人教版七年级数学上册经典总复习练习题【有答案】
(完整版)人教版初一数学七年级数学上册经典总复习练习题【有答案】
人教版七年级数学上册经典精品练习题七年级有理数一、境空题(每空2分,共38分)1、-的倒数是;1?的相反数是3 32、比-3小9的数是____ ;最小的正整数是______ .3、在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是4、两个有理数的和为5,其中一个加数是-7,那么另一个加数是_________ .5、某旅游景点11月5日的最低气温为2,最高气温为8C,那么该景点这天的温差是 __________ . C6 计算:(1)100 ( 1)101 _____7、平方得21的数是____ ;立方得-64的数是______ .48、+2与2是一对相反数,请赋予它实际的意义:______________________ 。
9、绝对值大于1而小于4的整数有 _____________ 其和为 __________ 。
10、若a、b互为相反数,c、d互为倒数,则3 (a + b) 3 cd = ________________ 。
11、_____________________________________ 若(a 1)2 |b 2| 0,则a b= 。
12、数轴上表示数5和表示14的两点之间的距离是____________ 。
13、在数5、1、3、5、2中任取三个数相乘,其中最大的积是_____________ 最小的积是14、__________________________________________ 若m n互为相反数,贝U| m-1+ n| = .二、选择题(每小题3分,共21分)15、有理数a、b在数轴上的对应的位置如图所示:则( )-1 0 1A . a + b v 0B . a + b >0;C . a—b = 0D . a—b>016、下列各式中正确的是( )A . a2( a)2B . a3( a)3;C . a2| a21D . a3| a3117、如果a b 0,且ab 0,那么( )A . a 0,b 0 ;B . a 0,b 0 ; C. a、b异号;D. a、b异号且负数和绝对值较小18、下列代数式中,值一定是正数的是()A. x2B.| —x+1|C.( —X)2+2D. —x2+119、算式(-3 3)X 4可以化为()4(A) -3 X 4- 3X 4 (B) -3 X 4+3 (C) -3 X 4+3X 4 (D) -3 X 3-34 420、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是 .......... ()教育成就梦想,努力成就明天A 、90 分~~B~~、75 分 C 、91 分~~D 、81 分21、一家商店一月份把某种商品按进货价提高 60%出售,到三月份再声称以8折(80%)大拍卖, 那么该商品三月份的价格比进货价............................ () A 、高 12.8 % B 、低 12.8 % C 、高 40% D 、高 28% 三、计算(每小题5分,共15分)223 3 3 24、 11 ( 12) 6 ()74四、解答题(共46分)25、已知 |a|=7 , |b|=3,求 a+b 的值。
人教版七年级上册数学复习练习卷:整式的加减之去括号(附答案)
七年级上册数学人教版整式的加减之去括号一、选择题1.李老师做了个长方形教具,其中一边长为2a+b,另一边为a-b,则该长方形周长为()A. 6a+bB. 6aC. 3aD. 10a-b2.如图,两个正方形的面积分别为9、4,两个阴影部分的面积分别为S1、S2,(S1>S),则S1-S2的值为()2A. 5B. 4C. 3D. 23.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+2xy)-(2x2+4xy)=-x2□,此空格的地方被钢笔水弄污了,那么空格中的一项是()A. -2xyB. 6xyC. -6xyD. 2xy4.一种商品每件进价为a元,按进价增加40%定出售价,后因库存积压降价,按售价的八折出售,每件还盈利()A. 0.15a元B. 0.12a元C. 1.25a元D. 0.32a元,n=−1时,代数式3mn-2m2+(2m2-2mn)-(3mn-n2)的值是()5.当m=32A. 3B. 4C. 5D. 66.已知A=2a2-3a,B=2a2-a-1,当a=-4时,A-B等于()A. 8B. 9C. -9D. -77.已知a+b=5,ab=4,则代数式(3ab+5a+8b)+(3a-4ab)的值为()A. 36B. 40C. 44D. 468.若(a+1)2+|b-2|=0,化简a(x2y+xy2)-b(x2y-xy2)的结果为()A. 3x2yB. -3x2y+xy2C. -3x2y+3xy2D. 3x2y-xy29.已知多项式(2ax2+3x-1)-(3x-2x2-3)的值与x的取值无关,试求2a3-[a2-2(a+1)+a]-2的值()A. 2B. 0C. -2D. -410.多项式2x3-8x2+x-1与多项式3x3+2mx2-5x+3的和不含二次项,则m为()A. 2B. -2C. 4D. -411.有理数a、b在数轴上的位置如图所示,则化简|a-b|+|a+b|的结果为()A. -2aB. 2aC. 2bD. -2b二、填空题12.三个小队植树,第一队种x棵,第二队种的树比第一队种的树的2倍还多8棵,第三队种的树比第二队种的树的一半少6棵,三队共种树___________棵.13.如图是小明家的楼梯示意图,其水平距离(即:AB的长度)为(2a+b)米,一只蚂蚁从A点沿着楼梯爬到C点,共爬了(3a-b)米.问小明家楼梯的竖直高度(即:BC的长度)为___________米.14.某便民超市原有蒙牛牛奶(5a2+8a)箱,上午卖出(7a-5)箱,中午休息时又购进同样的牛奶(a2-a)箱,中午过后卖出牛奶(6a2-a).则超市下午满仓时有该种牛奶___________箱(用含有a的式子表示).15.如果代数式(3x2+mx-2y+4)-(3nx2-2x+6y-3)的值与字母x的取值无关,代数式m+n的值为___________.16.a 、b 在数轴上的位置如图所示,化简:|a +b |-2|b -a |=___________.17、当2,1p q ==时,分别求出下列各式的值.(1)221()2()()3()3p q p q q p p q -+-----;(2)2283569p q q p -+--18、已知关于x ,y 的代数式2213383x kxy y xy ----中不含xy 项,求k 的值.三、解答题19、已知:2263A x x =+-,213B x x =--,2451C x x =--,当32x =-时,求代数式32A B C -+的值.20、计算下式的值:其中114x ,y ,==-甲同学把14x =错抄成14x =-,但他计算的结果也是正确的,你能说明其中的原因吗?)4()2()242(33432242234y y x x y y x x y x y x x -+-++----答案解析1.【答案】B【解析】根据题意,长方形周长=2[(2a+b)+(a-b)]=2(2a+b+a-b)=2×3a=6a.2.【答案】A【解析】设空白部分的面积是S,因为两个正方形的面积分别为9,4,所以S1=9-S,S2=4-S,所以S1-S2=(9-S)-(4-S)=9-S-4+S=5.3.【答案】A【解析】左边=x2+2xy-2x2-4xy=-x2-2xy.4.【答案】B【解析】因为每件进价为a元,按进价增加40%定出售价,所以每件的售价为(1+40%)a元,所以按售价的八折出售时的价格是(1+40%)a×80%,所以每件盈利=(1+40%)a×80%-a=1.12a-a=0.12a(元).5.【答案】B【解析】3mn-2m2+(2m2-2mn)-(3mn-n2)=3mn-2m2+2m2-2mn-3mn+n2=-2mn+n2=-2×3×(-1)+(-1)22=4.6.【答案】B【解析】A-B=2a2-3a-(2a2-a-1)=2a2-3a-2a2+a+1=-2a+1,把a=-4代入原式,得-2a+1=-2×(-4)+1=9.7.【答案】A【解析】因为a+b=5,ab=4,所以原式=3ab+5a+8b+3a-4ab=8(a+b)-ab=40-4=36.8.【答案】B【解析】因为(a+1)2+|b-2|=0,所以a+1=0,b-2=0,即a=-1,b=2,则原式=-(x2y+xy2)-2(x2y-xy2)=-x2y-xy2-2x2y+2xy2=-3x2y+xy2.9.【答案】D【解析】(2ax2+3x-1)-(3x-2x2-3)=2ax2+3x-1-3x+2x2+3=2ax2+2x2+2=(2a+2)x2+2,多项式(2ax2+3x-1)-(3x-2x2-3)的值与x的取值无关,得2a+2=0.解得a=-1,2a3-[a2-2(a+1)+a]-2=2a3-(a2-2a-2+a)-2=2a3-a2+a,当a=-1时,原式=-2-1-1=-4.10.【答案】C【解析】因为多项式2x3-8x2+x-1与多项式3x3+2mx2-5x+3相加后不含x的二次项,所以-8x2+2mx2=(2m-8)x2,所以2m-8=0,解得m=4.11.【答案】A【解析】根据数轴上点的位置得a<-1<0<b<1,所以a-b<0,a+b<0,则原式=b-a-a-b=-2a.12.【答案】4x+6【解析】依题意得:第二队种的树的棵数为2x+8,(2x+8)-6=x-2,第三队种的树的棵数为12所以三队共种树x+(2x+8)+(x-2)=(4x+6)棵.13.【答案】a-2b【解析】(3a-b)-(2a+b)=3a-b-2a-b=(a-2b)米.故小明家楼梯的竖直高度(即:BC的长度)为(a-2b)米.14.【答案】a+5【解析】由题意得(5a2+8a)-(7a-5)+(a2-a)-(6a2-a)=5a2+8a-7a+5+a2-a-6a2+a=a+5.15.【答案】-1【解析】原式=3x 2+mx -2y +4-3nx 2+2x -6y +3=(3-3n )x 2+(m +2)x -8y +7,由结果与x 取值无关,得到3-3n =0,m +2=0, 解得m =-2,n =1,则m +n =-2+1=-1.16.【答案】-3a +b【解析】通过数轴可以得出结论:a >0,b <0,且|a |<|b |,则原式=-(a +b )-2(a -b )=-a -b -2a +2b=-3a +b .17、【答案与解析】(1)把()p q -当作一个整体,先化简再求值: 解:22221()2()()3()31(1)()(23)()32()()3p q p q q p p q p q p q p q p q -+-----=--+--=---- 又 211p q -=-=所以,原式=22222()()111333p q p q ----=-⨯-=- (2)先合并同类项,再代入求值.解:2283569p q q p -+-- 2(86)(35)9p q =-+-+-2229p q =+-当p =2,q =1时,原式=22229222191p q +-=⨯+⨯-=.18、【解析】解: 222222111338(3)38(3)38333x kxy y xy x kxy xy y x k xy y ----=+----=+---- 因为不含xy 项,所以此项的系数应为0,即有:1303k --=,解得:19k =-. ∴19k =-.19.【解析】解:∵222263,31,45 1.A x x B x x C x x ⎧=+-⎪=--+⎨⎪=--⎩ ∴ 222263,3393,2810 2.A x x B x x C x x ⎧=+-⎪⎪-=+-⎨⎪=--⎪⎩∴2321358A B C x x -+=+- 当32x =-时,32A B C -+33915117303213()5()81388132242444=⨯-+⨯--=⨯--=--=. 20. 【解析】解:∵化简结果与x 无关∴将x 抄错不影响最终结果.43224223433432242234333(242)(2)(4)242242y x x y x y x x y y x x y y x x y x y x x y y x x y y ----++-+-----+-- =+- = 。
人教版初中七年级数学上册第四章《几何图形初步》经典复习题(含答案解析)
人教版初中七年级数学上册第四章《几何图形初步》经典复习题(含答案解析)一、选择题1.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则在图2中,小虫从点A沿着正方体的棱长爬行到点B的长度为()A.0 B.1 C.2 D.3B解析:B【分析】将图1折成正方体,然后判断出A、B在正方体中的位置关系,从而可得到AB之间的距离.【详解】解:将图1折成正方体后点A和点B为同一条棱的两个端点,得出AB=1,则小虫从点A沿着正方体的棱长爬行到点B的长度为1.故选B.【点睛】本题主要考查的是展开图折成几何体,判断出点A和点B在几何体中的位置是解题的关键.2.观察下列图形,其中不是正方体的表面展开图的是()A.B.C.D. B解析:B【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.3.如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45°A 解析:A【分析】根据题意各种角的关系直接可求出题目要求的角度.【详解】因为∠AOD =40°,∠BOC =50°,所以∠COD =90°,又因为OM ,ON 分别平分∠BOC 和∠AOD ,所以∠N OD+∠M OC =45°,则∠MON=∠N OD+∠M OC+∠COD=135°.【点睛】本题考查了角平分线的知识,掌握角平分线的性质是解决此题的关键.4.已知线段8AB =,在线段AB 上取点C ,使得:1:3AC CB =,延长CA 至点D ,使得2AD AC =,点E 是线段CB 的中点,则线段ED 的长度为( ).A .5B .9C .10D .16B 解析:B【分析】按图形将要求的线段ED 可转化成已知线段.ED=EC+CD=12BC+3AC ,而BC 、AC 都可根据题中比例求得,于是线段ED 可求.【详解】解:根据题意画图:因为:1:3AC CB =,且8AB =,所以2AC =,6BC =.由题意可知:113632922ED EC CD BC AC =+=+=⨯+⨯=, 故选:B .【点睛】本题考查的线段的相关运算,根据题意画好图形是关键,利用图形进行线段间的转化是解题突破口.5.某正方体的平面展开图如下图所示,这个正方体可能是下面四个选项中的( ).A.B.C.D. A解析:A【分析】根据正方体的展开与折叠.可以动手折叠看看,充分发挥空间想象能力解决也可以.【详解】根据题意及图示只有A经过折叠后符合.故选:A.【点睛】此题考查几何体的展开图,解题关键在于空间想象力.6.如图,在数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A,D两点表示的数分别为-5和6,点E为BD的中点,在数轴上的整数点中,离点E最近的点表示的数是()A.2 B.1C.0 D.-1A解析:A【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4, ∴|6-E|=4, ∴点E 所表示的数是:6-4=2.∴离线段BD 的中点最近的整数是2.故选:A .【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.7.已知α∠和β∠互补,且αβ∠>∠,则有下列式子:①90β︒-∠;②90α∠-︒;③()12αβ∠+∠;④()12αβ∠-∠;⑤()1902α∠-︒;其中,表示β∠的余角的式子有( ) A .4个 B .3个 C .2个D .1个B解析:B【分析】根据余角和补角的概念进行角度的计算即可得解.【详解】∵9090ββ︒-∠+∠=︒,∴①正确;∵α∠和β∠互补,∴180αβ∠+∠=︒,∴901809090αβ∠-︒+∠=︒-︒=︒,∴②正确,⑤错误; ∵()11180909022αββββ∠+∠+∠=⨯︒+∠=︒+∠≠︒, ∴③错误; ∵()()11118090222αββαβ∠-∠+∠=∠+∠=⨯︒=︒, ∴④正确;∴①②④正确,故选:B.【点睛】 本题主要考查了余角和补角的含义,熟练掌握相关角度的计算是解决本题的关键. 8.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A.8B.7C.6D.4C解析:C【分析】确定原正方体相对两个面上的数字,即可求出和的最小值.【详解】解:由题意,2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最小的是6.故选:C.【点睛】本题考查了正方体相对两个面上的文字,解决本题的关键是根据相对的面的特点得到相对的两个面上的数字.9.由A站到G站的某次列车,运行途中停靠的车站依次是A站——B站—C站——D站——E站——F站——G站,那么要为这次列车制作的火车票有()A.6种B.12种C.21种D.42种C解析:C【解析】【分析】从A出发要经过6个车站,所以要制作6种车票,从B出发要经过5个车站,所以要制作5种车票,从C出发要经过4个车站,所以要制作4种车票,从D出发要经过3个车站,所以要制作3种车票,从E出发要经过2个车站,所以要制作2种车票,从F出发要经过1个车站,所以要制作1种车票,把车票数相加即可得解.【详解】共需制作的车票数为:6+5+4+3+2+1=21(种).故选C.【点睛】本题从A站出发,逐站求解即可得到所有可能的情况,不要遗漏.10.如下图,直线的表示方法正确的是()①②③④A.都正确B.只有②正确C.只有③正确D.都不正确C解析:C【分析】用直线的表示方法解答,通常直线用两个大写字母或一个小写字母表示.【详解】∵通常直线用两个大写字母或一个小写字母表示,例直线AB ,直线a .故选C .【点睛】本题考查了几何中直线的表示方法,是最基本的知识.二、填空题11.线段AB =12cm ,点C 在线段AB 上,且AC =13BC ,M 为BC 的中点,则AM 的长为_______cm.5【分析】可先作出简单的图形进而依据图形分析求解【详解】解:如图∵点C 在AB 上且AC=BC ∴AC=AB=3cm ∴BC=9cm 又M 为BC 的中点∴CM=BC=45cm ∴AM=AC+CM=75cm 故答案为解析:5【分析】可先作出简单的图形,进而依据图形分析求解.【详解】解:如图,∵点C 在AB 上,且AC=13BC , ∴AC=14AB=3cm ,∴BC=9cm ,又M 为BC 的中点, ∴CM=12BC=4.5cm ,∴AM=AC+CM=7.5cm . 故答案为7.5.【点睛】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.12.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm 故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系解析:4【分析】根据线段的和差关系即可求解.【详解】∵线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC AB+BC=4cm,故填:4.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.13.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于________.142°【解析】【分析】根据对顶角相等求出∠AOC的度数再根据角平分线的定义求出∠AOM的度数然后根据平角等于180°列式计算即可得解【详解】解:∵∠BOD=76°∴∠AOC=∠BOD=76°∵射线解析:142°【解析】【分析】根据对顶角相等求出∠AOC的度数,再根据角平分线的定义求出∠AOM的度数,然后根据平角等于180°列式计算即可得解.【详解】解:∵∠BOD =76°,∴∠AOC=∠BOD =76°,∵射线OM平分∠AOC,∴∠AOM=12∠AOC=12×76°=38°,∴∠BOM=180°-∠AOM=180°-38°=142°.故答案为142°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.14.同一条直线上有三点A,B,C,且线段BC=3AB,点D是BC的中点,CD=3,则线段AC的长为______.4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况画出图形分别利用线段中点的定义和已知条件求出BC和AB再利用线段的和差计算即可【详解】解:(1)当点C在AB的延长线上时如图1∵点D解析:4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况,画出图形,分别利用线段中点的定义和已知条件求出BC和AB,再利用线段的和差计算即可.【详解】解:(1)当点C在AB的延长线上时,如图1,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=AB+BC=2+6=8;(2)当点C在BA的延长线时,如图2,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=BC-AB=6-2=4.故答案为:4或8.【点睛】本题考查了线段中点的定义、两点间的距离和线段的和差等知识,正确分类、画出图形、熟练掌握线段中点的概念和线段的和差计算是解题的关键.15.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.一【分析】经过两点有且只有一条直线根据直线的性质可得答案【详解】解:植树时只要定出两棵树的位置就能确定这一行树所在的直线用数学知识解释其道理是:两点确定一条直线故答案为:一【点睛】本题考查了直线的性解析:一【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答案为:一.【点睛】本题考查了直线的性质,熟练掌握直线的性质是解题的关键.16.某产品的形状是长方体,长为8cm,它的展开图如图所示,则长方体的体积为_____cm3.192【分析】根据已知图形得出长方体的高进而得出答案【详解】解:设长方体的高为xcm 则长方形的宽为(14-2x )cm 根据题意可得:14-2x+8+x+8=26解得:x=4所以长方体的高为4cm 宽为6解析:192【分析】根据已知图形得出长方体的高进而得出答案.【详解】解:设长方体的高为xcm ,则长方形的宽为(14-2x )cm ,根据题意可得:14-2x+8+x+8=26,解得:x=4,所以长方体的高为4cm ,宽为6cm ,长为8cm ,长方形的体积为:8×6×4=192(cm 3);故答案为:192【点睛】本题考查几何体的展开图、一元一次方程的应用及几何体的体积等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.17.如图,折一张长方形纸的一角,使角的顶点落在A′处,且使得∠ABA′=90°,BC 为折痕,若BD 为∠A′BE 的平分线,则∠CBD =________°.90【分析】根据折叠的性质及平角的定义求出根据BD 为∠A′BE 的平分线得到根据角的和差计算求出答案【详解】∵∠ABA′=90°∴∵BD 为∠A′BE 的平分线∴∴故答案为:90【点睛】此题考查折叠的性质解析:90【分析】根据折叠的性质及平角的定义求出45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,根据BD 为∠A′BE 的平分线,得到45A BD '∠=︒,根据角的和差计算求出答案.【详解】∵∠ABA′=90°,∴45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,∵BD 为∠A′BE 的平分线,∴45A BD '∠=︒,∴90CBD A BC A BD ∠∠∠=+=''︒故答案为:90.【点睛】此题考查折叠的性质:折叠前后的对应角角相等,利用平角求角的度数,角平分线的性质,掌握图形中各角的位置关系是解题的关键.18.如图,上午6:30时,时针和分针所夹锐角的度数是_____.15°【分析】计算钟面上时针与分针所成角的度数一般先从钟面上找出某一时刻分针与时针所处的位置确定其夹角再根据表面上每一格30°的规律计算出分针与时针的夹角的度数【详解】∵时针12小时转一圈每分钟转动 解析:15°【分析】计算钟面上时针与分针所成角的度数,一般先从钟面上找出某一时刻分针与时针所处的位置,确定其夹角,再根据表面上每一格30°的规律,计算出分针与时针的夹角的度数.【详解】∵时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°,∴时针1小时转动30°,∴6:30时,分针指向刻度6,时针和分针所夹锐角的度数是30°×12=15°. 故答案是:15°.【点睛】考查了钟面角,解题时注意,分针60分钟转一圈,每分钟转动的角度为:360°÷60=6°;时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°.19.如图,将一副三角板叠放一起,使直角的顶点重合于点O ,则∠AOD +∠COB 的度数为___________度. 180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB据此即可求解【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB=∠COD+∠AOB=90°+90°=180°故答案是:180【解析:180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB,据此即可求解.【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB =∠COD+∠AOB=90°+90°=180°.故答案是:180.【点睛】本题考查了三角板中角度的计算,正确把∠AOD+∠COB转化成∠COD+∠AOB是解决本题的关键.20.如图,::2:3:4AB BC CD=,AB的中点M与CD的中点N的距离是3cm,则BC=______.5cm【分析】运用方程的思想设AB=2xcmBC=3xcmCD=4xcm求出MB=xcmCN=2xcm得出方程x+3x+2x=3求出即可【详解】解:设AB=2xcmBC=3xcmCD=4xcm∵M是解析:5cm【分析】运用方程的思想,设AB=2xcm,BC=3xcm,CD=4xcm,求出MB=xcm,CN=2xcm,得出方程x+3x+2x=3,求出即可.【详解】解:设AB=2xcm,BC=3xcm,CD=4xcm,∵M是AB的中点,N是CD的中点,∴MB=xcm,CN=2xcm,∴MB+BC+CN=x+3x+2x=3,∴x=0.5,∴3x=1.5,即BC=1.5cm.故答案为:1.5cm.【点睛】本题考查了求两点之间的距离的应用,关键是能根据题意得出关于x的方程.三、解答题21.如图,已知线段AB和CD的公共部分1134BD AB CD==,线段AB、CD的中点E、F之间的间距是10cm,求AB、CD的长.解析:AB=12cm,CD=16cm【分析】先设BD=xcm,由题意得AB=3xcm,CD=4xcm,AC=6xcm,再根据中点的定义,用含x的式子表示出AE=1.5xcm和CF=2xcm,再根据EF=AC-AE-CF=2.5xcm,且E、F之间距离是EF=10cm,所以2.5x=10,解方程求得x的值,即可求AB,CD的长.【详解】设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=12AB=1.5xcm,CF=12CD=2xcm.∴EF=AC-AE-CF=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.【点睛】本题考查了线段中点的性质,设好未知数,用含x的式子表示出各线段的长度是解题关键.22.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,且AD=23AC,DE=35AB,若AB=24 cm,求线段CE的长.解析:CE=10.4cm.【分析】根据中点的定义,可得AC、BC的长,然后根据题已知求解CD、DE的长,再代入CE=DE-CD即可.【详解】∵AC=BC=12AB=12cm,CD=13AC=4cm,DE=35AB=14.4cm,∴CE=DE﹣CD=10.4cm.23.如图,是一个几何体的表面展开图.(1)该几何体是________;A .正方体B .长方体C .三棱柱D .四棱锥(2)求该几何体的体积.解析:(1)C ;(2)4【分析】(1)本题根据展开图可直接得出答案.(2)本题根据体积等于底面积乘高求解即可.【详解】(1)本题可根据展开图中两个全等的等腰直角三角形,以此判定该几何体为三棱柱,故选C .(2)由图已知:该几何体底面积为等腰三角形面积12222=⨯⨯=;该几何体的高为2; 故该几何体体积=底面积⨯高=22=4⨯.【点睛】本题考查几何体展开图以及体积求法,根据展开图推测几何体时需要以展开图的特征位置作为推测依据,求解体积或者面积时按照公式求解即可.24.已知线段10cm AB =,在直线AB 上取一点C ,使16cm AC =,求线段AB 的中点与AC 的中点的距离.解析:13cm 或3cm .【分析】结合题意画出简单的图形,再结合图形进行分类讨论:当C 在BA 延长线上时,当C 在AB 延长线上时,分别依据线段的和差关系求解.【详解】解:①如图,当C 在BA 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以81513(cm)DE AE AD =+=+=. ②如图,当C 在AB 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以853(cm)DE AE AD =-=-=. 综上,线段AB 的中点与AC 的中点的距离为13cm 或3cm .【点睛】本题主要考查了两点间的距离,解决问题的关键是依据题意画出图形,进行分类讨论.25.如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.解析:(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用直线以及射线的定义画出图形即可;(2)利用角的定义作射线DC,DB即可;(3)连接AC,与BD的交点即为所求.【详解】解:(1)如图所示:直线AB、射线AD即为所求;(2)如图所示:∠CDB即为所求;(3)如图所示:点P即为所求.【点睛】此题主要考查了直线、射线以及角的定义,正确把握相关定义是解题关键.26.如图,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点.(1)用1个单位长度表示1cm,请你在数轴上表示出A,B, C三点的位置;(2)把点C到点A的距离记为CA,则CA=______cm.(3)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,试探索:CA−AB的值是否会随着t的变化而改变?请说明理由.解析:(1)数轴见解析;(2)6;(3)CA−AB的值不会随着t的变化而改变,理由见解析;【分析】(1)在数轴上表示出A,B,C的位置即可;(2)求出CA的长即可;(3)不变,理由如下:当移动时间为t秒时,表示出A,B,C表示的数,求出CA-AB的值即可做出判断.【详解】(1)如图:(2)CA=4−(−2)=4+2=6cm,(3)不变,理由如下:当移动时间为t秒时,点A. B. C分别表示的数为−2+t、−5−2t、4+4t,则CA=(4+4t)−(−2+t)=6+3t,AB=(−2+t)−(−5−2t)=3+3t,∵CA−AB=(6+3t)−(3+3t)=3∴CA−AB的值不会随着t的变化而改变.【点睛】此题考查数轴,两点间的距离,整式的加减,列代数式,解题关键在于结合数轴进行解答. 27.如图,把下列物体和与其相似的图形连接起来.解析:见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.28.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长.(2)若CE=5cm,求DB的长.解析:(1)AB=18;(2)DB=15.【分析】(1)由线段中点的定义可得CD=12AC,CE=12BC,根据线段的和差关系可得DE=12AB,进而可得答案;(2)根据中点定义可得AC=BC,CE=BE,AD=CD,根据线段的和差关系即可得答案.【详解】(1)∵D是AC的中点,E是BC的中点.∴CD=12AC,CE=12BC,∵DE=CD+CE=9,∴12AC+12BC=12(AC+BC)=9,∵AC+BC=AB,∴AB=18.(2)∵C是AB的中点,D是AC的中点,E是BC的中点,∴AC=BC,CE=BE=12BC,,AD=CD=12AC,∴AD=CD=CE=BE,∴DB=CD+CE+BE=3CE,∵CE=5,∴DB=15.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.。
人教版七年级数学上册期末专项复习四套含答案
人教版七年级数学上册 期末专项复习01—有理数一、选择题(每小题3分,共30分)1.如果气温上升5℃记为5+℃,则8-℃表示( ) A .下降3℃B .上升3℃C .下降8℃D .上升8℃2.12020的相反数是( ) A .12020-B .12020C .2020-D .20203.下列说法中,正确的是( ) A .0是最小的整数B .最大的负整数是1-C .有理数包括正有理数和负有理数D .一个有理数的平方总是正数4.下列各组数中,相等的一组是( ) A .2-和()2--B .2--和()2--C .2和2-D .2-和2-5.若a 是有理数,则下列说法正确的是( ) A .a 一定是正数 B .a -一定是正数 C .a --一定是负数D .1a +一定是正数6.表示a ,b 两数的点在数轴上的位置如图所示,则下列判断错误的是( )A .0a b +<B .0a b ->C .0a b ⨯>D .a b <7.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片,现在中国高速铁路营运里程将达到22 000公里,将22 000用科学记数法表示应为( ) A .42.210⨯B .32210⨯C .32.210⨯D .50.2210⨯8.对于用四舍五入法得到的近似数4.609万,下列说法正确的是( ) A .它精确到千分位B .它精确到0.01C .它精确到万位D .它精确到十位9.()()1352013201524620142016+++++-+++++L L =( ) A .0B .1-C .1008D .1008-10.若()212102x y -++=,则23x y +的值是( ) A .38B .18C .18-D .38-二、填空题(每小题2分,共16分)11.数轴上与表示数1的点的距离为8个单位长度的点所表示的数是________. 12.已知7a =,3b =,且0a b +>,则a =________. 13.有理数 3.7-,2,243,23-,0,0.83中,属于正数的有________,属于负数的有________. 14.若a 、b 互为倒数,c 、d 互为相反数,则式子()343ab c d -+=________.15.已知()23a -与1b -互为相反数,则式子a b b a ⎛⎫- ⎪⎝⎭的值为________.16.计算()()()20202019202020201101-+-++-=________.17.A 点为数轴上表示4-的对应点,B 点对应的数为1-的相反数,若固定A 点不动,将B 点________个单位后,B 与A 相距1个单位.(请填上移动方向和距离)18.用“●”“○”定义新运算:对于实数a ,b ,都有a b a =●和a b b =d .例如323=●,322=d ,则()()2200920100210009=d d ●________.三、解答题(共54分)19.(12分)计算.(尽可能用简便方法)(1)()31664 5.66577⎡⎤++--⎢⎥⎣⎦;(2)()11731348126424⎛⎫-+-⨯- ⎪⎝⎭;(3)()2413111421412⎛⎫⎡⎤---⨯-- ⎪⎣⎦⎝⎭;(4)()()()()23220202231-----÷-20.(5分)若3x -与2y +互为相反数,求3x y ++的值.21.(6分)按下列程序进行计算(如图),如果第一次输入的数是20,而结果不大于100时,那么就把结果作为输入的数再进行第二次运算,直到符合要求为止,当输入值为20时,请计算输出结果.22.(6分)小明家与学校相距2.5千米,小华家与学校相距32千米.请你想一下,小明家和小华家处在学校什么位置时,他们两家相距最远,最远是多少?处在什么位置时,他们两家相距最近,最近是多少?23.(6分)草履虫可以吞食细菌使污水得到净化.1个草履虫每小时大约能形成60个食物泡,每个食物泡大约吞食30个细菌,那么1个草履虫每天(以24小时计算)大约能吞食多少个细菌?100个草履虫呢?(用科学记数法表示)24.(9分)某天晚上,一辆治安巡逻车从A地出发,在东西方向的马路上巡逻,第七次巡逻到达B地后结束,如果规定向东行驶为正,向西行驶为负,七次巡逻的纪录如下:(单位:千米)(1)在第________次巡逻时离开A地最远.(2)求第七次巡逻结束时B地与A地的距离与方向.(3)若巡逻车每一百千米耗油12升,求该晚巡逻车共耗油多少升.25.(10分)观察下列一组有规律的数,解答下列问题.第1个数记为:1111 2122 ==-⨯;第2个数记为:1111 62323 ==-⨯;第3个数记为:1111 123434==-⨯;(1)第7个数记为________,190是第________个数;(2)计算:①1111 12233420192020 ++++⨯⨯⨯⨯L;②1111 13355720172019 ++++⨯⨯⨯⨯L;期末专项复习—有理数答案解析一、1.【答案】C 【解析】由题意,得8-℃表示下降8℃.故选C .2.【答案】A 【解析】12020的相反数是12020-.故选A . 3.【答案】B 【解析】没有最小的整数,故A 错误;B 正确;有理数包括0、正有理数和负有理数,C 错误;有理数的平方是非负数,D 错误.故选B .4.【答案】C5.【答案】D 【解析】A 选项,0a =时,0a =,不是负数,故本选项错误;B 选项,0a =时,0a -=,不是正数,故本选项错误;C 选项,0a =时,0a --=,不是正数,故本选项错误;D 选项,11a +≥,一定是正数,故本选项正确.故选D .6.【答案】C 【解析】由图可知,a ,b 异号,故0a b ⨯<,C 错误,符合题意,其他选项都正确,不符合题意.故选C .7.【答案】A 【解析】422000 2.210=⨯.故选A .8.【答案】D 【解析】4.609万中的9在原数46090中的十位上,所以4.609万精确到了十位.故选D . 9.【答案】D【解析】()()1352013201524620142016+++++-+++++=L L ()()()123420152016-+-++-=L()()()1111008-+-++-=-L .故选D .10.【答案】B 二、11.【答案】7-或912.【答案】713.【答案】2,243,0.83 3.7-,23- 14.【答案】3b 15.【答案】22316.【答案】117.【答案】向左移动4个单位或6个单位 18.【答案】2010 三、19.【答案】(1)31664 5.6657731664 5.665773166 5.646577512751.7⎡⎤++-⎢⎥⎣⎦⎡⎤=+--⎢⎥⎣⎦⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭⎛⎫=+- ⎪⎝⎭=-()- (2)117313481264241173134848484812642444+5636+262⎛⎫-+-⨯- ⎪⎝⎭=⨯-⨯-⨯-⨯-==()()-()+()-()--(3)421311142141213111014121⎛⎫⎡⎤---⨯-- ⎪⎣⎦⎝⎭⎛⎫=---⨯ ⎪⎝⎭=-() (4)232202022314891489=3.-----÷-=--÷=+-()()()()()- 20.【答案】解:因为3x -与2y +互为相反数,所以320x y -++=.因为30x -≥,20y +≥,所以30x -=,20y +=.即30x -=,20y +=.所以3x =,2y =-.所以()33234x y ++=+-+=.21.【答案】解:当输入20时,211201044010022⎡⎤⎛⎫⨯÷-=⨯-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()<;当输入40-时, 211402048010022⎡⎤⎛⎫-⨯÷-=-⨯-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()<;当输入80时,2118040416010022⎡⎤⎛⎫⨯÷-=⨯-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()<;当输入160-时,21116080432010022⎡⎤⎛⎫-⨯÷-=-⨯-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()>,故输出的结果为320. 22.【答案】解:当小明家和小华家处在学校两侧,且在一条直线上时相距最远,最远为()2.5 1.54+=千米;当小明家和小华家处于学校同侧,且在一条直线上时相距最近,最近为()2.5 1.51-=千米.23.【答案】解:1个草履虫每天吞食细菌:()460302443200 4.3210⨯⨯==⨯个,100个草履虫每天吞食细菌:()46100 4.3210 4.3210⨯⨯=⨯个.24.【答案】解:(1)Q 第一次:()044+-=-, 第二次:()43-=+7, 第三次:()396+-=-, 第四次:()682-=+, 第五次:268+=, 第六次:()853+-=, 第七次:()321+-=, ∴第五次巡逻时离开A 地最远.(2)第七次巡逻结束后,B 地在A 地东边1千米处.(3)()()4798652100124110012 4.92-+++-+++++-+-÷⨯=÷⨯=升,故该晚巡逻车共耗油4.92升.25.【答案】解:(1)1111567878==-⨯ 9 (2)①原式1111111111223342018201920192020111111111122334201820192019202020192020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=-+-+-+-+-=…+…+ ②原式11111111111123235257220172019111111111233557201720191112201910092019⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-+⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫=⨯-+-+-+- ⎪⎝⎭⎛⎫=⨯- ⎪⎝⎭=…+…+人教版七年级数学上册 期末专项复习02—整式的加减一、选择题(每小题3分,共30分) 1.下列式子书写正确的是( ) A .48aB .x y ÷C .a x y +()D .112abc2.某礼堂第一排有m 个座位,后面每排比前一排多一个座位,则第二十排有( ) A .21m +()个座位 B .20m +()个座位 C .19m +()个座位D .18m +()个座位 3.244π9x y 的系数与次数分别为( )A .49,7B .4π9,6 C .4π,6D .4π9,44.多项式2123xy xy +-的次数及最高次项的系数分别是( ) A .3,3-B .2,3-C .5,3-D .2,35.下列选项中与32125a bc -是同类项的是( ) A .23a b cB .2312ab c C .320.35ba cD .3313a bc6.如果23a x y +与3213b x y --是同类项,那么a ,b 的值分别是( ) A .1,2B .0,2C .2,1D .1,17.下列说法正确的是( ) A .22πx 的系数是2 B .2xy -的次数为2 C .2354x x x -+=-D .22232x x x -= 8.减去2x -等于2321x x -++的多项式是( )A .2341x x -++B .2341x x --C .231x -+D .231x -9.已知a ,b 两数在数轴上对应的点的位置如图,则化简式子22a b a b +--++的结果是( )A .22a b +B .23b +C .23a -D .1-10.已知代数式2326y y -+的值是8,那么2312y y -+的值是( ) A .1B .2C .3D .4二、填空题(每小题2分,共20分)11.在代数式212a -,33xy -,0,4ab ,234x -,7xy ,n 中,单项式有________个.12.多项式3265xyx y -+共有________项,各项系数分别为________.13.若单项式2123x m n --和425a b c 的次数相同,则代数式223x x -+的值为________.14.已知1n mx y -是关于x ,y 的一个单项式,且系数是9,次数是4,那么多项式4m n mx ny --是________次________项式.15.若21421242n m a b a b a b ++-+=-,则3m n -=________.16.如果33a =--(),23b =--(),24c =--(),则[]a b c ---()的值为________.17.现规定a b a b c d c d =-+-,则计算22232235xy x xy x x xy------+的值为________. 18.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,……,则第n (n 为正整数)个图案由________个▲组成.19.写出一个只含有一个字母的二次三项式,使二次项的系数和常数项都是1-,这个多项式为________. 20.若0a <,0b >,a b >,则a b a b +-=+________. 三、解答题(共50分) 21.(6分)先化简,再求值.(1)[]2363m n m m n -+--(),其中2m =,3n =;(2)2221321a a a a -+-+-()().其中1a =.22.(7分)已知m ,x ,y 满足235205x m -+-=(),213y a b +-与23a b 是同类项,求整式222223639x xy y m x xy y -+--+()()的值.23.(8分)已知222A x xy y =-+,222B x xy y =++. (1)求A B +;(2)如果230A B C -+=,求C 的表达式.24.(8分)在沙坪坝住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场.(平面示意图如下图所示)(1)用含m ,n 的代数式表示该广场的面积S (阴影部分);(2)若m ,n 满足2650m n -+-=(),求该广场的面积.25.(9分)课堂上李老师给出了一道整式求值的题目,李老师把要求的整式3323323763363103a a b a b a a b a b a -+---++-()()写完后,让王红同学顺便给出一组a 、b 的值,老师自己说答案,当王红说完:“65a =,2005b =-”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?26.(12分)为了加强公民的节水意识,合理利用水资源.某市采用价格调控的手段达到节水的目的.该市自来水收费的价目表如下表:(注:水费按月份结算,3m 表示立方米)请根据上表的内容解答下列问题:(1)填空:若某户居民2月份用水34m ,则应收水费________元.(2)若该户居民3月份用水3m a (其中610a <<),则应收水费多少元?(用含a 的代数式表示,并化简)(3)若该户居民4、5两个月共用水315m (5月份用水量超过了4月份),设4月份用水3m x ,求该户居民4、5两个月共交水费多少元.(用含x 的代数式表示,并化简)期末专项复习—整式的加减答案解析一、 1.【答案】C 2.【答案】C【解析】第20排有20119m m +-=+()个座位,故选C . 3.【答案】B【解析】244π9x y 的系数为4π9,次数为6.故选B .4.【答案】A【解析】多项式2123xy xy +-的次数是3,最高次项是23xy -,系数是3-,故选A . 5.【答案】C【解析】A 选项中,23a b c 与32125a bc -所含的相同字母的指数不相同,所以它们不是同类项,本选项不符合题意;B 选项中,2312ab c 与32125a bc -所含的相同字母的指数不相同,所以它们不是同类项,本选项不符合题意;C 选项中,320.35ba c 与32125a bc -所含的相同字母的指数相同,所以它们是同类项,本选项符合题意;D 选项中,3313a bc 与32125a bc -所含的相同字母c 的指数不相同,所以不是同类项,本选项不符合题意.故选C . 6.【答案】A【解析】由同类项的定义,得23a +=,213b -=,解得1a =,2b =.故选A . 7.【答案】D【解析】A 选项中,22πx 的系数是2π,不符合题意;B 选项中,2xy -的次数为3,不符合题意;C 选项中,不是同类项不能合并,不符合题意;D 选项中,系数相加,字母及指数不变,符合题意.故选D . 8.【答案】C【解析】根据题意,得2222321232131x x x x x x x -+++=--++=-+(-).故选C . 9.【答案】A【解析】由图可得2112b a --<<<<<,且a b >,则2222a b a b a b a b +-++=++-++-()2222a b a b a b =++-++=+.故选A .10.【答案】B【解析】根据题意,得23268y y -+=,2322y y -=,2312y y -=,2311122y y -+=+=.故选B . 二、 11.【答案】512.【答案】3 6,15-,1 13.【答案】27【解析】因为单项式2123x m n --和425a b c 的次数相同,所以21421x +-=++,解得6x =,则2223626327x x -+=-⨯+=14.【答案】五二【解析】由题意得9m =,114n -+=,即4n =,所以44594m n mx ny x y --=-,它是五次二项式. 15.【答案】172【解析】因为21421242n m a b a b a b ++-+=-,所以212n +=,14m +=,解得12n =,3m =,所以1732m n -=.16.【答案】52-【解析】3327a =--=(),239b =--=-(),2416c =--=(),则[][]27916271552a b c ---=---=-+=-()()(). 17.【答案】2422x xy -++ 【解析】222222222232235322353223542 2.xy x xy x x xyxy x xy x x xy xy x xy x x xy x xy ------+=----+----+=-++--+-=-++()()()()18.【答案】31n +()【解析】第1个图案由3114⨯+=(个)▲,第2个图案由3217⨯+=(个)▲,第3个图案由33110⨯+=(个)▲,第4个图案由34113⨯+=(个)▲,……,故第n 个图案由31n +()个▲. 19.【答案】21x x -+-(答案不唯一) 20.【答案】2a - 【解析】因为0a <,0b >,a b >,所以0a b +<,0a b -<,所以[]2a b a b a b a b a b a b a ++-=-++--=---+=-()().三、21.【答案】(1)原式2363236352.m n m m n m n m m n m n =-+-+=-+-+=-(), 当2m =,3n =, 当原式52234=⨯-⨯=.(2)原式2222132224 3.a a a a a a =-+--+=+-当1a =,原式4132=+-=.22.【答案】解:因为235205x m -+-=(),所以5x =,2m =.因为213y a b +-与23a b 是同类项,所以13y +=,解得2y =.所以2222222223639236239x xy y m x xy y x xy y x xy y -+--+=-+--+()()()() 2222222366218412x xy y x xy y x xy y =-+-+-=---.所以5x =,2y =,所以上式 224552122158=-⨯-⨯-⨯=-.23.【答案】解:(1)2222222222A B x xy y x xy y x y +=-++++=+()(). (2)因为230A B C -+=,22222232322210C B A x xy y x xy y x xy y ∴=-=++---=++()(). 24.【答案】解:(1)根据题意,得2220.540.5 3.5S m n m n n n mn mn mn =---=-=g ();(2)因为2650m n -+-=(),所以6m =,5n =.则 3.565105S =⨯⨯=. 25.【答案】解:Q332332333233233333322763363103763363103731066333=3.a ab a b a a b a b a a a b a b a a b a b a a a a a b a b a b a b -+---++-=-+++--+=+-+-++-+()()()()()∴不管a 、b 取何值,整式的值都为3.26.【答案】解:(1)8(2)4662412a a -+⨯=-()()元,所以应收水费412a -()元. (3)因为5月份用水量超过了4月份,所以4月份用水量少于37.5m .①当4月份用水量少于35m ,5月份用水量超过310m ,所以4、5月份共交水费2815104462668x x x +--+⨯+⨯=-+()()元;②当4月份用水量大于或等于35m ,但不超过36m 时,5月份用水量不少于39m 但不超过310m ,所以4、5月份共交水费2415662248x x x +--+⨯=-+()()元;③当4月份用水量超过36m 且少于37.5m 时,5月份用水量超过37.5m 但少于39m ,所以4、5月份共交水费466241566236x x -+⨯+--+⨯=()()(元).【解析】(1)248⨯=(元)人教版七年级数学上册 期末专项复习03—一元一次方程一、选择题(每小题3分,共30分) 1.下列式子书写正确的是( ) A .48aB .x y ÷C .a x y +()D .112abc2.某礼堂第一排有m 个座位,后面每排比前一排多一个座位,则第二十排有( ) A .21m +()个座位 B .20m +()个座位 C .19m +()个座位D .18m +()个座位 3.244π9x y 的系数与次数分别为( )A .49,7B .4π9,6 C .4π,6D .4π9,44.多项式2123xy xy +-的次数及最高次项的系数分别是( ) A .3,3-B .2,3-C .5,3-D .2,35.下列选项中与32125a bc -是同类项的是( ) A .23a b cB .2312ab c C .320.35ba cD .3313a bc6.如果23a x y +与3213b x y --是同类项,那么a ,b 的值分别是( ) A .1,2B .0,2C .2,1D .1,17.下列说法正确的是( ) A .22πx 的系数是2 B .2xy -的次数为2 C .2354x x x -+=-D .22232x x x -= 8.减去2x -等于2321x x -++的多项式是( )A .2341x x -++B .2341x x --C .231x -+D .231x -9.已知a ,b 两数在数轴上对应的点的位置如图,则化简式子22a b a b +--++的结果是( )A .22a b +B .23b +C .23a -D .1-10.已知代数式2326y y -+的值是8,那么2312y y -+的值是( ) A .1B .2C .3D .4二、填空题(每小题2分,共20分)11.在代数式212a -,33xy -,0,4ab ,234x -,7xy ,n 中,单项式有________个.12.多项式3265xyx y -+共有________项,各项系数分别为________.13.若单项式2123x m n --和425a b c 的次数相同,则代数式223x x -+的值为________.14.已知1n mx y -是关于x ,y 的一个单项式,且系数是9,次数是4,那么多项式4m n mx ny --是________次________项式.15.若21421242n m a b a b a b ++-+=-,则3m n -=________.16.如果33a =--(),23b =--(),24c =--(),则[]a b c ---()的值为________.17.现规定a b a b c d c d =-+-,则计算22232235xy x xy x x xy------+的值为________. 18.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,……,则第n (n 为正整数)个图案由________个▲组成.19.写出一个只含有一个字母的二次三项式,使二次项的系数和常数项都是1-,这个多项式为________. 20.若0a <,0b >,a b >,则a b a b +-=+________. 三、解答题(共50分) 21.(6分)先化简,再求值.(1)[]2363m n m m n -+--(),其中2m =,3n =;(2)2221321a a a a -+-+-()().其中1a =.22.(7分)已知m ,x ,y 满足235205x m -+-=(),213y a b +-与23a b 是同类项,求整式222223639x xy y m x xy y -+--+()()的值.23.(8分)已知222A x xy y =-+,222B x xy y =++. (1)求A B +;(2)如果230A B C -+=,求C 的表达式.24.(8分)在沙坪坝住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场.(平面示意图如下图所示)(1)用含m ,n 的代数式表示该广场的面积S (阴影部分);(2)若m ,n 满足2650m n -+-=(),求该广场的面积.25.(9分)课堂上李老师给出了一道整式求值的题目,李老师把要求的整式3323323763363103a a b a b a a b a b a -+---++-()()写完后,让王红同学顺便给出一组a 、b 的值,老师自己说答案,当王红说完:“65a =,2005b =-”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?26.(12分)为了加强公民的节水意识,合理利用水资源.某市采用价格调控的手段达到节水的目的.该市自来水收费的价目表如下表:(注:水费按月份结算,3m 表示立方米)请根据上表的内容解答下列问题:(1)填空:若某户居民2月份用水34m ,则应收水费________元.(2)若该户居民3月份用水3m a (其中610a <<),则应收水费多少元?(用含a 的代数式表示,并化简)(3)若该户居民4、5两个月共用水315m (5月份用水量超过了4月份),设4月份用水3m x ,求该户居民4、5两个月共交水费多少元.(用含x 的代数式表示,并化简)期末专项复习—整式的加减答案解析一、 1.【答案】C 2.【答案】C【解析】第20排有20119m m +-=+()个座位,故选C . 3.【答案】B【解析】244π9x y 的系数为4π9,次数为6.故选B .4.【答案】A【解析】多项式2123xy xy +-的次数是3,最高次项是23xy -,系数是3-,故选A . 5.【答案】C【解析】A 选项中,23a b c 与32125a bc -所含的相同字母的指数不相同,所以它们不是同类项,本选项不符合题意;B 选项中,2312ab c 与32125a bc -所含的相同字母的指数不相同,所以它们不是同类项,本选项不符合题意;C 选项中,320.35ba c 与32125a bc -所含的相同字母的指数相同,所以它们是同类项,本选项符合题意;D 选项中,3313a bc 与32125a bc -所含的相同字母c 的指数不相同,所以不是同类项,本选项不符合题意.故选C . 6.【答案】A【解析】由同类项的定义,得23a +=,213b -=,解得1a =,2b =.故选A . 7.【答案】D【解析】A 选项中,22πx 的系数是2π,不符合题意;B 选项中,2xy -的次数为3,不符合题意;C 选项中,不是同类项不能合并,不符合题意;D 选项中,系数相加,字母及指数不变,符合题意.故选D . 8.【答案】C【解析】根据题意,得2222321232131x x x x x x x -+++=--++=-+(-).故选C . 9.【答案】A【解析】由图可得2112b a --<<<<<,且a b >,则2222a b a b a b a b +-++=++-++-()2222a b a b a b =++-++=+.故选A .10.【答案】B【解析】根据题意,得23268y y -+=,2322y y -=,2312y y -=,2311122y y -+=+=.故选B . 二、 11.【答案】512.【答案】3 6,15-,1 13.【答案】27【解析】因为单项式2123x m n --和425a b c 的次数相同,所以21421x +-=++,解得6x =,则2223626327x x -+=-⨯+=14.【答案】五二【解析】由题意得9m =,114n -+=,即4n =,所以44594m n mx ny x y --=-,它是五次二项式. 15.【答案】172【解析】因为21421242n m a b a b a b ++-+=-,所以212n +=,14m +=,解得12n =,3m =,所以1732m n -=.16.【答案】52-【解析】3327a =--=(),239b =--=-(),2416c =--=(),则[][]27916271552a b c ---=---=-+=-()()(). 17.【答案】2422x xy -++ 【解析】222222222232235322353223542 2.xy x xy x x xyxy x xy x x xy xy x xy x x xy x xy ------+=----+----+=-++--+-=-++()()()()18.【答案】31n +()【解析】第1个图案由3114⨯+=(个)▲,第2个图案由3217⨯+=(个)▲,第3个图案由33110⨯+=(个)▲,第4个图案由34113⨯+=(个)▲,……,故第n 个图案由31n +()个▲. 19.【答案】21x x -+-(答案不唯一) 20.【答案】2a - 【解析】因为0a <,0b >,a b >,所以0a b +<,0a b -<,所以[]2a b a b a b a b a b a b a ++-=-++--=---+=-()().三、21.【答案】(1)原式2363236352.m n m m n m n m m n m n =-+-+=-+-+=-(), 当2m =,3n =, 当原式52234=⨯-⨯=.(2)原式2222132224 3.a a a a a a =-+--+=+-当1a =,原式4132=+-=.22.【答案】解:因为235205x m -+-=(),所以5x =,2m =.因为213y a b +-与23a b 是同类项,所以13y +=,解得2y =.所以2222222223639236239x xy y m x xy y x xy y x xy y -+--+=-+--+()()()() 2222222366218412x xy y x xy y x xy y =-+-+-=---.所以5x =,2y =,所以上式 224552122158=-⨯-⨯-⨯=-.23.【答案】解:(1)2222222222A B x xy y x xy y x y +=-++++=+()(). (2)因为230A B C -+=,22222232322210C B A x xy y x xy y x xy y ∴=-=++---=++()(). 24.【答案】解:(1)根据题意,得2220.540.5 3.5S m n m n n n mn mn mn =---=-=g ();(2)因为2650m n -+-=(),所以6m =,5n =.则 3.565105S =⨯⨯=. 25.【答案】解:Q332332333233233333322763363103763363103731066333=3.a ab a b a a b a b a a a b a b a a b a b a a a a a b a b a b a b -+---++-=-+++--+=+-+-++-+()()()()()∴不管a 、b 取何值,整式的值都为3.26.【答案】解:(1)8(2)4662412a a -+⨯=-()()元,所以应收水费412a -()元. (3)因为5月份用水量超过了4月份,所以4月份用水量少于37.5m .①当4月份用水量少于35m ,5月份用水量超过310m ,所以4、5月份共交水费2815104462668x x x +--+⨯+⨯=-+()()元;②当4月份用水量大于或等于35m ,但不超过36m 时,5月份用水量不少于39m 但不超过310m ,所以4、5月份共交水费2415662248x x x +--+⨯=-+()()元;③当4月份用水量超过36m 且少于37.5m 时,5月份用水量超过37.5m 但少于39m ,所以4、5月份共交水费466241566236x x -+⨯+--+⨯=()()(元).【解析】(1)248⨯=(元)人教版七年级数学上册 期末专项复习04—几何图形初步一、选择题(每小题3分,共30分) 1.下列说法正确的是( ) A .平角是一条直线 B .周角是一条射线C .用2倍的放大镜看1cm 长的线段,这条线段变成了2cmD .用2倍的放大镜看°30的角,这个角变成了°602.如图所示,在AOB ∠的内部有4条射线,则图中角的个数为( )A .10B .15C .5D .203.下面说法:①若线段AC BC =,C 是线段AB 的中点;②两点之间直线最短;③延长直线AB ;④若一个角既有余角又有补角,则它的补角一定比它的余角大.正确的有( ) A .0个B .1个C .2个D .3个4.如图所示,小于平角的角有( )A .9个B .8个C .7个D .6个5.如图,C ,D 是线段AB 上两点,4cm CB =,7cm DB =,且D 是AC 的中点,则AC 的长等于( )A .3cmB .6cmC .11cmD .14cm6.小明由点A 出发向正东方向走10m 到达点B ,再由点B 向东南方向走10m 到达点C ,则下列结论正确的是( ) A .°22.5ABC ∠= B .°45ABC ∠= C .°67.5ABC ∠=D .°135ABC ∠=7.如图所示,OC 是AOB ∠的平分线,OD 是BOC ∠的平分线,那么下列各式正确的是( )A .12COD AOB ∠=∠ B .23AOD AOB ∠=∠C .13BOD AOB ∠=∠D .23BOC AOD ∠=∠8.如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是( )A .遇B .见C .未D .来9.射线OA 上有B 、C 两点,若8OB =,2BC =,线段OB 、BC 的中点分别为D 、E ,则线段DE 的长为( ) A .5B .3C .1D .5或310.如图,AOB COD ∠=∠,若°110AOD ∠=,°70BOC ∠=,则以下结论正确的有( )①°90AOC BOD ∠=∠=;②°20AOB ∠=;③AOB AOD AOC ∠=∠-∠;④211AOB BOD ∠=∠ A .1个B .2个C .3个D .4个二、填空题(每小题3分,共24分)11.用度、分、秒表示:°35.12=________°________′________″. 12.已知°4231α∠=′,则α∠的余角的补角是________. 13.延长线段AB 到点C ,使12BC AB =,反向延长线段AC 到点D ,使12AD AC =.若8cm AB =,则CD =________cm .14.如图所示,水平放置的长方体的底面是长为4和宽为2的长方形,从正面看到的形状图的面积为12,则长方体的体积等于________.15.如图所示,C 是线段AB 外一点,那么AC BC +________AB (填“>”“<”或“=”),理由是________.16.如图所示,A 、O 、B 在一条直线上,°1302AOC BOC ∠=∠+,OE 平分BOC ∠,则BOE ∠=________.17.有公共顶点的两条射线分别表示南偏东°15与北偏东°25,则这两条射线组成的角的度数为________. 18.延长线段AB 到C ,使13BC AB =,D 为AC 的中点,且6cm DC =,则AB 的长是________cm . 三、解答题(共46分)19.(8分)已知平面上的三点,如图所示. (1)按下列要求画出图形:①画直线AC ;②画射线BC ;③画线段AB .(2)指出图中有几条线段,并表示出来.(3)图中有哪些线段?用图中的字母表示出来.(4)图中有哪些直线?并用图中的字母表示出来.20.(6分)如图所示的平面展开图折叠成正方体后,相对面上的两个数之和为5,求x y z ++的值.21.(6分)若:::1234134:1::∠∠∠∠=,而且°1231048∠∠∠∠=+++,那么这四个角分别为多少度?22.(8分)如下图,某轮船上午8时在A 处,测得灯塔S 在北偏东°60的方向上,向东行驶至中午12时,轮船到达B 处,在B 处测得灯塔S 在北偏西°30的方向上,已知轮船行驶速度为20千米/时. (1)在图中画出灯塔S 的位置;(2)量出船在B 处时,离灯塔S 的图上距离,并求出它的实际距离.23.(8分)如图所示,点C 是线段AB 上一点,点M 是线段AC 的中点,点N 是线段BC 的中点.(1)如果0cm 1AB =,3cm AM =,求NC 的长.(2)如果6cm MN =,求AB 的长.24.(10分)如图所示,从一点O 出发,引两条射线可以得到一个角,引三条射线可以得到三个角,引四条射线可以得到六个角,引五条射线可以得到十个角,如果从一点出发引n (n 为大于等于2的整数)条射线,则会得到多少个角?如果8n =时,检验你所得的结论是否正确.期末专项复习—几何图形初步答案解析一、 1.【答案】C 2.【答案】B 3.【答案】B【解析】①如图,C 不是线段AB 的中点,故①不正确;②两点之间线段最短,故②不正确;③直线向两边无限延伸,不能延长,故③不正确;④正确.故选B . 4.【答案】C【解析】符合条件的角中以A 为顶点的角有1个,以B 为顶点的角有2个,以C 为顶点的角有1个,以D 为顶 点的角有1个,以E 为顶点的角有2个,共有121127++++=(个)角,故选C . 5.【答案】B【解析】因为7cm DB =,4cm CB =所以743cm DC DB CB =-=-=.根据D 是AC 的中点,得2236cm AC DC ==⨯=.6.【答案】D【解析】由题意作图如下:由图可得°°°9045135ABC ∠=+=. 7.【答案】D【解析】设COD x ∠=,因为OD 平分BOC ∠, 所以BOD COD x ∠=∠=,2BOC x ∠=. 又OC 平分AOB ∠, 所以2AOC BOC x ∠=∠=,则4AOB x ∠=,所以14COD AOB ∠=∠,34AOD AOB ∠=∠,14BOD AOB ∠=∠,23BOC AOD ∠=∠,故 选D . 8.【答案】D【解析】根据正方体的表面展开图的特征,易知与“你”字所在面相对的面上标的字是“来”,与“遇” 字所在面相对的面上标的字是“的”,与“见”字所在面相对的面上标的字是“未”,故选D .9.【答案】D【解析】如图1,3DE =;如图2,5DE =.图1图210.【答案】C【解析】因为°110AOD ∠=,°70BOC ∠=,所以°40COD AOB ∠+∠=,又因为AOB COD ∠=∠,所以°20AOB COD ∠=∠=,所以°90AOC BOD ∠=∠=,故①②正确;AOD AOC COD AOB ∠-∠=∠=∠,故③正确;29AOB BOD ∠=∠,故④不正确.所以正确的有3个. 二、11.【答案】35 7 12 12.【答案】°13231′ 13.【答案】18 14.【答案】2415.【答案】>两点之间线段最短 16.【答案】°50 17.【答案】°140 18.【答案】9 三、19.【答案】解:(1)如图所示:(2)图中有3条线段,分别是线段AB 、AC 、BC .(3)图中的射线有:射线CE 、CF 、AG 、AF 、CG 、BE . (4)图中的直线有:直线AC 20.【答案】421.【答案】°120∠=,°260∠=,°380∠=,°420∠=. 22.【答案】解:(1)灯塔S 的位置如下图:(2)量得图中2cm BS =,轮船上午8时到中午12时行驶了4小时,则行驶的路程为20480⨯=(千米).而图 中AB 的距离为4cm ,故该图的比例为418010001002000000=⨯⨯.所以轮船离灯塔S 的实际距离为 20000002400000040⨯==(厘米)千米.23.【答案】(1)因为M 为AC 的中点,所以2AC AM =.因为3cm AM =,所以236cm AC =⨯=.因为10cm AB =,所以10cm 6cm 4cm BC AB AC =-=-=,又因为N 为BC 的中点,所以12cm 2NC BC ==. (2)因为M 为AC 的中点,所以12MC AC =.因为N 为CB 的中点,所以12CN CB =,所以 111222MC CN AC CB AC CB +=+=+(),即12MN AB =,而6cm MN =,所以12cm AB =. 24.【答案】解:当2n =时,角的个数为1;当3n =时,角的个数为123+=;当4n =时,角的个数为1236++=; 当5n =时,角的个数为123410+++=;当射线的条数为n 时,角的个数为112342112n n n n ++++-+-=-…()()().当8n =时,1118182822n n -=⨯-⨯=()().所以n 条射线可 得到112n n -g ()个角的结论也是正确的.。
人教版七年级数学上册复习训练题(含答案)
人教版七年级数学上册复习训练题(复习范围:七上全部内容)一.选择题1.若|x|=3,则()A.x=3B.x=﹣3C.x=±3D.x=92.下列代数式中,不是整式的是()A.﹣3x2B.C.D.﹣2005 3.用四舍五入法把4.7973精确到百分位得到的近似数是()A.4.79B.4.70C.4.8D.4.804.已知某物体的质量约为24400000万亿吨,用科学记数法表示为()千克.A.0.244×108B.2.44×107C.0.244×1020D.2.44×1019 5.已知∠1和∠2互为余角,且∠2与∠3互补,∠1=60°,则∠3为()A.120°B.60°C.30°D.150°6.下列说法正确的个数是()①一个数的绝对值的相反数一定是负数②正数和零的绝对值都等于它本身③只有负数的绝对值是它的相反数④互为相反数的两个数的绝对值一定相等⑤任何一个有理数一定不大于它的绝对值⑥任何数的偶数次幂都是正数A.5个B.4个C.3个D.2个7.下列说法中,正确的是()A.单项式3πxy的系数是3B.单项式5×103x2的次数为5C.多项式3x﹣2x2y+8xy是三次三项式D.多项式x2+y2﹣1的常数项是1 8.下列计算正确的是()A.3a+a=3a2 B.2a+3b=5ab C.3a﹣a=3 D.﹣3ab+2ab=﹣ab 9.方程2x+a=4的解是x=﹣2,则a=()A.﹣8B.0C.2D.810.下列变形正确的是()A.4x﹣5=3x+2变形得4x﹣3x=﹣2+5B.x﹣1=x+3变形得4x﹣6=3x+3 C.3(x﹣1)=2(x+3)变形得3x﹣1=2x+6D.3x=2变形得x=11.钟表上12时15分时,时针和分针的夹角是()A.120°B.90°C.82.5°D.60°12.延长线段AB到C,使BC=AB,若AC=15,点D为线段AC的中点,则BD的长为()A.4.5B.3.5C.2.5D.1.513.已知a、b互为相反数,c、d互为倒数,则代数式2020(a+b)﹣cd的值为()A.2020B.2019C.﹣1D.014.若a﹣3b﹣2=0,则代数式2a﹣6b+1的值为()A.5B.﹣3C.4D.﹣415.方程去分母得()A.2﹣2(2x﹣4)=﹣(x﹣7)B.12﹣2(2x﹣4)=﹣x﹣7C.12﹣2(2x﹣4)=x﹣7D.12﹣4x﹣8=﹣(x﹣7)16.若x=﹣1,则x+x2+x3+x4+…+x2020的值为()A.0B.1C.﹣1D.202017.如图所示的是一个正方体的平面展开图,若将平面展开图折叠成正方体后,相对面上的两个数字之和均为7,期x+y+z的值为()A.7B.8C.9D.1018.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,可列方程为()A.8x﹣3=7x+4B.8x+3=7x+4C.8x﹣3=7x﹣4D.8x+3=7x﹣419.如图,点O在直线AE上,OC平分∠AOE,∠DOB是直角.若∠1=25°,那么∠AOB的度数是()A.65°B.25°C.90°D.115°20.在数轴上,表示数x的点的位置如图所示,则化简|x+1|﹣|x﹣2|结果为()A.3B.﹣3C.2x﹣1D.1﹣2x二.填空题21.如果一个棱柱共有15条棱,那么它一定是棱柱.22.如果电梯上升3层记作+3层,那么﹣6层表示.23.﹣的相反数是,倒数是.24.有理数5.692精确到百分位的近似数为.25.多项式3x2y﹣7x4y2﹣xy3+26是次项式,最高次项的系数是.26.48°39′的余角是.27.已知5x m+2+3=1是关于x的一元一次方程,则m=.28.已知5x2y|m|﹣(m﹣2)y+3是四次三项式,则m=.29.已知C是线段AB中点,若AB=5cm,则BC=cm.30.如图,∠BOC=90°,∠COD=45°,则图中互为补角的角共有对.31.如果数轴上点A表示3,将点A向左移动6个单位长度;再向右移动4个单位长度,那么终点表示的数是.32.若单项式2x2y m与﹣x n y3是同类项,则m+n=.33.若a、b为整数,且|a﹣2|+(b+3)2020=1,则b a=.34.代数式与互为相反数,则x的值为.35.若∠AOB=45°,∠BOC=75°,OD平分∠AOB,OE平分∠BOC,则∠DOE的度数为.36.班长给本班同学分笔记本,如果每人分3本还差3本,如果每人分2本又多2本.若设本班同学共有x个,则可建立方程为.37.如图所示是一段火车路线图,A、B、C、D、E是五个火车站,在这条线路上往返行车需要印制种火车票.38.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,AD=AC,DE=AB,若AB=24cm,则线段CE的长为.39.已知|x|=4,|y|=6,且xy<0,x+y>0,则x﹣y=.40.对于任意有理数a,b,c,d,我们规定=ad﹣bc,如=1×4﹣2×3.若=﹣2,则可列方程为.三.解答题41.计算:(1)(﹣4)﹣(+3)+(﹣5);(2)﹣81÷(﹣2)×÷(﹣16);(3)6﹣3.3﹣(﹣6)﹣(﹣3)+3.3;(4)(﹣24)×(+﹣0.75).42.先化简,再求值:(1)2(2x﹣3y)﹣(3x+2y+3),其中x=2,y=﹣;(2)4x﹣2(x﹣3)﹣3[x﹣3(4﹣2x)+8],其中x=2.43.解下列方程:(1)﹣2=x+1;(2)5(x﹣5)﹣2(x﹣12)=2;(3)﹣=1;(4)(3x+7)=2﹣x.44.如图,O为直线DA上一点,∠AOB=130°,OE为∠AOB的平分线,∠COB=90°,求∠AOC和∠EOC的度数.45.北大登山队以二号营地为基准,开始向距二号营地500米的顶峰冲击,他们记向上为正,行进过程记录如下:(单位:米):+150,﹣35,﹣40,+210,﹣32,+20,﹣18,﹣5,+20,+85,﹣25.(1)他们最终有没有登上顶峰?若没有,距顶峰还有多少米?(2)登山时,若5名队员在记录的行进路线上都使用了氧气,且每人每米要消耗氧气0.05升,则他们共耗氧多少升?46.如图所示,已知线段AB=4cm,BC=3cm,M,N分别是AB和BC上两点.(1)求线段AC的长.(2)若M为AC中点,BN=BC,求线段MN的长.47.已知∠α=76°42',∠β=41°41'.求:(1)∠β的余角;(2)∠α与∠β的2倍的和.48.为庆祝元旦,学校准备举行七年级合唱比赛,现由各班班长统一购买服装,服装每套60元,服装制造商给出的优惠方案是:30套以上的团购有两种优惠方案可选择,方案一:全部服装可打8折;方案二:若打9折,有5套可免费.(1)七年(1)班有46人,该选择哪个方案更划算?(2)七年(2)班班长思考一会儿,说:“我们班无论选择哪种方案,要付的钱是一样的.”你知道七年(2)班有多少人吗?49.已知,如图1,把直角三角形MON的直角顶点O放在直线AB上,射线OC平分∠AON.(1)如图1,若MOC=28°,求∠BON的度数;(2)若将三角形MON绕点O旋转到如图2所示的位置,若∠BON=100°,则∠MOC的度数为;(3)若将三角形MON绕点O旋转到如图3所示的位置,试写出∠BON和∠MOC之间的数量关系,并说明理由.50.如图,数轴上有三个点A、B、C表示的数分别是﹣4,﹣2,3.(1)①点B和点C之间的距离是个单位长度;②若使C、B两点的距离是A、B两点的距离的2倍,则需将点C向左移动个单位长度.(2)点A、B、C开始在数轴上运动,若点A以每秒a个长度单位的速度向左运动,同时,点B以每秒2个单位长度的速度向左运动,点C以每秒5个单位长度的速度向右运动,设运动时间为t秒.①点A、B表示的数分别是、(用含有a、t的代数式表示);②若点B、C之间的距离表示为d1,点A与点B之间的距离表示为d2,当a为何值时,2d1﹣3d2的值不会随着时间的变化而改变,并求此时2d1﹣3d2的值.参考答案一.选择题1.解:∵|x|=3,∴x=±3,故选:C.2.解:A、﹣3x2是整式,不合题意;B、是整式,不合题意;C、不是整式,符合题意;D、﹣2005是整式,不合题意;故选:C.3.解:4.7973精确到百分位得到的近似数是4.80.故选:D.4.解:24400000万亿吨=24400000000000000000千克=2.44×1019千克.故选:D.5.解:∵∠1和∠2互为余角,∠1=60°,∴∠2=90°﹣∠1=90°﹣60°=30°,∵∠2与∠3互补,∴∠3=180°﹣∠2=180°﹣30°=150°.故选:D.6.解:①一个数的绝对值的相反数不一定是负数,如0,不符合题意;②正数和零的绝对值都等于它本身,符合题意;③0和负数的绝对值是它的相反数,不符合题意;④互为相反数的两个数的绝对值一定相等,符合题意;⑤任何一个有理数一定不大于它的绝对值,符合题意;⑥0的偶数次幂是0,不符合题意.故选:C.7.解:A.单项式3πxy的系数是3π,故本选项不符合题意;B.单项式5×103x2的次数是2,故本选项不符合题意;C.多项式3x﹣2x2y+8xy是三次三项式,故本选项符合题意;D.多项式x2+y2﹣1的常数项是﹣1,故本选项不符合题意;故选:C.8.解:A、3a+a=4a,故本选项不合题意;B、2a与3b不是同类项,所以不能合并,故本选项不合题意;C、3a﹣a=2a,故本选项不合题意;D、﹣3ab+2ab=﹣ab,故本选项符合题意;故选:D.9.解:把x=﹣2代入方程得:﹣4+a=4,解得:a=8,故选:D.10.解:A、4x﹣5=3x+2变形得4x﹣3x=2+5,故本选项不符合题意.B、x﹣1=x+3变形得4x﹣6=3x+18,故本选项不符合题意.C、3(x﹣1)=2(x+3)变形得3x﹣3=2x+6,故本选项不符合题意.D、3x=2变形得x=,故本选项符合题意.故选:D.11.解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上12时15分钟时,时针与分针的夹角可以看成时针转过12时0.5°×15=7.5°,分针在数字3上.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴12时15分钟时分针与时针的夹角90°﹣7.5°=82.5°.故选:C.12.解:设CB=x,则AB=4x,∴AC=AB+BC=x+4x=5x,∵AC=15,∴x=3,∴AB=12,∵D是AC的中点,∴AD=AC=×15=7.5,∴BD=AB﹣AD=12﹣7.5=4.5.故选:A.13.解:∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1,∴2020(a+b)﹣cd=2020×0﹣1=0﹣1=﹣1.故选:C.14.解:∵a﹣3b﹣2=0,∴a﹣3b=2,则2a﹣6b+1=2(a﹣3b)+1=2×2+1=5,故选:A.15.解:方程去分母得:12﹣2(2x﹣4)=x﹣7.故选:C.16.解;因为x=﹣1,所以x2=1,x3=﹣1,x4=1…,即x+x2=0,x3+x4=0…,则x+x2+x3+x4+…+x2020=0+0+…0=0.故选:A.17.解:根据正方体展开图的“相间、Z端是对面”的特征可知,“﹣2”与“y”相对,“3”与“z”相对,“x”与“10”相对,又∵相对面上的两个数字之和均为7,∴x=﹣3,y=9,z=4,∴x+y+z=﹣3+9+4=10,故选:D.18.解:由题意可得,设有x人,可列方程为:8x﹣3=7x+4.故选:A.19.解:∵点O在直线AE上,OC平分∠AOE,∴∠AOC=∠COE=90°,∵∠DOB是直角,∠1=25°,∴∠BOC=∠DOB﹣∠1=90°﹣25°=65°,∵∠AOB+∠BOC=∠AOC=90°∴∠AOB=90°﹣∠BOC=90°﹣65°=25°.故选:B.20.解:由数轴可得:﹣1<x<0,则x+1>0,x﹣2<0,故|x+1|﹣|x﹣2|=x+1﹣[﹣(x﹣2)]=x+1+x﹣2=2x﹣1.故选:C.二.填空题21.解:15÷3=5,所以是五棱柱,故答案为:五.22.解:如果电梯上升3层记作+3层,那么﹣6层表示下降6层.故答案为:下降6层.23.解:﹣的相反数是;倒数是﹣.故答案为:,﹣.24.解:有理数5.692精确到百分位的近似数为5.69,故答案为:5.69.25.解:多项式3x2y﹣7x4y2﹣xy3+26是六次四项式,最高次项的系数是﹣7,故答案为:六,四,﹣7.26.解:48°39′的余角为:90°﹣48°39′=89°60′﹣48°39′=41°21′.故答案为:41°21′.27.解:由题意得:m+2=1,解得:m=﹣1,故答案:﹣1.28.解:∵5x2y|m|﹣(m﹣2)y+3是四次三项式,∴|m|=2且﹣(m﹣2)≠0,解得:k=﹣2,故答案为:﹣229.解:∵C是线段AB中点,AB=5cm,∴BC=AB=5=(cm),故答案为:.30.解:∵∠BOC=90°,∴∠AOC=∠BOC=90°,∴∠AOC与∠BOC互为补角;∵∠BOD+∠AOD=180°,∴∠AOD与∠BOD互为补角;∵∠COD=45°,∴∠BOD=45°,∴∠AOD与∠COD互为补角;∴图中互为补角的角共有3对,故答案为:3.31.解:根据题意得:3﹣6+4=1,则终点表示的数是2,故答案是:1.32.解:由同类项的定义可知m=3,n=2,则m+n=3+2=5.故答案为:5.33.解:∵|a﹣2|≥0,(b+3)2020≥0,而a、b为整数,∴|a﹣2|=1,(b+3)2020=0或|a﹣2|=0,(b+3)2020=1,∴a=1或3,b=﹣3或a=2,b=﹣4或﹣2,当a=1,b=﹣3时,b a=﹣3;当a=3,b=﹣3时,b a=(﹣3)3=﹣27;当a=2,b=﹣4,b a=(﹣4)2=16;当a=2,b=﹣2时,b a=(﹣2)2=4;综上所述,b a=(﹣3)3=﹣27;的值为﹣3或﹣27或4或16.故答案为﹣3或﹣27或4或16.∴+=0,解得x=.故答案为.35.解:如图1,∵∠AOB=45°,∴∠BOD=22.5°,∵∠BOC=75°,∴∠BOE=37.5°,∴∠DOE=22.5°+37.5°=60°;如图2,∵∠AOB=45°,∴∠BOD=22.5°,∵∠BOC=75°,∴∠BOE=37.5°,∴∠DOE=37.5°﹣22.5°=15°,故答案为:60°或15°.36.解:设这个班共有x名学生,根据题意,得:3x﹣3=2x+2故答案是:3x﹣3=2x+2.37.解:图中线段有:AB、AC、AD、AE,BC、BD、BE,CD、CE、DE 共10条,∵每条线段应印2种车票,∴共需印10×2=20种车票.故答案为:20.38.解:∵AD=AC,而C是线段AB的中点,∴AC=AB,∴DC=AB=AB,又∵CE=DE﹣DC,∴CE=AB﹣AB=AB=×24=10.4(cm),故线段CE的长为10.4cm,故答案为:10.4cm.39.解:∵|x|=4,|y|=6,∴x=±4,y=±6,又∵xy<0,x+y>0,∴x=﹣4,y=6,∴x﹣y=﹣4﹣6=﹣10,故答案为:﹣10.40.解:∵=ad﹣bc,=﹣2,∴﹣4x﹣3×(﹣2)=﹣2.故答案为:﹣4x﹣3×(﹣2)=﹣2.三.解答题41.解:(1)(﹣4)﹣(+3)+(﹣5)=﹣4﹣3﹣5=﹣12;(2)﹣81÷(﹣2)×÷(﹣16)=﹣81×(﹣)××(﹣)=﹣1;(3)6﹣3.3﹣(﹣6)﹣(﹣3)+3.3=(6+3)+(﹣3.3+3.3)+6=10+0+6=16;(4)(﹣24)×(+﹣0.75)=(﹣24)×+(﹣24)×﹣(﹣24)×0.75=﹣33﹣56+18=﹣71.42.解:(1)原式=4x﹣6y﹣3x﹣2y﹣3=x﹣8y﹣3,当x=2,y=﹣时,原式=2+4﹣3=3;(2)原式=4x﹣2x+6﹣3x+36﹣18x﹣24=﹣19x+18,当x=2时,原式=﹣38+18=﹣20.43.解:(1)﹣2=x+1,去分母得:9x﹣24=4x+12,移项得:9x﹣4x=12+24,合并同类项得:5x=36,解得:x=7.2.(2)5(x﹣5)﹣2(x﹣12)=2,去括号得:5x﹣25﹣2x+24=2,移项得:5x﹣2x=2+25﹣24,合并同类项得:3x=3,解得:x=1.(3)﹣=1,去分母得:3(3x+5)﹣4(4x﹣2)=12去括号得:9x+15﹣16x+8=12,移项得:9x﹣16x=12﹣15﹣8,合并同类项得:﹣7x=﹣11,解得:x=.(4)(3x+7)=2﹣x,去分母得:4(3x+7)=28﹣21x,去括号得:12x+28=28﹣21x44.解:因为∠AOB=130°,OE是∠AOB的平分线,所以∠BOE=,因为∠COB=90°,所以∠COE=90°﹣65°=25°,所以∠AOC=∠AOE﹣∠COE=65°﹣25°=40°.45.解:(1)+150﹣35﹣40+210﹣32+20﹣18﹣5+20+85﹣25=330(米),500﹣330=170(米).答:他们最终没有登顶,距顶峰还有170米;(2)(+150+|﹣35|+|﹣40|+210+|﹣32|+20+|﹣18|+|﹣5|+20+85+|﹣25|)×(5×0.05)=640×0.25=160(升).答:他们共耗氧气160升.46.解:(1)∵AB=4cm,BC=3cm,∴AC=AB+BC=7(cm);(2)∵AC=7cm,M为AC中点,∴CM=AC=7=(cm),∵BN=BC,∴BN=3=1(cm),∴CN=BC﹣BN=2(cm),∴MN=CM﹣CN=﹣2=(cm).47.解:(1)∵∠β=41°41',∴∠β的余角=90°﹣∠β=90°﹣41°41′=48°19′;(2)∵∠α=76°42',∠β=41°41',∴∠α+2∠β=76°42'+2×41°41′=76°42'+82°82′=158°124'=160°4'.方案一的花费为:60×46×0.8=2208(元),方案二的花费为:60×0.9×(46﹣5)=2214(元),∵2208<2214,∴七年(1)班有46人,该选择方案一更划算,即七年(1)班有46人,该选择方案一更划算;(2)设七年(2)班x人,60×0.8x=60×0.9×(x﹣5),解得x=45,答:七年(2)班有45人.49.解:(1)如图1,∵∠MOC=28°,∠MON=90°,∴∠NOC=90°﹣28°=62°,又∵OC平分∠AON,∴∠AOC=∠NOC=62°,∴∠BON=180°﹣2∠NOC=180°﹣62°×2=56°;(2)∵∠BON=100°,∴∠AON=80°,∴∠AOM=90°﹣∠AON=10°,∠AOC=40°,∴∠MOC=∠AOM+∠AOC=50°.故答案为:50°;(3)∠MOC和∠BON之间的数量关系不发生变化,如图2,∵OC平分∠AON,∴∠AOC=∠NOC,∵∠MON=90°,∴∠AOC=∠NOC=90°﹣∠MOC,∴∠BON=180°﹣2∠NOC=180°﹣2(90°﹣∠MOC)=2∠MOC,即:∠BON=2∠MOC.50.解:(1)①点B和点C之间的距离是3﹣(﹣2)=5个单位长度.故答案为:5;②由数轴可知:B点、C点表示的数分别为:﹣2、3,因为AB=|﹣2﹣(﹣4)|=2,故答案是:1或9;(2)①点A表示的数是﹣4﹣at;点B表示的数是﹣2﹣2t.故答案是:﹣4﹣at;﹣2﹣2t;②∵点A以每秒a个单位的速度向左运动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴d1=|(3+5t)﹣(﹣2﹣2t)|=|7t+5|,d2=|(﹣2﹣2t)﹣(﹣4﹣at)|=|at﹣2t+2|,∵t>0,∴d1=7t+5,当at﹣2t+2>0时,d2=at﹣2t+2,2d1﹣3d2=2(7t+5)﹣3(at﹣2t+2)=14t+10﹣3at+6t﹣6=(20﹣3a)t+4,∵2d1﹣3d2的值不会随着时间的变化而改变,∴20﹣3a=0,∴当a=时,2d1﹣3d2的值不会随着时间的变化而改变.当at﹣2t+2<0时,d2=﹣at+2t﹣2,2d1﹣3d2=2(7t+5)﹣3(﹣at+2t﹣2)=14t+10+3at﹣6t+6=(8+3a)t+16,∵a>0,∴8+3a≠0,∴2d1﹣3d2的值会随着时间的变化而改变.综上所述,当a=时,2d1﹣3d2的值不会随着时间的变化而改变.。
七年级数学上上册知识点总结及练习题(含答案)
人教版七年级数学上册知识点及练习题第一章有理数【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.5.科学记数法:,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。
实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。
正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。
【能力训练】一、选择题。
1.下列说法正确的个数是 ( )①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A 1B 2C 3D 42.a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列 ( )A -b<-a<a<bB -a<-b<a<bC -b<a<-a<bD -b<b <-a<a3.下列说法正确的是 ( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④4.下列运算正确的是( )A B -7-2×5=-9×5=-45C 3÷D -(-3)2=-95.若a+b<0,ab<0,则 ( )A a>0,b>0B a<0,b<0C a,b两数一正一负,且正数的绝对值大于负数的绝对值D a,b两数一正一负,且负数的绝对值大于正数的绝对值6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A 0.8kgB 0.6kgC 0.5kgD 0.4kg7.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()A ()5mB [1-()5]mC ()5mD [1-()5]m8.若ab≠0,则的取值不可能是()A 0B 1C 2D -2二、填空题。
人教版初一七年级上册数学【选择题】100道专项复习练习附答案
人教版七年级上册数学选择题100道附答案学校:___________姓名:___________班级:___________一、单选题1.对于任何有理数a ,下列各式中一定为负数的是( ).A .(3)a --+B .a -C .1a -+D .1a --2.下列说法中,正确..的是( ) A .一个有理数不是正数就是负数B .一个有理数不是整数就是分数C .若|a |=|b |,则a 与b 互为相反数D .整数包括正整数和负整数3.用科学记数法表示2350000正确的是( )A .235×104B .0.235×107C .23.5×105D .2.35×1064.超市出售的某种品牌的面粉袋上,标有质量为(25±0.2)kg 的字样,从中任意拿出两袋,它们的质量最多相差-( )A .0.2 kgB .0.3 kgC .0.4 kgD .50.4 kg5.小丽在纸上画了一条数轴后,折叠纸面,使数轴上表示2的点与表示-4的点重合;若数轴上A 、B 两点之间的距离为10(A 在B 的左侧),且A 、B 两点经上述折叠后重合,则A 点表示的数是( ) A .-5 B .-6 C .-10 D .-46.2-的相反数是( )A .2-B .2C .12 D .12- 7.﹣2的绝对值是( )A .2B .12C .12-D .2- 8.3-的倒数是( )A .3B .13C .13-D .3- 9.-2的倒数是( )A .-2B .12-C .12D .210.﹣3的绝对值是( )A .﹣3B .3C .-13D .1311.已知|x|=5,|y|=2,且|x+y|=﹣x ﹣y ,则x ﹣y 的值为( )A .±3B .±3或±7C .﹣3或7D .﹣3或﹣712.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .1202013.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°14.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°15.若单项式a m ﹣1b 2与212n a b 的和仍是单项式,则n m 的值是( ) A .3 B .6 C .8 D .916.若方程:()2160x --=与3103a x --=的解互为相反数,则a 的值为( ) A .-13 B .13 C .73 D .-117.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x18.已知m,n为常数,代数式2x4y+mx|5-n|y+xy化简之后为单项式,则m n的值共有( ) A.1个B.2个C.3个D.4个19.已知两个有理数a,b,如果ab<0且a+b>0,那么()A.a>0,b>0B.a<0,b>0C.a、b同号D.a、b异号,且正数的绝对值较大20.已知有理数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.a•b>0 B.a+b<0 C.|a|<|b| D.a﹣b>021.长方形如图折叠,D点折叠到D′的位置,已知∠D′FC=40°,则∠EFC=()A.120°B.110°C.105°D.115°22.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于( ).A.35°B.70°C.110°D.145°23.已知|m-2|+(n-1)2=0,则关于x的方程2m+x=n的解是( )A.x=-4B.x=-3C.x=-2D.x=-1a+表示,且点A到原点的距离等于3,则a的值为()24.点A在数轴上,点A所对应的数用21A.2-或1 B.2-或2 C.2-D.125.如图所示,已知∠AOB=64°,OA 1平分∠AOB ,OA 2平分∠AOA 1,OA 3平分∠AOA 2,OA 4平分∠AOA 3,则∠AOA 4的大小为( )A .1°B .2°C .4°D .8°26. 某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(-10%)(+15%)万元 B .(1-10%)(1+15%)万元 C .(-10%+15%)万元D .(1-10%+15%)万元 27.已知a =b ,下列变形正确的有( )个.①a +c =b +c ;②a ﹣c =b ﹣c ;③3a =3b ;④ac =bc ;⑤a b c c =. A .5 B .4 C .3 D .228.按下面的程序计算:若输入x 100=,输出结果是501,若输入x 25=,输出结果是631,若开始输入的x 值为正整数,最后输出的结果为531,则开始输入的x 值可能有( )A .1种B .2种C .3种D .4种29.图甲和图乙中所有的正方形都全等,将图甲的正方形放在图乙中的①②③④某一位置,所组成的图形不能围成正方体的位置是( )A .①B .②C .③D .④30.下列说法正确的是( )A .零是正数不是负数B .零既不是正数也不是负数C .零既是正数也是负数D .不是正数的数一定是负数,不是负数的数一定是正数31.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱32.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .433.下列各组数中:①﹣32与32;②(﹣3)2与32;③﹣(﹣2)与﹣(+2);④(﹣3)3与﹣33;⑤﹣23与32,其中互为相反数的共有( )A .4对B .3对C .2对D .1对34.若关于x 的方程230m mx m --+=是一元一次方程,则这个方程的解是( )A .0x =B .3x =C .3x =-D .2x =35.下列运用等式的性质对等式进行的变形中,错误的是( )A .若()()2211a x b x +=+,则a b =B .若a b =,则ac bc =C .若a b =,则22a b c c = D .若x y =,则33x y -=- 36.如果3ab 2m-1与9ab m +1是同类项,那么m 等于( )A .2B .1C .﹣1D .037.若x 是3的相反数,|y|=4,则x-y 的值是( )A .-7B .1C .-1或7D .1或-738.下列说法正确的是( )A .一个数前面加上“-”号,这个数就是负数B .零既是正数也是负数C .若a 是正数,则a -不一定是负数D .零既不是正数也不是负数39.一列数,按一定规律排列:-1,3,-9.27,-81,…,从中取出三个相邻的数,若三个数的和为a ,则这三个数中最大的数与最小的数的差为( )A .87aB .87|a|C .127|a|D .127a 40.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .2441.有理数a ,b 在数轴上的对应点如图所示,则下面式子中正确的是( )①b <0<a ; ②|b|<|a|; ③ab >0; ④a ﹣b >a+b .A .①②B .①④C .②③D .③④42.下列说法正确的是( )A .负数没有倒数B .﹣1的倒数是﹣1C .任何有理数都有倒数D .正数的倒数比自身小43.已知∠AOB =20°,∠AOC =4∠AOB ,OD 平分∠AOB ,OM 平分∠AOC ,则∠MOD 的度数是( ) A .20°或50° B .20°或60° C .30°或50° D .30°或60°44.式子|x ﹣1|-3取最小值时,x 等于( )A .1B .2C .3D .445.一跳蚤在一直线上从O 点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第100次落下时,落点处离点O 的距离是( )个单位.A .49B .50C .51D .9946.若不论k 取什么实数,关于x 的方程2136kx a x bk +--=(a 、b 是常数)的解总是x=1,则a+b 的值是( ) A .﹣0.5 B .0.5 C .﹣1.5 D .1.547.已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则 ( ) A .237230x x B .327230x x C .233072x x D .323072x x48.当1<a<2时,代数式|a -2|+|1-a|的值是( )A .-1B .1C .3D .-349.下列用四舍五入法按括号内的要求取近似数,错误的是( )A .57.06045≈57.1(精确到0.1)B .57.06045≈57.06(精确到千分位)C .57.06045≈57(精确到个位)D .57.06045≈57.0605(精确到0.0001)50.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( ). A .x +2x +4x =34 685B .x +2x +3x =34 685C .x +2x +2x =34 685D .x +12x +14x =34 685 51.下列解方程去分母正确的是( )A .由1132x x --=,得2x ﹣1=3﹣3xB .由2124x x --=-,得2x ﹣2﹣x =﹣4 C .由135y y -=,得2y-15=3y D .由1123y y +=+,得3(y+1)=2y+6 52.如果a 与1互为相反数,则|a+2|等于( )A .2B .-2C .1D .-153.﹣6的倒数是( )A .﹣16B .16C .﹣6D .654.实数a 、b 在数轴上的位置如图所示,则化简|a -b|﹣a 的结果为( )A .-2a+bB .bC .﹣2a ﹣bD .﹣b55.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2017将与圆周上的哪个数字重合( )A .0B .1C .2D .356.若数轴上表示-1和-3的两点分别是点A 和点B ,则点A 和点B 之间的距离是( )A .-4B .-2C .2D .457.下列方程:①3x ﹣y =2:②x +1x +2=0;③2x =1;④x =0;⑤3x ﹣1≥5:⑥x 2﹣2x ﹣3=0;⑦21136x +=x .其中一元一次方程有( )A .5个B .4个C .3个D .2个58.﹣15的绝对值是( ) A .﹣15 B .15 C .﹣5 D .559.下列说法中,不正确的是( )A .2ab c -的系数是1-,次数是4B .13xy -是整式C .2631x x -+的项是26x 、3x -,1D .22R R ππ+是三次二项式60.若x 与3的绝对值相等,则x ﹣1等于( )A .2B .﹣2C .﹣4D .2或﹣461.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( ) A .54573x x -=- B .54573x x +=+ C .45357x x ++= D .45357x x --= 62.在数轴上,a 所表示的点总在b 所表示的点的右边,且|a |=6,|b |=3,则a -b 的值为( )A .-3B .-9C .-3或-9D .3或963.如图,甲从A 点出发向北偏东70°方向走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则∠BAC 的度数是( )A .85°B .105°C .125°D .160°64.某商品进价为每件a 元,商店将价格提高30%作零售价销售,在销售旺季过后,商店又以8折的价格开展促销活动,这时该商品每件的售价为( )A .a 元B .0.8a 元C .1.04a 元D .0.92a 元65.某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高( ) A .10℃ B .6℃ C .﹣6℃ D .﹣10℃66.如图是一个长方体纸盒表面展开图,纸片厚度忽略不计,按图中数据,这个盒子容积为( )A .6B .8C .10D .1567.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=b a;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 3x •a= 2x ﹣ 16(x ﹣6)无解,则a 的值是( )A .1B .﹣1C .±1D .a≠168.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A .22x=16(27﹣x )B .16x=22(27﹣x )C .2×16x=22(27﹣x )D .2×22x=16(27﹣x ) 69.明月从家里骑车去游乐场,若速度为每小时10km ,则可早到8分钟,若速度为每小时8km ,则就会迟到5分钟,设她家到游乐场的路程为xkm ,根据题意可列出方程为( )A .851060860x x -=- B .851060860x x -=+ C .851060860x x +=- D .85108x x +=+ 70.下列算式正确的是 ( )A .(-14)-5=-9B .0-(-3)=3C .(-3)-(-3)=-6D .()5353-=--71.有理数m ,n 在数轴上分别对应的点为M ,N ,则下列式子结果为负数的个数是( )①m n +;②m n -;③m n -;④22m n -;⑤33m n .A .2个B .3个C .4个D .5个72.纽约与北京的时差为﹣13小时(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数),当北京时间1月7日8时时,纽约的时间是( )A .1月6日21时B .1月7日21时C .1月6日19时D .1月6日20时73.在12-,12,﹣20,0,﹣(﹣5),﹣|+3|中,负数的个数有( ) A .2个 B .3 个 C .4 个 D .5 个74.下列说法:①a -一定是负数;②||a 一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是l ;⑤平方等于它本身的数是1.其中正确的个数是( )A .1个B .2个C .3个D .4个75.下列说法中,正确的是( )A .若||a b >,则a b >B .若a b ,则22a b ≠C .若||||a b =,则a b =D .若||||a b >,则a b >76.如图1,将一个边长为a 的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为( )A .2a ﹣3bB .4a ﹣8bC .2a ﹣4bD .4a ﹣10b77.下列说法错误的是 ( )A .2231x xy --是二次三项式B .1x -+不是单项式C .223xy π-的系数是23π- D .222xab -的次数是6 78.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒79.50个连续正奇数的和l+3+5+7+…+99与50个连续正偶数的和:2+4+6+8+…+100,它们的差是( ) A .0 B .50 C .﹣50 D .505080.将一副三角板按如图所示位置摆放,其中α∠与β∠一定互余的是( )A .B .C .D .81.如图,在数轴上,点A 、B 、C 对应的数分别为a 、b 、c ,若以下三个式子:b c <①,0a c ②+<,0a b +<③都成立,则原点在( )A .点A 的左侧B .点A 和点B 之间C .点B 和点C 之间D .点C 的左侧82.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( ) A .赚16元 B .赔16元 C .不赚不赔 D .无法确定83.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 2b+的值为( )A .0B .1-C .2或2-D .684.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD =150°,则∠BOC 等于( )A.30°B.45°C.50°D.60°85.若|abc|=-abc,且abc≠0,则||||ba ca b c++=()A.1或-3B.-1或-3C.±1或±3D.无法判断86.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A.110 B.158 C.168 D.17887.如图是某正方体的展开图,在顶点处标有数字,当把它折成正方体时,与4重合的数字是()A.9和13B.2和9C.1和13D.2和888.用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为()A.3n B.6n C.3n+6 D.3n+389.如图在表中填在各正方形中的四个数之间都有相同的规律,根据此规律,m的值是()A.74 B.104 C.126 D.14490.设■,●,▲分别表示三种不同的物体,如图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么以下方案不正确的是( )A.B.C.D.91.现有以下五个结论:①整数和分数统称为有理数;②绝对值等于其本身的有理数是0和1;③每一个有理数都可以用数轴上的一个点表示;④若两个非0数互为相反数,则它们相除的商等于﹣1;⑤几个有理数相乘,负因数个数是奇数时,积是负数.其中正确的有()A.1个B.2个C.3个D.4个92.已知三条不同的射线OA、OB、OC有下列条件:①∠AOC=∠BOC ②∠AOB=2∠AOC∠AOB,其中能确定OC平分∠AOB的有()③∠AOC+∠COB=∠AOB ④∠BOC=12A.4个B.3个C.2个D.1个93.某商店换季促销,将一件标价为240元的T恤8折售出,获利20%,则这件T恤的成本为()A.144元B.160元C.192元D.200元94.下面四个图形中,经过折叠能围成如图所示的几何图形的是()A.B.C.D.95.某地一天的最高气温是8 ℃,最低气温是-2 ℃,则该地这天的温差是( )A.-10℃B.10℃C.6℃D.-6℃96.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里D.3里97.如果“盈利5%”记作+5%,那么-3%表示( )A.亏损3% B.亏损8% C.盈利2% D.少赚3%98.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°99.3的倒数是()A.3B.3-C.13D.13-100.水文观测中,常遇到水位上升或下降的问题.我们规定:水位上升为正,水位下降为负;几天后为正,几天前为负.如果水位每天上升3cm,今天的水位为0cm,那么2天前的水位用算式表示正确的是()A.(+3)×(+2)B.(+3)×(﹣2)C.(﹣3)×(+2)D.(﹣3)×(﹣2)参考答案1.D【分析】负数小于0,可将各项化简,然后再进行判断.【详解】解:A、−(−3+a)=3−a,当a≤3时,原式不是负数,故A错误;B、−a,当a≤0时,原式不是负数,故B错误;C、−|a+1|≤0,当a=−1时,原式不是负数,故C错误;D、∵−|a|≤0,∴−|a|−1≤−1<0,原式一定是负数,故选D.点评:【点睛】本题考查了负数的定义和绝对值化简,掌握负数的定义以及绝对值的性质是解答此题的关键.2.B【分析】根据有理数的分类逐一作出判断即可.【详解】解:A.0既不是正数也不是负数,故A错误;B.整数和分数统称为有理数;故B正确;C.若|a|=|b|,则a=b或a与b互为相反数.故C错误;D.整数包括正整数、0和负整数,故D错误.【点睛】本题考查了有理数的分类,掌握有理数的分类是解题的关键.3.D【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将2350000用科学记数法表示为:2.35×106.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.C【分析】(25±0.2)的字样表明质量最大为25.2,最小为24.8,二者之差为0.4.【详解】解:根据题意得:标有质量为(25±0.2)的字样,∴最大为25+0.2=25.2,最小为25-0.2=24.8,二者之间差0.4.故选C.【点睛】主要考查了正负数的概念:用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.5.B【分析】根据题中画出数轴,根据数轴上点的位置判断即可得到结果.【详解】解:如图所示,根据折叠纸面,使数轴上表示2的点与表示-4的点重合,得到以-1对应的点对折,∵数轴上A、B两点之间的距离为10(A在B的左侧),且A、B两点经上述折叠后重合,∴A表示的数为-6,B表示的数为4.故选:B.此题考查了数轴,画出相应的图形是解本题的关键.6.B【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .7.A【详解】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.8.C【分析】由互为倒数的两数之积为1,即可求解.【详解】∵1313⎛⎫-⨯-=⎪⎝⎭,∴3-的倒数是13-.故选C9.B【分析】根据倒数的定义求解.【详解】-2的倒数是-12故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数. 11.D【详解】分析:根据|x|=5,|y|=2,求出x=±5,y=±2,然后根据|x+y|=-x-y,可得x+y≤0,然后分情况求出x-y的值.详解:∵|x|=5,|y|=2,∴x=±5、y=±2,又|x+y|=-x-y,∴x+y<0,则x=-5、y=2或x=-5、y=-2,所以x-y=-7或-3,故选D.点睛:本题考查了绝对值以及有理数的加减法,解答本题的关键是根据题目所给的条件求出x和y的值.12.B【分析】根据倒数的概念即可解答.【详解】解:根据倒数的概念可得,﹣2020的倒数是1 2020 ,故选:B.【点睛】本题考查了倒数的概念,熟练掌握是解题的关键.【详解】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,14.A【详解】【分析】根据平行线的性质,可得∠2,根据角的和差,可得答案.【详解】如图,AP∥BC,∴∠2=∠1=50°,∵∠EBF=80°=∠2+∠3,∴∠3=∠EBF﹣∠2=80°﹣50°=30°,∴此时的航行方向为北偏东30°,故选A.【点睛】本题考查了方向角,利用平行线的性质得出∠2是解题关键.15.C【详解】分析:首先可判断单项式a m-1b2与12a2b n是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式a m-1b2与12a2b n的和仍是单项式,∴单项式a m-1b2与12a2b n是同类项,∴m-1=2,n=2,∴m=3,n=2,∴n m=8.故选C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.16.A【详解】试题解析:∵2(x-1)-6=0,∴x=4,∵3103a x--=,∴x=3a-3,∵原方程的解互为相反数,∴4+3a-3=0,解得,a=13 -.故选A.17.C【分析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可【详解】.故选C.解:设安排x名工人生产螺钉,则(26-x)人生产螺母,由题意得1000(26-x)=2×800x,故C答案正确,考点:一元一次方程.18.C【分析】根据题意可得m=-1,|5-n|=1或m=-2,|5-n|=4,求出m、n的值,然后求出m n的值即可.【详解】∵代数式2x4y+mx|5-n|y+xy化简之后为单项式,∴化简后的结果可能为2x4y,也可能为xy,当结果为2x4y时,m=-1,|5-n|=1,解得:m=-1,n=4或n=6,则m n=(-1)4=1或m n=(-1)6=1;当结果为xy时,m=-2,|5-n|=4,解得:m=-2,n=1或n=9,则m n =(-2)1=-2或m n =(-2)9=-29,综上,m n 的值共有3个,故选C.【点睛】本题考查了合并同类项,解答本题的关键是掌握合并同类项的法则.19.D【分析】先由有理数的乘法法则,判断出a ,b 异号,再用有理数加法法则即可得出结论.【详解】∵ab <0,∴a ,b 异号,∵a+b >0,∴正数的绝对值较大,故选D .【点睛】本题考查了有理数的乘法、加法,熟练掌握和灵活应用有理数的加法法则和乘法法则是解题的关键.20.D【详解】试题解析:由数轴可知:10,1 2.b a -<<<<A.0,ab < 故错误.B.0.a b +>故错误.C.,a b >故错误.D.0.a b ->正确.故选D.21.B【解析】【分析】根据翻折不变性可知,∠DFE=∠D′FE ,又因为∠D′FC=40°,根据平角的定义,可求出∠EFC的度数.【详解】根据翻折不变性得出,∠DFE=∠EFD′,∵∠D′FC=40°,∠DFE+∠EFD′+∠D′FC=180°,∴2∠EFD′=180°-40°=140°, ∴∠EFD′=70°,∴∠EFC=∠EFD′+∠D′FC=70°+40°=110°.故选:B .【点睛】此题考查了角的计算和翻折变化,掌握长方形的性质和翻折不变性是解题的关键. 22.C【详解】∵OC 平分∠DOB,∠COB=35°,∴∠BOD=2∠COB=2×35°=70°,∴∠AOD=180°-70°=110°.故选C .23.B【详解】∵|m ﹣2|+(n ﹣1)2=0,∴2010m n -=-=,,∴21m n ==,,∴方程2m x n +=可化为:41x +=,解得3x =-.故选B.点睛:(1)一个代数式的绝对值、一个代数式的平方都是非负数;(2)若两个非负数的和为0,则这两个非负数都为0.24.A【分析】根据绝对值的几何意义列绝对值方程解答即可.【详解】解:由题意得:|2a+1|=3当2a+1>0时,有2a+1=3,解得a=1当2a+1<0时,有2a+1=-3,解得a=-2所以a的值为1或-2.故答案为A.【点睛】本题考查了绝对值的几何意义,根据绝对值的几何意义列出绝对值方程并求解是解答本题的关键.25.C【分析】根据角平分线定义求出∠AOA1=1∠AOB=32°,同理即可求出答案.2【详解】∵∠AOB=64°,OA1平分∠AOB,∠AOB=32°,∴∠AOA1=12∵OA2平分∠AOA1,∴∠AOA2=1∠AOA1=16°,2同理∠AOA3=8°,∠AOA4=4°,故选:C.【点睛】本题考查了角平分线的应用,掌握角平分线的定义是关键.26.B【详解】列代数式.据3月份的产值是a万元,用a把4月份的产值表示出来a(1-10%),从而得出5月份产值列出式子a1-10%)(1+15%).故选B.27.B【分析】运用等式的基本性质求解即可.①、②根据等式性质1判断,③、④、⑤根据等式的性质2判断,要注意应用等式性质2时,等式两边同除以一个数时必须具备该数不等于零这一条件. 【详解】解:已知a=b,①根据等式性质1,两边同时加上c得:a+c=b+c,故①正确;②根据等式性质1,两边同时减去c得:a﹣c=b﹣c,故②正确;③根据等式的性质2,两边同时乘以3,3a=3b,故③正确;④根据等式的性质2,两边同时乘以c,ac=bc,故④正确;⑤因为c可能为0,所以ac与bc不一定相等,故⑤不正确.故选B.【点睛】本题考查等式的性质,选择相应的基本性质作依据是解题关键.要注意应用等式基本性质2时,等式两边同除以一个数时必须具备该数不等于零这一条件.28.C【分析】根据输出的结果确定出x的所有可能值即可.【详解】解:若5x+1=531,解得x=106;若5x+1=106,解得x=21;若5x+1=21,解得x=4;故x的值可能是4,21,106四种.故选C.【点睛】此题考查了代数式求值,本题关键是弄清程序中的运算过程.29.A【分析】由平面图形的折叠及正方体的表面展开图的特点解题.【详解】将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,故选A.【点睛】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.30.B【详解】本题考查的是正、负数的意义根据正、负数的定义即可解答,零既不是正数也不是负数,故A、C错误,B正确,而不是正数的数是0和负数,不是负数的数是0和正数,故D错误,故选B.31.A【详解】设一件的进件为x元,另一件的进价为y元,则x(1+25%)=200,解得,x=160,y(1-20%)=200,解得,y=250,∴(200-160)+(200-250)=-10(元),∴这家商店这次交易亏了10元.故选A.32.C【详解】【分析】首先确定原点位置,进而可得C点对应的数.【详解】∵点A、B表示的数互为相反数,AB=6∴原点在线段AB的中点处,点B对应的数为3,点A对应的数为-3,又∵BC=2,点C在点B的左边,∴点C对应的数是1,故选C.【点睛】本题主要考查了数轴,关键是正确确定原点位置.33.C【分析】两数互为相反数,它们的和为0.本题可对各选项进行一一分析,看选项中的两个数和是否为0,如果和为0,则那组数互为相反数.【详解】解:根据相反数的定义可知:①﹣32与32;③﹣(﹣2)与﹣(+2)互为相反数.【点睛】此题考查相反数的概念.解题的关键是掌握相反数的概念,明确两数互为相反数,它们的和为0.34.A【详解】试题分析:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0),高于一次的项系数是0.解:由一元一次方程的特点得m﹣2=1,即m=3,则这个方程是3x=0,解得:x=0.故选A.考点:一元一次方程的定义.35.C【分析】根据等式的性质,逐项判断即可.【详解】解:A、根据等式性质2,a(x2+1)=b(x2+1)两边同时除以(x2+1)得a=b,原变形正确,故这个选项不符合题意;B、根据等式性质2,a=b两边都乘c,即可得到ac=bc,原变形正确,故这个选项不符合题意;C、根据等式性质2,c可能为0,等式两边同时除以c2,原变形错误,故这个选项符合题意;D、根据等式性质1,x=y两边同时减去3应得x-3=y-3,原变形正确,故这个选项不符合题意.故选:C.【点睛】此题主要考查了等式的性质和应用,要熟练掌握,解答此题的关键是要明确:(1)等式两边加同一个数(或式子),结果仍得等式.(2)等式两边乘同一个数或除以一个不为零的数,结果仍得等式.36.A根据同类项的定义得出m的方程解答即可.【详解】根据题意可得:2m﹣1=m+1,解得:m=2,故选A.【点睛】本题考查了同类项,解一元一次方程,正确把握同类项的概念是解题的关键.37.D【详解】试题解析:根据题意,得x=-3,y=±4.当 x=-3,y=4 时,x-y=-3-4=-7;当 x=-3,y=-4时,x-y=-3-(-4)=1.故选D.38.D【分析】根据相反数的意义和零的性质逐一进行判断即可.【详解】如-2前加负号为-(-2)=2,为正数故A选项错误,如a=2,,则-a= -2,故C选项错误,零既不是正数也不是负数,说法正确,故B错误、D正确,故选D.【点睛】此题考查了相反数的意义及零的性质,熟练掌握是解题关键.39.C【详解】解:∵该列数为:﹣1,3,﹣9,27,﹣81,…,∴该列数中第n个数为﹣(﹣3)n﹣1(n为正整数).设该三个相邻数中间的数为x,则左边的数为﹣13x,右边的数为﹣3x,根据题意得:﹣13x+x﹣3x=a,解得:x=37a-,∴相邻的三个数为17a,37a-,97a.最大的数与最小的数的差为:9312()777a a a--=.故选C.点睛:本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.40.C【详解】观察题中的两个代数式,可以发现,2x2-5x=2(x2-52x),因此可整体求出式x2-52x的值,然后整体代入即可求出所求的结果.解答:解:∵x2-52x=6∴2x2-5x+6=2(x2-52x)+6=2×6+6=18,故选C.41.B【详解】分析:本题是考察数轴上的点的大小的关系.解析:由图知,b<0<a,故①正确,因为b点到原点的距离远,所以|b|>|a|,故②错误,因为b<0<a,所以ab<0,故③错误,由①知a-b>a+b,所以④正确.故选B.42.B【分析】根据倒数的定义解答即可.【详解】A、只有0没有倒数,该项错误;B、﹣1的倒数是﹣1,该项正确;C、0没有倒数,该项错误;D、小于1的正分数的倒数大于1,1的倒数等于1,该项错误.故选B.【点睛】本题主要考查倒数的定义:两个实数的乘积是1,则这两个数互为倒数,熟练掌握这个知识点是解答本题的关键.43.C【详解】试题解析:分为两种情况:如图1,当∠AOB在∠AOC内部时,∵∠AOB=20°,∠AOC=4∠AOB,∴∠AOC=80°,∵OD平分∠AOB,OM平分∠AOC,∴∠AOD=∠BOD=12∠AOB=10°,∠AOM=∠COM=12∠AOC=40°,∴∠DOM=∠AOM-∠AOD=40°-10°=30°;如图2,当∠AOB在∠AOC外部时,∠DOM═∠AOM+∠AOD=40°+10°=50°;故选C.44.A【分析】根据绝对值非负数的性质解答即可.【详解】解:∵|x−1|≥0,∴当|x−1|=0,即x=1时式子|x−1|-3取最小值.故选A.【点睛】本题主要考查绝对值的性质.理解一个数的绝对值是非负数这一性质是解题的关键. 45.B【分析】设向右为正,向左为负.根据正负数的意义列出式子计算即可.【详解】解:设向右为正,向左为负.则1+(-2)+3+(-4)+.+(-100)=[1+(-2)]+[3+(-4)]+.+[99+(-100)]=-50. ∴落点处离O 点的距离是50个单位.故答案为:B .【点睛】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.46.A【分析】把x =1代入原方程并整理得出(b +4)k =7﹣2a ,然后根据方程总有根推出b +4=0,7﹣2a =0,进一步即可求出结果.【详解】解:把x =1代入2136kx a x bk +--=,得:21136+--=k a bk , 去分母,得:4k +2a ﹣1+kb =6,即(b +4)k =7﹣2a ,∵不论k 取什么实数,关于x 的方程2136kx a x bk +--=的根总是x =1, ∴40b +=,720a -=,解得:a =72,b =﹣4,∴a +b =﹣0.5. 故选:A .【点睛】本题考查了一元一次方程的相关知识,正确理解题意、得出b +4=0,7﹣2a =0是解本题的关键.47.D【分析】。
人教版七年级数学上册总复习练习题及答案
人教版七年级数学上册总复习练习题及答案人教版七年级数学上册精品练题第一章有理数一、填空题(每空2分,共38分)1、-的倒数是____;1的相反数是____。
答案:-1,-12、比-3小9的数是____;最小的正整数是____。
答案:-12,13、在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是4、答案:-15、某旅游景点11月5日的最低气温为-2℃,最高气温为8℃,那么该景点这天的温差是____。
答案:10℃6、计算:(-1)100+(-1)101=______。
答案:-27、平方得2的数是____;立方得-64的数是____。
答案:-√2,-48、+2与-2是一对相反数,请赋予它实际的意义:___________________。
答案:温度上升2℃和温度下降2℃9、绝对值大于1而小于4的整数有____,其和为_______。
答案:-3,-2,-1,0,1,2,3;010、若a、b互为相反数,c、d互为倒数,则3(a + b)-3cd=__________。
答案:011、若(a-1)2+|b+2|=,则a+b=_________。
答案:-412、数轴上表示数-5和表示-14的两点之间的距离是______。
答案:913、在数-5、1、-3、5、-2中任取三个数相乘,其中最大的积是_______,最小的积是_______。
答案:75,-7514、若m,n互为相反数,则|m-1+n|=_________。
答案:|m+n-1|二、选择题(每小题3分,共21分)15、有理数a、b在数轴上的对应的位置如图所示:则()A.a + b<0.B.a + b>0.C.a-b = 0.D.a-b>0答案:B16、下列各式中正确的是()A.a2=(−a)2B.a3=(−a)3.C.−a2=|−a2|D.a3=|a3|答案:A17、如果a+b>0,且ab<0,那么()A.a>0,b<0;B.a<0,b<0;C.a、b异号;D.a、b异号且负数和绝对值较小答案:C18、下列代数式中,值一定是正数的是(。
新人教版七年级上册数学总复习知识点和练习题
新人教版七年级上册数学总复习知识点和练习题新人教版数学七年级上期末总复期末复一:有理数的意义一、双基回顾1.前进8米的相反数是后退8米,盈利50元的相反数是亏损50元。
2.向东走5m记作+5m,则向西走8m记作-8m,原地不动用0表示。
3.把下列各数填入相应的大括号中:正数{7,11/2,0.25};负数{-9.25,-301,-7/3};分数{11/2,-7/3,0};整数{7,-9,-301,0};非负整数{0,7,11/2};非正数{-9.25,-301,-7/3,0}。
4.与表示-1的点距离为3个单位的点所表示的数是-4.5.数轴上到原点的距离为2的点所表示的数是±2.6.3的相反数的倒数是-1/3.7.最小的自然数是1;最小的正整数是1;绝对值最小的数是0;最大的负整数是-1.8.相反数等于它本身的数是0,绝对值等于它本身的数是0,平方等于它本身的数是1,立方等于它本身的数是0,倒数等于它本身的数是1.9.如图,如果a0,那么-a>b>-b>a。
10.已知|a+2|+(3-b)²=0,则a=-2,b=3/2.二、例题导引例11) 大于-3且小于2.1的整数有-2,-1,0,1.2) 绝对值大于1小于4.3的整数的和是-3+2+1+3+4=7.例2由a、b互为相反数可得a+b=0,由m、n互为倒数可得mn=1,代入(a+b)²-3mn+2|x|的式子中得(-6)²-3+6=33.例31) 由a²=4得a=±2,由b³=-8得b=-2,故a+b=0.2) 由|a|=2,|b|=5得a=-2,b=5,故a-b=-7.三、练升华1.判断下列叙述是否正确:①零上6℃的相反数是零下6℃,而不是零下8℃。
(错误)②如果a是负数,那么-a就是正数。
(正确)③正数与负数互为相反数。
(正确)④一个数的相反数是非正数,那么这个数一定是非负数。
人教版初中七年级数学上册第三单元《一元一次方程》经典复习题(含答案解析)
一、选择题1.若│x -2│+(3y+2)2=0,则x+6y 的值是( ) A .-1B .-2C .-3D .322.已知,每本练习本比每根水性笔便宜2元,小刚买了6本练习本和4根水性笔正好用去18元,设水性笔的单价为x 元,下列方程正确的是( ) A .6(x+2)+4x =18 B .6(x ﹣2)+4x =18 C .6x+4(x+2)=18 D .6x+4(x ﹣2)=183.如图,相同形状的物体的重量是相等的,其中最左边天平是平衡的,则右边三个天平中仍然平衡的是( )A .①②③B .①③C .①②D .②③4.如果x =2是方程12x +a =﹣1的解,那么a 的值是( ) A .0 B .2 C .﹣2 D .﹣6 5.方程2424x x -=-+的解是 ( )A .x =2B .x =−2C .x =1D .x =06.有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中一支的长度是另一支的一半,则停电时间为( ) A .2小时B .3小时C .125小时D .52小时7.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( ) A .120元 B .100元C .80元D .60元8.若“△”是新规定的某种运算符号,设x △y=xy+x+y ,则2△m=﹣16中,m 的值为( ) A .8B .﹣8C .6D .﹣69.某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x 人,则下列方程正确的是( ) A .3x ﹣20=24x +25 B .3x +20=4x ﹣25 C .3x ﹣20=4x ﹣25D .3x +20=4x +2510.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭与大雁从北海和南海同时起飞,经过x 天相遇,可列方程为( ) A .(9﹣7)x=1B .(9+7)x=1C .11()179x -=D .11()179x +=11.若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系是( ) A .m>n>kB .n>k>mC .k>m>nD .m> k> n12.已知代数式2x-6与3+4x 的值互为相反数,那么x 的值等于( ) A .2B .12C .-2D .1-213.甲、乙两个工程队,甲队32人,乙队28人,现在从乙队抽调x 人到甲队,使甲队人数为乙队人数的2倍.则根据题意列出的方程是( ) A .32+x =2(28−x) B .32−x =2(28−x) C .32+x =2(28+x) D .2(32+x)=28−x 14.下列方程中,以x =-1为解的方程是( )A . 3x +12=x2−2 B .7(x -1)=0C .4x -7=5x +7D .13x =-315.四位同学解方程x−13−x+26=4−x 2,去分母分别得到下面四个方程:①2x −2−x +2=12−3x ;②2x −2−x −2=12−3x ;③2(x −1)−(x +2)=3(4−x);④2(x −1)−2(x +2)=3(4−x).其中错误的是( ) A .②B .③C .②③D .①④二、填空题16.已知三个数的比是2:4:7,这三个数的和是169,这三个数分别是____,____,____ 17.请阅读下面的诗句:“栖树一群鸦,鸦树不知数,四只栖一树,五只没处去,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗中谈到的鸦为_____只,树为_____棵. 18.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.19.某信用卡上的号码由17位数字组成,每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,则x+y 的值等于______.20.自来水公司为鼓励节约用水,对水费按以下方式收取:用水不超过10吨,每吨按2元收费;用水超过10吨,超过10吨的部分按每吨3元收费.王老师家三月份水费为50元,则王老师家三月份用水________吨. 21.5个人用5天完成了某项工程的14,如果再增加工作效率相同的10个人,那么完成这项工作前后共用_____天.22.小明说小红的年龄比他大两岁,他们的年龄和为18岁,两人年龄各是多少岁?若设小明x 岁,则小红的年龄为__________岁.根据题意,列出的方程是______________________. 23.在某张月历表上,若前三个星期日的数字之和是42,则第一个星期_______号.24.已知21535a x y -和2547a x y +是同类项,则可得关于a 的方程为________. 25.要使代数式154t +与15()4t -的值互为相反数,则t 的值是_________. 26.有一位工人师傅要锻造底面直径为40cm 的“矮胖”形圆柱,可他手上只有底面直径是10cm 、高为80cm 的“瘦长”形圆柱,若不计损耗,则锻造出的“矮胖”形圆柱的高为________.三、解答题27.程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?28.市百货商场元月一日搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元按总价优惠10%;超过500元的其中500元按9折优惠,超过部分按8折优惠.某人两次购物分别用了134元和466元.问:(1)此人两次购物其物品如果不打折,两次购物价值_____元和_____元. (2)在此活动中,通过打折他节省了多少钱?(3)若此人将两次购物的钱合起来购相同的商品与两次分别购买是更节省还是亏损?说明你的理由. 29.解方程:(1)5(8)6(27)22m m m +--=-+(2)2(3)7636x x x --+=- 30.解下列方程:(1)51784a -=; (2)22146y y +--=1; (3)2131683x x x-+-= -1。
2022-2023学年人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)
2022-2023学年人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)一.选择题1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入80元记作+80元,则﹣50元表示()A.收入50元B.收入30元C.支出50元D.支出30元2.下列式子简化不正确的是()A.+(﹣5)=﹣5B.﹣(﹣0.5)=0.5C.﹣(+1)=1D.﹣|+3|=﹣33.数轴上表示﹣6和4的点分别是A和B,则线段AB的长度是()A.﹣2B.2C.﹣10D.104.下列结论中不正确的是()A.最小的正整数为1B.最大的负整数为﹣1C.绝对值最小的有理数为0D.倒数等于它本身的数为15.﹣的倒数的绝对值是()A.﹣2021B.C.2021D.﹣6.在算式3﹣|﹣1□2|中的“□”里,选择一个运算符号,使得算式的值最大()A.+B.﹣C.×D.÷7.以下说法,正确的是()A.数据475301精确到万位可表示为480000B.王平和李明测量同一根钢管的长,按四舍五入法得到结果分别是0.80米和0.8米,这两个结果是相同的C.近似数1.5046精确到0.01,结果可表示为1.50D.小林称得体重为42千克,其中的数据是准确数8.有一种放射性物质,它的质量缩减为原来的一半所用的时间是一个不变的量﹣﹣120年,它的质量由96克变为6克,所需要的时间是()A.240年B.480年C.600年D.960年二.填空题9.如果规定从原点出发,向南走为正,那么﹣100m表示的意义是.10.(﹣2)2|﹣3|(用“>”或“<”填空).11.在﹣5,,0,1.6这四个有理数中,整数是.12.在数轴上,如果点A所表示的数是﹣2,那么到点A距离等于3个单位的点所表示的数是.13.计算:﹣32×(﹣2)3=.14.计算(﹣9)÷×的结果是.15.计算:=.16.在迎来中国共产党成立一百周年的重要时刻,我国脱贫攻坚战取得了全面胜利,现行标准下98990000农村贫困人口全部脱贫,将数据98990000用科学记数法表示为.17.把有理数130542按四舍五入法精确到千位的近似值为.18.某公交车原坐有22人,经过4个站点时上下车情况如下(上车为正,下车为负):(+4,﹣8),(﹣5,+6),(﹣3,+2),(+1,﹣7),则车上还有人.三.解答题19.把下列各数分别填在相应的大括号里.13,,﹣31,0.21,﹣3.14,0,21%,,﹣2020.负有理数:{…};正分数:{…};非负整数:{…}.20.(每题要写出必要的解题步骤)(1)(﹣3.1)+(6.9)(2)90﹣(﹣3)(3)(4)﹣7+13﹣6+20(5)(﹣2)4+3×(﹣1)6﹣(﹣2)(6)﹣8721+53﹣1279+43(7)(8).21.请把下面不完整的数轴补充完整,并在数轴上标出下列各数:﹣,﹣(﹣2),3,﹣150%,|﹣0.5|.22.某服装店购进10件羊毛衫,实际销售情况如表所示:(售价超出成本为正,不足记为负)件数(件)32212钱数(元/件)﹣10﹣20+20+30+40(1)这批羊毛衫销售中,最高售价的一件与最低售价的一件相差多少元?(2)通过计算求出这家服装店在这次销售中盈利或者亏损多少元?23.小明觉得像0.0000057这样的数写起来很麻烦,当他学习了科学记数法以后,发现0.0000057==,所以发明了一种“类科学记数法”,类比科学记数法,将0.0000057写成5.7÷106.(1)将下列各数用“类科学记数法”表示,0.02=;0.000407=;(2)若一个数0.0……035用“类科学记数法”表示为3.5÷106,则原数中“0”的个数为;(3)比较大小:9÷1081÷107,0.000106 9.8÷105;(4)纳米是长度度量单位.1纳米=1.0÷109米,一种病毒的直径平均为200纳米.200纳米这个数据用“类科学记数法”可表示为米.24.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+(b﹣4)2=0.(1)点A表示的数为;点B表示的数为;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以3个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,甲小球到原点的距离=;乙小球到原点的距离=;当t=2时,甲小球到原点的距离=;乙小球到原点的距离=;②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由若能,请求出甲,乙两小球到原点的距离相等时t的值.③若当甲和乙开始运动时,挡板也从原点以1个单位/秒的速度向右运动,直接写出甲,乙两小球到挡板的距离相等时t的值.参考答案一.选择题1.解:根据题意,若收入80元记作+80元,则﹣50元表示支出50元.故选:C.2.解:A、+(﹣5)=﹣5,计算正确,故此选项不合题意;B、﹣(﹣0.5)=0.5,计算正确,故此选项不合题意;C、﹣(+1)=﹣1,原计算错误,故此选项符合题意;D、﹣|+3|=﹣3,计算正确,故此选项不合题意;故选:C.3.解:AB=4﹣(﹣6)=10.故选:D.4.解:最小的正整数为1,是正确的;最大的负整数为﹣1于是正确的;绝对值最小的有理数为0,其它数的绝对值都大于0,因此选项C是正确的;倒数等于它本身的数为±1,因此选项D是错误的;故选:D.5.解:﹣的倒数为﹣2021,﹣2021的绝对值为2021,故选:C.6.解:在算式3﹣|﹣1□2|中的“□”里,要使得算式的值最大,就要使﹣1□2的绝对值最小,∴选择的运算符号是÷.故选:D.7.解:A、数据475301精确到万位可表示为4.8×105,所以A选项错误;B、0.80m精确到0.01m,而0.8m精确到0.1m,所以B选项错误;C、近似数1.5046精确到0.01,结果可表示为1.50,所以C选项正确;D、小林称得体重为42千克,其中的数据是近似数.故选:C.8.解:减少一半为一个半衰期,设经过x个半衰期,根据题意,得:96×=6,,x=4,一个半衰期120年.所以需要的时间是4×120=480(年).故选:B.二.填空题9.解:如果规定从原点出发,向南走为正,那么﹣100m表示的意义是向北走100米.故答案为:向北走100米.10.解:∵(﹣2)2=4,|﹣3|=3,∴(﹣2)2>|﹣3|.故答案为:>.11.解:在﹣5,,0,1.6这四个有理数中,在,1.6是分数,﹣5、0是整数.故答案是:﹣5、0.12.解:﹣2+3=1,﹣2﹣3=﹣5,则A表示的数是:1或﹣5.故答案为:1或﹣513.解:﹣32×(﹣2)3=﹣9×(﹣8)=72.故答案为:72.14.解:(﹣9)÷×=(﹣9)××=﹣6×=﹣4,故答案为:﹣4.15.解:原式=﹣×(﹣)==10.故答案为:10.16.解:98990000=9.899×107,故答案为:9.899×107.17.解:130542≈1.31×105(精确到千位),故答案为:1.31×105.18.解:由题意,得22+4+(﹣8)+6+(﹣5)+2+(﹣3)+1+(﹣7)=12(人),故答案为:12三.解答题19.解:负有理数:{,﹣31,﹣3.14,﹣2020…};正分数:{0.21,21%,…};非负整数:{13,0…}.故答案为:,﹣31,﹣3.14,﹣2020;0.21,21%,;13,0.20.解:(1)(﹣3.1)+(6.9),=+(6.9﹣3.1),=3.8;(2)90﹣(﹣3),=90+3,=93;(3)(﹣)×8=﹣6;(4)﹣7+13﹣6+20,=﹣13+33,=20;(5)(﹣2)4+3×(﹣1)6﹣(﹣2),=16+3×1+2,=16+3+2,=21;(6)﹣8721+53﹣1279+43,=﹣8721﹣1279+53+43,=﹣10000+97,=﹣9903;(7)﹣22×(﹣)+8÷(﹣2)2,=﹣4×(﹣)+8÷4,=2+2,=4;(8)﹣12+3×(﹣2)3+(﹣6)÷(﹣)2,=﹣1+3×(﹣8)+(﹣6)×9,=﹣1﹣24﹣54,=﹣79.21.解:数轴补充完整如下图所示:22.解:(1)40﹣(﹣20)=60(元),答:最高售价的一件与最低售价的一件相差60元;(2)3×(﹣10)+2×(﹣20)+2×20+1×30+2×40=80(元),答:该这家服装店在这次销售中是盈利了,盈利80元.23.解:(1)0.02=2÷102,0.000407=4.07÷104,故答案为:2÷102;4.07÷104;(2)∵3.5÷106=0.0000035,∴原数中“0”的个数为6个,故答案为:6;(3)9÷108=0.00000009,1÷107=0.0000007,∵0.00000009<0.0000007,∴9÷108<1÷107,9.8÷105=0.000098,∵0.000106>0.000098,∴0.000106>9.8÷105,故答案为:<;>;(4)∵1纳米=1.0÷109米,∴200纳米=200×1.0÷109=2.0÷107米,故答案为:2.0÷107.24.解:(1)∵|a+2|+|b﹣4|=0,∴a=﹣2,b=4,∴点A表示的数为﹣2,点B表示的数为4,故答案为:﹣2,4;(2)①当t=1时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球1秒钟向左运动1个单位,此时,甲小球到原点的距离=2+1=3,∵一小球乙从点B处以3个单位/秒的速度也向左运动,∴乙小球1秒钟向左运动3个单位,此时,乙小球到原点的距离=4﹣3=1,当t=2时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球1秒钟向左运动2个单位,此时,甲小球到原点的距离=2+2=4,∵一小球乙从点B处以3个单位/秒的速度也向左运动,∴乙小球1秒钟向左运动6个单位,此时,乙小球到原点的距离=3×2﹣4=2,故答案为:3,1,4,2;②当0<t≤2时,得t+2=4﹣2t,解得t=;当t>2时,得t+2=2t﹣4,解得t=6;故当t=秒或t=6秒时,甲乙两小球到原点的距离相等;(3)B碰到挡板需要4÷(3+1)=1(秒),A碰到挡板需要2÷2=1(秒),∴t=1时,甲,乙两小球到挡板的距离相等,①都向左运动时,则2+t+t=4﹣3t﹣t,即6t=2,解得t=,②反弹时,则t﹣1+t﹣1=(3﹣1)(t﹣1),即2t=2t,∴当t≥1时,甲,乙两小球到挡板的距离相等,∴t值为或t≥1时,甲,乙两小球到挡板的距离相等.。
人教版七年级数学上册期末综合复习测试题(含答案)精选全文完整版
可编辑修改精选全文完整版人教版七年级数学上册期末综合复习测试题(含答案)(考试时间:90分钟试卷满分:100分)第Ⅰ卷一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中只有一项符合题目要求。
1.在我国古代著名的数学专著《九章算术》中,首次引入负数,如果收入100元记作元,则元表示()A.支出50元B.收入50元C.支出100元D.收入100元2.下列数中:56,,,,0,,,25中,是负数的有()A.2个B.3个C.4个D.5个3.第七次全国人口普查结果显示,台州市常住人口约为万人.用科学记数法表示这个数正确的是()A.B.C.D.4.下列说法错误的是()A.是二次三项式B.的次数是6C.的系数是D.不是单项式5.如图,将图中长方形绕着给定的直线旋转一周后形成的几何体是()A.B.C.D.6.如图是正方体表面的一种展开图,表面上的语句为北京2022年冬奥会和冬残奥会的主题口号“一起向未来!”,如果“未”字在正方体的底部,那么正方体的上面是()A .一B .起C .向D .来7.时钟的分针从8点整转到8点20分,分针旋转了( )度. A .20B .120C .90D .1508.直线、线段、射线的位置如图所示,下图中能相交的是( )A .B .C .D .9.将多项式5x ³y ﹣y 4+2xy 2﹣x 4按x 的降幕排列是( ) A .﹣y 4+5x 3y +2xy 2﹣x 4 B .﹣x 4+5x 3y +2xy 2﹣y 4 C .﹣x 4+5x 3y ﹣y 4+2xy 2D .2xy 2+5x 3y ﹣y 4﹣x 410.随着计算机技术的迅猛发展,电脑价格不断降低.某品牌电脑按原售价降低元后,又降低,现售价为元,那么该电脑的原售价为( )A .元B .元C .元D .元11.下列等式的变形中,正确的是( ) A .如果同,那么B .如果,那么C .如果,那么24m c -=24nc - D .如果,那么12.在锐角内部由O 点引出3种射线,第1种是将分成10等份;第2种是将分成12等份;第3种是将分成15等份,所有这些射线连同OA 、OB 可组成的角的个数是( ) A .595B .406C .35D .666第Ⅱ卷二、填空题(本题共6小题,每题3分,共18分。
人教版七年级上册数学期末综合复习解答题专题训练(含答案)
人教版七年级上册数学期末综合复习解答题专题训练一、有理数的计算:1.计算:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9).(2).(3).(4)﹣24+3×(﹣1)6﹣(﹣2)3.2.计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)4﹣8×(﹣)3(3)(4)3.计算(1);(2);(3);(4).4.为庆祝端午节,和平加油站开展了加油每满10L返现金5元(不足10L不返现金)的活动.出租车司机王师傅只在东西走向的路上开车接送乘客,他7:00从甲地出发(向东行驶的里程数记作正数),到8:00为止,他所行驶的里程记录如下(单位:公里)+4,﹣3,﹣6,+13,﹣10,﹣4,+5.(1)计算到8:00时,王司机在甲地的哪个方向,距甲地多远?(2)若王师傅当日工作10小时,每小时行驶的里程相同,该车每百公里耗油6L,每升油5元,则王师傅当日在该加油站加油共花费多少元?5.已知13=1=×12×22,13+23=9=×22×32,13+23+33=36=×32×42,…,按照这个规律完成下列问题:(1)13+23+33+43+53==×2×2.(2)猜想:13+23+33+…+n3=.(3)利用(2)中的结论计算:(写出计算过程)113+123+133+143+153+163+…+393+403.6.定义新运算“@”与“⊕”:a@b=,a⊕b=.(1)计算3@(﹣2)﹣(﹣2)⊕(﹣1)的值;(2)若A=3b@(﹣a)+a⊕(2﹣3b),B=a@(﹣3b)+(﹣a)⊕(﹣2﹣9b),比较A 和B的大小.二、解一元一次方程:7.解方程:(1)4x﹣3=7﹣x;(2)4x﹣2(3x﹣2)=2(x﹣1);(3);(4).8.解方程:(1)5x﹣4=2(2x﹣3);(2)﹣=1;(3)﹣=1+;(4)﹣=0.75.9.解方程(1)3x﹣5=8;(2)﹣2x+3=4x﹣9;(3)3(x+2)﹣2(x+2)=2x+4;(4).10.解下列方程.(1)2(x﹣2)﹣3(4x﹣1)=9(1﹣x);(2)﹣=﹣2;(3)﹣=1+(4)=0.75三、整式的加减11.若多项式2mx2﹣x2+5x+8﹣(7x2﹣3y+5x)的值与x无关,求m2﹣[2m2﹣(5m﹣4)+m]的值.12.先化简,再求值:(1)(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a),其中.(2),其中13.先化简再求值:3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)],其中.14.化简并求值.(1)2(2x﹣3y)﹣(3x+2y+1),其中x=2,y=﹣0.5(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.15.先化简,再求值:2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y,其中x=﹣2,y=2.16.先化简,再求值:4xy﹣[(x2+5xy﹣y2)﹣2(x2+3xy﹣)],其中x=﹣1,y=2.17.a、b、c三个数在数轴上位置如图所示,且|a|=|b|(1)求出a、b、c各数的绝对值;(2)比较a,﹣a、﹣c的大小;(3)化简|a+b|+|a﹣b|+|a+c|+|b﹣c|.18.有理数a、b、c在数轴上的位置如图.(1)判断正负,用“>”或“<”填空:c﹣b0,a+b0,﹣a+c0(2)化简:|c﹣b|+|a|.19.化简已知a,b,c在数轴上的位置如图所示:(1)化简:|a+b|﹣|c﹣b|+|b﹣a|(2)若a的绝对值的相反数是﹣2,﹣b的倒数是它本身,c2=4,求﹣a+2b+c﹣(a+b﹣c)的值.20.已知有理数a、b、c在数轴上的位置,(1)a+b0;a+c0;b﹣c0;(用“>,<,=”填空)(2)试化简|a+b|﹣|a+c|+|b﹣c|.四、几何图形初步:21.如图,C是线段AB上一点,M,N分别是AC,BC的中点.(1)若AC=6cm,BC=4cm,求线段MN的长;(2)若线段CM与线段CN的长度之比为2:1,且线段CN=2cm,求线段AB的长.22.如图,C、D是线段AB上的点,AD=7cm,CB=7cm.(1)线段AC与BD相等吗?请说明理由.(2)如果M是CD的中点,MD=2cm,求线段AB的长.23.如图,延长线段AB到点F,延长线段BA到点E,若点M、N分别是线段AE、BF的中点,若AE:AB:BF=1:2:3,且EF=24cm,求线段MN的长.24.如图,点C在线段AB上,点M、N分别是线段AC,BC的中点.线段AB=14cm.(1)求线段MN的长;(2)若点C在线段AB的延长线上,求线段MN的长;(3)若点C在直线AB上,求线段MN的长.25.如图,AB:BC:CD=2:3:4,AB的中点M与CD的中点N的距离是3cm,则线段BC的长度.26.如图,直线AB、CD相交于点O,OE平分∠BOD,OF⊥CD,若∠BOC比∠DOE大75o.求∠AOD和∠EOF的度数.27.如图,直线AB,CD相交于点O,EO⊥CD于点O,FO⊥AB于点O.若∠AOE=50°,求∠BOC和∠COF.28.如图,直线AB,CD相交于点O,EO⊥AB,垂足为O.(1)若∠EOC=35°,求∠AOD的度数;(2)若∠BOC=2∠AOC,求∠DOE的度数.参考答案1.解:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9)=﹣5﹣4﹣101+9=﹣101.(2)=﹣18﹣1÷(﹣16)=﹣18﹣(﹣)=﹣17.(3)=(5﹣5×)×(﹣4)=(5﹣)×(﹣4)=×(﹣4)=﹣15.(4)﹣24+3×(﹣1)6﹣(﹣2)3=﹣16+3×1﹣(﹣8)=﹣16+3+8=﹣5.2.解:(1)原式=﹣20﹣14+18﹣13=﹣47+18=﹣29;(2)原式=4﹣8×(﹣)=4+1=5;(3)原式=(﹣﹣+)×36=﹣×36﹣×36+×36=﹣27﹣20+21=﹣26;(4)原式=÷﹣×16=×﹣=﹣=﹣.3.解:(1)=++﹣=﹣+=﹣=﹣;(2)=(﹣)×÷(﹣6)2﹣1=(﹣)×÷36﹣1=(﹣)××﹣1=﹣1=﹣;(3)=﹣1×(﹣9×﹣2)×(﹣)=﹣1×(﹣4﹣2)×(﹣)=﹣1×(﹣6)×(﹣)=﹣9;(4)=×(﹣25)﹣49×(﹣+)=(﹣1)﹣49×+49×﹣49×=(﹣1)﹣42+﹣1=﹣33.4.解:(1)4﹣3﹣6+13﹣10﹣4+5=﹣1(公里),∴王师傅在甲地的西1公里位置;(2)10×(4+3+6+13+10+4+5)=450(公里),450÷100×6=27(L),27×5﹣2×5=125(元).∴王师傅当日在该加油站加油共花费125元.5.解:(1)13+23+33+43+53=225=×52×62(2)猜想:13+23+33+…+n3=×n2×(n+1)2(3)利用(2)中的结论计算:113+123+133+143+153+163+…+393+403.解:原式=13+23+33+...+393+403﹣(13+23+33+ (103)=×402×412﹣×102×112=672400﹣3025=6693756.解:(1)3@(﹣2)﹣(﹣2)⊕(﹣1)=﹣=+=1;(2)A=3b@(﹣a)+a⊕(2﹣3b)=+=3b﹣1,B=a@(﹣3b)+(﹣a)⊕(﹣2﹣9b)=+=3b+1,则A<B.7.解:(1)∵4x﹣3=7﹣x,∴4x+x=7+3.∴5x=10.∴x=2.(2)∵4x﹣2(3x﹣2)=2(x﹣1),∴4x﹣6x+4=2x﹣2.∴4x﹣6x﹣2x=﹣2﹣4.∴﹣4x=﹣6.∴x=.(3)∵,∴6x﹣3(3x+2)=18﹣2(5x﹣2).∴6x﹣9x﹣6=18﹣10x+4.∴6x﹣9x+10x=18+4+6.∴7x=28.∴x=4.(4)∵,∴30(0.6x+0.5)﹣100(0.03x+0.2)=2(x﹣9).∴18x+15﹣3x﹣20=2x﹣18.∴18x﹣3x﹣2x=﹣18+20﹣15.∴13x=﹣13.∴x=﹣1.8.解:(1)5x﹣4=2(2x﹣3),5x﹣4=4x﹣6,x=﹣2.(2)﹣=1,5(x﹣3)﹣2(4x+1)=10,5x﹣15﹣8x﹣2=10,﹣3x=10+15+2,x=﹣9;(3)﹣=1+,6x﹣2(5x+11)=12+4(2x﹣4),6x﹣10x﹣22=12+8x﹣16,6x﹣10x﹣8x=12﹣16+22,﹣12x=18,x=﹣;(4)﹣=0.75,﹣=0.75,2(30+2x)﹣4(20+3x)=3,60+4x﹣80﹣12x=3,4x﹣12x=3﹣60+80,﹣8x=23,x=﹣.9.解:(1)3x﹣5=8移项,3x=8+5.合并同类项,3x=13.x的系数化为1,x=.∴这个方程的解为x=.(2)﹣2x+3=4x﹣9移项,﹣2x﹣4x=﹣9﹣3.合并同类项,﹣6x=﹣12.x的系数化为1,x=2.∴这个方程的解为x=2.(3)3(x+2)﹣2(x+2)=2x+4去括号,3x+6﹣2x﹣4=2x+4.移项,3x﹣2x﹣2x=4+4﹣6.合并同类项,﹣x=2.x的系数化为1,x=﹣2.∴这个方程的解为x=﹣2.(4)去分母,3(3y﹣1)﹣12=2(5y﹣7).去括号,9y﹣3﹣12=10y﹣14.移项,9y﹣10y=﹣14+12+3.合并同类项,﹣y=1.y的系数化为1,y=﹣1.∴这个方程的解为y=﹣1.10.解:(1)去括号得:2x﹣4﹣12x+3=9﹣9x,移项合并得:﹣x=10,解得:x=﹣10;(2)去分母得:4x﹣2﹣5x﹣2=3﹣6x﹣12,移项合并得:5x=﹣5,解得:x=﹣1;(3)去分母得:3x﹣5x﹣11=6+4x﹣8,移项合并得:﹣6x=9,解得:x=﹣1.5;(4)方程整理得:﹣=0.75,即15+x﹣20﹣3x=0.75,移项合并得:﹣2x=5.75,解得:x=﹣.11.解:原式=2mx2﹣x2+5x+8﹣7x2+3y﹣5x=(2m﹣8)x2+3y+8,因为此多项式的值与x无关,所以2m﹣8=0,解得:m=4.m2﹣[2m2﹣(5m﹣4)+m]=m2﹣(2m2﹣5m+4+m)=﹣m2+4m﹣4,当=4时,原式=﹣42+4×4﹣4=﹣4.12.解:(1)∵(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a)=5a2+2a+1﹣12+32a﹣8a2+3a2﹣a=33a﹣11,∴当a=时,原式=33a﹣11=33×﹣11=0;(2)∵=2x2﹣2x2﹣2+5x2﹣3=5x2﹣5,∴x=﹣时,原式=5x2﹣5=5×(﹣)2﹣5=﹣.13.解:原式=3x2﹣6xy﹣[3x2﹣2y+2xy+2y]=3x2﹣6xy﹣(3x2+2xy)=3x2﹣6xy﹣3x2﹣2xy=﹣8xy当时原式=﹣8×(﹣)×(﹣3)=﹣12.14.解:(1)原式=4x﹣6y﹣3x﹣2y﹣1=x﹣8y﹣1,将x=2,y=﹣0.5代入,得原式=x﹣8y﹣1=2﹣8×(﹣0.5)﹣1=2+4﹣1=5;(2)原式=﹣3a2+4ab+a2﹣4a﹣4ab=﹣2a2﹣4a,当a=﹣2时,原式=﹣8+8=0.15.解:原式=2x2y+2xy2﹣2x2y+2x﹣2xy2﹣2y=2x﹣2y,当x=﹣2,y=2时,原式=﹣4﹣4=﹣8.16.解:原式=4xy﹣(x2+5xy﹣y2﹣2x2﹣6xy+y2)=4xy﹣(﹣x2﹣xy)=5xy+x2,因为x=﹣1,y=2,所以原式=5×(﹣1)×2+(﹣1)2=﹣9.17.解:(1)∵从数轴可知:c<b<0<a,∴|a|=a,|b|=﹣b,|c|=﹣c;(2)∵从数轴可知:c<b<0<a,|c|>|a|,∴﹣a<a<﹣c;(3)根据题意得:a+b=0,a﹣b>0,a+c<0,b﹣c>0,则|a+b|+|a﹣b|+|a+c|+|b﹣c|=0+a﹣b﹣a﹣c+b﹣c=﹣2c.18.解:由图可知,a<0,b>0,c>0,且|b|<|a|<|c|,(1)c﹣b>0,a+b<0,﹣a+c>0;(2)原式=c﹣b﹣a.故答案为:>,<,>.19.解:(1)∵a+b>0,c﹣b<0,b﹣a<0,∴原式=a+b+c﹣b﹣b+a=2a﹣b+c;(2)由题意,得a=2,b=﹣1,c=﹣2,∴﹣a+2b+c﹣(a+b﹣c)=﹣a+2b+c﹣a﹣b+c=﹣2a+b+2c=﹣4﹣1﹣4=﹣9.20.解:(1)由数轴可得:c<a<0<b,∴a+b<0,a+c<0,b﹣c>0,(2)∵a+b<0,a+c<0,b﹣c>0,∴|a+b|﹣|a+c|+|b﹣c|=﹣a﹣b+a+c+b﹣c=0.故答案为:(1)<;<;>;(2)原式=0.21.解:(1)因为M,N分别是AC,BC的中点,所以,,所以MN=CM+CN=3+2=5(cm).(2)因为线段CM与线段CN的长度之比为2:1,CN=2cm,所以线段CM=4cm.因为M,N分别是AC,BC的中点,所以AC=2CM=8cm,BC=2CN=4cm,所以AB=AC+BC=8+4=12(cm).22.解:(1)相等,因为AD=7cm,CB=7cm.所以AD=CB,因为AC=AD﹣CD,BD=CB﹣CD,所以AC=BD;(2)因为M是CD的中点,所以CM=MD,由(1)得,AC=BD,所以AC+CM=BD+MD,所以AM=MB,因为AD=7cm,MD=2 cm,所以AM=7﹣2=5(cm),所以AB=2AM=10(cm).23.解:设EA=xcm,则AB=2xcm,BF=3xcm,EF=6xcm.∵点M,N分别是线段EA,BF的中点,∴EM=MA=xcm,BN=NF=xcm.∵AB=2xcm,∴MN=MA+AB+BN=4xcm.∵EF=24cm,∴6x=24,解得:x=4,∴MN=4x=16cm.24.解:(1)∵点M,N分别是线段AC,BC的中点.∴MC=AC,CN=BC.∴MN=MC+CN=AC+BC=AB=7cm.(2)当点C在线段AB的延长线上时,如下图:∵点M,N分别是线段AC,BC的中点.∴MC=AC,CN=BC.∴MN=MC﹣NC==AC﹣BC=AB=7cm.(3)由(1)、(2)小题知,当点C在线段AB上或点C在线段AB的延长线上时,MN=AB=7cm.当点C在线段AB的反向延长线上时,如下图:点M,N分别是线段AC,BC的中点.∴MC=AC,CN=BC.∴MN=NC﹣MC=BC﹣AC=AB=7cm.综上:当点C在直线AB上时MN=7cm.25.解:设AB=2xcm,BC=3xcm,CD=4xcm,∵M是AB的中点,N是CD的中点,∴MB=xcm,CN=2xcm,∴MB+BC+CN=x+3x+2x=3,∴x=0.5,∴3x=1.5,即BC=1.5cm.26.解:设∠BOD=2x,∵OE平分∠BOD,∴∠DOE=∠EOB==x,∵∠BOC=∠DOE+75°=x+75°.∴x+75°+2x=180°,解得:x=35°,∴∠BOD=2×35°=70°,∴∠AOD=180°﹣∠BOD=180°﹣70°=110°,∵FO⊥CD,∴∠BOF=90°﹣∠BOD=90°﹣70°=20°,∴∠EOF=∠FOB+∠BOE=20°+35°=55°.所以∠AOD和∠EOF的度数分别为:110°、55°.27.解:∵EO⊥CD于点O,∴∠DOE=90°,∴∠AOD=∠DOE﹣∠AOE=90°﹣50°=40°,∵∠BOC和∠AOD为对顶角,∴∠BOC=∠AOD=40°,∵FO⊥AB于点O,∴∠BOF=90°,∴∠COF=∠BOF+∠BOC=90°+40°=130°.28.解:(1)∵EO⊥AB,∴∠BOE=90°,∵∠EOC=35°,∴∠BOC=∠BOE+∠EOC=125°.∴∠AOD=∠BOC=125°,答:∠AOD的度数为125°;(2)∵∠AOC+∠BOC=180°,∠BOC=2∠AOC,∴∠AOC+2∠AOC=180°∴∠AOC=60°,∴∠BOD=∠AOC=60°,∴∠EOD=∠BOE+∠BOD=90°+60°=150°,答:∠DOE的度数为150°.。
(完整)人教版初一数学七年级数学上册精品总复习练习题【附答案】.docx
人教版七年 数学上册精品七年 有理数一、境空 (每空 2 分,共 38 分)1、1 的倒数是 ____; 1 2的相反数是 ____.3 32、比– 3 小 9 的数是 ____;最小的正整数是 ____.3、在数 上,点 A 所表示的数 2,那么到点 A 的距离等于 3 个 位 度的点所表示的数是4、两个有理数的和 5,其中一个加数是– 7,那么另一个加数是 ____.5、某旅游景点 11 月 5 日的最低气温2 ,最高气温 8℃,那么 景点 天的温差是 ____.C6、 算: ( 1)100(1) 101______ .7、平方得 21的数是 ____;立方得– 64 的数是 ____.48、 +2 与 2 是一 相反数, 予它 的意 :___________________ 。
9、 大于 1 而小于 4 的整数有 ____________,其和 _________。
10、若 a 、b 互 相反数, c 、d 互 倒数,3 (a + b)3 cd =__________ 。
11、若 ( a1) 2 | b 2 | 0, a b =_________。
12、数 上表示数5 和表示 14 的两点之 的距离是 __________。
13、在数5 、 1 、 3 、 5 、 2 中任取三个数相乘,其中最大的 是___________,最小的 是 ____________ 。
14、若 m ,n 互 相反数, │ m-1+n │=_________.二、 (每小 3 分,共 21 分)15、有理数 a 、 b 在数 上的 的位置如 所示:( )ab-11A . a + b < 0B . a + b > 0;C . a - b = 0D . a - b >016、下列各式中正确的是( )A . a 2 ( a)2B . a 3 ( a) 3 ;C . a 2| a 2 | D . a 3| a 3 |17、如果 ab 0 ,且 ab0 ,那么()A. a0, b 0 ; B. a0, b 0 ; C. a 、 b 异号 ;D. a 、 b 异号且 数和 小18、下列代数式中, 一定是正数的是( )A . x 2B.|- x+1|C.(- x) 2+2D.- x 2+119、算式( -3 3)× 4 可以化 ()4( A ) -3 × 4- 3× 4( B ) -3 × 4+3(C ) -3 ×4+ 3× 4 (D ) -3 × 3-34420、小明近期几次数学 成 如下:第一次 85 分,第二次比第一次高 8 分,第三次比第二次低12 分,第四次又比第三次高 10 分.那么小明第四次 的成 是⋯⋯⋯⋯()A 、 90 分B 、 75 分C 、 91 分D 、81 分21、一家商店一月份把某种商品按 价提高 60%出售,到三月份再声称以 8 折( 80%)大拍 ,那么 商品三月份的价格比 价⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A 、高 12.8 %B 、低 12.8 %C 、高 40%D 、高 28%三、 算(每小 5 分,共 15分)22、 (3 57) ÷ 1;23 、 |7|÷ (2 1) 1 ( 4) 24 9 12 36935 313224、 12( 12) 6( 3) 37 4四、解答 (共 46 分)25、已知 |a|=7 , |b|=3 ,求 a+b 的值。
人教版七年级数学上册第三章经典50道练习题(带答案)
人教版七年级数学上册第三章经典50道练习题(带答案)1、712=+x ;2、825=-x ;3、7233+=+x x ;4、735-=+x x ;解:(移项)(合并)(化系数为1)5、914211-=-x x ;6、2749+=-x x ;7、162=+x ;8、9310=-x ;解:(移项)(合并)(化系数为1)9、x x -=-324; 10、4227-=+-x x ;11、8725+=-x x ;12、32141+=-x x 解:(移项)(合并)(化系数为113、1623+=x x 14、253231+=-x x ;15、152+=--x x ; 16、23312+=--x x 解:(移项)(合并)(化系数为1).17、 475.0=)++(x x ; 18、2-41)=-(x ; 19、511)=-(x ; 20、212)=---(x ; 解:(去括号)(移项)(合并)(化系数为1)21、)12(5111+=+x x ; 22、32034)=-(-x x . 23、5058=)-+(x ; 24、293)=-(x ; 解:(去括号)(移项)(合并)(化系数为1)25、3-243)=+(x ; 26、2-122)=-(x ; 27、443212+)=-(x x ; 28、323236)=+(-x ; 解:(去括号)(移项)(合并) (化系数为1)29、x x 2570152002+)=-(; 30、12123)=+(x .31、452x x =+; 32、3423+=-x x ; 解:(去分母)(去括号)(移项)(合并)(化系数为1)33、)-()=+(3271131x x ; 34、)-()=+(131141x x ; 35、142312-+=-x x ; 解:(去分母)(去括号)(移项)(合并)(化系数为136、)+(-)=-(2512121x x . 37、)+()=+(20411471x x ; 38、)-(-)=+(731211551x x . 解:(去分母)(去括号)(移项)(合并)(化系数为139、432141=-x ; 40、83457=-x ; 41、815612+=-x x ; 42、629721-=-x x ; 解:(去分母)(去括号)(移项)(合并)(化系数为143、1232151)=-(-x x ; 44、1615312=--+x x ; 45、x x 2414271-)=+(; 解:(去分母)(去括号)(移项)(合并)(化系数为146、259300300102200103 )=-()-+(x x . 47、307221159138)=-()--()--(x x x ; 解:(去分母)(去括号)(移项)(合并)(化系数为148、51413121-=+x x ; 49、13.021.02.015.0=-+--x x ; 50、3.01-x -5.02+x =12. 解:(化整)(去分母)(去括号)(移项)(合并)(化系数为1【参考答案】1、【答案】 (1)3=x ; (2)2=x ; (3)4=x ; (4)6=x ;(5)37=x ; (6)12=-x ; (7)4=x ; (8)32=-x . 1.1、【答案】 (9)25=-x ; (10)56=x ; (11)5=-x ; (12)31=-x ; (13)1=x ; (14)32=x ; (15)35=-x ; (16)1=x . 2、【答案】(17)1=x ;(18)1=-x ; (19)56=x ; (20)3=-x ; (21)4=x ; (22)9=x .2.1、【答案】(23)7=-x ; (24)23=-x ; (25)11=-x ; (26)4=-x ; (27)21=x ; (28)910=x ; (29)6=x ; (30)23=x . 3、【答案】 (31)8=x ; (32)51=x ; (33)16=-x ; (34)7=x ; (35)52=-x ; (36)3=x ; (37)28=-x ; (38)165=-x .3.1、【答案】 (39)5=x ; (40)1413=x ; (41)1=-x ; (42)320=-x ; (43)1225=x ; (44)3=-x ; (45)87=x ; (46)216=x .4、【答案】 (47)3=x ; (48)1532=-x ; (49)1364=x ; (50)229=x .。
(人教版)北京七年级数学上册第一章《有理数》经典复习题(答案解析)
1.若12a =,3b =,且0a b <,则+a b 的值为( ) A .52 B .52- C .25± D .52± D 解析:D【分析】 根据a b判断出a 和b 异号,然后化简绝对值,分两种情况求解即可. 【详解】 ∵0a b< ∴a 和b 异号又∵12a =,3b = ∴12a =,3b =-或12a =-,3b = 当12a =,3b =-时,15322+-=-a b = 当12a =-,3b =时,15322+-+=a b = 故选D .【点睛】 本题考查了绝对值,有理数的除法,和有理数的加法,关键是根据a b 判断出a 和b 异号. 2.一个因数扩大到原来的10倍,另一个因数缩小到原来的120,积( ) A .缩小到原来的12 B .扩大到原来的10倍 C .缩小到原来的110 D .扩大到原来的2倍A 解析:A【分析】根据题意列出乘法算式,计算即可.【详解】设一个因数为a ,另一个因数为b∴两数乘积为ab 根据题意,得1110202a b ab =【点睛】本题考查了有理数乘法运算,根据有理数乘法运算法则计算即可.3.有理数a 、b 在数轴上,则下列结论正确的是( )A .a >0B .ab >0C .a <bD .b <0C 解析:C【分析】根据数轴的性质,得到b >0>a ,然后根据有理数乘法计算法则判断即可.【详解】根据数轴上点的位置,得到b >0>a ,所以A 、D 错误,C 正确;而a 和b 异号,因此乘积的符号为负号,即ab <0所以B 错误;故选C .【点睛】本题考查了数轴,以及有理数乘法,原点右侧的点表示的数大于原点左侧的点表示的数;异号两数相乘,符号为负号;本题关键是根据a 和b 的位置正确判断a 和b 的大小. 4.已知︱x ︱=4,︱y ︱=5且x >y ,则2x-y 的值为( )A .-13B .+13C .-3或+13D .+3或-1C 解析:C【分析】 由4x =,5y =可得x=±4,y=±5,由x >y 可知y=-5,分别代入2x-y 即可得答案.【详解】 ∵4x =,5y =,∴x=±4,y=±5,∵x >y ,∴y=-5,当x=4,y=-5时,2x-y=2×4-(-5)=13,当x=-4,y=-5时,2x-y=2×(-4)-(-5)=-3,∴2x-y 的值为-3或13,故选:C .【点睛】本题主要考查了绝对值的性质,能够根据已知条件正确地判断出x ,y 的值是解答此题的关键.5.若一个数的绝对值的相反数是17-,则这个数是( ) A .17- B .17+ C .17± D .7± C【分析】根据绝对值的代数意义和相反数的定义进行分析解答即可.【详解】∵相反数为17-的数是17,而17-或17的绝对值都是17, ∴这个数是17-或17. 故选C.【点睛】熟知“绝对值的代数意义和相反数的定义”是解答本题的关键.6.计算112123123412542334445555555555⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++---+++++⋯++⋯+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值( )A .54B .27C .272D .0C 解析:C【分析】根据有理数的加减混合运算先算括号内的,进而即可求解.【详解】 解:原式=﹣12+1﹣32+2﹣52+3﹣72+…+27 =27×12 =272. 故选:C .【点睛】本题考查了有理数的加减混合运算,解决本题的关键是寻找规律.7.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( ) A .1,2B .1,3C .4,2D .4,3A解析:A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A.点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.8.如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作().A.+0.02克B.-0.02克C.0克D.+0.04克B解析:B【解析】-0.02克,选A.9.如果a,b,c为非零有理数且a + b + c = 0,那么a b c abca b c abc+++的所有可能的值为(A.0 B.1或- 1 C.2或- 2 D.0或- 2A解析:A【分析】根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:∵a、b、c为非零有理数,且a+b+c=0∴a、b、c只能为两正一负或一正两负.①当a、b、c为两正一负时,设a、b为正,c为负,原式=1+1+(-1)+(-1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(-1)+(-1)+1=0,综上,a b c abca b c abc+++的值为0,故答案为:0.【点睛】此题考查了绝对值,有理数的混合运算,熟练掌握运算法则是解本题的关键.10.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个).经过3个小时,这种细菌由1个可分裂为()A.8个B.16个C.32个D.64个D解析:D【分析】每半小时分裂一次,一个变为2个,实际是21个.分裂第二次时,2个就变为了22个.那么经过3小时,就要分裂6次.根据有理数的乘方的定义可得.【详解】26=2×2×2×2×2×2=64.故选D.【点睛】本题考查了有理数的乘方在实际生活中的应用,应注意观察问题得到规律.11.下列说法中错误的有()个①绝对值相等的两数相等.②若a,b互为相反数,则ab=﹣1.③如果a大于b,那么a的倒数小于b的倒数.④任意有理数都可以用数轴上的点来表示.⑤x2﹣2x﹣33x3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A.4个B.5个C.6个D.7个C解析:C【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;②若a,b互为相反数,则ab=-1在a、b均为0的时候不成立,故本小题错误;③∵如果a=2,b=0,a>b,但是b没有倒数,∴a的倒数小于b的倒数不正确,∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确;⑤x2-2x-33x3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确;⑦负数的相反数是正数,大于负数,故本小题错误;⑧负数的偶次方是正数,故本小题错误,所以④⑥正确,其余6个均错误.故选C.【点睛】本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.12.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是()A.18 B.1-C.18-D.2C解析:C【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解.【详解】∵一个数比10的相反数大2,∴这个数为1028-+=-.A选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意;故选:C .【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.13.计算-2的结果是( ) A .0B .-2C .-4D .4A解析:A【详解】解:因为|-2|-2=2-2=0,故选A .考点:绝对值、有理数的减法14.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元C 解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】 1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故选C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.下列各式计算正确的是( )A .826(82)6--⨯=--⨯B .434322()3434÷⨯=÷⨯C .20012002(1)(1)11-+-=-+D .-(-22)=-4C解析:C【分析】原式各项根据有理数的运算法则计算得到结果,即可作出判断.【详解】A 、82681220--⨯=--=-,错误,不符合题意;B 、433392234448÷⨯=⨯⨯=,错误,不符合题意; C 、20012002(1)(1)110-+-=-+=,正确,符合题意;D 、-(-22)=4,错误,不符合题意;故选:C .【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.1.绝对值小于2的整数有_______个,它们是______________.3;-101等【分析】当一个数为非负数时它的绝对值是它本身;当这个数是负数时它的绝对值是它的相反数【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数它们是0±1共有3个故答案为(1解析:3; -1,0,1等.【分析】当一个数为非负数时,它的绝对值是它本身;当这个数是负数时,它的绝对值是它的相反数.【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数,它们是0,±1,共有3个.故答案为(1). 3; (2). -1,0,1等.【点睛】本题考查了绝对值,熟悉掌握绝对值的定义是解题的关键.2.23(2)0x y -++=,则x y 为______.﹣8【分析】根据绝对值的非负性和偶次方的非负性求出xy 的值然后代入代数式中计算即可【详解】解:∵∴x-3=0y+2=0解得:x=3y=﹣2∴==﹣8故答案为:﹣8【点睛】本题考查代数式求值绝对值乘方解析:﹣8【分析】根据绝对值的非负性和偶次方的非负性求出x 、y 的值,然后代入代数式中计算即可.【详解】解:∵23(2)0x y -++=,∴x-3=0,y+2=0,解得:x=3,y=﹣2,∴x y =3(2)-=﹣8,故答案为:﹣8.【点睛】本题考查代数式求值、绝对值、乘方运算,熟练掌握绝对值和偶次方的非负性是解答的关键.3.数轴上A、B两点所表示的有理数的和是 ________.-1【解析】由数轴得点A表示的数是﹣3点B表示的数是2∴AB两点所表示的有理数的和是﹣3+2=﹣1故答案为-1解析:-1【解析】由数轴得,点A表示的数是﹣3,点B表示的数是2,∴ A,B两点所表示的有理数的和是﹣3+2=﹣1,故答案为-1.4.截至格林尼治标准时间2020年6月7日10时,全球累计报告新冠肺炎确诊病例达7000000例;其中累计死亡病例超过40万例,数据7000000科学记数法表示为_____.7×106【分析】根据科学记数法形式:a×10n其中1≤a<10n为正整数即可求解【详解】解:7000000科学记数法表示为:7×106故答案为:7×106【点睛】本题考查科学记数法解决本题的关键是解析:7×106【分析】根据科学记数法形式:a×10n,其中1≤a<10,n为正整数,即可求解.【详解】解:7000000科学记数法表示为:7×106.故答案为:7×106.【点睛】本题考查科学记数法,解决本题的关键是把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.[科学记数法形式:a×10n,其中1≤a<10,n为正整数.5.某电视塔高468 m,某段地铁高-15 m,则电视塔比此段地铁高_____m.483【分析】根据有理数减法进行计算即可【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483m故答案为:483【点睛】本题考查了有理数减法根据题意列出式子是解题的关键解析:483【分析】根据有理数减法进行计算即可.【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483 m.故答案为:483.【点睛】本题考查了有理数减法,根据题意列出式子是解题的关键.6.下列说法正确的是________.(填序号)①若||a b =,则一定有a b =±;②若a ,b 互为相反数,则1b a=-;③几个有理数相乘,若负因数有偶数个,那么他们的积为正数;④两数相加,其和小于每一个加数,那么这两个加数必是两个负数;⑤0除以任何数都为0.④【分析】利用绝对值的代数意义有理数的加法倒数的定义及有理数的乘法法则判断即可【详解】①若则故或当b<0时无解故①错误;②时ab 互为相反数但是对于等式不成立故②不正确;③几个有理数相乘如果负因数有偶解析:④【分析】利用绝对值的代数意义,有理数的加法,倒数的定义及有理数的乘法法则判断即可.【详解】①若||a b =,则0b ,故a b =或=-a b ,当b<0时,无解,故①错误;②0a b 时,a ,b 互为相反数,但是对于等式1b a=-不成立,故②不正确; ③几个有理数相乘,如果负因数有偶数个,但其中有因数0,那么它们的积为0,故③不正确;④两个正数相加,此时和大于每一个加数;一正数一负数相加,此时和大于负数;一个数和0相加,等于这个数;只有两个负数相加,其和小于每一个加数,故④正确; ⑤0除以0没有意义,故⑤不正确.综上,正确的有④.故答案为:④.【点睛】本题考查了绝对值、相反数、有理数的加法、有理数的除法等基础知识点,这都是必须掌握的基础知识点.7.校运动会的拔河比赛真是紧张刺激!规定拔河时,任意一方拉过30cm 就算获胜.小胖他们班在每次喊过“拉”声之后都可拉过7cm ,但又会被拉回3cm .如此下去,该班在第________次喊过“拉”声后就可获得胜利.7【分析】根据题意得到当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取得胜利【详解】解:由题意得喊过一次拉声之后可拉过当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取解析:7【分析】根据题意得到当喊到第6次时,一共拉过了6(73)24(cm)⨯-=,离胜利还差30246(cm)-=,所以再喊一次后拉过7cm ,超过了30cm ,即可取得胜利.【详解】解:由题意得喊过一次“拉”声之后可拉过4cm .⨯-=.当喊到第6次时,一共拉过了6(73)24(cm)-=,离胜利还差30246(cm)所以再喊一次后拉过7cm,超过了30cm,即可取得胜利.故答案为:7.【点睛】此题考查了有理数的混合运算的应用,正确理解题意,掌握有理数的各运算法则是解题的关键.8.如果将正整数按下图的规律排列,那么第六行,第五列的数为_______.32【分析】观察分析题图中数的排列规律可知:第n行第一列是且第n行第一列到第n列的数从左往右依次减少1所以第六行的第一个数是36减去4即可得到第五个数【详解】解:观察分析题图中数的排列规律可知:第n解析:32【分析】观察、分析题图中数的排列规律可知:第n行第一列是2n,且第n行第一列到第n列的数从左往右依次减少1,所以第六行的第一个数是36,减去4,即可得到第五个数.【详解】解:观察、分析题图中数的排列规律可知:第n行第一列是2n,且第n行第一列到第n列-=-=.的数从左往右依次减少1,所以第六行第五个数是26436432故答案为:32.【点睛】本题主要考查了数字规律题,能够观察出第一个数是行数的平方,再依次减少是解决本题的关键.9.在-1,2,-3,0,5这五个数中,任取两个数相除,其中商最小是________.-5【分析】所给的五个数中最大的数是5绝对值最小的负数是-1所以取两个相除其中商最小的是:5÷(-1)=-5【详解】∵-3<-1<0<2<5所给的五个数中最大的数是5绝对值最小的负数是-1∴任取两个解析:-5【分析】所给的五个数中,最大的数是5,绝对值最小的负数是-1,所以取两个相除,其中商最小的是:5÷(-1)=-5.【详解】∵-3<-1<0<2<5,所给的五个数中,最大的数是5,绝对值最小的负数是-1,∴任取两个相除,其中商最小的是:5÷(-1)=-5,故答案为:-5.【点睛】本题主要考查有理数的大小比较和有理数除法,解决本题的关键是要熟练掌握有理数大小比较和有理数除法法则.10.在数轴上,与表示-2的点的距离是4个单位的点所对应的数是___________.2或-6【分析】分在-2的左边和右边两种情况讨论求解即可【详解】解:如图在-2的左边时-2-4=-6在-2右边时-2+4=2所以点对应的数是-6或2故答案为-6或2【点睛】本题考查了数轴难点在于分情解析:2或-6【分析】分在-2的左边和右边两种情况讨论求解即可.【详解】解:如图,在-2的左边时,-2-4=-6,在-2右边时,-2+4=2,所以,点对应的数是-6或2.故答案为-6或2.【点睛】本题考查了数轴,难点在于分情况讨论,作出图形更形象直观.11.计算:(-0.25)-134⎛⎫-⎪⎝⎭+2.75-172⎛⎫+⎪⎝⎭=___.-175【分析】根据减法法则将减法全部转化为加法同时把分数化成小数然后利用加法的交换结合律进行计算【详解】解:原式=-025+325+275-75=(-025-75)+(325+275)=-775+解析:-1.75【分析】根据减法法则将减法全部转化为加法,同时把分数化成小数,然后利用加法的交换结合律进行计算.【详解】解:原式=-0.25+3.25+2.75-7.5=(-0.25-7.5)+( 3.25+2.75)=-7.75+6=-1.75.故答案为:-1.75.【点睛】本题考查了有理数加减混合运算,一般思路是先把加减法统一为加法,然后利用加法的运算律进行计算.1.计算:(1)152|18|()263-⨯-+; (2)20203221124(2)3()3-+÷--⨯. 解析:(1)6;(2)-5【分析】(1)先去掉绝对值,然后根据乘法分配律即可解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)152|18|()263-⨯-+ =18×(12﹣56+23) =18×12﹣18×56+18×23=9﹣15+12=6;(2)20203221124(2)3()3-+÷--⨯ =﹣1+24÷(﹣8)﹣9×19=﹣1+(﹣3)﹣1=﹣5.【点睛】 此题主要考查有理数的混合运算,熟练掌握混合运算顺序是解题关键.2.计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦解析:(1)-6;(2)52-【分析】(1)根据加法运算律计算即可;(2)先算括号里面,再算括号外面的即可;【详解】(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭, ()1140363177⎛⎫=-++-+ ⎪⎝⎭, 42=--,=-6;(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦, 111923=--⨯⨯, 312=--, 52=-. 【点睛】本题主要考查了有理数的混合运算,准确应用加法运算律解题的关键.3.计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭解析:(1)6;(2)58. 【分析】 (1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++ 675=-++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.4.计算:(1)22123()0.8(5)35⎡⎤-⨯--÷-⎢⎥⎣⎦(2)5233(2)4()(12)1234⨯-+-+--⨯- 解析:(1)13;(2)10. 【分析】(1)依据有理数的混合运算的运算顺序和法则依次运算即可;(2)分别计算乘法、绝对值和后面用乘法分配律计算,再将结果相加、减.【详解】解:(1)原式=12790.8()95⎡⎤-⨯-÷-⎢⎥⎣⎦ =95()()527-⨯-=13; (2)原式=52364[(12)(12)(12)]1234-++⨯--⨯--⨯- =64(589)-++-++ =6412-++=10.【点睛】本题考查有理数的混合运算.解决此题的关键是正确把握运算顺序和每一步的运算法则.注意运算律的运用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1人教版七年级数学上册经典练习题七年级有理数一、境空题(每空2分,共38分)1、31-的倒数是____;321的相反数是____. 2、比–3小9的数是____;最小的正整数是____.3、在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是4、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.5、某旅游景点11月5日的最低气温为 2-,最高气温为8℃,那么该景点这天的温差是____. C6、计算:.______)1()1(101100=-+-7、平方得412的数是____;立方得–64的数是____. 8、+2与2-是一对相反数,请赋予它实际的意义:___________________。
9、绝对值大于1而小于4的整数有____________,其和为_________。
10、若a 、b 互为相反数,c 、d 互为倒数,则 3 (a + b) 3-cd =__________。
11、若0|2|)1(2=++-b a ,则b a +=_________。
12、数轴上表示数5-和表示14-的两点之间的距离是__________。
13、在数5-、 1、 3-、 5、 2-中任取三个数相乘,其中最大的积是___________,最小的积是____________。
14、若m ,n 互为相反数,则│m-1+n │=_________.二、选择题(每小题3分,共21分)15、有理数a 、b 在数轴上的对应的位置如图所示:则( )0-11abA .a + b <0B .a + b >0;C .a -b = 0D .a -b >016、下列各式中正确的是( )A .22)(a a -=B .33)(a a -=;C .|| 22a a -=-D .|| 33a a =17、如果0a b +>,且0ab <,那么( )A.0,0a b >>;B.0,0a b << ;C.a 、b 异号;D. a 、b 异号且负数和绝对值较小18、下列代数式中,值一定是正数的是( )2A .x 2 B.|-x+1| C.(-x)2+2 D.-x 2+119、算式(-343)×4可以化为() (A )-3×4-43×4 (B )-3×4+3 (C )-3×4+43×4 (D )-3×3-3 20、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是…………()A 、90分B 、75分C 、91分D 、81分21、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价………………………………………()A 、高12.8%B 、低12.8%C 、高40%D 、高28%三、计算(每小题5分,共15分)22、)1279543(+--÷361; 23、|97|-÷2)4(31)5132(-⨯--24、322)43(6)12(7311-⨯⎥⎦⎤⎢⎣⎡÷-+--四、解答题(共46分)25、已知|a|=7,|b|=3,求a+b 的值。
(7分)326、若x>0,y<0,求32---+-x y y x 的值。
(7分)27、已知a 、b 互为相反数,m 、n 互为倒数,x 绝对值为2,求x nm c b mn --++-2的值(7分)28、现规定一种运算“*”,对于a 、b 两数有:ab a b a b 2*-=,试计算2*)3(-的值。
(7分)29、某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、-3、-5、 +4、-8、 +6、-3、-6、-4、 +10。
(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?(8分)30、某中学位于东西方向的人民路上,这天学校的王老师出校门去家访,她先向东走100米到聪聪家,再向西走150米到青青家,再向西走200米到刚刚家,请问:(1)聪聪家与刚刚家相距多远?(2)如果把这条人民路看作一条数轴,以向东为正方向,以校门口为原点,请你在这条数轴上标出他们三家与学校的大概位置(数轴上一格表示50米).(3)聪聪家向西210米是体育场,体育场所在点所表示的数是多少?(4)你认为可用什么办法求数轴上两点之间的距离? (10分)45整 式一.判断题 (1)31+x 是关于x 的一次两项式. ( ) (2)-3不是单项式.( )(3)单项式xy 的系数是0.( )(4)x 3+y 3是6次多项式.( )(5)多项式是整式.( )二、选择题1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y2,x 3+ x 2-3中,多项式有( ) A .2个 B .3个 C .4个 D5个2.多项式-23m 2-n 2是( )A .二次二项式B .三次二项式C .四次二项式D 五次二项式3.下列说法正确的是( )A .3 x 2―2x+5的项是3x 2,2x ,5B .3x -3y 与2 x 2―2xy -5都是多项式 C .多项式-2x 2+4xy 的次数是3D .一个多项式的次数是6,则这个多项式中只有一项的次数是64.下列说法正确的是( )A .整式abc 没有系数B .2x +3y +4z 不是整式 C .-2不是整式 D .整式2x+1是一次二项式5.下列代数式中,不是整式的是( )A 、23x -B 、745b a -C 、xa 523+ D 、-2005 6.下列多项式中,是二次多项式的是( )A 、132+xB 、23xC 、3xy -1D 、253-x7.x 减去y 的平方的差,用代数式表示正确的是( )A 、2)(y x -B 、22y x -C 、y x -2D 、2y x -8.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。
已知该楼梯长S 米,同学上楼速度是a 米/分,下楼速度是b 米/分,则他的平均速度是( )米/分。
A 、2b a +B 、b a s +C 、b s a s +D 、bs a s s +269.下列单项式次数为3的是( )A.3abcB.2×3×4C.41x 3y D.52x10.下列代数式中整式有( ) x1, 2x +y , 31a 2b , πy x -, x y 45, 0.5 , a A.4个 B.5个 C.6个 D.7个11.下列整式中,单项式是( )A.3a +1B.2x -yC.0.1D.21+x 12.下列各项式中,次数不是3的是( )A .xyz +1B .x 2+y +1C .x 2y -xy 2D .x 3-x 2+x -113.下列说法正确的是( )A .x(x +a)是单项式B .π12+x 不是整式 C .0是单项式 D .单项式-31x 2y 的系数是31 14.在多项式x 3-xy 2+25中,最高次项是( )A .x 3B .x 3,xy 2C .x 3,-xy 2D .2515.在代数式yy y n x y x 1),12(31,8)1(7,4322++++中,多项式的个数是( ) A .1 B .2 C .3 D .416.单项式-232xy 的系数与次数分别是( ) A .-3,3 B .-21,3 C .-23,2 D .-23,3 17.下列说法正确的是( )A .x 的指数是0B .x 的系数是0C .-10是一次单项式D .-10是单项式18.已知:32y x m -与n xy 5是同类项,则代数式n m 2-的值是( )A 、6-B 、5-C 、2-D 、519.系数为-21且只含有x 、y 的二次单项式,可以写出( ) A .1个 B .2个 C .3个 D .4个20.多项式212x y -+的次数是( )A 、1B 、 2C 、-1D 、-27三.填空题1.当a =-1时,34a =;2.单项式: 3234y x -的系数是,次数是;3.多项式:y y x xy x +-+3223534是次项式;4.220053xy 是次单项式;5.y x 342-的一次项系数是,常数项是;6._____和_____统称整式.7.单项式21xy 2z 是_____次单项式.8.多项式a 2-21ab 2-b 2有_____项,其中-21ab 2的次数是.9.整式①21,②3x -y 2,③23x 2y ,④a ,⑤πx +21y ,⑥522a π,⑦x +1中单项式有,多项式有10.x+2xy +y 是次多项式.11.比m 的一半还少4的数是;12.b 的311倍的相反数是;13.设某数为x ,10减去某数的2倍的差是;14.n 是整数,用含n 的代数式表示两个连续奇数;15.42234263y y x y x x --+-的次数是;16.当x =2,y =-1时,代数式||||x xy -的值是;17.当t =时,31tt +-的值等于1;18.当y =时,代数式3y -2与43+y 的值相等;19.-23ab 的系数是,次数是次.20.把代数式2a 2b 2c 和a 3b 2的相同点填在横线上:8(1)都是式;(2)都是次.21.多项式x 3y 2-2xy 2-43xy -9是___次___项式,其中最高次项的系数是,二次项是,常数项是.22.若2313m x y z -与2343x y z 是同类项,则m =. 23.在x 2,21 (x +y),π1,-3中,单项式是,多项式是,整式是. 24.单项式7532c ab 的系数是____________,次数是____________. 25.多项式x 2y +xy -xy 2-53中的三次项是____________.26.当a=____________时,整式x 2+a -1是单项式.27.多项式xy -1是____________次____________项式.28.当x =-3时,多项式-x 3+x 2-1的值等于____________.29.如果整式(m -2n)x 2y m+n-5是关于x 和y 的五次单项式,则m+n30.一个n 次多项式,它的任何一项的次数都____________.31.系数是-3,且只含有字母x 和y 的四次单项式共有个,分别是.32.组成多项式1-x 2+xy -y 2-xy 3的单项式分别是.四、列代数式1. 5除以a 的商加上323的和;2.m 与n 的平方和;3.x 与y 的和的倒数;4.x 与y 的差的平方除以a 与b 的和,商是多少。