平方根优秀课件
合集下载
平方根优质课展示公开课获奖课件省赛课一等奖课件
(1)一思种索正数: 有(1)两个一平种方正根数,它有们几互种为平相方反根数?.
(2) 0旳平方根(是2)0 有.几种平方根? (3)负数没有(平3)方负根数.呢?
练习一:判断正误,若错误请阐明理由
(1)-4旳平方根是-2
(2) 4 没有平方根
(3)1 旳平方根是 1
(×) ( ×) (× )
(4)-1 是 1旳平方根 ( √ )
请你区别:( ɑ ≥0 )
α , α , α分别表达什么意义?
ɑ旳平方根
ɑ旳负平方根
ɑ旳算术平方根
说一说:下列式子表达什么意思?
0.81= 0.9
121= ±11
93 16 4
你懂得它们旳值吗?
练习二:计算
1 64
2 0.36
3
1- 3 4
4 - 52
考考你(一):
(1) 81 旳算术平方根是 ( B ) A、±9 B、9 C、±3 D、3
C、 32 3 D、 81 9
(3)计算: 0.0004 =±0.02
※(4) 16 旳算术平方根是__2_.
作 必做题:作业本(2)第14页 业 爱好题:已知某数旳平方根是x+2和
3x-14,求这个数.
又 32 9 3是也9的平方根
能够合写为:
32 9 9的平方根是 3
∵ (_±__4_)2 = 16 , ∴ 16旳平方根是__±__4_ ∵(_±__0_._7_)2 = 0.49 ,∴ 0.49旳平方根是_±__0_._7 ∵ (__0__)2 = 0 , ∴ 0旳平方根是__0__ -4__没__有___平方根. (填“有”或“没有”)
方根统称为算术平方根.
2.ɑ(ɑ≥0)旳平方根表达为_____α.
(2) 0旳平方根(是2)0 有.几种平方根? (3)负数没有(平3)方负根数.呢?
练习一:判断正误,若错误请阐明理由
(1)-4旳平方根是-2
(2) 4 没有平方根
(3)1 旳平方根是 1
(×) ( ×) (× )
(4)-1 是 1旳平方根 ( √ )
请你区别:( ɑ ≥0 )
α , α , α分别表达什么意义?
ɑ旳平方根
ɑ旳负平方根
ɑ旳算术平方根
说一说:下列式子表达什么意思?
0.81= 0.9
121= ±11
93 16 4
你懂得它们旳值吗?
练习二:计算
1 64
2 0.36
3
1- 3 4
4 - 52
考考你(一):
(1) 81 旳算术平方根是 ( B ) A、±9 B、9 C、±3 D、3
C、 32 3 D、 81 9
(3)计算: 0.0004 =±0.02
※(4) 16 旳算术平方根是__2_.
作 必做题:作业本(2)第14页 业 爱好题:已知某数旳平方根是x+2和
3x-14,求这个数.
又 32 9 3是也9的平方根
能够合写为:
32 9 9的平方根是 3
∵ (_±__4_)2 = 16 , ∴ 16旳平方根是__±__4_ ∵(_±__0_._7_)2 = 0.49 ,∴ 0.49旳平方根是_±__0_._7 ∵ (__0__)2 = 0 , ∴ 0旳平方根是__0__ -4__没__有___平方根. (填“有”或“没有”)
方根统称为算术平方根.
2.ɑ(ɑ≥0)旳平方根表达为_____α.
平方根PPT精品课件
即:x2 a(x 0), x叫做a的算术平方根,
记作:x a
特殊:0的算术平方根是0。记作 :0 0
例1 求下列各数的算术平方根:
(1)100 (2)6449 (3)0.0001
解:(1)因为 102 =100,所以100的算术平方根为10,
即 100 =10。
2
2
(2)因为 7 = 49,所以 49的算术平方根是
A.①③
B.①④
C.②③
D.②④
规律技巧总结
如何分析气压带的成因 (1)由于地面冷热不均,引起大气的膨胀上升, 或收缩下沉,从而导致近地面形成低气压区或高 气压区的原因,称之为热力原因。如赤道低气压 带和极地高气压带。
(1)图甲中字母所表示的纬度,正确的是( B )
A.A为10°N
B.C为30°N
变式训练2:读风带示意图,回答(1)~(2)题。
规律技巧总结
(1)从气压带来看,全球七个气压带是高低 相间分布的,且以赤道为轴南北对称分布。
(2)风带的分布是以赤道为轴南北对称分布 的。
由算术平方根的意义可知
小正方形 的对角线 的长是多 少呢?
x= 2
你知道 2有多大吗?
12 2 22 2 1.41421356
1 2 2
逼 1.42 2 1.52 近 法 1.4 2 1.5
1.412 2 1.422
无限不循环小数
1.41 2 1.42
1.4142 2 1.4152
25
0.81
0
判断: (1)5是25的算术平方根; (2)-6是 36 的算术平方根; (3)0的算术平方根是0; (4)0.01是0.1的算术平方根; (5)-5是-25的算术平方根。
记作:x a
特殊:0的算术平方根是0。记作 :0 0
例1 求下列各数的算术平方根:
(1)100 (2)6449 (3)0.0001
解:(1)因为 102 =100,所以100的算术平方根为10,
即 100 =10。
2
2
(2)因为 7 = 49,所以 49的算术平方根是
A.①③
B.①④
C.②③
D.②④
规律技巧总结
如何分析气压带的成因 (1)由于地面冷热不均,引起大气的膨胀上升, 或收缩下沉,从而导致近地面形成低气压区或高 气压区的原因,称之为热力原因。如赤道低气压 带和极地高气压带。
(1)图甲中字母所表示的纬度,正确的是( B )
A.A为10°N
B.C为30°N
变式训练2:读风带示意图,回答(1)~(2)题。
规律技巧总结
(1)从气压带来看,全球七个气压带是高低 相间分布的,且以赤道为轴南北对称分布。
(2)风带的分布是以赤道为轴南北对称分布 的。
由算术平方根的意义可知
小正方形 的对角线 的长是多 少呢?
x= 2
你知道 2有多大吗?
12 2 22 2 1.41421356
1 2 2
逼 1.42 2 1.52 近 法 1.4 2 1.5
1.412 2 1.422
无限不循环小数
1.41 2 1.42
1.4142 2 1.4152
25
0.81
0
判断: (1)5是25的算术平方根; (2)-6是 36 的算术平方根; (3)0的算术平方根是0; (4)0.01是0.1的算术平方根; (5)-5是-25的算术平方根。
(人教版)平方根 优秀课件1
代数式的值.
解: ∵ x 1 ≥0, y 1 ≥0, x1 y1=0, ∴x-1=0,y+1=0,∴x=1,y=-1. ∴x2 015+y2 016=12 015+(-1)2 016=2.
知3-讲
总 结
算术平方根和绝对值一样,都是非负数,当 几个非负数的和等于0时,其中每一个非负数都
的面积是2.
因为正方形的面积是边长乘以边长,所以a2=2,那
么a等于多少呢?我们也就是找一个数,是它的平方 等于2,由于正方形的边长是正数,所以就是找一个 正数,使这个正数的平方等于2,我们把a叫做2的算 术平方根,如果一个正数x的平方等于a,即x2=a,那 么这个正数x就叫做a的算术平方根.
知1-导
知识点
1
算术平方根的定义
问题1:正数3的平方等于9,若x2=9,则正数x=____.
正数4的平方等于16,若x2=16,则正数x=____. 说说6和36这两个数又怎样的关系呢? 问题2:(1) 0的平方是___,如果x2=0,那么x=____. (2) 0的算术平方根是___.
知1-导
问题3:学校要举行美术作品比赛,小鸥想裁出一块
知3-练
3 设a-2是一个数的算术平方根,那么(
A.a≥0 C.a>2 B.a>0 D.a≥2
)
通过这节课的学习,我们要掌握以下的内容:
(1)算术平方根的概念,式子 a 中的双重非负性: 一是a≥0,二是 a ≥0. (2)算术平方根的性质:一个正数的算术平方根是一个 正数;0的算术平方根是0;负数没有算术平方根.
8 ,即 6 4 =______. 8 ______
0.5 2=0.25,所以0.25的算术平方根是______ 0.5 , (2)因为_____ 0.5 即 0 .2 5 =______. 0 2=0,所以0的算术平方根是______ 0 (3)因为_____ ,
《平方根》课件
平方根的性质
唯一性
对于给定的非负实数a,其平方根是唯一的。
非负性
对于给定的非负实数a,其平方根是非负的。
反身性
对于任何实数a,有a^2=(√a)^2。
平方根的符号
√
这是平方根的符号,表示求一个数的 平方根。
±
这个符号表示一个数有两个平方根, 一个是正数,一个是负数。例如,对 于-4,其平方根是±2i。
03
平方根的应用
平方根在几何中的应用
勾股定理
在直角三角形中,直角边的平方和等于斜边的平方,即 $a^2 + b^2 = c^2$,其中 $c$ 是斜边长度。
圆的面积和周长
在圆中,半径的平方等于圆的面积和周长的平方,即 $r^2 = \pi \times r^2$。
平方根在代数中的应用
代数方程
在解代数方程时,平方根可以用来求 解方程的根,例如 $x^2 - 4 = 0$ 的 解为 $x = \pm 2$。
04
平方根的求解方法
直接开平方法
总结词
直接开平方法是求解平方根最常用的方 法之一。
VS
详细描述
通过将被开方数移到等式的右边,然后对 方程进行开平,即可求得平方根。
因式分解法
总结词
因式分解法是利用平方差公式或完全平方公式将被开方数进行因式分解,从而简化求解 过程的方法。
详细描述
首先将被开方数进行因式分解,然后将因式代入到平方根的定义中,即可求得平方根。
平方根的乘法运算
总结词
乘法分配律
详细描述
在平方根的乘法运算中,可以利用乘法分配律进行计算。例如,对于$\sqrt{2} \times \sqrt{2}$,结 果为$2$。
平方根的除法运算
人教版七年级下册数学《平方根》实数PPT教学课件
想一想
1. 121的平方根是什么? 11
2. 0的平方根是什么?
0
3.
16 49
的平方根是什么?
4 7
4. -9有没有平方根?为什么?
问题:(1)正数有几个平方根? (2)0有几个平方根? (3)负数呢?
没有,因为一个数的平方不可能是负数.
归纳总结
正数有2个平方根,它们互为相反数; 0的平方根是0; 负数没有平方根。
方根是平方根的一种. 2.只有非负数才有平方根和算术平方根. 3. 0的平方根是0,算术平方根也是0. 区别:1.个数不同:一个正数有两个平方根,但只有
一个算术平方根.
2.表示法不同:平方根表示为 a ,而算术平
方根表示为 a .
随堂练习
1.“± a ”的意义是( C ) A.a的平方根 B.a的算术平方根 C.当a≥0时,± a 是a的平方根 D.以上均不正确
开平方及相关运算
例 a的一个平方根是3,则另一个平方根是 -3 , a= 9 。
练一练
1.分别求下列各数的平方根:
(1)36 ; (2)295 ;
(3)1.21 .
2. 若一个数的平方等于5,则这个数等于 ___5___.
3.下列说法正确的是__①__④__⑤___ ① -3是9的平方根; ②25的平方根是5; ③ -36的平方根是-6; ④平方根等于0的数是0; ⑤64的算术平方根是8.
4.下列说法不正确的是___B___ A.0的平方根是0 B. 22 的平方根是2 C.非负数的平方根互为相反数 D.一个正数的算术平方根一定大于这个数的相反数
1.a的一个平方根是3,则另一个平方根是 -3 ,a= 9 . 2.81的平方根是___9_, 81 的算术平方根是__3__ . 3.3a-2和2a-3是一个正数的两个平方根,则这两个平方根 是__1_和_-_1_,这个数是_1__.
《平方根》PPT优秀教学课件3
0的算术平方根是 0 4、平方运算与开平方运算互为逆运算.
例2 求下列各数的算术平方根: 3是前面学习过的9的算术平方根,
例2 求下列各数的算术平方根:ቤተ መጻሕፍቲ ባይዱ
负数 没有算术平方根 只有非负数才平方根和算术平方根
读作“正、负根号a ”.
即
.
结论: 算术平方根的性质
正数有一个算术平方根, 有两个平方根。
0 有一个算术平方根—— 0 , 有一个平方根——0
(4) 62
3.例题解析
例1 求下列各式的值:
(1) 4 ( 2 ) 49 (3) (11)2 81
(4) 62
解:(3)∵ 112 (11)2
(11)2 11
3.例题解析
例1 求下列各式的值:
(1) 4 ( 2 ) 49 (3) (11)2 81
(4) 62
解:(4)∵ 62 62
62 6 a2 a
解:(1)∵
4.归纳数的平方根的特征
正数a的平方根有两个.
解:(负4)∵ 数没, 有平方根.
为什么?
自我检测:相信你是最棒的!
判断下列说法是否正确:
(1)-9的平方根是-3;
(× )
(2)49的平方根是7 ;
(× )
(3)(-2)2的平方根是±2 ;(√ )
(4)-1 是 1的平方根;
(√ )
(5) 16 的平方根是 ±4,16的算术平方根是4.(× )
(1)10; (2) 16 ; (3)0.49; 225
(4) ( 3) 2
(5) 9
解:(3)∵ (0.7)2 0.49
∴ 0.49 的平方根是 0.7
例2 . 求下列各数的平方根:
七年级数学下册教学课件《算术平方根》
(2) 9 3; (3) 22 2. 25 5
3. (1)若一个数的算术平方根是 13 ,则这个数 是___1_3___.
4
(2)① 16 =___4__, 16的算术平方根是___2___;
② ( - 5)2 =___5___,( - 5)2 的算术平方根是 ___5___,(-5)2的算术平方根是____5___.
概念
提取 ( 0 )2 = 0 ,规定:0 的算术平方根是 0.
一般地,如果一个正数 x 的平方等于 a,
即 x2 = a,那么这个正数 x 叫做 a 的算术平
方根.
(非负数 x )2 = a
非负数 x 是非负数 a 的算术平方根
那么 1,9,16,36,4 的算术平方根是?
25
概念 提取
a 的算术平方根记为 a ,读作“根 号 a”,a 叫做被开方数.
(1)根据计算结果,回答 a2 一定等于 a 吗?你
发现其中的规律了吗?请你用自己的语言描述出来. (2)利用你总结的规律,计算:(3.14-)2 .
解:(1) a2 不一定等于a, a2 a .
(2)原式 = |3.14-π| = π-3.14 .
课堂总结
一般地,如果一个正数 x 的平方等于 a, 即 x2 = a,那么这个正数 x 叫做 a 的算术平
从
100 10
从
大 到
49 7 64 8
大 到
小
小
0.0001 0.1
被开方数越大,对应的算术平方根也越大.
若a b 0,则 a __>___ b.
对应训练
【选自教材P41练习 第1题】
1. 求下列各数的算术平方根: (1)0.0025;(2)81;(3)32.
3. (1)若一个数的算术平方根是 13 ,则这个数 是___1_3___.
4
(2)① 16 =___4__, 16的算术平方根是___2___;
② ( - 5)2 =___5___,( - 5)2 的算术平方根是 ___5___,(-5)2的算术平方根是____5___.
概念
提取 ( 0 )2 = 0 ,规定:0 的算术平方根是 0.
一般地,如果一个正数 x 的平方等于 a,
即 x2 = a,那么这个正数 x 叫做 a 的算术平
方根.
(非负数 x )2 = a
非负数 x 是非负数 a 的算术平方根
那么 1,9,16,36,4 的算术平方根是?
25
概念 提取
a 的算术平方根记为 a ,读作“根 号 a”,a 叫做被开方数.
(1)根据计算结果,回答 a2 一定等于 a 吗?你
发现其中的规律了吗?请你用自己的语言描述出来. (2)利用你总结的规律,计算:(3.14-)2 .
解:(1) a2 不一定等于a, a2 a .
(2)原式 = |3.14-π| = π-3.14 .
课堂总结
一般地,如果一个正数 x 的平方等于 a, 即 x2 = a,那么这个正数 x 叫做 a 的算术平
从
100 10
从
大 到
49 7 64 8
大 到
小
小
0.0001 0.1
被开方数越大,对应的算术平方根也越大.
若a b 0,则 a __>___ b.
对应训练
【选自教材P41练习 第1题】
1. 求下列各数的算术平方根: (1)0.0025;(2)81;(3)32.
人教版七年级数学下册第六章《 平方根》优质课件
• 49 = 7 , 6=4 8
• 81 = 9 , 10=0 10
• 0 =0 , A
• 2、 算求平方根:一般地,如果一个正数的平方等于A,那
么这个正数叫做A的算术平方根,所以说算术平方根只是平 方根当中的正根。
猜想
• ( )²= -1 • ( )²= -4 • ( )²= -9 • 括号里有这样的数字吗? • ± 1 =( ) • ± 4 =( ) • ± 9 =( ) • 括号里有这样的数字吗? • 负数没有平方根
课后作业
• P76习题7,8
• 在教师手里操着幼年人的命运,便操着民族和人类的命运。2022/5/72022/5/7May 7, 2022 人自身有一种力量,用许多方式按照本人意愿控制和影响这种力量,一旦他这样做,就会影响到对他的教育和对他发生作用的环境。
2022/5/72022/5/7 • 16、好奇是儿童的原始本性,感知会使儿童心灵升华,为其为了探究事物藏下本源。2022年5月2022/5/72022/5/72022/5/75/7/2022 17、一个人所受的教育超过了自己的智力,这样的人才有学问。
• ± 121 = ±11 ; ± 144= ±12 • ± 169 = ±13 ; ± 196 = ±14 • ± 225 = ±15 ; ± 256 = ±16 • ± 289 = ±17 ; ± 324 = ±18 • ± 361 = ±19 ; ± 400 = ±20
巩固练习
• P69练习1,2 • P75练习1,2 • P75习题1,2,3,4
平方
• (±1)²=1; • (±3)²=9; • (±5)²=25 ; • (±7)²=49 ; • (±9)²=81; • (±0)²=0
平方根优秀课件
第六章 实数 6.1.3 平方根 七年级数学·人教版
学习目标:
1.了解平方根的概念,并理解平方与开平方的关系. 2.能利用开平方与平方互为逆运算求某些非负数的平方根.
重点难点:
1.掌握平方根的概念,并理解开方与开平方的关系. 2.会求非负数的平方根.
情景导入
思考:如果一个数的平方等于 9,这个数是多少? 从前面我们知道,这个数可以是 3.除了 3 以外,还有没
2.表示法不同:平方根表示为: a,而算术平方
根表示为 a .
例3 求下列各式的值:
(1)
36;
(2)−
0.81; (3)±
49 9
.
解:(1) 36 6 ;
(2) 0.81 0.9 ;
(3) 49 7 .
93
针对练习
1.9的平方根是( B )
A.3
B.±3
C.﹣3
D.9
2.若一个数的平方等于5,则这个数等于 ____5__ .
开平方与平方的对比填空
运算 适用 运算结 符号 范围 果名称
性质
开 方
正 平 正数有 2 个平方根,它们是互为相反数,
数 与 零
方 根
零的平方根是 0 , 负数 没有平方根 .
正数的平方是 正 数;
平 方
a2
任 何 数
幂
零的平方是 0 ; 负数的平方是 正 数.
联系: 区别:
平方根与算术平方根的联系与区别: 1.包含关系:平方根包含算术平方根,算术平方 根是平方根的一种. 2.只有非负数才有平方根和算术平方根. 3.0的平方根是0,算术平方根也是0. 1.个数不同:一个正数有两个平方根,但只有一 个算术平方根.
2.下列说法正确的有( A )
学习目标:
1.了解平方根的概念,并理解平方与开平方的关系. 2.能利用开平方与平方互为逆运算求某些非负数的平方根.
重点难点:
1.掌握平方根的概念,并理解开方与开平方的关系. 2.会求非负数的平方根.
情景导入
思考:如果一个数的平方等于 9,这个数是多少? 从前面我们知道,这个数可以是 3.除了 3 以外,还有没
2.表示法不同:平方根表示为: a,而算术平方
根表示为 a .
例3 求下列各式的值:
(1)
36;
(2)−
0.81; (3)±
49 9
.
解:(1) 36 6 ;
(2) 0.81 0.9 ;
(3) 49 7 .
93
针对练习
1.9的平方根是( B )
A.3
B.±3
C.﹣3
D.9
2.若一个数的平方等于5,则这个数等于 ____5__ .
开平方与平方的对比填空
运算 适用 运算结 符号 范围 果名称
性质
开 方
正 平 正数有 2 个平方根,它们是互为相反数,
数 与 零
方 根
零的平方根是 0 , 负数 没有平方根 .
正数的平方是 正 数;
平 方
a2
任 何 数
幂
零的平方是 0 ; 负数的平方是 正 数.
联系: 区别:
平方根与算术平方根的联系与区别: 1.包含关系:平方根包含算术平方根,算术平方 根是平方根的一种. 2.只有非负数才有平方根和算术平方根. 3.0的平方根是0,算术平方根也是0. 1.个数不同:一个正数有两个平方根,但只有一 个算术平方根.
2.下列说法正确的有( A )
平方根PPT市公开课一等奖省优质课获奖课件
t 4 2(秒) 答:铁球到达地面需要2秒
第7页
本节课你学习了哪些知识?
1,什么叫算术平方根。 2,什么叫平方根。 3,在什么情况下二次根式有意义。
第8页
1、81算术平方根是 9 ;
81算术平方根是 3 。
2、算术平方根是3数是 3
。
3、( 9)2算术平方根等于
3。
第9页
4、以下各式中x满足什么条件
第4页
以下各式中哪些有意义? 哪些无意义?为何?
5, 3, (3)2
答:有意义是
5 32
无意义是
3
第5页
第6页
例2 自由下落物体高度h(米) 与下落时间t(秒)关系为 h=4.9t2.有一铁球从19.6 米 高建筑物上自由下落,抵达 地面需要多长时间 ?
解 : 将h 19.6代入公式h 4.9t 2,得: 19.6 4.9t 2 t2 4
若 3x 有意义,则x( ≤0 )
若 2 x 有意义,则x(≤2 )
若 若
1
2x
x
2
2
有意义,则x( 全体实数)
x 有意义,则x( ≤2,≥0)
若 x - 2 2 x 有意义,则x( =2 )
第10页
5、若 x 3 4 y2 3z 0,
求 x 2y yz 值
第11页
一个正方形面积变为原来4倍,其 边长变为原来多少倍?
一个正数x平方等于a,即x2=a,这个正数x叫做a 算术平方根
算术平方根符号为: a
我们要求0算术平方根是0,即:
0 0
第2页
以下式子表示什么意思?你能求 出它们值吗?( Nhomakorabea) 64
(2) 0.81
(3)2 1
第7页
本节课你学习了哪些知识?
1,什么叫算术平方根。 2,什么叫平方根。 3,在什么情况下二次根式有意义。
第8页
1、81算术平方根是 9 ;
81算术平方根是 3 。
2、算术平方根是3数是 3
。
3、( 9)2算术平方根等于
3。
第9页
4、以下各式中x满足什么条件
第4页
以下各式中哪些有意义? 哪些无意义?为何?
5, 3, (3)2
答:有意义是
5 32
无意义是
3
第5页
第6页
例2 自由下落物体高度h(米) 与下落时间t(秒)关系为 h=4.9t2.有一铁球从19.6 米 高建筑物上自由下落,抵达 地面需要多长时间 ?
解 : 将h 19.6代入公式h 4.9t 2,得: 19.6 4.9t 2 t2 4
若 3x 有意义,则x( ≤0 )
若 2 x 有意义,则x(≤2 )
若 若
1
2x
x
2
2
有意义,则x( 全体实数)
x 有意义,则x( ≤2,≥0)
若 x - 2 2 x 有意义,则x( =2 )
第10页
5、若 x 3 4 y2 3z 0,
求 x 2y yz 值
第11页
一个正方形面积变为原来4倍,其 边长变为原来多少倍?
一个正数x平方等于a,即x2=a,这个正数x叫做a 算术平方根
算术平方根符号为: a
我们要求0算术平方根是0,即:
0 0
第2页
以下式子表示什么意思?你能求 出它们值吗?( Nhomakorabea) 64
(2) 0.81
(3)2 1
人教版七年级数学下册《平方根》实数PPT优质课件
第六章 实数
平方根
第1课时
学习目标
1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平
方根的非负性;
2.了解开方与乘方互为逆运算,会求某些非负数的算术平方根;
新课导入
学校要举行美术作品比赛,小明很高兴,他想裁出一块面积为
25 dm2的正方形画布,画上自己的得意之作参加比赛,这块正
是0.002,即 0.000004 0.002.
随堂练习
6.用大小完全相同的240块正方形地板砖,铺一间面积为60 m2的会
议室的地面,每块地板砖的边长是多少?
解:设每块地板砖的边长为x m.由题意得
1
240 x 2 60, x 2 .
4
1 1
x
0.5
4 2
故每块地板砖的边长是0.5 m.
方形画布的边长应取多少?你能帮小明算一算吗?
5 dm
因为 52=25
合作探究
新知一
什么是算术平方根
完成表1:
正方形的边长/dm
正方形的面积/dm2
1
1
3
9
6
2
5
36
4
25
4
16
你能从表1中各运算发现什么共同点吗
已知一个正数,求这个正数的平方
合作探究
完成表2:
正方形的面积/dm2
正方形的边长/dm
➢ 用计算器求解:
一般情况下按键顺序:
a
=
课堂总结
例1 估算 19 的值 ( D )
A.在1和2之间
B.在2和3之间
C.在3和4之间
D.在4和5之间
解析:因为42<19<52,所以4< 19 <5.
平方根
第1课时
学习目标
1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平
方根的非负性;
2.了解开方与乘方互为逆运算,会求某些非负数的算术平方根;
新课导入
学校要举行美术作品比赛,小明很高兴,他想裁出一块面积为
25 dm2的正方形画布,画上自己的得意之作参加比赛,这块正
是0.002,即 0.000004 0.002.
随堂练习
6.用大小完全相同的240块正方形地板砖,铺一间面积为60 m2的会
议室的地面,每块地板砖的边长是多少?
解:设每块地板砖的边长为x m.由题意得
1
240 x 2 60, x 2 .
4
1 1
x
0.5
4 2
故每块地板砖的边长是0.5 m.
方形画布的边长应取多少?你能帮小明算一算吗?
5 dm
因为 52=25
合作探究
新知一
什么是算术平方根
完成表1:
正方形的边长/dm
正方形的面积/dm2
1
1
3
9
6
2
5
36
4
25
4
16
你能从表1中各运算发现什么共同点吗
已知一个正数,求这个正数的平方
合作探究
完成表2:
正方形的面积/dm2
正方形的边长/dm
➢ 用计算器求解:
一般情况下按键顺序:
a
=
课堂总结
例1 估算 19 的值 ( D )
A.在1和2之间
B.在2和3之间
C.在3和4之间
D.在4和5之间
解析:因为42<19<52,所以4< 19 <5.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若x2=a(x≥0),那么x叫做a的算术平方根。
记作:x= a
一般地,如果一个数的平方等于a, 那么这个数叫做a的平方根或二次方根。
即:若x2=a,那么x叫做a的平方根。 记作:x= a
求一个数a的平方根的运算,叫做开平方。
平方
+1 -1
1
+2 -2
4
+3 -3
9
开平方
1
+1 -1
4
+2 -2
2
3
作业: 书本p167 3,4,8,10
课后思考题:
练习:1. (m 1)2 3,则m 4或 -2 。 2.若 (a 2)2 2 a,则a的取值范围是a ≤ 2 。
(2)求( 4)2,( 9)2,( 25)2,( 49)2, ( 0)2的值,对于任意非负数a,( a)2 ?
若 (x 3)2 x 3 0, 则x的 取 值 范 围 是 X ≤0 。
x1
x2
(9) x 2 4 2x
已知a、b满足:a 5 2 10 2a b 4,求a、b的值。
已知b a 6 3 18 3a 3,求a b的平方根。
探究: (1) 求 22,( 3)2,52,( 6)2,72,
02的 值 , 对 于 任 意 数a,a2 ?
计算 各式 中x的值 : (1)9x2 256 0 (2) x2 100 0 (3)4(2x 1)2 25 0
补充练习; 1. 16的算术平方根是 2 ; 52 122 1 3 。 2.若 2x 5 4,则(2x 5)2 25 6 。 3.当a ≥ 0 时 ,9a2的算术平方根为3a。
9
+3 -3
例:求下列各数 的平方根, (1)100 (2)9 (3) ( 7)2
16 (4) 132 122 (5)( 25)2
36的平方根是 ± 6 ; 4的平方根是 2 ; ( 5)2的平方根是 5 ; 9的算术平方根是 3 ; 16的算术平方根的平方根是 ± 2 。
4. 5 a b的 数 。
5.已知(x1)2 y 2 z 3 0 求x y z的算术平方根。
思考:
1.下列各式哪些有意义,哪些没
有意义?
(1)- 4
(3) 32
(2) 4
(4)
正数有2个平方根,它们互为相反数; 0的平方根是0; 负数没有平方根。
a的一个平方根是3,则另一个平方根 是 -3 ,a= 9 。
3a-22和2a-3是m的两个平方根, 试求m的值。
例:x为何值时,下列各式有意义?
(1) 2x (2) x (3) x 1 (4) 1 x x
(5) x (6) x2 (7) x2 1 (8) 1
记作:x= a
一般地,如果一个数的平方等于a, 那么这个数叫做a的平方根或二次方根。
即:若x2=a,那么x叫做a的平方根。 记作:x= a
求一个数a的平方根的运算,叫做开平方。
平方
+1 -1
1
+2 -2
4
+3 -3
9
开平方
1
+1 -1
4
+2 -2
2
3
作业: 书本p167 3,4,8,10
课后思考题:
练习:1. (m 1)2 3,则m 4或 -2 。 2.若 (a 2)2 2 a,则a的取值范围是a ≤ 2 。
(2)求( 4)2,( 9)2,( 25)2,( 49)2, ( 0)2的值,对于任意非负数a,( a)2 ?
若 (x 3)2 x 3 0, 则x的 取 值 范 围 是 X ≤0 。
x1
x2
(9) x 2 4 2x
已知a、b满足:a 5 2 10 2a b 4,求a、b的值。
已知b a 6 3 18 3a 3,求a b的平方根。
探究: (1) 求 22,( 3)2,52,( 6)2,72,
02的 值 , 对 于 任 意 数a,a2 ?
计算 各式 中x的值 : (1)9x2 256 0 (2) x2 100 0 (3)4(2x 1)2 25 0
补充练习; 1. 16的算术平方根是 2 ; 52 122 1 3 。 2.若 2x 5 4,则(2x 5)2 25 6 。 3.当a ≥ 0 时 ,9a2的算术平方根为3a。
9
+3 -3
例:求下列各数 的平方根, (1)100 (2)9 (3) ( 7)2
16 (4) 132 122 (5)( 25)2
36的平方根是 ± 6 ; 4的平方根是 2 ; ( 5)2的平方根是 5 ; 9的算术平方根是 3 ; 16的算术平方根的平方根是 ± 2 。
4. 5 a b的 数 。
5.已知(x1)2 y 2 z 3 0 求x y z的算术平方根。
思考:
1.下列各式哪些有意义,哪些没
有意义?
(1)- 4
(3) 32
(2) 4
(4)
正数有2个平方根,它们互为相反数; 0的平方根是0; 负数没有平方根。
a的一个平方根是3,则另一个平方根 是 -3 ,a= 9 。
3a-22和2a-3是m的两个平方根, 试求m的值。
例:x为何值时,下列各式有意义?
(1) 2x (2) x (3) x 1 (4) 1 x x
(5) x (6) x2 (7) x2 1 (8) 1