【经典专题】空间几何的外接球和内切球教师版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题(一)——空间几何体的外接球和内切球

一、典例探究

类型一、墙角模型(三条线两个垂直,不找球心的位置即可求出球半径).

图1

图2

图3

图4

方法:找三条两两垂直的线段,直接用公式2

2

2

2

)2(c b a R ++=,即2222c b a R ++=,求出R . 例1:已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( ). A .π16 B .π20 C .π24 D .π32 解:162

==h a V ,2=a ,24164442

2

2

2

=++=++=h a a R ,π24=S ,选C.

变式1、若三棱锥的三个侧面两垂直,且侧棱长均为3,则其外接球的表面积是 . 解:

933342

=++=R ,ππ942

==R S .

变式2、在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱SA =,则正三棱锥ABC S -外接球的表面积是 . 解:引理:正三棱锥的对棱互垂直.

如图(3)-1,取BC AB ,的中点E D ,,连接CD AE ,,CD AE ,交于H ,连接SH ,则H 是底面正三角

形ABC 的中心,∴⊥SH 平面ABC ,∴AB SH ⊥,

BC AC =,BD AD =,∴AB CD ⊥,∴⊥AB 平面SCD ,

∴SC AB ⊥,同理:SA BC ⊥,SB AC ⊥,即正三棱锥的对棱互垂直,

本题图如图(3)-2, MN AM ⊥,MN SB //,

∴SB AM ⊥, SB AC ⊥,∴⊥SB 平面SAC ,∴SA SB ⊥,SC SB ⊥, SA SB ⊥,SA BC ⊥, ∴⊥SA 平面SBC ,∴SC SA ⊥,故三棱锥ABC S -的三棱条侧棱两两互相垂直,

∴36)32()32()32()2(2222=++=R ,即3642

=R ,

∴正三棱锥ABC S -外接球的表面积是π36.

变式3、在四面体S ABC -中,ABC SA 平面⊥,,1,2,120====∠︒

AB AC SA BAC 则该四面体的外接球的表面积为( ).

π11.A π7.B π310.

C π3

40

.D 解:在ABC ∆中,7120cos 22

2

2

=⋅⋅-+=

BC AB AB AC BC ,

7=BC ,ABC ∆的外接球直径为37

22

37sin 2=

=

∠=

BAC

BC

r , ∴340

4)3

72(

)2()2(2222=

+=+=SA r R ,340π=S ,选D. 变式4、如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积

是 .

解:三条侧棱两两生直,设三条侧棱长分别为c b a ,,(+

∈R c b a ,,),则

⎪⎩

⎪⎨⎧===6812ac bc ab ,∴24=abc ,∴3=a ,4=b ,2=c ,29)2(2222=++=c b a R ,ππ2942

==R S .

(3)题-1

A C

(3)题

-2

A

C

变式5、已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体外接球的体积为 .

解:3)2(2

2

2

2

=++=c b a R ,4

3

2

=

R ,23=R

πππ2

3

83334343=⋅==R V .

类型二、垂面模型(一条直线垂直于一个平面) 模型1:如图5,⊥PA 平面ABC . 解题步骤:

第一步:将ABC ∆画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O ;

第二步:1O 为ABC ∆的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半径r D O =1(三角形的外接圆直径算法:利用正弦定理,得

r C

c

B b A a 2sin sin sin ===),PA OO 211=;

第三步:利用勾股定理求三棱锥的外接球半径:①2

2

2

)2()2(r PA R +=⇔22)2(2r PA R +=

②2

12

2OO r R +=⇔2

12OO r R +=

.

模型2:如图6,7,8,P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱锥ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点.

图6

P

A

D

O 1

O

C

B

图7-1

P

A

O 1

O C

B

图5

A

D

P

O 1O

C

B

A P

图7-2

图8

图8-1

8-2

图8-3

解题步骤:

相关文档
最新文档