人教版初中数学九年级上册 中心对称
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《中心对称》教学设计
人教版教科书数学九年级上册
【摘要】
本节课主要研究了中心对称的有关概念及中心对称的基本性质
【教学目标】
⑴、知识技能
①了解中心对称、对称中心、关于中心的对称点等概念及掌握这些概念解决一些问题
②通过具体实例认识两个图形关于某一点中心对称的本质:就
是一个图形绕一点旋转180°而成。
③理解关于中心对称的两个图形,对称点所连线段都经过对称
中心,而且被对称中心所平分;理解关于中心对称的两个图形是全等图形;掌握这两个性质的运用
(2)、过程与方法
在发现、探究的过程中完成对中心对称变换从直观到抽象、从感性认识到理性认识的转变,发展学生直观想象能力,分析、归纳、抽象概括的思维能力
(3)、情感态度与价值观
利用图形探索中心对称的性质,让学生体验数学与生活是紧密联系的,体会到生活中的对称美,发展学生的审美能力,增强对图形的欣赏意识。
3.教学重点
①利用中心对称、对称中心、关于中心对称点的概念解决一些问题
②中心对称的两条基本性质及其运用
4.教学难点:中心对称的性质及利用以上性质进行作图
【学情分析】
学生在学习了旋转的基础上学习中心对称,在作图方面已经有了一定的基础,中心对称是一种特殊的旋转,对于性质的得出难度不大。
【教学策略】
利用多媒体的形式展示,通过学生自主动脑思考得出结论。
【教学过程】
一、创设情境,引入新课
观察:
①如图1把其中一个图案绕点O旋转180°,你有什么发现?
图1
②如图2,线段AC与BD相交于点O,OA=OC,OB=OD,把△OCD 绕点O旋转180º,你有什么发现?
图2
老师点评:可以发现,如图所示的两个图案绕O旋转180°都是重合的,即甲图与乙图重合,△OAB与△OCD重合.
归纳:把一个图形绕某一个点旋转180º,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称;点O叫做对称中心;这两个图形中的对应点叫做关于中心的对称点。
二、师生合作,探求新知
[探究]如图,旋转三角板,画关于点O对称的两个三角形;
第一步,画出△ABC;
第二步,以三角板的一个顶点O为中心,把三角板旋转180°,画出△A'B'C';
第三步,移开三角板。
这样画出的△ABC与△A'B'C',关于点O对称.分别连接对应点AA'、BB'、CC'.点O在线段AA'上吗?如果在,在什么位置?△ABC 与△A'B'C'有什么关系?
[发现]我们可以发现:(1)点O是线段AA'的中点;(2)△AB C≌△A'B'C'。
上述发现可以证明如下.
(1)点A'是点A绕点O旋转180°后得到的,即线段OA绕点O 旋转180°得到线段OA',所以点O在线段A A'上,且OA=O A',即点O是线段A A'的中点。
同样的,点O也是线段BB'和CC'的中点
(2)旋转前后的图形全等。
三、理解新知,典例解析
[活动] 师生合作,归纳出中心对称的性质:
(1) 关于中心对称的两个图形,对称点所连线段都经过对称中心,
而且被对称中心所平分;
(2) 关于中心对称的两个图形是全等图形.
例1.(1)如教材图28.2-4,选择点O为对称中心,画出点A关于点O的对称点A’;
(2)如教材图28.2-5,选择点O为对称中心,画出与△ABC 关于点O对称的△A’B’C’。
问:1、一个点绕对称中心旋转180º,得到的是一个平角,这表示什么?
2、你是如何理解“对称点所连线段都经过对称中心,而且被对称中心所平分”的?
3、确定一个三角形需要几个点?作一个三角形关于某点成中心对称的三角形,需要作几个点的对称点呢?
四、归纳小结,总结新知
问题:本节课你学到了什么知识?从中得到了什么启发?
五、作业设计,课后巩固
教科书第21页习题28.2第1题
板书设计:
§28.2.1 中心对称
1.中心对称及对称中心的概念
2.中心对称的两条基本性质:
(1)关于中心对称的两个图形,对应点所连线都经过对称中心,•而且被对称中心所平分;
(2)关于中心对称的两个图形是全等图形.
3.作图