,若AB= ,则k=________17.如图,矩形ABCD中,E是AC的中点,点A、B在x轴上.若函数的图像过D、E两点,则矩形ABCD的面积为________.18.如图,点A是双曲线在第二象限分支上的一个动点,连接AO并延长交另一分支与点B,以AB 为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也在不断变化,但点C始终在双曲线上运动,则k的值为________.三、解答题19.如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.20.如图,在平面直角坐标系中,AO⊥BO,∠B=30°,点B在y= 的图象上,求过点A的反比例函数的解析式.21.如图,已知反比例函数y= (k≠0)的图象经过点A(﹣2,m),过点A作AB⊥x轴于点B,且△AOB 的面积为4.(Ⅰ)求k和m的值;(Ⅱ)设C(x,y)是该反比例函数图象上一点,当1≤x≤4时,求函数值y的取值范围.22.如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y= (k>0)的图象与BC边交于点E.当F为AB的中点时,求该函数的解析式.23.如图,在平面直角坐标系中,一次函数y=k1x+b的图像与反比例函数的图像交于A(4,﹣2)、B(﹣2,n)两点,与x轴交于点C.(1)求k2,n的值;(2)请直接写出不等式k1x+b<的解集;(3)将x轴下方的图像沿x轴翻折,点A落在点A′处,连接A′B、A′C,求△A′BC的面积.答案解析一、选择题1.【答案】C【解析】:∵点P(1,-3)在反比例函数 y =(k≠0)的图象上∴k=1×(-3)=-3故答案为:C【分析】根据已知条件,利用待定系数法,可求出k的值。
2.【答案】C【解析】:∵(3,-4)在反比例函数图象上,∴k=3×(-4)=-12,∴反比例函数解析式为:y=- ,A. ∵3×4=12,故不在反比例函数图像上,A不符合题意;B. ∵(-2)×(-6)=12,故不在反比例函数图像上,B不符合题意;C. ∵(-2)×6=-12,故在反比例函数图像上,C符合题意;D. ∵(-3)×(-4)=12,故不在反比例函数图像上,D不符合题意;故答案为:C.【分析】将(3,-4)代入反比例函数解析式可求出k,再根据k=xy一一计算即可得出答案.3.【答案】A【解析】:∵y都随x的增大而增大,∴此函数的图象在二、四象限,∴1-k<0,∴k>1.故k可以是2(答案不唯一).故答案为:A.【分析】在双曲线的每一支上,y都随x的增大而增大,根据反比例函数的性质得出此函数的图象在二、四象限,从而得出比例系数小于0,列出不等式,求解,并判断在其解集范围内的数即可。
4.【答案】C【解析】:∵点D为△OAB斜边OA的中点,且点A的坐标(−6,4),∴点D的坐标为(−3,2),把(−3,2)代入双曲线y=(k<0),∴k=-3×2=−6,∴双曲线解析式为y=−∵AB⊥OB,且点A的坐标(−6,4),∴C点的横坐标为−6,当x=-6时,y=1即点C坐标为(−6,1),∴AC=|4-1|=3,∵OB=6,∴S△AOC=×AC×OB=×6×3=9故答案为:C【分析】根据点D时OA的中点及点A、O的坐标,可求出点D的坐标,利用待定系数法,求出反比例函数的解析式,再根据AB⊥OB,求出点C的坐标,然后求出△AOC的面积即可。
5.【答案】B【解析】(1)由图可知,反比例函数的一个分支位于第三象限,∴双曲线在每个象限内,y随x的增大而减小,即说法①正确;( 2 )若B的横坐标为-3,则点B的坐标为(-3,1),∴此时BD=1,∵4BD=3CD,∴3CD=4,∴CD= ,∵点C在第三象限,∴点C的坐标为,即说法②错误;( 3 )设点B的坐标为,则BD= ,∵4BD=3CD,∴3CD= ,又∵点C在第三象限,BC⊥x轴,∴此时,点C的坐标为,∵点C在反比例函数的图象上,∴,即说法③正确;( 4 )设点B的坐标为,则由(3)可知,此时点C的坐标为,∴BC= ,∵点A是y轴上一点,∴点A到BC的距离为,∴S△ABC= AC·()= ,即说法④错误.综上所述,正确的说法是①③,共2个.故答案为:B.【分析】(1)根据反比例函数的性质,当k0时,图像分布在一、三象限,且y随x的增大而减小可进行判断;(2)因为BC⊥x轴于D,所以B、C两点的横坐标相同都为-3,再由点B在反比例函数y=-上可求得点B 的纵坐标,根据4BD=3CD,即可求得点C的坐标;(3)先将点B的坐标用字母a表示出来,则同(2)的方法即可用字母a表示点C的坐标,然后用待定系数法即可求得k的值;(4)同(3)类似,可将点B、C的坐标用含a的代数式表示,则△ABC的面积=AC·(−a ),再将表示AC的代数式代入整理即可求解。
6.【答案】A【解析】根据反比例函数的对称性,可得OA=0B,再根据反比例函数系数k的几何意义,可得△AOC的面积为,根据等底同高的三角形面积,可知△ABC的面积为2× =3.故答案为:A.【分析】因为反比例函数关于原点O对称,所以OA=0B,再根据反比例函数系数k的几何意义,可得△AOC 的面积==,根据等底同高的三角形面积相等可得△ABC的面积=2×=3.7.【答案】C【解析】将点(3,2)代入得k=6.故答案为:C.【分析】电流与电阻成反比例,可以设出其函数解析式,再将函数图像上的点(3,2)代入求得k即可求得其函数解析式.8.【答案】A【解析】:过点C作CD⊥OA于点D,设菱形的边长为a,∵四边形OABC是菱形,∴∠O=∠B=60° ,BC=a∴OD=,CD=,∴C(,) ,∴B(,)∵若将菱形向下平移2个单位,∴平移后B点的坐标为:(,-2);将平移后B点的坐标代入反比例函数的解析式得出k=·(-2) ①;将C点坐标代入反比例函数的解析式得出k=·②;由①②得·=·(-2),解得 a=∴k=∴反比例函数的表达式y=故答案为:A.【分析】过点C作CD⊥OA于点D,设菱形的边长为a,根据菱形的性质得出∠O=∠B=60° ,BC=a,根据锐角三角函数得出OD,CD的长,从而得出C点的坐标,进而得出B点的坐标,再得出菱形向下平移2个单位B点的坐标,将平移后B点的坐标代入反比例函数的解析式得出k,将C点坐标代入反比例函数的解析式得出k,根据同一个量两种不同的表示方法列出方程,求解得出a的值,进而得出k的值,得出反比例函数的解析式。
9.【答案】D【解析】:连接OC,过点AE⊥x轴于点E,过点C作CF⊥x轴于点F∴∠AEO=∠C FO=90°∴∠OAE+∠AOE=90°∵OA=OB,CA=CB∴CO⊥AB∴∠AOC=90°在Rt△AOC中,cos∠CAB=设OA=, AC=5x∴OC=∵∠AOE+∠COF=90°∴∠AOE=∠COF∴△AOE∽△OCF∴∴OF=2AE,CF=2OE∴OF CF=4AE OE根据题意得:AE OE=|k 1|,OF CF=|k2|,k2>0,k1<0∴k2=-4k1故答案为:D【分析】连接OC,过点AE⊥x轴于点E,过点C作CF⊥x轴于点F,利用反比例函数的性质及等腰三角形的性质,可证得CO⊥AB,利用锐角三角函数的定义,可得出,设OA=, AC=5x,求出OC 的长,再证明△AOE∽△OCF,根据相似三角形的性质,得出OF=2AE,CF=2OE,可得出OF CF=4AE OE,然后根据反比例函数的几何意义,可得出k2与k1的关系,即可得出答案。