2热传导方程的初值问题

合集下载

热传导方程的求解

热传导方程的求解

热传导方程的求解热传导方程是描述物体内部温度分布随时间变化的数学模型。

求解热传导方程有多种方法,下面将介绍两种常用的求解方法。

一、分离变量法分离变量法是一种常见且简单的求解热传导方程的方法。

它基于热传导方程的偏微分方程特性,将变量分离并进行独立的求解。

1. 问题设定假设需要求解的热传导问题为一维情况,物体的长度为L,初始时刻温度分布为u(x,0)=f(x),物体两端保持恒温边界条件u(0,t) = A,u(L,t) = B。

2. 分离变量假设u(x,t)可表示为u(x,t) = X(x)T(t),将u(x,t)代入热传导方程中,可得到两个方程:X''(x)/X(x) = T'(t)/αT(t),其中α为热扩散系数。

由于左侧只依赖于x,右侧只依赖于t,所以二者必须等于一个常数λ。

3. 求解分离后的方程将上述得到的分离变量方程代入边界条件,可得到两个常微分方程,分别是X''(x)/X(x) = λ 和T'(t)/αT(t) = -λ。

这两个常微分方程可以求解得到X(x)和T(t)。

4. 求解系数通过使用初始条件u(x, 0) = f(x),可以求解出常数λ的值,进而求解出X(x)和T(t)。

5. 求解问题最终将X(x)和T(t)重新结合,即可得到热传导问题的解u(x, t)。

二、有限差分法有限差分法是一种数值求解热传导方程的常用方法,它通过将连续的空间和时间离散化,将偏微分方程转化为差分方程进行求解。

1. 空间和时间离散化将物体的空间进行网格划分,时间进行离散化,并在网格节点上计算温度的近似值。

2. 差分方程将热传导方程中的偏导数进行近似,得到差分方程。

例如,可以使用中心差分法来近似偏导数。

3. 迭代求解根据差分方程,通过迭代计算每个网格节点的温度值,直到达到收敛条件。

4. 求解问题最终,根据求解的温度值,在空间和时间通过插值或者线性拟合等方法得到热传导问题的解。

二维热传导方程求解

二维热传导方程求解

二维热传导方程求解二维热传导方程是描述平面内物体温度分布随时间变化的数学模型,被广泛应用于工业制造、城市规划和环境模拟等领域。

本文将介绍二维热传导方程的求解方法及其应用。

一、二维热传导方程的基本形式二维热传导方程可以写成以下形式:∂u/∂t = α(∂^2u/∂x^2+∂^2u/∂y^2)其中,u表示温度分布,t表示时间,x和y分别表示平面内的水平和竖直坐标,α为热传导系数。

二、二维热传导方程的求解方法为了求解二维热传导方程,需要确定初始条件和边界条件。

初始条件指在t=0时刻温度分布的初始状态,边界条件指平面内边界的温度(或热流)分布。

常见的求解方法有有限差分法、有限元法和边界元法等。

这里以有限差分法为例。

有限差分法是将待解区域划分成一个个小网格,用数值方法近似代替微分方程,然后逐步迭代求解。

假设在(x_i,y_j,t_n)处的温度为u_(i,j,n),则可以用以下式子近似代替热传导方程:u_(i,j,n+1) = u_(i,j,n) + αΔt/Δx^2(u_(i+1,j,n)+u_(i-1,j,n)-2u_(i,j,n))+ αΔt/Δy^2(u_(i,j+1,n)+u_(i,j-1,n)-2u_(i,j,n))其中,Δt为时间步长,Δx和Δy为空间步长。

通过迭代计算,即可得到平面内任意位置随时间的温度变化规律。

三、应用实例二维热传导方程的应用范围非常广泛。

在工业制造中,可以用来分析材料的热处理过程,优化生产工艺;在城市规划中,可以用来预测城市内部的热岛效应,为城市绿化提供科学依据;在环境模拟中,可以用来模拟地下水温度变化、河流水温变化等。

例如,在炼钢过程中,需要控制钢材的温度分布,以保证钢材的物理性能。

通过建立二维热传导方程模型,可以计算出钢材表面的温度分布,进而调整生产参数,达到最佳的钢材质量。

在城市规划中,针对不同的城市形态和环境条件,可以建立相应的二维热传导方程模型,预测城市内不同区域的温度分布情况,并提出合理建议。

热传导方程的初值问题

热传导方程的初值问题

§2热传导方程的初值问题一维热传导方程的初值问题(或Cauchy 问题)⎪⎩⎪⎨⎧+∞<<∞-=>+∞<<∞-=∂∂-∂∂x x x u t x t x f x u a tu ),()0,(0,),,(222ϕ ()偏导数的多种记号xx x t u xuu x u u t u =∂∂=∂∂=∂∂22,,. 问题也可记为⎩⎨⎧+∞<<∞-=>+∞<<∞-=-x x x u t x t x f u a u xx t ),()0,(0,,),(2ϕ.Fourier 变换我们将用Fourier 变换法求解热传导方程的柯西问题.为此我们将着重介绍Fourier 变换的基本知识.Fourier 变换在许多学科中是重要使用工具. 可积函数,设)(x f f =是定义在),(+∞-∞上的函数, 且对任意A B <,()f x 在[,]A B 上可积,若积分⎰+∞∞-dx x f )(收敛,则称)(x f 在),(+∞-∞上绝对可积。

将),(+∞-∞上绝对可积函数形成的集合记为),(1+∞-∞L 或),(+∞-∞L , 即{}∞<=+∞-∞=+∞-∞⎰+∞∞-dx x f f L L )(|),(),(1,称为可积函数空间.连续函数空间: ),(+∞-∞上全体连续函数构成的集合,记为),(+∞-∞C ,{}上连续在),(|),(+∞-∞=+∞-∞f f C , {}上连续在),(,|),(1+∞-∞'=+∞-∞f f f C 。

定义 若),(+∞-∞∈L f ,那么积分),(ˆ)(21λπλf dx e x f x i =⎰+∞∞--有意义,称为Fourier 变换, )(ˆλf 称为)(x f 的Fourier 变式(或Fourier 变换的象). ⎰+∞∞--==dx e x f f Ff x i λπλλ)(21)(ˆ)(定理 (Fourier 积分定理)若),(),(1+∞-∞⋂+∞-∞∈C L f ,那么我们有),()(ˆ21limx f d e f NNx i N =⎰+-∞→λλπλ公式称为反演公式.左端的积分表示取Cauchy 主值.通常将由积分)()(21x g d e g x i ∨+∞∞-=⎰λλπλ所定义的变换称为Fourier 逆变换.因此亦可写成()f f =∨ˆ即一个属于),(),(1+∞-∞⋂+∞-∞C L 的函数作了一次Fourier 变换以后,再接着作一次Fourier 逆变换,就回到这个函数本身.在应用科学中经常把)(ˆλf 称为)(x f 的频谱.Fourier 变换的重要性亦远远超出求解偏微分方程的范围,它在其它应用科学中,如信息论,无线电技术等学科中都有着极为广阔的应用.它是近代科学技术中得到广泛应用的重要数学工具.定理的证明在经典书中都能查到(如姜礼尚,陈亚浙,<<数学物理方程讲义>>)定理 设),(+∞-∞∈L f ,⎰+∞∞--=dx e x f fx i λπλ)(21)(ˆ,则)(ˆλf 是有界连续函数,且 .0)(ˆlim =∞→λλf在运用Fourier 变换求解定解问题以前,我们先来介绍一些Fourier 变换的性质.Fourier 变换的性质: 1.(线性性质) 若.2,1,),,(=∈+∞-∞∈j C L f j j α则(),ˆˆ22112211f f f f αααα+=+∧2.(微商性质)若),,(),()(),(+∞-∞⋂+∞-∞∈'L C x f x f 则.ˆf i dx df λ=⎪⎭⎫⎝⎛∧证明 由假设),,(),()(),(+∞-∞⋂+∞-∞∈'L C x f x f 故0)(lim =∞→x f x ,事实上由),()(+∞-∞∈'C x f ,则dt t f f x f x⎰'+=0)()0()(,因为),()(+∞-∞∈'L x f ,故有⎰±∞±±∞→'+==0)()0()(lim dt t f f a x f x又因),()(+∞-∞∈L x f ,必有0=±a .由0)(lim =∞→x f x ,利用分部积分公式⎰∞+∞--∧'=⎪⎭⎫⎝⎛dx e x f dx df x i λπ)(21⎥⎦⎤⎢⎣⎡--=⎰+∞∞--∞+∞--dx e i x f e x f x i xi ))(()(21λλλπ).(ˆ)(2λλπλλf i dx e x f i x i ==⎰+∞∞--附注 这个性质说明微商运算经Fourier 变换转化为乘积运算,因此利用Fourier 变换可把常系数微分方程简化为函数方程,或把偏微分方程简化为常微分方程,正是由于这个原因,Fourier 变换成为解微分方程的重要工具. 3.(乘多项式)若),()(),(+∞-∞∈L x xf x f 则有[])(ˆ)(λλf d d ix xf =∧. 证明 由于),()(),(+∞-∞∈L x xf x f ,故)(ˆλf 是λ的连续可微函数,且有 []∧+∞∞---=-=⎰)()())((21)(ˆx xf i dx e ix x f f d d x i λπλλ附注 作为性质2,3的推论,若),,(),()(),(),()(+∞-∞⋂+∞-∞∈'L C x fx f x f m Λ则 ())1(,)(ˆ≥=⎪⎪⎭⎫ ⎝⎛∧m f i dx fd m m m λλ 若),,()(),(),(+∞-∞∈L x f x x xf x f mΛ则[])1(,)(ˆ)(≥=∧m f d d i x f x mm mmλλ4.(平移性质)若),,()(+∞-∞∈L x f 则[])1()(ˆ)(≥=--∧m f e a x f a i λλ证明[])(ˆ)(21)(21)()(λππλλλf e dy e y f ya x dx e a x f a x f a i a y i x i -∞+∞-+-+∞∞--∧==--=-⎰⎰5.(伸缩性质)若),,()(+∞-∞∈L x f 则[])0(,)(ˆ1)(≠=∧k kf k kx f λ证明 无妨设,0<k 由定义[])(ˆ11)(1211)(21)(21)(kf k dy ke yf k dy k ey f y kx dxe kxf kx f kyi kyi x i λπππλλλ=⎪⎭⎫⎝⎛-===⎰⎰⎰∞+∞--∞-∞+-+∞∞--∧6.(对称性质)若),,()(+∞-∞∈L x f 则 ,)(ˆ)(λλ-=∨f f 证明⎰+∞∞-∨=dx e x f f x i λπλ)(21)(⎰+∞∞---=dxe xf x i )()(21λπ.)(ˆλ-=f7.(卷积定理)若),,()(),(+∞-∞∈L x g x f ⎰+∞∞--=*dt t g t x f x g f )()()(称为f 与g 的卷积,则),()(+∞-∞∈*L x g f ,且有()).(ˆ)(ˆ2)(λλπλgf g f =*∧证明 由积分交换次序定理⎰⎰⎰+∞∞-+∞∞-+∞∞--=*dx dt t g t x f dx x g f |)()(|)(⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-≤dt dx t g t x f )()(⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-=dt dx t x f t g )()(⎰⎰+∞∞-+∞∞-⋅=dt t g dx x f )()( 故),()(+∞-∞∈*L x g f ,又由积分交换次序定理()()()().ˆˆ2)(21)(212)()(21)()(21)(λλππππππλλλλλλgf dy e y f dt e tg dx e t x f dt e t g dt t g t x f dx e g f yi t i t x i ti xi =⋅⋅=-=-=*⎰⎰⎰⎰⎰⎰∞+∞-∞+∞---∞+∞-∞+∞----+∞∞-+∞∞--∧下面作为例子,我们根据Fourier 变换的定义与性质求一些具体函数的Fourier 变换.例1 设 ⎪⎩⎪⎨⎧>≤=Ax A x x f ,0,1)(1,(其中常数0>A ).求)(ˆ1λf .解 由定义⎰⎰----==AAx i AAx i dx e dx e x f f λλππλ21)(21)(ˆ11AAx i e i --⎪⎭⎫ ⎝⎛-=λλπ121λλπA sin 2=. 例2 设⎩⎨⎧<≥=-0,00,)(2x x e x f x , 求)(ˆ2λf . ⎰+∞--=221)(ˆdx ee f xi x λπλ⎰+∞+-=)1(21dx e x i λπ∞++-⎪⎭⎫ ⎝⎛+-=0)1(1121x i e i λλπλπi +=1121.例3 设,)(3xex f -=求)(ˆ3λf⎰+∞∞---=dx e ef x i xλπλ21)(ˆ3⎥⎦⎤⎢⎣⎡+=⎰⎰∞--+∞+-0)1(0)1(21dx e dx e xi x i λλπ ⎪⎭⎫⎝⎛-++=λλπi i 11112121221λπ+=. 例4 设,)(24x e x f -=求)(ˆ4λf⎰+∞∞---=dx eef xi x λπλ221)(ˆ4⎰∞+∞---'⎪⎭⎫ ⎝⎛-=dx e i ex i x λλπ1212⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=⎰∞+∞---∞+∞---dx e xe i e e i x i x x x i λλλλπ222121[]∧-=22x xe iλ)(ˆ24λλλf d d -= , 上面最后一个等式应用了性质3. 因为)(ˆ4λf 作为λ的函数适合下面常微分方程初值问题:⎪⎪⎩⎪⎪⎨⎧==-=⎰∞+∞--2121)0(ˆ,)(ˆ2)(ˆ2444dx e f f d f d x πλλλλ, 解之得44221)(ˆλλ-=ef .例5 设,)(25Ax e x f -=(0>A ),求)(ˆ5λf .由性质5()()AeA A f A x A f x f f 44455221)(ˆ1)()()(ˆλλλ-∧∧====.例6 ),()(4622Bx f eex f B x Bx ===⎪⎪⎭⎫ ⎝⎛--(0>B )()446622)/1(ˆ/11()(ˆλλλB eB Bf Bx f f -∨===.()()⎰+∞∞-∨*=*λλπλd e g f x g f xi )(21)( ⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-=λλπλd e dy y g y f x i )()(21dy d e y g y f x i ⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-=λλπλ)()(21dy d e y f e y g xy i iyx ⎰⎰+∞∞-+∞∞--⎪⎭⎫ ⎝⎛-=λλπλ)()()(21 )()(2x g x f ∨∨=π,()()g f gfg f ⋅==⎪⎪⎭⎫ ⎝⎛*∨∨∨∧∧ˆˆ22121πππ,于是()∧∧∧*=⋅g f g f π21,因为()gf g f ˆˆ2⋅=*∧π, 所以()()[]g f g f g f *=*=⋅∨∧∨ππ2121ˆˆ.最后我们简单地介绍一些有关多维Fourier 变换的基本知识定义 设),(),,,()(21nn R L x x x f x f ∈=Λ那么积分())(ˆ)(21λπλf dx e x f nRx i n=⎰⋅-,有意义,称为)(x f 的Fourier 变换,)(ˆλf 称为)(x f 的Fourier 变式.定理(反演公式)若)()()(1nn R L R C x f ⋂∈,则有())()(ˆ21limx f d e fNx i nN =⎰≤⋅∞→λλλλπ. ()⎰⋅∨=nRx i nd e g x g λλπλ)(21)(称为)(λg 的Fourier 逆变换.定理表明()()f f f f =∧∨∨=,ˆ容易证明关于一维Fourier 变换的性质1—7对于多维Fourier变换依然成立.根据上面Fourier 变换的定义,我们还有下面的结论: 8. 若),()()()(2211n n x f x f x f x f Λ=其中),,()(+∞-∞∈L x f i i 则有)(ˆ)(ˆ1ii ni f f λλ=∏= () 利用这一性质,我们可求出函数221)(i Ax ni xA e ex f -=-∏==的Fourier 变式.事实上()AAx i i eAe42221λ-∧-=,()()AnAni Ax ni Ax ni eAe Ae ef i ii 4411122222121)(ˆλλλ--=∧-=∧-==∏=∏=⎪⎭⎫ ⎝⎛∏=.Poisson 公式在这一小节中我们应用Fourier 变换解初值问题⎪⎩⎪⎨⎧+∞<<∞-=>+∞<<∞-=∂∂-∂∂x x x u t x t x f x u a tu ),()0,(0,),,(222ϕ ()在方程()两边关于变量x 作Fourier 变换,⎰+∞∞--=dx e t x u t ux i λπλ),(21),(ˆ ,利用性质1和性质2,得到⎪⎩⎪⎨⎧==+=),(ˆˆ),,(ˆˆˆ022λϕλλt u t f ua dt u d 其中 ⎰+∞∞--=dx et x u t uxi λπλ),(21),(ˆ,⎰+∞∞--=dx e x x i λϕπλϕ)(21)(ˆ[]∧=),(),(ˆt x f t f λ.解之得⎰---+=t t a t a d e f e t u 0)(2222),(ˆˆ),(ˆττλϕλτλλ,现在对上式两边求反演,由反演公式,得()()⎰∨--∨-+=tt a ta d e f e t x u 0)(2222),(ˆˆ),(ττλϕτλλ ()由(),21422AAx e Aeiλ-∧-=取t a A 241=则ta x t a e ta e 2222241211λ-∧-=⎪⎪⎭⎫ ⎝⎛, 即t a x t a ee t a 22224121λ-∧-=⎪⎪⎭⎫ ⎝⎛, 令224121),(x ta eta t x g -=,[]t a e t x g 22),(λ-∧=,从而有()()g g e ta *21ˆˆˆ22ϕπϕϕλ==∨∨- ⎰+∞∞--=ξξξϕπd x g )()(21⎰∞+∞---=ξξϕπξd t ata x 224)()(21 ()同理我们有()()g f t g f ef t a *21),(ˆ),(ˆ),(ˆ)(22πτλτλτλτλ=-=∨∨-- ⎰∞+∞-----=ξτξτπτξd e f t a t a x )(4)(22),()(21()于是得⎰⎰⎰∞+∞----∞+∞----+=ξτπτξτξξϕπτξξd et a f d d t at x u t a x t ta x )(4)(04)(2222)(21),()(21),(在一定条件下,可以证明上述表达式的函数是方程问题的解. 定理 若),()(+∞-∞∈C x ϕ,且)(x ϕ有界,则⎰∞+∞---=ξξϕπξd et at x u ta x 224)()(21),(在),0(+∞⨯R 上连续,且在),0(+∞⨯R 上具有任意阶的连续偏导数,),(t x u 是问题⎪⎩⎪⎨⎧+∞<<∞-=>+∞<<∞-=∂∂-∂∂x x x u t x xu a t u ),()0,(0,,0222ϕ的解,即),(t x u 满足方程和)(),(lim 00x t x u x x t ϕ=→→+. ⎰∞+∞---=ξξϕπξd et at x u ta x 224)()(21),(⎰+∞∞--+-=ηηϕπξηηd e t a x ta x 2)2(12/)(特别说明:当)(x ϕ连续,)(x ϕ是某些无界函数时,),(t x u 的表达式亦是解()(x ϕ无界时,也可以是解).例1 求解⎪⎩⎪⎨⎧=∂∂=∂∂=xux u at u t sin ,0222解 1、直接观察x e t x u t a sin ),(2-=是解. 2、⎰+∞∞--+=ηηϕπηd e t a x t x u 2)2(1),(⎰+∞∞--+=ηηπηd e t a x 2)2sin(1()⎰+∞∞---+=ηηηπηηd e t a x e t ax 222sin cos 2cos sin 1⎰+∞∞--=ηηπηd et a x 22cos sin 1⎰+∞∞---=ηπηηd e e x t ai 22212sin442212sin t a e x -=442212sin t a e x -=x e t a sin 2-=, ()42221λη-∧-=e e .例2求初值问题⎪⎩⎪⎨⎧=∂∂=∂∂=x ux u at u t cos ,0222的解x e t x u t a cos ),(2-=.例3求初值问题⎪⎩⎪⎨⎧+===1,202x u u a u t xx t 的解. 解1 直接观察t a x t x u 2221),(++= 2. []⎰+∞∞--++=ηηπηd e t a x t x u 21)2(1),(2[]⎰+∞∞--+++=ηηηπηd e t a t ax x 21441222t a x 2221++=从这几个实例上,更直观明显的证明求解公式的正确,对模型方程的正确性,提供保证.⎪⎩⎪⎨⎧++===1cos ,22x x u u a u t xx t 定理 设)(x ϕ在),(+∞-∞上连续且有界,),(t x f ,(,)x f x t 在],0[),(T ⨯+∞-∞上连续且有界,令 ⎰∞+∞---=ξξϕπξd etat x u ta x 224)()(21),(⎰⎰∞+∞-----+ξττξτπτξd e t f d a t a x t )(4)(0221),(21,其中常数0>a ,则有)(),(lim 00,0x t x u t x x ϕ=+→→;(,)u x t 问题⎪⎩⎪⎨⎧+∞<<∞-=>+∞<<∞-=∂∂-∂∂x x x u t x t x f x u a t u ),()0,(0,),,(222ϕ的解。

热传导方程的初边值问题

热传导方程的初边值问题

例4 周期初始温度分布 求解热传导方程txx u u =,(,0)x t -∞<<+∞>给定初始温度分布(,0)1cos 2,()u x x x =+-∞<<+∞。

解4(,)1cos2t u x t e x -=+.初始高斯温度分布例 5求解定解问题22220,(,0)(,0),()kx u u a x t tx u x e x -⎧∂∂-=-∞<<+∞>⎪∂∂⎨⎪=-∞<<+∞⎩,其中常数0k >.解22()4(,)()x s a tu x t s eds ϕ--+∞-∞=⎰222()4x s ks a teeds --+∞--∞=⎰2222(41)24ka t s xs x a teds +-+-+∞-∞=⎰22222224(41)()41414x ka t ka t s xka t ka t a teds +-+++-+∞-∞=⎰222222(41)()41441k ka t x x s ka t a t ka t e eds+---+∞++-∞=⎰2241kx ka t e-+=2241kx ka t -+=.§3初边值问题设长度为l ,侧表面绝热的均匀细杆,初始温度与细杆两端的温度已知,则杆上的温度分布),(t x u 满足以下初边值问题⎪⎩⎪⎨⎧≤<==≤≤=<<<<=-Tt t g t l u t g t u l x x x u T t l x t x f u a u xx t 0),(),(),(),0(,0),()0,(0,0),,(212ϕ 对于这样的问题,可以用分离变量法来求解.将边值齐次化令())()()(),(121t g t g lxt g t x U -+= 再作变换U u V -=引入新的未知函数,易知它满足⎪⎩⎪⎨⎧≤≤==≤≤-=<<<<-=-T t t l V t V l x x U x x V T t l x U t x f V a V t xx t 0,0),(,0),0(,0),0,()()0,(0,0,),(2ϕ 我们先考虑齐次方程,齐次边界的情形⎪⎩⎪⎨⎧≥==≤≤=><<=-)3.3(0,0),(),0()2.3(,0),()0,()1.3(0,0,02t t l u t u l x x x u t l x u a u xx t ϕ 解 设),()(),(t T x X t x u =代入方程),()()()(2t T x X a x X t T ''=',)()()()(2x X x X t T a t T ''='这等式只有在两边均等于常数时才成立. 令此常数为λ-,则有,02=+'T a T λ (3.4),0=+''X X λ (3.5)先考虑(3.5),根据边界条件(3.3),)(x X 应当满足边界条件0)(,0)0(==l X X (3.6)情形A :当0<λ时,方程(3.5)的通解可以写成12(),X x C C e =+要使它满足边界条件(3.6),就必须,021=+C C,021=+---lle C eC λλ由于,011≠-=------llllee eeλλλλ只能,021==C C 故在0<λ的情况得不到非平凡解. 情形B :当0=λ时,方程(3.5)的通解可以写成,)(21x C C x X +=要满足边界条件(3.6),,0,0211=+=lC C C 即021==C C .)(x X 也只能恒等于零.情形C :当0>λ时,方程(3.5)的通解具有如下形式:,sin cos )(21x C x C x X λλ+=由边界条件,0)0(=X 知,01=C 再由,sin )(2l C l X λ=可知,为了使,02≠C 就必须,0sin =l λ于是),2,1(, ==k k l πλ),2,1(,222 ===k lk k πλλ (3.7)这样就找到了一族非零解),2,1(,sin)( ==k x lk C x X k k π(3.8) 称x lk C x X k k πsin)(=为常微分方程边值问题 ⎩⎨⎧==<<=''-0)()0(0,)()(l X X lx x X x X λ 的固有函数(特征函数).而222l k πλ=称为相应的固有值(或特征值).将固有值k λ代入方程(3.4)中,,02222=+'T lk a T π 可得tl k a k k eB t T 2222)(π-= (3.9)于是得到一列可分离变量的特解),2,1(,sin),(2222==-k x lk eA t x u tl k a k k ππ (3.10) 由于方程(3.1)及边界条件(3.3)都是齐次的,故可利用叠加原理构造级数形式的解,sin ),(),(112∑∑∞=-∞===k k tak k k x e A t x u t x u k λλ (3.11)其中222lk k πλ=.由(3.2),为使在0=t 时,),(t x u 取到初值)(x ϕ,应成立,sinsin )0,()(11∑∑∞=∞====k k k k k x lk A xA x u x πλϕ (3.12)得出⎰=l k d lk l A 0sin )(2ξξπξϕ. (3.13) 得到问题(3.1)-(3.3)的解,sin ),(12∑∞=-=k k ta k x eA t x u k λλ其中222l k k πλ=,⎰=l k d lk l A 0sin )(2ξξπξϕ.定理 若,0)()0(],,0[1==∈l l C ϕϕϕ则,sin ),(12∑∞=-=k k tak x e A t x u k λλ (3.14)是 ⎪⎩⎪⎨⎧≥==≤≤=><<=-)3.3(0,0),(),0()2.3(,0),()0,()1.3(0,0,02t t l u t u l x x x u t l x u a u xx t ϕ 的古典解(经典解).证明 由],,0[l C ∈ϕ得ϕ在],0[l 上可积.02|||()sin |l k k A d l lπϕξξξ=⎰ M d l l=≤⎰ξξϕ0|)(|2 对任意,0>δ当δ≥t 时,成立22()21(),k k n m n m a t a k k m nA e x M e t xλλδλ++--∂≤∂∂(任意整数,0m n ≥) 又对任意,0>p 而级数21k a p kk eλδλ∞-=∑收敛,所以21(sin )k m n a tk m n k A e t xλ+∞-=∂∂∂∑在δ≥≤≤t l x ,0上一致收敛.于是21(,)()k m n m n a tk m n m n k u x t A e t x t xλ++∞-=∂∂=∂∂∂∂∑,即级数∑∞=-=1sin ),(2k k t a k x e A t x u k λλ,当δ≥≤≤t l x ,0时,关于x 及t 具有任意阶的连续偏导数,并且求偏导与求和可以交换.由于级数的每一项都满足方程及边界条件,从而函数),(t x u 在δ≥t 时,确实满足方程及边界条件.再由0>δ的任意性,得),(t x u 在0t >时满足方程及边界条件, 且)).,0(],0([),(+∞⨯∈∞l C t x u再证)0(),(),(lim 0000l x x t x u t x x ≤≤=+→→ϕ由条件),()0(],,0[1l l C ϕϕϕ=∈02|||()sin |l k k A x xdx l l πϕ=⎰02|()cos |||l k l k l x xdx a k l l k πϕππ'==⎰()222111sin ,2k a tk k k A ex Ca C a k k λ-⎛⎫≤≤+ ⎪⎝⎭由Bessel 不等式,知()()22012()l k k a x dx lϕ∞='≤∑⎰, 从而得到∑∞=-1sin 2k k k ta x A ek λλ在0,0t x l ≥≤≤上一致收敛,1k k A ∞=∑在0x l ≤≤上一致收敛于()x ϕ,从而得),(t x u 在0,0t x l ≥≤≤上连续. 于是)0(),(sin sin lim ),(lim 0010100200l x x x A x A et x u k k k k k k ta t x x t x x k ≤≤===∑∑∞=∞=-→→→→++ϕλλλ.3.1初边值问题解的渐近性态定理 假设初始函数)(x ϕ满足,0)()0(],,0[1==∈l l C ϕϕϕ则当t趋于无穷大时,问题(3.1)-(3.3)的唯一的古典解指数衰减地趋于零,确切地说,当+∞→t 时,对一切],0[l x ∈,,0|),(|12→≤-t a Ce t x u λ其中C 是一个与解无的正常数. 证明 古典解是唯一的,∑∞=-=1sin ),(2k k t a k x e A t x u k λλ是唯一的古典解,其中222l k k πλ= ,2,1,sin )(20==⎰k d lk l A l k ξξπξϕ)(x ϕ在],0[l 上有界,设M x ≤)(ϕ,则有0022||()sin 2l lk k A d Md M l l lπϕξξξξ≤≤=⎰⎰ 当1≥t 时∑∞=-≤12),(k ta k k eA t x u λ∑∞=-≤122k t a k e M λ∑∞=---=1)(12122k ta ta k eMeλλλ∑∞=---≤1)(12122k ata k e Meλλλ∑∞=--≤1222122k kl a ta eMeπλta Ce12λ-≤.3.2非齐次方程求解方法—齐次化原理考虑非齐次方程⎪⎩⎪⎨⎧====-,0),(),0(,0)0,(),(2t l u t u x u t x f u a u xx t . 齐次化原理:若);,(τt x w 是下述问题⎪⎪⎪⎩⎪⎪⎪⎨⎧≥===<<>∂∂=∂∂=τττττττt t l w t w x f t x w l x t x wa t w t ,0);,();,0(),(|);,(0,,222 (*) 的解(其中0≥τ为参数),则⎰=td t x w t x u 0);,(),(ττ是非齐次问题⎪⎩⎪⎨⎧≥===><<=-0,0),(),0(,0)0,(0,0,),(2t t l u t u x u t l x t x f u a u xx t 的解.证明 显然0),(),0(,0)0,(===t l u t u x u ,ττd t w t x f d t w t t x w tut t ⎰⎰∂∂+=∂∂+=∂∂00),();,(,0222222⎰∂∂=∂∂t d x w a x u a τ则u 满足),(222t x f x u a t u =∂∂-∂∂.),(t x u 是非齐次问题的解. 现在来求问题(*)的解.作变换τ-='t t 则问题(*)化为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥'=+'=+'=<<>'=∂∂-'∂∂='0,0);,();,0(),(|0,0,00222t t l w t w x f w l x t x wa t w t τττττ (**) 我们已知问题(**)的解为,sin )();,(12∑∞='-='k k t a k x e B t x w k λττλ其中222l k k πλ=,⎰=l k d lk f l B 0sin ),(2)(ξξπτξτ.于是,sin )();,(1)(2∑∞=--=k k t a k x e B t x w k λτττλ故⎰=td t x w t x u 0);,(),(ττ,sin )(1)(2∑⎰∞=--=k k tt a k x d e B k λτττλ是非齐次问题的解.初边值问题⎪⎩⎪⎨⎧====-,0),(),0(),()0,(),,(2t l u t u x x u t x f u a u xx t ϕ的解为,sin )(sin ),(1)(122∑⎰∑∞=--∞=-+=k k t t a k k k ta k x d e B x eA t x u k k λττλτλλ其中222l k k πλ=,⎰=l k d l k l A 0sin )(2ξξπξϕ,⎰=l k d lk f l B 0sin ),(2)(ξξπτξτ.3.3非齐次初边值问题的特征函数展开法⎪⎩⎪⎨⎧≤≤==≤≤=≤<<<=-T t t l u t u l x x x u Tt l x t x f u a u xx t 00),(),0(,0),()0,(0,0),,(2ϕ (3.15) 方法步骤 把),(t x u ,方程的非齐次项),(t x f 和初值都按照特征函数系⎭⎬⎫⎩⎨⎧x lk πsin展开:,sin)(),(1∑∞==k k x l k t T t x u π ,sin)(),(1∑∞==k k x lk t f t x f π ,sin)(1∑∞==k k x l k x πϕϕ 由特征函数系⎭⎬⎫⎩⎨⎧x lk πsin在区间],0[l 上的正交性,可得 ⎰=l k xdx l k t x f l t f 0sin ),(2)(π, ⎰=l k xdx l k x l 0sin )(2πϕϕ.而函数)(t T k 暂时还是未知的.为确定)(t T k ,把上述展开式问题(3.15)代入方程和初始条件,由特征函数系⎭⎬⎫⎩⎨⎧x lk πsin的完备性,从而得到)(t T k 适合下列微分方程和初始条件. ,sin )(sin )()()(1122∑∑∞=∞==⎥⎦⎤⎢⎣⎡+'k k k k k x l k t f x l k t T l k a t T πππ ,sin sin )0(11∑∑∞=∞==k kk k x l k x l k T πϕπ 于是得到⎪⎩⎪⎨⎧===+',2,1,)0()()()()(22k T t f t T l k a t T k k k k kϕπ)()(2222)()(t f e t T ek t lk a k t l k a ππ='⎥⎦⎤⎢⎣⎡ 从0到t 积分⎰=-tlk a k k k t lk a d ef T t T e)()(2222)()0()(τττππ ⎰---+=tt lk a k t lk a k k d ef et T 0)()()(2222)()(ττϕτππ故非齐次初边值问题解),(t x u 的表达式为,sin )(sin ),(1)(122∑⎰∑∞=--∞=-+=k k tt a k k k a k x d e f x et x u k kλττλϕτλλ这与前面的结果一致. 能量衰减估计⎪⎩⎪⎨⎧≥==≤≤=><<=-00),(),0(,0),()0,(0,0,02t t l u t u l x x x u t l x u a u xx t ϕ 用u 乘以方程两端,在],0[l 上积分,0)(02⎰=⋅-⋅lxxtdx u ua u u220011,22lll t d u udx u dx u dx t dt∂⋅==∂⎰⎰⎰ ⎰⎰⎰=+-=-lx lx x lx l xx dx u a dx u u a u u a udx u a 022020202,,20222⎰⎰-=l x l dx u a dx u dt d ⎰=xx d t u t x u 0),(),(ξξ⎰≤x x d t u t x u 0),(),(ξξ⎰≤lx d t u 0),(ξξ2/1022/1021),(⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛≤⎰⎰l l x d d t u ξξξ2/10221),(⎪⎭⎫ ⎝⎛≤⎰l x dx t x u l ,⎰≤lx d u l t x u 022),(ξ,⎰⎰⎰⎰=⎪⎭⎫ ⎝⎛≤l x ll x l dx u l dx dx u l dx u 02200202, ⎰⎰-≤-l l x dx u l dx u 022021 于是,2022202⎰⎰-≤ll dx u la dx u dt d002222≤⎪⎪⎭⎫ ⎝⎛⎰l tl a dx u e dt d ,0)0,(0202222≤-⎰⎰lltl a dx x u dx u e ,⎰⎰⎰--=≤lt l a ltl a ldx x edx x uedx t x u2202202)()0,(),(2222ϕ.定理 (Cauchy-Schwarz 不等式)设g f ,在],[b a 上可积,则有212212))(())((|)()(|dx x g dx x f dx x g x f bababa⎰⎰⎰≤。

热传导方程初边值问题的三次样条解

热传导方程初边值问题的三次样条解

hi+1
xi
+
ω2 i +1
hi2+1
S
xi
.
对公式(2)两端进行求导并令 x = xi ,则有:
S′(
xi
+
0)
=− S′′(
xi+1 ) − S ′′( xi ) cosωi+1
ξ 1 2 sin ωi+1
+
S ′′( xi+1 ) − S ′′( xi
ξ hi+1
)
+
一般来说,对函数 u ( x) 在插值节点 xk (0 ≤ k ≤ n) 处进行插值形成的含参三次样条插值函数的好坏程
( ) 度,即 S ( x,ξ ) S ( x,ξ ) ∈ C2 [a,b] 逼近函数 u ( x) 的好坏程度,取决于参数 ξ (ξ > 0) 的适当选取以及当参数
ξ → 0 时三次样条函数在区间 [a,b] 上的改变程度。 该样条函数 S ( x,ξ ) = S ( x) 在区间 [ xi , xi+1 ] 上满足以下的微分方程[9]:
∂ui (t ) =
∂t
∂2ui (t )
∂x2

fi
(t)
=
Mi (t ) − fi (t ),i = 1, 2,
, n −1.
其中= : fi (t ) f ( x= i ,t );ui (t ) u ( xi ,= t ); Mi (t ) u= xx ( xi ,t ),i 0,1, 考虑 ∂ui (t ) 前面的系数,有:
以 Legendre-Gauss-Lobatto 节点为配置点来构造含参数三次样条函数,然后用含参数的三次样条函数来逼 近求解热传导方程初边值问题。

热传导方程初边值问题

热传导方程初边值问题

热传导方程初边值问题介绍热传导方程是描述物体内部温度分布随时间变化的一类偏微分方程。

在实际生活和工程中,了解和解决热传导问题对于保护环境和优化工艺非常重要。

本文将详细介绍热传导方程的初边值问题及其解决方法。

初边值问题的定义初边值问题是指在给定一定空间区域和时间区域内,求解偏微分方程在这些区域内满足一定初值和边界条件的解。

对于热传导方程,我们通常关注的是物体内部的温度分布随时间的变化,因此需要给出初始时刻物体内各点的温度,并指定物体表面与周围介质之间的热量交换方式。

热传导方程热传导方程描述了物体内部温度分布随时间变化的规律,其一维形式为:∂u ∂t =α∂2u∂x2其中,u(x,t)代表了某一点(x,t)处的温度,α代表热扩散系数,t代表时间,x代表空间位置。

初边值条件为了求解热传导方程的初边值问题,我们需要给出一些初始条件和边界条件。

常见的初边值条件包括: - 初始条件:u(x,0)=f(x),给出初始时刻物体内各点的温度分布,f(x)代表初始时刻的温度函数。

- 边界条件:u(a,t)=g(t)和u(b,t)=ℎ(t),指定物体表面与周围介质之间的热量交换方式,a和b分别为空间区域的起始和结束位置,g(t)和ℎ(t)为边界处的温度函数。

初边值条件的选择对于求解问题的精确性和适用范围具有重要影响。

解法针对热传导方程的初边值问题,我们可以通过数值方法或解析方法来求解。

下面介绍两种常见的解法。

球坐标系下的分离变量法对于某些具有球对称性的问题,可以采用球坐标系下的分离变量法来求解。

通过假设解具有分离变量形式u(r,θ,ϕ,t)=R(r)Θ(θ)Φ(ϕ)T(t),将热传导方程分解成径向、角度和时间三个单变量函数的形式,然后带入原方程得到各个变量的微分方程。

最后通过求解单变量微分方程和利用边界条件,确定解的具体形式。

差分方法差分方法是一种常用的数值方法,通过将连续的空间和时间区域离散化,将热传导方程转化为有限差分方程组,并通过迭代求解来逼近真实的解。

微分方程中的边值问题与初值问题

微分方程中的边值问题与初值问题

微分方程中的边值问题与初值问题微分方程是数学中的一种重要概念,广泛应用于科学和工程领域。

边值问题和初值问题是微分方程的两类基本问题。

本文将重点讨论微分方程中的边值问题与初值问题,并探讨它们在实际问题中的应用。

一、边值问题边值问题是指在给定的区间内,求解微分方程的解在区间两个端点处满足一些给定的条件。

通常情况下,边值问题的求解需要利用方程的边界条件来确定解的形式。

对于一阶微分方程,边值问题的一般形式可以表示为:$$\begin{cases}y'(x) = f(x, y(x)) \\y(a) = \alpha \\y(b) = \beta \\\end{cases}$$其中,$f(x, y(x))$是给定的函数,$a$和$b$是区间的端点,$\alpha$和$\beta$是给定的常数。

边值问题的求解可以利用一些经典的数值方法,如有限差分法、有限元法等。

这些方法将边值问题转化为一个离散的数值问题,并通过迭代求解来逼近真实的解。

边值问题在物理学、工程学和生物学等领域有广泛应用。

例如,在弹簧振动系统中,可以通过求解边值问题来确定系统的稳定状态。

在电路分析中,可以利用边值问题求解电路中的电压、电流分布等问题。

二、初值问题初值问题是指在给定的初始条件下,求解微分方程的解在某一点处的值。

与边值问题不同,初值问题只需要确定方程在某一点的解,而不需要确定整个区间上的解。

对于一阶微分方程,初值问题的一般形式可以表示为:$$\begin{cases}y'(x) = f(x, y(x)) \\y(x_0) = y_0 \\\end{cases}$$其中,$f(x, y(x))$是给定的函数,$x_0$是初始点的横坐标,$y_0$是初始点的纵坐标。

初值问题的求解可以采用一些经典的数值方法,如欧拉法、龙格-库塔法等。

这些方法通过迭代计算微分方程的斜率和步长,逐步逼近解的真实值。

初值问题在物理学、控制系统和经济学等领域有广泛应用。

热传导方程初值问题解的性质的证明

热传导方程初值问题解的性质的证明
第 29 卷 第 11 期 2011 年 11 月
文章编号:1004-3918(2011)11-1261-06
河南科学 HENAN SCIENCE
Vol.29 No.11 Nov. 2011
热传导方程初值问题解的性质的证明
邢家省 1, 张军民 2
(1. 北京航空航天大学 数学与系统科学学院,数学、信息与行为教育部重点实验室,北京 100191; 2. 河南省工业情报标准信息中心,郑州 450011)
d ξ=
1
-∞
姨π
乙+∞ (f x+2a姨 t
y,t)e-y2dy,
-∞
有 坠w 坠t
,坠2w 坠x2
在(-∞,+∞)×[0,T]×[0,T]上连续 .
定理 8 设(f x,t)∈C2,(0(-∞,+∞)×[0,T]),且满足条件(13),
乙t
u(x,t)= w(x,t-t;t)dt, 0
(13) (14)
其中常数 a>0,则有 lim u(x,t)=φ(x0);进一步若假设函数 (f x,t),φ(x)关于 x 都是解析的,则 u(x,t)可以写 x→x0 t→0+

Σ Σ 乙 u(x,t)= ∞ (a2t)n φ(2n)(x)+ ∞ t[a(2 t-t)]n f(x 2n)(x,t)dt,
n=0 n!
3 非齐次热传导方程初值问题的形式解是古典解的一些充分条件
对非齐次热传导方程初值问题

∞∞ut
-a2uxx
=
(f x,t)
(-∞<x<+∞,0<t≤T),

∞∞∞u(x,0)=φ(x) (-∞<x<+∞),
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2热传导方程的初值问题一维热传导方程的初值问题(或Cauchy 问题)⎪⎩⎪⎨⎧+∞<<∞-=>+∞<<∞-=∂∂-∂∂x x x u t x t x f x u a tu ),()0,(0,),,(222ϕ ()偏导数的多种记号xx x t u xuu x u u t u =∂∂=∂∂=∂∂22,,. 问题也可记为⎩⎨⎧+∞<<∞-=>+∞<<∞-=-x x x u t x t x f u a u xx t ),()0,(0,,),(2ϕ.Fourier 变换我们将用Fourier 变换法求解热传导方程的柯西问题.为此我们将着重介绍Fourier 变换的基本知识.Fourier 变换在许多学科中是重要使用工具. 可积函数,设)(x f f =是定义在),(+∞-∞上的函数, 且对任意A B <,()f x 在[,]A B 上可积,若积分⎰+∞∞-dx x f )(收敛,则称)(x f 在),(+∞-∞上绝对可积。

将),(+∞-∞上绝对可积函数形成的集合记为),(1+∞-∞L 或),(+∞-∞L , 即{}∞<=+∞-∞=+∞-∞⎰+∞∞-dx x f f L L )(|),(),(1,称为可积函数空间.连续函数空间: ),(+∞-∞上全体连续函数构成的集合,记为),(+∞-∞C ,{}上连续在),(|),(+∞-∞=+∞-∞f f C , {}上连续在),(,|),(1+∞-∞'=+∞-∞f f f C 。

定义 若),(+∞-∞∈L f ,那么积分),(ˆ)(21λπλf dx e x f x i =⎰+∞∞--有意义,称为Fourier 变换, )(ˆλf 称为)(x f 的Fourier 变式(或Fourier 变换的象). ⎰+∞∞--==dx e x f f Ff x i λπλλ)(21)(ˆ)(定理 (Fourier 积分定理)若),(),(1+∞-∞⋂+∞-∞∈C L f ,那么我们有),()(ˆ21limx f d e f NNx i N =⎰+-∞→λλπλ公式称为反演公式.左端的积分表示取Cauchy 主值.通常将由积分)()(21x g d e g x i ∨+∞∞-=⎰λλπλ所定义的变换称为Fourier 逆变换.因此亦可写成()f f =∨ˆ即一个属于),(),(1+∞-∞⋂+∞-∞C L 的函数作了一次Fourier 变换以后,再接着作一次Fourier 逆变换,就回到这个函数本身.在应用科学中经常把)(ˆλf 称为)(x f 的频谱.Fourier 变换的重要性亦远远超出求解偏微分方程的范围,它在其它应用科学中,如信息论,无线电技术等学科中都有着极为广阔的应用.它是近代科学技术中得到广泛应用的重要数学工具.定理的证明在经典书中都能查到(如姜礼尚,陈亚浙,<<数学物理方程讲义>>)定理 设),(+∞-∞∈L f ,⎰+∞∞--=dx e x f fx i λπλ)(21)(ˆ,则)(ˆλf 是有界连续函数,且 .0)(ˆlim =∞→λλf在运用Fourier 变换求解定解问题以前,我们先来介绍一些Fourier 变换的性质.Fourier 变换的性质: 1.(线性性质) 若.2,1,),,(=∈+∞-∞∈j C L f j j α则(),ˆˆ22112211f f f f αααα+=+∧2.(微商性质)若),,(),()(),(+∞-∞⋂+∞-∞∈'L C x f x f 则.ˆf i dx df λ=⎪⎭⎫⎝⎛∧证明 由假设),,(),()(),(+∞-∞⋂+∞-∞∈'L C x f x f 故0)(lim =∞→x f x ,事实上由),()(+∞-∞∈'C x f ,则dt t f f x f x⎰'+=0)()0()(,因为),()(+∞-∞∈'L x f ,故有⎰±∞±±∞→'+==0)()0()(lim dt t f f a x f x又因),()(+∞-∞∈L x f ,必有0=±a .由0)(lim =∞→x f x ,利用分部积分公式⎰∞+∞--∧'=⎪⎭⎫⎝⎛dx e x f dx df x i λπ)(21⎥⎦⎤⎢⎣⎡--=⎰+∞∞--∞+∞--dx e i x f e x f x i xi ))(()(21λλλπ).(ˆ)(2λλπλλf i dx e x f i x i ==⎰+∞∞--附注 这个性质说明微商运算经Fourier 变换转化为乘积运算,因此利用Fourier 变换可把常系数微分方程简化为函数方程,或把偏微分方程简化为常微分方程,正是由于这个原因,Fourier 变换成为解微分方程的重要工具. 3.(乘多项式)若),()(),(+∞-∞∈L x xf x f 则有[])(ˆ)(λλf d d ix xf =∧. 证明 由于),()(),(+∞-∞∈L x xf x f ,故)(ˆλf 是λ的连续可微函数,且有 []∧+∞∞---=-=⎰)()())((21)(ˆx xf i dx e ix x f f d d x i λπλλ附注 作为性质2,3的推论,若),,(),()(),(),()(+∞-∞⋂+∞-∞∈'L C x fx f x f m Λ则 ())1(,)(ˆ≥=⎪⎪⎭⎫ ⎝⎛∧m f i dx fd m m m λλ 若),,()(),(),(+∞-∞∈L x f x x xf x f mΛ则[])1(,)(ˆ)(≥=∧m f d d i x f x mm mmλλ4.(平移性质)若),,()(+∞-∞∈L x f 则[])1()(ˆ)(≥=--∧m f e a x f a i λλ证明[])(ˆ)(21)(21)()(λππλλλf e dy e y f ya x dx e a x f a x f a i a y i x i -∞+∞-+-+∞∞--∧==--=-⎰⎰5.(伸缩性质)若),,()(+∞-∞∈L x f 则[])0(,)(ˆ1)(≠=∧k kf k kx f λ证明 无妨设,0<k 由定义[])(ˆ11)(1211)(21)(21)(kf k dy ke yf k dy k ey f y kx dxe kxf kx f kyi kyi x i λπππλλλ=⎪⎭⎫⎝⎛-===⎰⎰⎰∞+∞--∞-∞+-+∞∞--∧6.(对称性质)若),,()(+∞-∞∈L x f 则 ,)(ˆ)(λλ-=∨f f 证明⎰+∞∞-∨=dx e x f f x i λπλ)(21)(⎰+∞∞---=dxe xf x i )()(21λπ.)(ˆλ-=f7.(卷积定理)若),,()(),(+∞-∞∈L x g x f ⎰+∞∞--=*dt t g t x f x g f )()()(称为f 与g 的卷积,则),()(+∞-∞∈*L x g f ,且有()).(ˆ)(ˆ2)(λλπλgf g f =*∧证明 由积分交换次序定理⎰⎰⎰+∞∞-+∞∞-+∞∞--=*dx dt t g t x f dx x g f |)()(|)(⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-≤dt dx t g t x f )()(⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-=dt dx t x f t g )()(⎰⎰+∞∞-+∞∞-⋅=dt t g dx x f )()( 故),()(+∞-∞∈*L x g f ,又由积分交换次序定理()()()().ˆˆ2)(21)(212)()(21)()(21)(λλππππππλλλλλλgf dy e y f dt e tg dx e t x f dt e t g dt t g t x f dx e g f yi t i t x i ti xi =⋅⋅=-=-=*⎰⎰⎰⎰⎰⎰∞+∞-∞+∞---∞+∞-∞+∞----+∞∞-+∞∞--∧下面作为例子,我们根据Fourier 变换的定义与性质求一些具体函数的Fourier 变换.例1 设 ⎪⎩⎪⎨⎧>≤=Ax A x x f ,0,1)(1,(其中常数0>A ).求)(ˆ1λf .解 由定义⎰⎰----==AAx i AAx i dx e dx e x f f λλππλ21)(21)(ˆ11AAx i e i --⎪⎭⎫ ⎝⎛-=λλπ121λλπA sin 2=. 例2 设⎩⎨⎧<≥=-0,00,)(2x x e x f x , 求)(ˆ2λf . ⎰+∞--=221)(ˆdx ee f xi x λπλ⎰+∞+-=)1(21dx e x i λπ∞++-⎪⎭⎫ ⎝⎛+-=0)1(1121x i e i λλπλπi +=1121.例3 设,)(3xex f -=求)(ˆ3λf⎰+∞∞---=dx e ef x i xλπλ21)(ˆ3⎥⎦⎤⎢⎣⎡+=⎰⎰∞--+∞+-0)1(0)1(21dx e dx e xi x i λλπ ⎪⎭⎫⎝⎛-++=λλπi i 11112121221λπ+=. 例4 设,)(24x e x f -=求)(ˆ4λf⎰+∞∞---=dx eef xi x λπλ221)(ˆ4⎰∞+∞---'⎪⎭⎫ ⎝⎛-=dx e i ex i x λλπ1212⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=⎰∞+∞---∞+∞---dx e xe i e e i x i x x x i λλλλπ222121[]∧-=22x xe iλ)(ˆ24λλλf d d -= , 上面最后一个等式应用了性质3. 因为)(ˆ4λf 作为λ的函数适合下面常微分方程初值问题:⎪⎪⎩⎪⎪⎨⎧==-=⎰∞+∞--2121)0(ˆ,)(ˆ2)(ˆ2444dx e f f d f d x πλλλλ, 解之得44221)(ˆλλ-=ef .例5 设,)(25Ax e x f -=(0>A ),求)(ˆ5λf .由性质5()()AeA A f A x A f x f f 44455221)(ˆ1)()()(ˆλλλ-∧∧====.例6 ),()(4622Bx f eex f B x Bx ===⎪⎪⎭⎫ ⎝⎛--(0>B )()446622)/1(ˆ/11()(ˆλλλB eB Bf Bx f f -∨===.()()⎰+∞∞-∨*=*λλπλd e g f x g f xi )(21)( ⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-=λλπλd e dy y g y f x i )()(21dy d e y g y f x i ⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-=λλπλ)()(21dy d e y f e y g xy i iyx ⎰⎰+∞∞-+∞∞--⎪⎭⎫ ⎝⎛-=λλπλ)()()(21 )()(2x g x f ∨∨=π,()()g f gfg f ⋅==⎪⎪⎭⎫ ⎝⎛*∨∨∨∧∧ˆˆ22121πππ,于是()∧∧∧*=⋅g f g f π21,因为()gf g f ˆˆ2⋅=*∧π, 所以()()[]g f g f g f *=*=⋅∨∧∨ππ2121ˆˆ.最后我们简单地介绍一些有关多维Fourier 变换的基本知识定义 设),(),,,()(21nn R L x x x f x f ∈=Λ那么积分())(ˆ)(21λπλf dx e x f nRx i n=⎰⋅-,有意义,称为)(x f 的Fourier 变换,)(ˆλf 称为)(x f 的Fourier 变式.定理(反演公式)若)()()(1nn R L R C x f ⋂∈,则有())()(ˆ21limx f d e fNx i nN =⎰≤⋅∞→λλλλπ. ()⎰⋅∨=nRx i nd e g x g λλπλ)(21)(称为)(λg 的Fourier 逆变换.定理表明()()f f f f =∧∨∨=,ˆ容易证明关于一维Fourier 变换的性质1—7对于多维Fourier 变换依然成立.根据上面Fourier 变换的定义,我们还有下面的结论: 8. 若),()()()(2211n n x f x f x f x f Λ=其中),,()(+∞-∞∈L x f i i 则有)(ˆ)(ˆ1ii ni f f λλ=∏= () 利用这一性质,我们可求出函数221)(i Ax ni xA e ex f -=-∏==的Fourier 变式.事实上()AAx i i eAe42221λ-∧-=,()()AnAni Ax ni Ax ni eAe Ae ef i ii 4411122222121)(ˆλλλ--=∧-=∧-==∏=∏=⎪⎭⎫ ⎝⎛∏=.Poisson 公式在这一小节中我们应用Fourier 变换解初值问题⎪⎩⎪⎨⎧+∞<<∞-=>+∞<<∞-=∂∂-∂∂x x x u t x t x f x u a tu ),()0,(0,),,(222ϕ ()在方程()两边关于变量x 作Fourier 变换,⎰+∞∞--=dx e t x u t ux i λπλ),(21),(ˆ ,利用性质1和性质2,得到⎪⎩⎪⎨⎧==+=),(ˆˆ),,(ˆˆˆ022λϕλλt u t f ua dt u d 其中 ⎰+∞∞--=dx et x u t uxi λπλ),(21),(ˆ,⎰+∞∞--=dx e x x i λϕπλϕ)(21)(ˆ[]∧=),(),(ˆt x f t f λ.解之得⎰---+=t t a t a d e f e t u 0)(2222),(ˆˆ),(ˆττλϕλτλλ,现在对上式两边求反演,由反演公式,得()()⎰∨--∨-+=tt a ta d e f e t x u 0)(2222),(ˆˆ),(ττλϕτλλ ()由(),21422AAx e Aeiλ-∧-=取t a A 241=则ta x t a e ta e 2222241211λ-∧-=⎪⎪⎭⎫ ⎝⎛, 即t a x t a ee t a 22224121λ-∧-=⎪⎪⎭⎫ ⎝⎛, 令224121),(x ta eta t x g -=,[]t a e t x g 22),(λ-∧=,从而有()()g g e ta *21ˆˆˆ22ϕπϕϕλ==∨∨- ⎰+∞∞--=ξξξϕπd x g )()(21⎰∞+∞---=ξξϕπξd t ata x 224)()(21 ()同理我们有()()g f t g f ef t a *21),(ˆ),(ˆ),(ˆ)(22πτλτλτλτλ=-=∨∨-- ⎰∞+∞-----=ξτξτπτξd e f t a t a x )(4)(22),()(21()于是得⎰⎰⎰∞+∞----∞+∞----+=ξτπτξτξξϕπτξξd et a f d d t at x u t a x t ta x )(4)(04)(2222)(21),()(21),(在一定条件下,可以证明上述表达式的函数是方程问题的解. 定理 若),()(+∞-∞∈C x ϕ,且)(x ϕ有界,则⎰∞+∞---=ξξϕπξd et at x u ta x 224)()(21),(在),0(+∞⨯R 上连续,且在),0(+∞⨯R 上具有任意阶的连续偏导数,),(t x u 是问题⎪⎩⎪⎨⎧+∞<<∞-=>+∞<<∞-=∂∂-∂∂x x x u t x xu a t u ),()0,(0,,0222ϕ的解,即),(t x u 满足方程和)(),(lim 00x t x u x x t ϕ=→→+. ⎰∞+∞---=ξξϕπξd et at x u ta x 224)()(21),(⎰+∞∞--+-=ηηϕπξηηd e t a x ta x 2)2(12/)(特别说明:当)(x ϕ连续,)(x ϕ是某些无界函数时,),(t x u 的表达式亦是解()(x ϕ无界时,也可以是解).例1 求解⎪⎩⎪⎨⎧=∂∂=∂∂=xux u at u t sin ,0222解 1、直接观察x e t x u t a sin ),(2-=是解. 2、⎰+∞∞--+=ηηϕπηd e t a x t x u 2)2(1),(⎰+∞∞--+=ηηπηd e t a x 2)2sin(1()⎰+∞∞---+=ηηηπηηd e t a x e t ax 222sin cos 2cos sin 1⎰+∞∞--=ηηπηd et a x 22cos sin 1⎰+∞∞---=ηπηηd e e x t ai 22212sin442212sin t a e x -=442212sin t a e x -=x e t a sin 2-=, ()42221λη-∧-=e e .例2求初值问题⎪⎩⎪⎨⎧=∂∂=∂∂=x ux u at u t cos ,0222的解x e t x u t a cos ),(2-=.例3求初值问题⎪⎩⎪⎨⎧+===1,202x u u a u t xx t 的解. 解1 直接观察t a x t x u 2221),(++= 2. []⎰+∞∞--++=ηηπηd e t a x t x u 21)2(1),(2[]⎰+∞∞--+++=ηηηπηd e t a t ax x 21441222t a x 2221++=从这几个实例上,更直观明显的证明求解公式的正确,对模型方程的正确性,提供保证.⎪⎩⎪⎨⎧++===1cos ,22x x u u a u t xx t 定理 设)(x ϕ在),(+∞-∞上连续且有界,),(t x f ,(,)x f x t 在],0[),(T ⨯+∞-∞上连续且有界,令 ⎰∞+∞---=ξξϕπξd etat x u ta x 224)()(21),(⎰⎰∞+∞-----+ξττξτπτξd e t f d a t a x t )(4)(0221),(21,其中常数0>a ,则有)(),(lim 00,0x t x u t x x ϕ=+→→;(,)u x t 问题⎪⎩⎪⎨⎧+∞<<∞-=>+∞<<∞-=∂∂-∂∂x x x u t x t x f x u a t u ),()0,(0,),,(222ϕ的解。

相关文档
最新文档