高中数学学考复习知识点教学提纲
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学学业水平考试常用公式及结论
一、集合与函数:
集合
1、集合中元素的特征:确定性,互异性,无序性
2、 集合相等:若:,A B B A ⊆⊆,则
A B =
3. 元素与集合的关系:属于∈ 不属于:∉ 空集:φ
4.集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n
–1个;
5.常用数集:自然数集:N 正整数集:*
N 整数集:Z 有理数集:Q 实数集:R 函数的奇偶性
1、定义: 奇函数 <=> f (– x ) = – f ( x ) ,偶函数 <=> f (–x ) = f ( x )(注意定义域)
2、性质:(1)奇函数的图象关于原点成中心对称图形; (2)偶函数的图象关于y 轴成轴对称图形;
(3)如果一个函数的图象关于原点对称,那么这个函数是奇函数; (4)如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 函数的单调性
1、定义:对于定义域为D 的函数f ( x ),若任意的x 1, x 2∈D ,且x 1 < x 2
① f ( x 1 ) < f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) < 0 <=> f ( x )是增函数 ② f ( x 1 ) > f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) > 0 <=> f ( x )是减函数 二次函数y = ax 2 +bx + c (0a ≠)的性质
1、顶点坐标公式:⎪⎪⎭
⎫ ⎝⎛--a b ac a b 44,22, 对称轴:a b x 2-=,最大(小)值:a b ac 442-
2.二次函数的解析式的三种形式
(1)一般式2
()(0)f x ax bx c a =++≠; (2)顶点式2
()()(0)f x a x h k a =-+≠; (3)两根式12()()()(0)f x a x x x x a =--≠. 指数与指数函数 1、幂的运算法则:
(1)a m • a n = a m + n ,(2)n
m n m a
a a -=÷,(3)( a m ) n = a m n (4)( a
b ) n = a n • b n
(5) n n n
b a b a =⎪⎭⎫ ⎝⎛(6)a 0 = 1 ( a ≠0)(7)n n
a a 1=- (8)m n m n
a a =(9)m n m n
a
a 1=-
2、指数函数y = a x (a > 0且a ≠1)的性质:
(1)定义域:R ; 值域:( 0 , +∞) (2)图象过定点(0,1)
3.指数式与对数式的互化: log b a N b a N =⇔=(0,1,0)a a N >≠>. 对数与对数函数 1.对数的运算法则:
(1)a b = N <=> b = log a N (2)log a 1 = 0(3)log a a = 1(4)log a a b = b (5)a log a N
= N
(6)log a (MN) = log a M + log a N (7)log a (
N
M
) = log a M -- log a N (8)log a N b = b log a N (9)换底公式:log a N =
a
N
b b log log
(10)推论 log log m n
a a n
b b m
=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). (11)log a N =
a
N log 1
(12)常用对数:lg N = log 10 N (13)自然对数:ln A = log e A
(其中 e = 2.71828…) 2、对数函数y = log a x (a > 0且a ≠1)的性质: (1)定义域:( 0 , +∞) ; 值域:R (2)图象过定点(1,0)
2.图象平移:若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象; 规律:左加右减,上加下减
平均增长率的问题
如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x
y N p =+. 函数的零点:1.定义:对于()y f x =,把使()0f x =的X 叫()y f x =的零点。即 ()y f x =的图象与X 轴相交时交点的横坐标。
2.函数零点存在性定理:如果函数()y f x =在区间[],a b 上的图象是连续不断的一条 曲线,并有()()0f a f b ⋅<,那么()y f x =在区间(),a b 内有零点,即存在(),c a b ∈, 使得()0f c =,这个C 就是零点。
二、圆:
1、斜率的计算公式:k = tanα=
1
21
2x x y y --(α ≠ 90°,x 1≠x 2)
2、直线的方程(1)斜截式 y = k x + b(k 存在) ;(2)点斜式 y – y 0 = k ( x – x 0 ) (k 存在); (3)两点式
1
21121x x x x y y y y --=
--(1212,x x y y ≠≠) ;4)截距式 1=+b y
a x (0,0a
b ≠≠) (5)一般式0(,0Ax By
c A B ++=不同时为) 3、两条直线的位置关系:
4、两点间距离公式:设P 1 ( x 1 , y 1 ) 、P 2 ( x 2 , y 2 ),则 | P 1 P 2 | =()()221221y y x x -+-
5、点P ( x 0 , y 0 )到直线l :A x + B y + C = 0的距离:2
2
00B
A C
By Ax d +++=
6、圆的方程