人教版七年级下三元一次方程组

合集下载

人教版七年级下册8.4三元一次方程组的解法(教案)

人教版七年级下册8.4三元一次方程组的解法(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三元一次方程组的基本概念。三元一次方程组是由三个含有三个未知数的一次方程组成的方程体系。它在解决多个未知数的实际问题中起着重要作用。
案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何将实际问题转化为三元一次方程组,并通过代入法和加减消元法求解。
然而,我也注意到,有些同学在小组讨论中参与度不高,可能是因为他们对这个话题还不够感兴趣,或者是对自己的数学能力缺乏信心。在未来的教学中,我需要更多地关注这部分学生,激发他们的学习兴趣,帮助他们建立信心。
此外,实践活动虽然能够让学生们动手操作,但在时间安排上可能有些紧张,导致部分学生没有足够的时间去深入思考和实践。我考虑在接下来的课程中,适当延长实践活动的时间,让学生们有更充分的操作和思考空间。
-难点三:将实际问题转化为三元一次方程组时,如何正确识别和设定未知数。
举例:在应用题中,学生可能难以确定三个人的总分、各科分数与方程组之间的关系,从而无法正确列出方程组。
-难点四:在解题过程中,如何进行有效的逻辑推理和数据分析,特别是当方程组较为复杂时。
举例:在处理多个方程和未知数时,学生可能会在推理过程中迷失方向,无法清晰地找出解题路径。
举例:在例1中,选择第一个方程的z变量代入第二个和第三个方程,学生可能会在代入和化简过程中出现计算错误。
-难点二:掌握加减消元法的运用,特别是在多个方程中选择合适的方程进行组合,以及如何处理消元后出现的分数。
举例:在例1中,将第一个方程与第二个方程相加,消去y,学生可能会在选择方程时犹豫不决,或者在消元过程中处理分数不当。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《三元一次方程组的解法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要同时解决几个问题的情况?”比如,分配任务时需要考虑每个人的能力和时间。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三元一次方程组的奥秘。

人教版七年级数学下册8.4 三元一次方程组的解法

人教版七年级数学下册8.4 三元一次方程组的解法
营养标准中的要求.
(2)解该三元一次方程组,求出满足要求的A、B、C的份数.
解:(1)由该食谱中包含35单位的铁、70单位的钙和35单位 的维生素,得方程组
类似二元一次方程组的解,三元一次方程组中各个方程 的公共解,叫做这个三元一次方程组的解.
怎样解三元一次方程组呢?
x y z 23, ①
x
y
1,

2x y z 20.③
能不能像以前一样“消元”, 把“三元”化成“二元”呢?
探究新知
考点 1 三元一次方程组的解法
解三元一次方程组
3x 4z 7, ① 2x 3y z 9, ② 5x 9 y 7z 8.③
y=8,z=6. 把y=8代入④,得x=9.
x=9, 所以原方程组的解是 y=8,
z=6.
探究新知
考点 2 三元一次方程组求字母的值 在等式 y=ax2+bx+c中,当x=-1时,y=0;当x=2时,y=3;当
x=5时,y=60. 求a,b,c的值.
解:根据题意,得三元一次方程组 a-b+c= 0, ① 4a+2b+c=3, ② 25a+5b+c=60. ③
巩固练习
x 1
已知
y
2
z 3
是方程组
ax by 2 by cz 3 cx az 7
的解,则a+b+c的值是___3_________.
探究新知
考点 3 利用三元一次方程组解答实际问题 幼儿营养标准中要求每一个幼儿每天所需的营养量中应包含35 单位的铁、70单位的钙和35单位的维生素.现有一批营养师根
探究新知 知识点 1 三元一次方程组的概念
小明手头有12张面额分别是1元、2元、5元的纸币,共 计22元,其中1元纸币的数量是2元纸币数量的4倍.求1元、 2元、5元的纸币各多少张?

8.4 三元一次方程组的解法(课件)七年级数学下册(人教版)

8.4 三元一次方程组的解法(课件)七年级数学下册(人教版)
所以x=2,y=4,z=10.
所以x=9,y=12,z=15.
=2
因此,这个方程组的解为 = 4
= 10
=9
因此,这个方程组的解为 = 12
= 15
考点解析
重点
例5.在等式y=ax2+bx+c中,当x=-1时,y=1;当x=2时,y=22;当x=3和x=5时,
y的值相等.求a,b,c的值.
(2)在(1)的情况下,运费最少是_____元.
解:(1)设甲型车有x辆,乙型车有y辆,
丙型车有z辆.
+ + = 16
根据题意,得
5 + 8 + 10 = 120
5
消去z,得5x+2y=40.所以x=8- y.
2
考点解析
重点
(1)为了节约运费,可以调用甲、乙、丙三种车型参与运送,每辆车均满载,
8 + = 0
③与④组成方程组
+ =7
= −1
解这个方程组,得
=8
把a=-1,b=8代入①,得-1-8+c=1,解得c=10.
所以a,b,c的值分别为-1,8,10.
迁移应用
1.已知 − +
1

2
− +(x+2)2=20,则x+y+z=_____.
-5
2.已知单项式-8a3x+y+zb12cx+y+z与-2a42b2x-yc4x是同类项,求x,y,z的值.
自学导航
小明手头有12张面额分别为10元、20元、50元的纸币,共计220元,其中10
元纸币的数量是20元纸币数量的4倍.求10元、20元、50元纸币各多少张.

七年级数学下册(人教版)8.4三元一次方程组的解法优秀教学案例

七年级数学下册(人教版)8.4三元一次方程组的解法优秀教学案例
三、教学策略
(一)情景创设
1.生活情境:以实际生活中的问题为背景,创设情境,引发学生的思考,激发学生的学习兴趣。例如,设计一道与购物、旅游等生活场景相关的问题,让学生在解决问题的过程中自然地引入三元一次方程组。
2.故事情境:通过讲述一个有趣的故事,引发学生的兴趣,使他们能够主动参与到学习中。例如,讲述一个侦探破案的故事,引导学生思考并解决问题,从而引入三元一次方程组的概念和解法。
2.鼓励学生互相倾听和尊重对方的意见,培养他们的团队合作能力。例如,在小组活动中,可以设置一个环节,让每个小组成员分享自己的解题思路和方法,并进行讨论和评价。
(四)总结归纳
1.对本节课的主要内容和知识点进行总结归纳,让学生能够梳理和巩固所学知识。例如,总结三元一次方程组的定义、解法和解的情况的判断方法等。
在教学过程中,我注重引导学生运用已知知识解决未知问题,培养他们的逻辑思维能力和创新意识。同时,我通过设计丰富的教学活动,激发学生的学习兴趣,使他们能积极主动地参与课堂讨论,提高课堂效果。此外,我还注重对学生的个性化指导,针对不同学生的学习情况,给予他们有针对性的帮助,使他们在课堂上都能有所收获。
二、教学目标
3.小组合作:本节课通过组织学生进行小组合作学习,促进了学生之间的交流和合作。例如,设计一个小组活动,让学生分组讨论并解决一个复杂的三元一次方程组问题。在合作过程中,学生能够互相倾听和尊重对方的意见,培养他们的团队合作能力。小组合作的方式不仅能够提高学生的学习效果,还能够培养他们的沟通能力、协作能力和团队意识。
2.通过提问引导学生思考问题的本质,引发学生的思考和探究。例如,提出一个问题:“如果有一个房间,里面有三个开关,对应着另一个房间里的三盏灯,你如何通过只进房间一次,找出哪盏灯对应哪个开关?”让学生思考并解决这个问题。

人教版七年级数学下册第八章《三元一次方程组解法(选学)》知识梳理、考点精讲精练、课堂小测、课后作业第

人教版七年级数学下册第八章《三元一次方程组解法(选学)》知识梳理、考点精讲精练、课堂小测、课后作业第

第15讲三元一次方程组解法(1)代入消元法(2)加减消元法三元一次方程组及其解法:方程组中一共含有三个未知数,含未知数的项的次数都是1,并且方程组中一共有两个或两个以上的方程,这样的方程组叫做三元一次方程组。

解三元一次方程组的关键也是“消元”:三元→二元→一元方程应用题:考点1、三元一次方程的解法例1、在解三元一次方程组中,比较简单的方法是消去()A.未知数B.未知数y C.未知数z D.常数例2、将三元一次方程组,经过①-③和③×4+②消去未知数z后,得到的二元一次方程组是()A.B.C.D.例3、写一个三元一次方程,使它的解有一组为x=1,y=1,z=1,这个三元一次方程为.例4例5、解下列三元一次方程组:(1)(2)(3)(4).1、已知,则x+y+z的值是()A.80 B.40 C.30 D.不能确定2、下列方程组:①;②;③;④,是三元一次方程组的是(填序号)3、已知三元一次方程2a+3b-4c=6,用含b、c的式子表示a为.4、当x=0、1、-1时,二次三项式ax2+bx+c的值分别为5、6、10,则a= ,5、解方程组:考点2、三元一次方程应用求解例1、已知|x-z+4|+|z-2y+1|+|x+y-z+1|=0,则x+y+z=()A.9 B.10 C.5 D.3例2、已知方程组,x与y的值之和等于2,则k的值为.例3、如果方程组的解使代数式kx+2y-z的值为10,那么k= .例4、已知x、y、z都不为零,且.求x:y:z.例5、对于有理数x,y定义新运算x*y=ax+by+c.其中a,b,c是常数,等式右边是通常的加法与乘法运算.已知1*2=9,(-3)*3=6,0*1=2,求(-2)*5的值.1、若方程组的解x与y的和为O,则m等于()A.-2 B.-1 C.1 D.22、已知,则x:y:z=______.34、如果方程组,的解也是方程3x+my+2z=0的解,求m的值.5、已知3x-4y-z=0,2x+y-8z=0,求的值.考点3、三元一次方程应用题例1、有甲,乙,丙三种商品,如果购甲3件,乙2件,丙1件共需315元钱,购甲1件,乙2件,丙3件共需285元钱,那么购甲,乙,丙三种商品各一件共需()A.50 B.100 C.150 D.200例2、一件工作,甲乙合做8小时完成,甲丙合做6小时完成,乙丙合做4.8小时完成,若甲乙丙三人合做,小时完成.例3、已知,甲乙丙三个数的和为26,甲数比乙数大1,甲数的两倍与丙数的和比乙数大18,求这三个数.例4、某工厂每天生产甲种零件120个,或乙种零件100个,或丙种零件200个.甲、乙、丙三种零件分别取3个、2个、1个才能配成一套,现要在30天内生产最多的成套产品,问甲、乙、丙三种零件各应生产多少天?例5、在第29届北京奥运会上,中国体育健儿共获得奖牌100枚,令国人振奋,世界瞩目,下面是两位同学的对话:小明:太厉害了,我们在金牌榜上居第一位,金牌比银牌的2倍还多9块!小华:是呀,我们的银牌也不少啊,只比铜牌少7块!你知道我们共获得金牌、银牌、铜牌各多少块吗?1、有甲、乙、丙三种货物,若购买甲3件,乙7件,丙1件,共需63元,若购甲4件,乙10件,丙1件共需84元.现在购买甲、乙、丙各一件,共需()元.A.21 B.23 C.25 D.272、甲乙丙三数之和为36,而甲乙二数之和与乙丙二数之和与甲丙二数的和之比为2:3:4,则甲乙丙三数分别为.3、已知△ABC的周长为25cm,三边a、b、c中,a=b,c:b=1:2,则边长a= .4、王明在超市用74元钱买了苹果、梨、香蕉三种水果共15.5/kg,苹果比梨多2kg,已知苹果5元/kg,梨5.5元/kg,香蕉4元/kg.王明买了苹果、梨、香蕉各多少/kg?5、某单位职工在植树节时去植树,甲、乙、丙三个小组共植树50株,乙组植树植树多少株?6、已知△ABC的周长为48cm,最长边与最短边之差为14cm,另一边与最短边之和为25cm,求△ABC各边的长.1、解方程组时,第一次消去未知数的最佳方法是()A.加减法消去x,将①-③×3与②-③×2B.加减法消去y,将①+③与①×3+②C.加减法消去z,将①+②与③+②D.代人法消去x,y,z中的任何一个2、若2x+3y-z=0且x-2y+z=0,则x:z=()A.1:3 B.-1:1 C.1:2 D.-1:7 3、若2x+5y-3z=2,3x+8z=3,则x+y+z的值等于()A.0 B.1 C.2 D.无法求出4、关于关于x、y的方程组的解也是二元一次方程x+3y+7m=20的解,则m的值是()A.0 B.1 C.2 D.0.55、某校一年级有64人,分成甲、乙、丙三队,其人数比为4:5:7.若由外校转入1人加入乙队,则后来乙与丙的人数比为()A.3:4 B.4:5 C.5:6 D.6:76、买20枝铅笔、3块橡皮擦、2本日记本需32元;买39枝铅笔,5块橡皮擦、3本日记本需58元;则买5枝铅笔、5块橡皮擦、5本日记本需()A.20元B.25元C.30元D.35元7、若方程组中x和y值相等,则k= .8、已知单项式-8a3x+y-z b12c x+y+z与2a4b2x-y•3z c69、解下列方程组:(1)(2)10、已知方程组的解x、y的和为12,求n的值.11、若,求x,y,z的值.12、已知:△ABC的周长为18cm,且a+b=2c,,求三边a、b、c的长.13、一个三位数的三个数字的和是17,百位数字与十位数字的和比个位数字大3,如果把个位数字与百位数字的位置对调,那么所得的三位数比原数大495,求原来的三位数.1、已知3a-c=a+b+c=4a+2b-c,那么3a:2b:c等于()A.4:(-2):5 B.12:4:5C.12:(-4):5 D.不能确定2、若,且3x+2y+z=32,则(y-z)x= .3、已知=k,则k= .4、有甲、乙、丙三种货物,若购甲3件、乙7件、丙1件共需315元;若购甲4件、乙10件、丙1件共需420元.问购甲、乙、丙各5件共需多少元?5、根据下面的等式,求出妈妈买回来的鱼、鸡、菜各花了多少钱?鸡+鸭+鱼+菜=35.4元鸡+鱼+菜=20.4元鸭+鱼+菜=21.4元鸭+菜=17元.1、解方程组,若要使运算简便,消元的方法应选取()A.先消去B.先消去yC.先消去z D.以上说法都不对2、已知是方程组的解,则a+b+c的值是()A.1 B.2 C.3 D.以上答案都不对3、甲、乙、丙三数之和为98,甲:乙=2:3,乙:丙=5:8,则乙=()A.50 B.45 C.40 D.304、三元一次方程组的解是()A.B.C.D.5、小华到学校超市买铅笔11支,作业本5个,笔芯2支,共花12.5元;小刚在这家超市买同样的铅笔10支,同样的作业本4个,同样的笔芯1支,共花10元钱.若买这样的铅笔1支、作业本1个,笔芯1支共需()元.A.3元B.2.5元C.2元D.无法求出6、若方程组的解是3a+nb=8的一个解,则n的值是()A.1 B.2 C.3 D.47、为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可能购买()A.11支B.9支C.7支D.4支8、如果x-y=-5,z-y=11,则z-x= .9、当K= 时,关于x、y的方程的解的和为200.10、有甲、乙、丙三种商品,如果购甲3件、乙2件,丙1件共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需元钱.11、解方程组(1)(2)(3)12、在等式y=ax2+bx+c中,当x=1时,y=0;当x=2时,y=4;当x=3时,y=10.当x=4时y的值是多少?13、解方程组:.14、琪琪、倩倩、斌斌三位同学去商店买文具用品.琪琪说:“我买了4支水笔,2本笔记本,10本作文本共用了19元.”倩倩说:“我买了2支水笔,3本笔记本,10本练习本共用了20元.”斌斌说:“我买了12本练习本,8本作文本共用了10元;作文本与练习本的价格是一样哦!”请根据以上内容,求出笔记本,水笔,练习本的价格.15、a为何值时,方程组的解x、y的值互为相反数,求出a的值,并求出方程组的解.第15讲三元一次方程组解法考点1、三元一次方程的解法例1、C例2、A例3、例4、例5、1、B2、3、4、5、考点2、三元一次方程应用求解例1、A例2、例3、例4、例5、1、D2、3、4、5、考点3、三元一次方程应用题例1、C例2、例3、例4、例5、1、A2、3、4、5、6、1、C2、D3、B4、C5、A6、C7、8、9、10、11、12、13、1、2、3、4、5、1、B2、C3、D4、C6、B7、D 8、9、10、11、13、.14、15、人教版七年级数学下册第八章《三元一次方程组解法(选学)》知识梳理、考点精讲精练、课堂小测、课后作业第15讲(有答案)21 / 21。

人教版七年级数学下册三元一次方程组(基础) 知识讲解

人教版七年级数学下册三元一次方程组(基础)  知识讲解

三元一次方程组(基础)知识讲解【学习目标】1.理解三元一次方程(或组)的含义;2.会解简单的三元一次方程组;3. 会列三元一次方程组解决有关实际问题.【要点梳理】要点一、三元一次方程及三元一次方程组的概念1.三元一次方程的定义含有三个未知数,并且含有未知数的项的次数都是1的整式方程.如x+y-z=1,2a-3b+4c=5等都是三元一次方程.要点诠释:(1)三元一次方程的条件:①是整式方程,②含有三个未知数,③含未知数的项的最高次数是1次.(2) 三元一次方程的一般形式:ax+by+cz+d=0,其中a、b、c不为零.2.三元一次方程组的定义一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组. 要点诠释:(1) 三个方程中不一定每一个方程中都含有三个未知数,只要三个方程共含有三个未知量即可.(2)在实际问题中含有三个未知数,当这三个未知数同时满足三个相等关系时,可以建立三元一次方程组求解.要点二、三元一次方程组的解法解三元一次方程组的一般步骤(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;(2)解这个二元一次方程组,求出两个未知数的值;(3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值;(5)将求得的三个未知数的值用“{”合写在一起.要点诠释:(1)解三元一次方程组的基本思路是:通过“代入”或“加减”消元,把“三元”化为“二元”.使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.其思想方法是:(2)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求其较简单的解法.要点三、三元一次方程组的应用列三元一次方程组解应用题的一般步骤1.弄清题意和题目中的数量关系,用字母(如x,y,z)表示题目中的两个(或三个)未知数; 2.找出能够表达应用题全部含义的相等关系;3.根据这些相等关系列出需要的代数式,从而列出方程并组成方程组;4.解这个方程组,求出未知数的值;5.写出答案(包括单位名称).要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去.(2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一.(3)一般来说,设几个未知数,就应列出几个方程并组成方程组.【典型例题】类型一、三元一次方程及三元一次方程组的概念1.下列方程组中是三元一次方程组的是( )A .2102x y y z xz ⎧-=⎪+=⎨⎪=⎩B .111216y xz y x z⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ C .123a b c d a c b d +++=⎧⎪-=⎨⎪-=⎩ D .18120m n n t t m +=⎧⎪+=⎨⎪+=⎩【答案】D【解析】A 选项中21x y -=与2xz =中未知数项的次数为2次,故A 选项不是;B 选项中1x ,1y ,1z不是整式,故B 选项不是;C 选项中有四个未知数,故C 选项不是;D 项符合三元一次方程组的定义.【总结升华】理解三元一次方程组的定义要注意以下几点:(1)方程组中的每一个方程都是一次方程;(2)一般地,如果三个一次方程合起来共有三个未知数,它们就能组成一个三元一次方程组.类型二、三元一次方程组的解法2.(2016春•枣阳市期末)在等式y=ax 2+bx+c 中,当x=﹣1时,y=0;当x=2时,y=3;当x=5时,y=60.求a ,b ,c 的值.【思路点拨】由“当x=﹣1时,y=0;当x=2时,y=3;当x=5时,y=60”即可得出关于a 、b 、c 的三元一次方程组,解方程组即可得出结论.【答案与解析】 解:根据题意,得,②﹣①,得a+b=1④;③﹣①,得4a+b=10 ⑤.④与⑤组成二元一次方程组,解这个方程组,得,把代入①,得c=﹣5. 因此,即a ,b ,c 的值分别为3,﹣2,﹣5.【总结升华】本题考查了解三元一次方程组,解题的关键是得出关于a 、b 、c 的三元一次方程组.本题属于基础题,难度不大.【高清课堂:三元一次方程组 409145 例1】举一反三: 【变式】解方程组: 【答案】解:①+②得:5311x y +=④ ①×2+③得:53x y -=⑤由此可得方程组:531153x y x y +=⎧⎨-=⎩④⑤④-⑤得:48y =,2y =将2y =代入⑤知:1x =将1x =,2y =代入①得:3z =所以方程组的解为:123x y z =⎧⎪=⎨⎪=⎩【高清课堂:三元一次方程组409145 例2(2)】3. 解方程组23520x y z x y z ⎧==⎪⎨⎪++=⎩①②【答案与解析】 解法一:原方程可化为:253520x z y z x y z ⎧=⎪⎪⎪=⎨⎪⎪++=⎪⎩①②③ 由①③得:25x z =,35y z = ④ 将④代入②得:232055z z z ++=,得:10z = ⑤ 2334823x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=-⎩①②③将⑤代入④中两式,得:2210455x z ==⨯=,3310655y z ==⨯= 所以方程组的解为:4610x y z =⎧⎪=⎨⎪=⎩解法二:设235x y z t ===,则2,3,5x t y t z t ===③ 将③代入②得:23520t t t ++=,2t =将2t =代入③得:2224x t ==⨯=,3326,55210y t z t ==⨯===⨯=所以方程组的解为:4610x y z =⎧⎪=⎨⎪=⎩【总结升华】对于这类特殊的方程组,可根据其方程组中方程的特点,采用一些特殊的解法(如设比例系数等)来解.举一反三:【变式】(2015秋•德州校级月考)若三元一次方程组的解使ax+2y+z=0,则a 的值为( )A .1B .0C .﹣2D .4【答案】B . 解:,①+②+③得:x+y+z=1④,把①代入④得:z=﹣4,把②代入④得:y=2,把③代入④得:x=3,把x=3,y=2,z=﹣4代入方程得:3a+4﹣4=0,解得:a=0.类型三、三元一次方程组的应用4. (2015春•黄陂区校级月考)购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支、作业本5本圆珠笔2支共需 元.【思路点拨】首先假设铅笔的单价是x 元,作业本的单价是y 元,圆珠笔的单价是z 元.购买铅笔11支,作业本5本,圆珠笔2支共需a 元.根据题目说明列出方程组,解方程组求出a 的值,即为所求结果.【答案】5.【解析】解:设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z元.购买铅笔11支,作业本5本,圆珠笔2支共需a元.则由题意得:,由②﹣①得3x+y=1,④由②+①得17x+7y+2z=7,⑤由⑤﹣④×2﹣③得0=5﹣a,解得:a=5.【总结升华】本题考查了列三元一次不定方程组解实际问题的运用,在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程.举一反三:【变式】现有面值为2元、1元和5角的人民币共24张,币值共计29元,其中面值为2元的比1元的少6张,求三种人民币各多少张?【答案】解:设面值为2元、1元和5角的人民币分别为x张、y张和z张.依题意,得24122926x y zx y zx y++=⎧⎪⎪++=⎨⎪⎪+=⎩①②③把③分别代入①和②,得21813232x zx z+=⎧⎪⎨+=⎪⎩④⑤⑤×2,得6x+z=46 ⑥⑥-④,得4x=28,x=7.把x=7代入③,得y=13.把x=7,y=13代入①,得z=4.∴方程组的解是7134xyz=⎧⎪=⎨⎪=⎩.答:面值为2元、l元和5角的人民币分别为7张、13张和4张.。

七年级数学下册人教版8.4三元一次方程组的解法优秀教学案例

七年级数学下册人教版8.4三元一次方程组的解法优秀教学案例
2.明确任务:给出讨论题目,让学生在小组内进行讨论;
3.教师指导:在学生讨论过程中,教师要进行巡回指导,解答学生的问题,帮助学生突破思维障碍。
(四)总结归纳
1.让学生总结:让学生分别代表小组进行总结,阐述三元一次方程组的解法及其应用;
2.教师补充:对学生的总结进行点评,补充讲解其中的重点和难点;
3.强调注意事项:让学生注意三元一次方程组解法在实际问题中的应用,避免常见错误。
七年级数学下册人教版8.4三元一次方程组的解法优秀教学案例
一、案例背景
在七年级数学下册人教版8.4三元一次方程组的解法这一章节中,学生需要掌握三元一次方程组的解法及应用。此章节内容是学生对一元一次方程和二元一次方程组知识的拓展和延伸,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。
在实际教学中,我发现许多学生在学习三元一次方程组时,往往因为无法将其与实际问题相联系而感到困惑。针对这一问题,我设计了一份优秀教学案例,旨在帮助学生深刻理解三元一次方程组的知识,提高他们解决问题的能力。
1.引导学生自主发现三元一次方程组的解法:通过实际问题的探究,让学生自主发现三元一次方程组的解法;
2.讲解解法的基本原理:详细讲解高斯消元法、代入法等解法的原理,让学生理解并掌握解法;
3.运用数形结合思想:通过图形演示,让学生直观地理解三元一次方程组的解法。
(三)学生小组讨论
1.合理分组:根据学生的学习特点和能力,合理划分学习小组,保证小组讨论的效果;
在教学实践中,我发现通过本节课的学习,学生们不仅掌握了三元一次方程组的解法,而且在解决实际问题时,能够灵活运用所学知识。他们在探究过程中,培养了合作意识,提高了自己的数学素养。此外,学生们在面对困难时,展现了积极向上的精神,增强了自信心,激发了他们对数学学习的热情。

三元一次方程组的解法课件人教版数学七年级下册[1]

三元一次方程组的解法课件人教版数学七年级下册[1]

三元一次方程组
二元一次方程组
一元一次方程
新知探究
x x
yz 2y
12, ① 5z 22,②
x 4 y.

解:将③代入①②,得
4 4
y y
y z 12, 2 y 5z 22.
即56yy
z 12, 5z 22.
解这个方程组,得
y 2,
z
2.
新知探究
x x
yz 2y
解三元一次方程组时,先观察三个方程中各未知数 知识点2:解三元一次方程组
答:1元、2元和5元纸币分别为 8 张、2 张、2 张. 所以 x+y+z=8. 将求得的两个未知数的值代入原方程组中系数比较简单的方程,得到一个一元一次方程
系数的特点及整个式子的特点,然后确定先消去的 解三元一次方程组的步骤:
x+2y+3z=23 3.已知方程组y-z=5 ②,
①, 由②,得 y=z_+__5_④;
x+2z=10 ③,
由③,得 x=__1_0_-__2_z__⑤;将④⑤代入①,得 z=__1__.
4.三元一次方程组y2=x=2z3,y,
xy==46 的解是____z_=__2____.
x+2y+z=16
5.解下列方程组:
(1)3xx++y+2y+z=z=101,4, 2x+3y-z=1;
解:xy==21 z=7
(2)xy++zy==03,, x+z=-1;
解:xy==21 z=-2
2x+3y-z=9,① (3)x+y+z=15,② 答:1元、2元和5元纸币分别为 8 张、2 张、2 张. 5x-4y-z=0.③ (5)写解:将求得的三个未知数的值用“{”写在一起.
12, ① 5z 22,②

七年级下册数学人教版【课堂练】8.4 三元一次方程组的解法

七年级下册数学人教版【课堂练】8.4   三元一次方程组的解法
通过“代入”或“加减”进行消元,把“三元”转化
为“二元”,使解三元一次方程组转化为解二元一次
方程组,进而再转化为解一元一次方程.
探究新知
学生活动二【典例精讲】
+ + = ,①
例1:解方程组:൞ + + = ,②
+ − = ,③
解析:观察各个方程的特点,可以考虑用加减法求解.
组叫做二元一次方程组.
回顾复习
问题2:二元一次方程组的解法?
代入消元法和加减消元法 消元
问题3:解二元一次方程组的思路是什么?
二元一次方程组
消元
一元一次方程
实际上,有不少问题含有
更多未知数,我们继续探
究!
导入新课(创设情境)

小明手头有12张面额分别是1元、2元和5元的纸币,
共计22元,其中1元纸币的数量是2元纸币数量的4倍.
= . ③
探究新知
用代入消元法解
+ + = ,
将③代入①,②,得ቊ
+ + = .
+ = ,
= ,
即ቊ
解得ቊ
代入①得出x=8.
+ = ,
= .
= ,
∴原方程组的解为ቐ = ,
探究新知
消元思想
解三元一次方程组的基本思路:
①+③,得5x+2y=9.⑤

=−
+ = ,

④与⑤组成方程组ቊ
解得൞

+ = .
=



把x=- ,y=


∴原方程组的解是
代入②,得z=

8.4三元一次方程组的解法 课件 2022—2023学年人教版数学七年级下册

8.4三元一次方程组的解法 课件 2022—2023学年人教版数学七年级下册

课程讲授
2 三元一次方程组的简单应用
已知该农场计划投入设备资金67万元,应该怎 样安排这三种作物的种植面积,才能使所有职 工有工作,而且投入的资金正好够用?
课程讲授
2 三元一次方程组的简单应用
解:设种植水稻x公顷、棉花y公顷、蔬菜z公顷.
由题意,得
x y 2z 67, 4x 8y 5z 300, x y z 51,
解得
x
y
15, 20,
z 16.
答:应种植水稻15公顷、棉花20公顷、蔬菜为16
公顷.
随堂练习
x-y=2 1.如果方程组 y-z=3 的解也是方程3x+2y+mz=0的解,
z+x=-1 那么m的值是( D )
A.-0.5
B.0.5
C.-2
D.2
随堂练习
2.解方程组
3x y z 4,
(2)胖丁的体重-1=杰尼龟的体重
x-1=y.
(3)2×胖丁的体重+妙蛙种子的体重=杰尼龟的体重+18
2x+z=y+18.
课程讲授
1 三元一次方程组及其解法
问题2:观察列出的三个方程,你有什么发现?
x+y+z=26. 2x+z=y+18.
x-1=y.
含三个未知数 未知数的次数都是1
三元一次方程
z 1.
x 9, (2) y 1,
z 6.
x 33, (3) y 14,
z 4.
x 2, (4) y 1,
z 1.
随堂练习
3.甲、乙、丙三数的和是26,甲数比乙数大1, 甲数的两倍与丙数的和比乙数大18,求这三个数.

人教版七年级数学下册8.4三元一次方程组的解法优秀教学案例

人教版七年级数学下册8.4三元一次方程组的解法优秀教学案例
(五)作业小结
在作业小结环节,我会布置一些相关的练习题,让学生回家后进行练习。同时,我会提醒学生要注意解题的步骤和技巧,并鼓励他们积极思考和解决问题。通过作业小结,学生能够巩固所学的知识,提高解题能力。
整个教学内容与过程的设计,旨在帮助学生掌握三元一次方程组的解法,并培养他们的数学思维能力和解决问题的能力。通过导入新课、讲授新知、学生小组讨论、总结归纳和作业小结等环节的有机结合,学生能够在实践中学习、思考和解决问题,从而提高他们的数学素养和综合能力。
人教版七年级数学下册8.4三元一次方程组的解法优秀教学案例
一、案例背景
本案例背景以人教版七年级数学下册8.4三元一次方程组的解法为主题,旨在通过具体的教学实践,帮助学生掌握三元一次方程组的解法,提高他们的数学思维能力和解决问题的能力。
在教学案例中,我选择了三个年级知识深度适宜的方程组作为教学内容,分别是:
(四)反思与评价
在本章节的教学中,我将引导学生进行反思和评价,帮助他们总结经验,提高解题能力。我会让学生回顾自己的解题过程,思考自己在解题中的优点和不足之处。同时,我还会组织学生进行同伴评价,让他们相互评价对方的解题方法和思路。通过反思和评价,学生能够更好地认识自己的学习情况,发现自己的问题,从而不断提高自己的解题能力。
3.小组合作学习:组织学生进行小组合作学习,让学生共同解一个三元一次方程组的问题。通过小组合作,学生能够相互学习、相互帮助,提高他们的团队合作能力和解决问题的能力。同时,小组合作还能够培养学生的沟通能力和团队合作精神。
4.反思与评价:引导学生进行反思和评价,帮助他们总结经验,提高解题能力。通过回顾自己的解题过程,学生能够发现自己的优点和不足之处,从而不断提高自己的解题能力。同时,通过同伴评价,学生能够相互借鉴和学习,进一步提高解题能力。

七年级数学下册教学课件《三元一次方程组的解法》

七年级数学下册教学课件《三元一次方程组的解法》

x+y+z=12

x+2y+5z=22 ②
x=4y

①×5-②,得4x+3y=38.④
4x+3y=38
x=2
③④组成方程组
解这个方程组,得
x=4y
y=2
把x=8,y=2代入①,得z=2.
x=8
因此,原方程组的解为 y=2
z=2
解三元一次方程组的基本思路:
三元一次 消元 二元一次 消元
方程组 “代入”或 方程组 “代入”或
2x-y+3z=3
2.解方程组 3x+y-2z=-1
x+y+z=5
-3y+z=-7
(1)若先消去x,得到关于y、z的方程组是____2_y_+_5_z_=_1_6____;
5x+z=2 (2)若先消去y,得到关于x、z的方程组是____3_x_+_4_z_=_8_____;
x+4y=12 (3)若先消去z,得到关于x、y的方程组是____5_x_+_3_y_=_9__.
(答案均不唯一)
3.解下列三元一次方程组:【选自教材P106 练习第1题】
x-2y=-9,
(1) y-z=3, 2z+x=47;
x=22
y = 31 2
z = 25 2
3x-y+z=4, (2) 2x+3y-z=12,
x+y+z=6.
x=2 y=3 z=1
例2 在等式y=ax2+bx+c中,当x=-1时,y=0;当x=2时, y=3;当x=5时,y=60.求a,b,c的值.
知数的项的次数都是 1,并且一共有三个方程,

2024年七年级数学下册专题8.3 三元一次方程组【七大题型】(举一反三)(人教版)(解析版)

2024年七年级数学下册专题8.3 三元一次方程组【七大题型】(举一反三)(人教版)(解析版)

专题8.3 三元一次方程组【七大题型】【人教版】【题型1 三元一次方程(组)的解】 (1)【题型2 用消元法解三元一次方程组】 (3)【题型3 用换元法解三元一次方程组】 (6)【题型4 构建三元一次方程组解题】 (8)【题型5 运用整体思想求值】 (10)【题型6 三元一次方程组中的数字问题】 (13)【题型7 三元一次方程组的应用】 (18)【例1】(2022·河南南阳·七年级期中)我们探究得方程x+y=2的正整数解只有1组,方程x+y=3的正整数解只有2组,方程x+y=4的正整数解只有3组,……,那么方程x+y+z=9的正整数解的组数是()A.27B.28C.29D.30【答案】B【分析】先把x+y看作整体t,得到t+x=9的正整数解有7组;再分析x十y分别等于2、3、4、……、9时对应的正整数解组数;把所有组数相加即为总的解组数.【详解】解:令x+y=t(t≥2),则t+z=9的正整数解有7组(t=2,1=3,t=4,……,t=8)其中t=x+y=2的正整数解有1组,t=x+y=3的正整数解有2组,t=x+y=4的正整数解有3组……,t=x+y=8的正整数解有7组,总的正整数解组数为:1+2+3+…+7=28.故选:B.【点睛】本题考查了二元一次方程的解和三元一次方程的解,可将三元方程里的两个未知数看作一个整休,再分别计算.【变式1-1】(2022·浙江·杭州市实验外国语学校七年级期中)已知{x =1y =2z =3是方程组{ax +by =2by +cz =3cx +az =7的解,则a +b +c 的值为( )A .3B .2C .1D .0【答案】A【分析】把{x =1y =2z =3代入方程组,然后把三个方程相加,即可求出答案【详解】解:根据题意,把{x =1y =2z =3 代入方程组,得{a +2b =2①2b +3c =3②c +3a =7③,由①+②+③,得4a +4b +4c =12,∴a +b +c =3;故选:A【点睛】本题考查了方程组的解,加减消元法解方程组,解题的关键是掌握解方程组的方法进行计算【变式1-2】(2022·全国·八年级专题练习)方程x +2y +3z =14(x <y <z )的正整数解是________.【答案】{x =1y =2z =3【分析】由x +2y +3z =14(x <y <z ),可得出x <73,z >73,又由x,y,z 均为正整数,分析即可得到正确答案.【详解】解:∵x <y <z ,∴{2x <2y 3x <3z∴6x <x +2y +3z =14∴x <73,同理可得:z >73又∵x,y,z 均为正整数∴满足条件的解有且只有一组,即{x =1y =2z =3故答案为:{x =1y =2z =3【点睛】本题考查三元一次方程的变式,牢记相关的知识点并能够灵活应用是解题关键.【变式1-3】(2022·全国·九年级专题练习)三元一次方程x +y +z =1999的非负整数解的个数有( )A .20001999个B .19992000个C .2001000个D .2001999个【答案】C【分析】先设x =0,y+z =1999,y 分别取0,1,2…,1999时,z 取1999,1998,…,0,有2000个整数解;当x =1时,y+z =1998,有1999个整数解;…当x =1999时,y+z =0,只有1组整数解,依此类推,然后把个数加起来即可得到答案.【详解】当x =0时,y+z =1999,y 分别取0,1,2…,1999时,z 取1999,1998,…,0,有2000个整数解;当x =1时,y+z =1998,有1999个整数解;当x =2时,y+z =1997,有1998个整数解;…当x =1999时,y+z =0,只有1组整数解;∴非负整数解的个数有2000+1999+1998+…+3+2+1=2001×20002=2001000个故选:C .【点睛】本题考查了二元一次方程、三元一次方程的知识;解题的关键是熟练掌握二元一次方程、三元一次方程、有理数运算的性质,从而完成求解【题型2 用消元法解三元一次方程组】【例2】(2022·贵州·铜仁市第十一中学七年级阶段练习)方程组{2x +3y ―z =183x ―2y +z =8x +2y +z =24的解________.【答案】{x =4y =6z =8【分析】利用消元法解三元一次方程组即可得.【详解】解:{2x +3y ―z =18①3x ―2y +z =8②x +2y +z =24③,由①+②得:5x +y =26④,由①+③得:3x +5y =42⑤,由④×5―⑤得:25x ―3x =130―42,解得x =4,将x =4代入④得:20+y =26,解得y =6,将x =4,y =6代入③得:4+12+z =24,解得z =8,则方程组的解为{x =4y =6z =8 ,故答案为:{x =4y =6z =8.【点睛】本题考查了解三元一次方程组,熟练掌握消元法是解题关键.【变式2-1】(2022·全国·八年级单元测试)已知{2x +3y =z3x +4y =2z +6且x +y =3,则z 的值为( )A .9B .-3C .12D .不确定【答案】B【分析】先利用x +y =3,得2x+2y=6,3x+3y=9,进而将方程组进行化简整理,再用代入消元法即可求解.【详解】解:∵x +y =3,将其代入方程组得{6+y =z(1)9+y =2z +6(2),由(1)得y=z-6,将其代入(2)得z=-3,故选B.【点睛】本题考查了三元一次方程组的求解,中等难度,熟悉代入消元的方法和对原方程组进行化简是解题关键.【变式2-2】(2022·江苏·七年级专题练习)解下列三元一次方程组:(1){y =2x ―75x +3y +2z =23x ―4z =4;(2){4x +9y =123y ―2z =17x +5z =194.【答案】(1){x =2y =―3z =12 ;(2){x =―34y =53z =2.【分析】(1)把①代入②消去y ,和③组成关于x 、z 二元一次方程组求解;(2)①−3×②消去y 组成关于x 、z 二元一次方程组求解.【详解】解:(1){y =2x ―7①5x +3y +2z =2②3x ―4z =4③,把①代入②得11x +2z =23④,③、④组成方程组得{3x ―4z =411x +2z =23,解得{x =2z =12,代入①得y =−3,所以原方程组的解为{x =2y =―3z =12;(4){4x +9y =12①3y ―2z =1②7x +5z =194③①−3×②得4x +6z =9④,④、③组成方程组得{4x +6z =97x +5z =194,解得{x =―34z =2,代入①得y =53,所以原方程组的解为{x =―34y =53z =2.【点睛】此题考查三元一次方程组的解法,代入消元法和加减消元法是常用的方法,加减消元法是比较简洁的方法.【变式2-3】(2022·湖北武汉·七年级期中)《九章算术》是我国古代著名的数学专著,其“方程”章中给出了“遍乘直除”的算法解方程组.比如对于方程组{3x +2y +z =392x +3y +z =34x +2y +3z =26,将其中数字排成长方形形式,然后执行如下步骤(如图);第一步,将第二行的数乘以3,然后不断地减第一行,直到第二行第一个数变为0;第二步,对第三行做同样的操作,其余步骤都类似.其本质就是在消元.那么其中的a ,b 的值分别是( )A .24,4B .17,4C .24,0D .17,0【答案】A【分析】根据题意所给步骤解方程即可求解.【详解】解:{3x +2y +z =39①2x +3y +z =34②x +2y +3z =26③由②×3,得6x +9y +3z =102④,由④-①,得3x +7y +2z =63⑤,由⑤-①,得5y +z =24,∴a=24,由③×3,得3x+6y+9z=78⑥,由⑥-①,得4y+8z=39,∴b=4,故选:A.【点睛】本题考查解三元一次方程组,解题的关键是根据题干信息将方程组中的数字与图一一对应.【题型3 用换元法解三元一次方程组】【例3】(2022·全国·七年级课时练习)方程组{x:y:z=1:2:3x+y+z=36的解是{x=y=z=.【答案】6,12,18【分析】由于x:y:z=1:2:3,则可设x=t,y=2t,z=3t,再把它们代入第二个方程得到关于t的一次方程,求出t即可得到x、y、z的值.【详解】解:设x=t,则y=2t,z=3t,所以t+2t+3t=36,解得t=6,所以x=6,y=12,z=18.故答案为6,12,18.【点睛】本题考查了解三元一次方程组:利用加减消元或代入消元把解三元一次方程组的问题转化为解二元一次方程组.【变式3-1】(2022·全国·七年级单元测试)已知方程组{x2=y3=z45x―2y+z=16若设x2=y3=z4=k,则k= ______.【答案】2【详解】分析:求出x=2k,y=3k,z=4k,代入5x―2y+z=16,得出关于k的方程,求出方程的解即可.详解:设x2=y3=z4=k,则x=2k,y=3k,z=4k,代入5x−2y+z=16得:10k−6k+4k=16,解得:k=2,故答案为2.点睛:考查解三元一次方程组,根据x2=y3=z4=k,得出x=2k,y=3k,z=4k,是解题的关键.【变式3-2】(2022·内蒙古·乌海市第二中学七年级期中)探索创新完成下面的探索过程:给定方程组{1x +1y =11y +1z =21z+1x=5,如果令1x =A ,1y =B ,1z=C ,则方程组变成______;解出这个新方程组(要求写出解新方程组的过程),得出A ,B ,C 的值,从而得到:x = ______;y =______;z = ______.【答案】{A +B =1B +C =2C +A =5;解方程组过程见解析;12;―1;13【分析】根据换元法可以将原方程组化为{A +B =1①B +C =2②C +A =5③,①+②+③得出A +B +C =4然后分别求出A 、B 、C 的值即可.【详解】解:令1x =A ,1y =B ,1z =C ,则方程组{1x +1y =11y +1z =21z+1x=5可变为:{A +B =1①B +C =2②C +A =5③,①+②+③得A +B +C =4④,④―①得:C =3,④―②得:A =2,④―③得:B =―1,∴{1x =21y =―11z=3,解得:{x =12y =―1z =13.【点睛】本题主要考查了换元法解方程组,根据题意得出A +B +C =4,是解题的关键.【变式3-3】(2022·全国·八年级课时练习)若x +y +z≠0且2y +z x=2x +y z=2z +x y=k ,则k =_________.【答案】3【详解】∵2y +z x=2x +y z=2z +x y=k ,∴2y +z =kx ,2x +y =kz ,2z +x =ky ,∴2y +z +2x +y +2z +x =kx +ky +kz ,即3(x +y +z)=k(x +y +z).又∵x +y +z ≠0,∴k =3.【题型4 构建三元一次方程组解题】【例4】(2022·四川省荣县中学校七年级期中)对于实数x ,y 定义新运算:x ⊗y =ax +by +c ,其中a ,b ,c 均为常数,且已知3⊗5=15,4⊗7=28,则2⊗3的值为( )A .2B .4C .6D .8【答案】A【分析】根据新定义运算得出{3a +5b +c =15①4a +7b +c =28②,求出2a +3b +c =2,即可求解.【详解】∵ x ⊗y =ax +by +c ,∴ {3a +5b +c =15①4a +7b +c =28②,由①×2-②,得2a +3b +c =2,∴2⊗3=2a +3b +c =2,故选:A .【点睛】本题主要考查了有理数的加减混合运算和三元一次方程组,熟练掌握有理数的加减混合运算顺序,解三元一次方程组的方法是解题关键.【变式4-1】(2022·全国·单元测试)已知(x+y-3)2+|y+z-5|+(z+x-4)4=0,则x+y+z 的值是______.【答案】6【详解】由题意得{x +y ―3=0y +z ―5=0z +x ―4=0,解得{x =1y =2z =3.故x+y+z=6.【变式4-2】(2022·全国·七年级专题练习)在式子y =ax 2+bx +c 中,当x =0时,y =1;当x =1时,y =0;当x =-1时,y =4,则a ,b ,c 的值分别为__________.【答案】1, -2,1【详解】分析:将已知三对值代入已知等式,得到关于a ,b ,c 的方程组,求出方程组的解即可得到a ,b ,c 的值.详解:将已知三对值分别代入y=ax 2+bx+c得:{c =1①a +b +c =0②a ―b +c =4③,将①代入②得:a+b+1=0,即a+b=-1④;将①代入③得:a-b+1=4,即a-b=3⑤,④+⑤得:2a=2,即a=1,④-⑤得:2b=-4,即b=-2,则a=1,b=-2,c=1.点睛:此题考查了解三元一次方程组,利用了消元的思想,熟练掌握运算法则是解本题的关键.【变式4-3】(2022·浙江·七年级期末)对于实数x,y定义新运算x⋅y=ax+by+cxy其中a,b,c为常数,若1⋅2=3,2⋅3=4,且有一个非零常数d,使得对于任意的x,恒有x⋅d=x,则d的值是____.【答案】4【分析】由新定义的运算x⋅y=ax+by+cxy,及1⋅2=3,2⋅3=4,构造方程组,不难得到参数a,b,c之间的关系.又由有一个非零实数d,使得对于任意实数x,都有x⋅d=x,可以得到一个关于d的方程,解方程即可求出满足条件的d的值.【详解】解:∵x⋅y=ax+by+cxy,由1⋅2=3,2⋅3=4,即{a+2b+2c=32a+3b+6c=4,∴b=2+2c,a=―1―6c.又由x⋅m=ax+bm+cmx=x对于任意实数x恒成立,∴{a+cd=1bd=0,∵d为非零实数,∴b=0=2+2c,∴c=―1.∴(―1―6c)+cd=1.∴―1+6―d=1.∴d=4.故答案为:4.【点睛】本题属于新定义的题目,根据新运算的定义,将已知中的数据代入进行运算是关键,同时考查了学生合情推理的能力,属于中档题.【题型5 运用整体思想求值】【例5】(2022·湖北·十堰市北京路中学七年级期中)已知实数x,y满足3x―y=5①,2x+3y=7②,求x―4y和7x+5y的值.本题常规思路是先将①,②两式联立组成方程组,解得x,y的值,再代入欲求值的整式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得x―4y=―2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组{2x+y=7x+2y=8,则x―y=__________,x+y=_________.(2)对于实数x、y,定义新运算:x∗y=ax+by+c,其中a、b、c是常数,等式右边是通常的加法和乘法运算.已知3∗5=15,4∗7=28,求1∗1的值.【答案】(1)-1,5(2)-11【分析】(1)利用①-②可得x -y 的值,利用13(①+②)可得x +y 的值;(2)根据新运算的定义可得出a 、b 、c 的三元一次方程组,由3×①―2×②可得出a +b +c 的值,即1∗1的值.(1){2x +y =7①x +2y =8② ,由①-②可得:x -y =-1,由13(①+②)可得:x +y =5,故答案为:-1,5;(2)依题意得:{3a +5b +c =15①4a +7b +c =28②,由3×①―2×②可得:a +b +c =-11,即1∗1= a +b +c =-11.【点睛】本题考查了二元一次方程组的应用以及三元一次方程组的应用,解题的关键是找出方程的关系并运用“整体思想”解方程.【变式5-1】(2022·山东日照·七年级期末)已知方程组{x +y =2y +z =―1z +x =3,则x +y +z 的值是( )A .1B .2C .3D .4【答案】B【分析】将三个方程相加计算即可.【详解】因为{x +y =2y +z =―1z +x =3,将三个方程相加,得2(x +y +z )=2-1+3,解得x +y +z =2,故选B .【点睛】本题考查了三元一次方程组的解法,熟练掌握整体思想计算是解题的关键.【变式5-2】(2022·吉林长春·七年级期末)【数学问题】解方程组{x +y =3,①5x ―3(x +y )=1.②【思路分析】榕观察后发现方程①的左边是x +y ,而方程②的括号里也是x +y ,她想到可以把x +y 视为一个整体,把方程①直接代入到方程②中,这样,就可以将方程②直接转化为一元一次方程,从而达到“消元”的目的.(1)【完成解答】请你按照榕榕的思路,完成解方程组的过程.解:把①代入②,得(2)【迁移运用】请你按照上述方法,解方程组{a +b =5,①2a +3c =16,②a +b ―c =1.③【答案】【完成解答】{x =2y =1 ;【迁移运用】{a =2b =3c =4【分析】(1)【完成解答】把①代入②求出x 的值,再把x 的值代入①即可求解;(2)【迁移运用】把①代入③求出c 的值,把c 的值代入②求出a 的值,再把a 的值代入①即可求解.【详解】解:(1)【完成解答】把①代入②,得5x ―9=1,解得x =2,把x =2代入①,可得y =1,∴方程组的解为{x =2y =1 ;(2)【迁移运用】把①代入③,得5―c =1,解得c =4,把c =4代入②,得2a +12=16,解得a =2,把a =2代入①,得b =3,∴方程组的解为{a =2b =3c =4.【点睛】本题考查解三元一次方程组、解二元一次方程组,掌握整体思想是解题的关键.【变式5-3】(2022·江苏泰州·七年级阶段练习)阅读:善于思考的小明在解方程组{4x +10y =6 ①8x +22y =10 ② 时,采用了一种“整体代换”的思想,解法如下:解:将方程②变形为8x +20y +2y =10,即2(4x +10y )+2y =10③,把方程①代入③得,2×6+2y =10,则y =―1;把y =―1代入①得,x =4,所以方程组的解为:{x =4y =―1试用小明的“整体代换”的方法解决以下问题:(1)试求方程组的解{2x ―3y =76x ―5y =9(2)已知x 、y 、z ,满足{3x ―2z +12y =52x +z +8y =8 ,求z 的值.【答案】(1){x =―1y =―3 ;(2)z =2【分析】(1)方程组利用“整体代换”思想求出解即可;(2)方程组两方程变形后,利用“整体代换”思路求出z 的值即可.【详解】解:(1){2x ―3y =7①6x ―5y =9②,由②得3(2x ―3y )+4y =9③,把方程①代入③得,3×7+4y=9,解得:y=-3,代入①得,x=-1,所以方程组的解为:{x=―1y=―3;(2){3x―2z+12y=5①2x+z+8y=8②,由①得3(x+4y)―2z=5③,由②得2(x+4y)+z=8④,③×2-④×3得z=2.【点睛】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键,用了整体代入思想.【题型6 三元一次方程组中的数字问题】【例6】(2022·浙江·八年级开学考试)一个三位数,百位上的数与十位上的数之差是2,如果交换十位数字与个位数字的位置,那么所得的数就比原来小36,则百位上的数与个位上的数之差为()A.5B.6C.7D.8【答案】B【分析】设这个三位数的百位数字为a,十位数字为b,个位数字为c,然后根据交换后所得的数就比原来小36,百位上的数与十位上的数之差是2,列出方程组求解即可【详解】解:设这个三位数的百位数字为a,十位数字为b,个位数字为c,∴这个三位数为100a+10b+c,交换后的三位数为100a+10c+b,∵交换后所得的数就比原来小36,百位上的数与十位上的数之差是2,∴{100a+10b+c=100a+10c+b+36a=b+2∴{9b―9c=36a=b+2,∴a―c=6,故选B.【点睛】本题主要考查了三元一次方程组的应用,正确理解题意列出方程组求解是解题的关键.【变式6-1】(2022·江苏宿迁·七年级期末)在3×3正方形网格中有9个数,若各行、各列及对角线上的三个数之和都相等,则称此图为“九宫图”.(1)图(甲)就是一个九宫图的一部分,请你求出x ,y 的值;(2)已知图(乙)和图(丙)都是不完整的九宫图.填空:a =______,b =______,c =______;d =______,e =______,f =______.【答案】(1)x =-1,y =1(2)0,-1,5;5,4,10【分析】(1)根据题意列方程组求解即可;(2)设图乙中三个空格中的数分别为x ,y ,z ,列方程组可求出a ,b ,c 的值;设图丙中三个空格中的数分别为d ,e ,f 的值.(1)由题意得{2x +3+2=2―3+4y 2x +3+2=2x +y +4y ,解得{x =―1y =1 .(2)设图乙中三个空格中的数分别为x ,y ,z ,由题意得{a +c +x =x +3+2a +b +z =z +2―3c +y ―3=a +y +2 ,整理得{a +c =5a +b =―1c ―a =5 ,解得{a =0b =―1c =5.故答案为:0,-1,5;设图丙中三个空格中的数分别为m ,n ,h ,由题意得{d +f +ℎ=ℎ+8+7d +e +m =m +2+7f +n +2=d +m +7 ,整理得{d +f =15d +e =9f ―d =5,解得{d =5e =4f =10.故答案为:5,4,10.【点睛】本题考查了二元一次方程组和三元一次方程组的应用,根据题意列出方程组是解答本题的关键.【变式6-2】(2022·重庆巴南·七年级期末)对于个位数字和十位数字不相同的两位自然数m ,把个位上的数字和十位上的数字交换后得到的新两位自然数记为m 1,同时记F(m)=|m ―m 1|9若F (m )能被4整除,则称这样的两位自然数m 为“四季数”.例如:15是“四季数”,因为两位自然数15的个位上的数字和十位上的数字交换后得到的新两位自然数为51,同时F(15)=|15―51|9=4,而4能被4整除,所以15是“四季数”;74不是“四季数”,因为两位自然数74的个位上的数字和十位上的数字交换后得到的新两位自然数为47,同时F(74)=|74―47|9=3,而3不能被4整除,所以74不是“四季数”(1)判断29、48是否是“四季数”?并说明理由;(2)已知两位自然数m是“四季数”,m的十位上的数字为a,个位上的数字为c.在m的中间插入一个数b,得到一个三位数n.若n比m的9倍少8,求出所有符合题意的n值【答案】(1)29 不是“四季数”,见解析;48是“四季数”,见解析;(2)n=226【分析】(1)根据“四季数”的定义即可计算判断;(2)先根据“四季数”的定义找到a、c的关系,再根据n比m的9倍少8,得到关于a,b,c 的方程故可求解.【详解】解:(1)29 不是“四季数”,因为两位自然数29的个位上的数字和十位上的数字交换后得到的新两位自然数为92,=7,同时7不能被4整除,F(29)=|29―92|9所以29不是“四季数”,48是“四季数”,因为两位自然数29的个位上的数字和十位上的数字交换后得到的新两位自然数为92,F(48)=|48―84|=4,同时,4能被4整除;9所以48是“四季数”;(2)依题意可得m=10a+c,m1=10c+a=|a―c|∴F(m)=|m―m1|9∴|a―c|=4①或|a―c|=8②n=100a+10b+c=9(10a+c)-8化简得5a+5b-4c+4=0③联立①③解得{a=2b=2c=6,联立②③无符合条件的正整数解,故n=226.【点睛】此题主要考查代数式计算及方程组的综合运用,解题的关键是根据题意找到数量关系列方程求解.【变式6-3】(2022·重庆綦江·八年级期末)对于一个三位数n,如果n满足:它的百位数字、十位数字之和与个位数字的差等于7,那么称这个数n为“幸福数”.例如:n1=935,∵9+3―5=7,∴935是“幸福数”;n2=701,∵7+0―1=6,∴701不是“幸福数”.(1)判断845,734是否为“幸福数”?并说明理由;(2)若将一个“幸福数”m的个位数的2倍放到十位,原来的百位数变成个位数,原来的十位数变成百位数,得到一个新的三位数t(例如:若m=654,则t=586),若t也是一个“幸福数”,求满足条件的所有m的值.【答案】(1)845是“幸福数”,734不是“幸福数”,见解析;(2)满足条件的所有m的值为:362,654【分析】根据题意可知:(1)要判断一个数是否是“幸福数”,首先要看n是否满足:它的百位数字、十位数字之和与个位数字的差等于7,即可得出答案.(2)若新的三位数t是“幸福数”,需要先设设这个“幸福数”m=abc,则t=b(2c)a(1≤a≤9,1≤b≤9, 0≤c≤4,且a,b,c为整数),根据a,b,c的取值可得出答案.【详解】解:(1)845是“幸福数”,734不是“幸福数”∵8+4―5=7,∴845是“幸福数”;∵7+3―4=6,∴734不是“幸福数”∴845是“幸福数”,734不是“幸福数”.(2)设这个“幸福数”m=abc,则t=b(2c)a(1≤a≤9,1≤b≤9, 0≤c≤4,且a,b,c为整数)根据题意得:{a+b―c=7 b+2c―a=7解得:{a=3c2b=―c2+7∵0≤c≤4,且c为整数,∴{a=3b=6c=2或{a=6b=5c=4∴满足条件的所有m的值为:362,654.【点睛】本题主要考查了实数的加减运算,解三元一次方程组以及学生的运算能力,解题的关键是熟练掌握实数的加减运算法则,三元一次方程组的的解法.【题型7 三元一次方程组的应用】【例7】(2022·湖北黄冈·七年级阶段练习)购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支,作业本5本,圆珠笔2支共需()A.4.5元B.5元C.6元D.6.5元【答案】B【分析】设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z元.购买铅笔11支,作业本5本,圆珠笔2支共需a元,然后根据题意列方程组求出a的值即可果.【详解】解:设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z元.购买铅笔11支,作业本5本,圆珠笔2支共需a元.则由题意得{7x+3y+z=3①10x+4y+z=4②11x+5y+2z=a③由②―①得3x+y=1④由②+①得17x+7y+2z=7⑤由⑤―④×2―③得0=5―a∴a=5.故选:B.【点睛】本题主要考查了方程组的应用,解答本题的关键是列出方程组以及用加减消元法求出方程组的解.【变式7-1】(2022·山东·烟台市福山区教学研究中心八年级期中)盲盒为消费市场注入了活力,既能够营造消费者购物过程中的趣味体验,也为商家实现销售额提升拓展了途径.某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A,B,C三种盲盒各一个,其中A盒中有2个蓝牙耳机,3个多接口优盘,1个迷你音箱;B盒中蓝牙耳机与迷你音箱的数量之和等于多接口优盘的数量,蓝牙耳机与迷你音箱的数量之比为3:2;C盒中有1个蓝牙耳机,3个多接口优盘,2个迷你音箱.经核算,A盒的成本为145元,B盒的成本为245元(每种盲盒的成本为该盒中蓝牙耳机、多接口优盘、迷你音箱的成本之和),则C盒的成本为()元.A.135B.155C.185D.225【答案】B【分析】根据题意确定B盲盒各种物品的数量,设出三种物品的价格列出代数式,解代数式即可.【详解】解:∵蓝牙耳机、多接口优盘、迷你音箱共22个,A盒中有2个蓝牙耳机,3个多接口优盘,1个迷你音箱;C盒中有1个蓝牙耳机,3个多接口优盘,2个迷你音箱;∴B盒中蓝牙耳机、多接口优盘、迷你音箱共22−2−3−1−1−3−2=10(个),∵B盒中蓝牙耳机与迷你音箱的数量之和等于多接口优盘的数量,蓝牙耳机与迷你音箱的数量之比为3:2,∴B盒中有多接口优盘10×12=5(个),蓝牙耳机有5×32+3=3(个),迷你音箱有10−5−3=2(个),设蓝牙耳机、多接口优盘、迷你音箱的成本价分别为a元,b元,c元,由题知:{2a+3b+c=145①3a+5b+2c=245②,∵①×2−②得:a+b=45,②×2−①×3得:b+c=55,∴C盒的成本为:a+3b+2c=(a+b)+2(b+c)=45+2×55=155,故选:B.【点睛】本题主要考查列代数式和代数式的运算,利用A、B盒中的价格关系求出C盒的价格是解题的关键.【变式7-2】(2022·重庆八中八年级阶段练习)某工厂A,B,C型生产线进行产品加工,每条生产线每天的产量之比为1:2:3,现甲、乙两公司计划各自租用该工厂8条生产线同时进行产品加工,且每种类型的生产线均租用,甲公司用6天恰好能加工完所需产品,乙公司用3天恰好能加工完所需产品,乙公司租用的B型生产线数量与甲公司相同,甲公司租用的A型生产线条数与乙公司租用的C型生产线条数相同,乙公司需加工的产品总量比甲,则乙公司B型生产线有________条.公司少16【答案】2【分析】设甲租用A,B,C型生产线分别为x,b,c条,则乙租用A,B,C型生产线分别为a,b,x条,每条生产线每天的产量分别为k,2k,3k,则甲租用的生产线每天的产量为xk+2bk+3ck,乙租用的生产线每天的产量为ak+2bk+3xk,根据题意列出方程,可得a=c,由乙公司需加工的产品总量比甲公司少1,可得6×(xk+2bk+3ck)×(1―16)=3(ak+2bk+3xk),得出6x=b+3a,结合a+b+x=8,求得x=8―a―b,根据a,b,c,x是正整数,即可求解.【详解】设甲租用A,B,C型生产线分别为x,b,c条,则乙租用A,B,C型生产线分别为a,b,x条,每条生产线每天的产量分别为k,2k,3k,则甲租用的生产线每天的产量为xk+2bk+3ck,乙租用的生产线每天的产量为ak+2bk+3xk,根据题意得:∵x+b+c=8,a+b+x=8,a,b,c,x是正整数,∴a=c,∵乙公司需加工的产品总量比甲公司少1,6∴6×(xk+2bk+3ck)×(1―16)=3(ak+2bk+3xk),即x=b+3a.∵a+b+x=8,∴b+3a=8―a―b,∴b=4―2a,∵a,b,c,x是正整数,∴{a=1b=2c=1,∴b=2,故答案为:2.【点睛】本题考查了三元一次方程组的应用,根据题意列出方程组是解题的关键.【变式7-3】(2022·全国·八年级课时练习)某茶庄为了吸引顾客,扩大销售量,准备将A、B、C三种茶具包装成甲、乙、丙、丁四种礼盒销售(包装成本忽略不计).甲礼盒装有A茶具3个,B茶具2个,C茶具2个;乙礼盒装有A茶具2个,B茶具3个,C茶具4个;丙礼盒装有A茶具2个,B茶具2个,C茶具1个;丁礼盒装有A茶具3个,B茶具4个,C茶具4个.若一个甲礼盒售价360元,利润率为20%,一个乙礼盒和一个丙礼盒成本之和为610元,且一个A茶具的利润率为25%,则一个丁礼盒的利润率为_____.【答案】18.75%【分析】设A、B、C三种茶具的成本为x,y,z,利润分别为a,b,c,则售价分别为a +x,b + y,c+z,由一个甲礼盒售价360元,可列3( a +x)+2( b + y )+2( c +=20%,整理得3c+2y+2z=300,由个z )=360,由一个甲礼盒的利润率为20%,得3a+2b+2c3x+2y+2z乙礼盒和一个丙礼盒成本之和为610元,可得2x+3y+4z+2+2y+z=610,得:x=40,整理得4b+4c=60,再将一个丁礼盒的润率表示为3a+4b+4c×100%,整理可得答案.3x+4y+4z【详解】解:设A、B、C三种茶具的成本为x,y,z,利润分别为a,b,c,则售价分别为a +x,b + y,c+z,∵甲礼盒装有A茶具3个,B茶具2个,C茶具2个,一个甲礼盒售价360元,∴3( a +x)+2(b + y )+2( c + z )=360,即3a+2b+2c+3x+2y+2z=360①,∵一个甲礼盒的利润率为20%,=20%,∴3a+2b+2c3x+2y+2z即3a+2b+2c=0.6x+0.4y+0.4z②,将②代入①可得:0.6x+0.4y+0.4z+3x+2y+2z=360,即3x+2y+2z=300③,∵一个乙礼盒和一个丙礼盒成本之和为610元,乙礼盒装有A茶具2个,B茶具3个,C 茶具4个,丙礼盒装有A茶具2个,B茶具2个,C茶具1个,∴2x+3y+4z+2x+2y+z=610,即4x+5y+5z=610④,由③×5-④×2可得:5(3x+2y+2z)-2(4x+5y+5z)=5×300-2×610,解得:x=40,∵一个A茶具的利润率为25%,=25%∴ax∴a =10,将a =10和x=40代入②可得:3×10+2b+2c=0.6×40+0.4y+0.4z,即4b+4c=0.8y+0.8z-12⑤,将x=40代入③可得:3×40+2y+2z=300,即y +z=90⑥,将⑥代入⑤可得:4b+4c=0.8y+0.8z-12=0.8×90-12=60,即4b+4c=60⑦,∴一个丁礼盒的润率为:3a+4b+4c 3x+4y+4z ×100%=3×10+603×40+4×90×100%=90480×100%=18.75%,故答案为:18.75%.【点睛】本题考查了三元一次方程组的应用,解题的关键是根据题干中的等量关系列出算式,化简,将所设未知量转化为已知量.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(二)三元一次方程组
解:设流氓兔x岁,加菲猫y岁,米老鼠z岁, x+y+z=26, ① x-y=1, ② 2x+z-y=18. ③ 组合在 一起
x+y+z=26 ①
x-y=1

2x+z-y=18 ③
这样就构成了 方程组
•三元一次方程组
三元一次方程组如何定义?
x+y+z=26, x-y=1, 特点 2x+z-y=18.
例1 解方程组
x+y+z= 2 ① x-y+z= 0 ② x-z=4. ③
1 . 化“三元”为“二元”
考虑消去哪个未知数(也就是三个未知数要去掉哪一个?)
解法一:消去y
①+②,得
2x+2z=2
④ ③ ④
x z 1
x z 1
x-z = 4
2.
化“二元”为“一元” 。
x+y+z=2, x-y+z=0, x-z=4.
x+y+z=2, x-y+z=0, x-z=4.
① ② ③
解:
2x+2z=2 , 化简,得 x+z=1 ④ x-z=4 ③
①+②,得
5 3 把x , z 代入②,得 2 2 5 3 y ( ) 0 2 2

x+z= 1
③+④,得 2x=5

y=1
5 x 2 所以,原方程组的解是 y 1 3 z 2
含有三个未知数
未知数的项次数都是一次
定 义 含有三个相同的未知数,每个方程中含有
未知数的项的次数都是 1 ,像这样的方程组
叫做三元一次方程组


判断下列方程组是不是三元一次方程组?

x y z 17 3x y 7 z 2
x y 16 ② 3x y 2
三个小动物年龄的和是26岁 流氓兔比加菲猫大1岁
流氓兔年龄的两倍与米老鼠 的年龄之和比加菲猫大18岁
求三 个小 动物 的年 龄?
根据题意,设流氓兔、加菲猫、米老鼠的年龄 分别为x、y、z 可以列出以下三个方程: x+y+z=26,
x-y=1 2x+z-y=18.
(一)三元一次方程
定义
含有三个未知数,并且含有未知数的 项的次数都是1,像这样的整式方程叫 做三元一次方程。
作业
习题8.4:1题,2题

2.
① ④ x y 1 化“二元”为“一元”
原方程组中 有哪个方程 还没有用到 ?
例2 解方程组 解:
③ - ②,得
x y 3 y z 5 z x 4
x y 1
① ② ③ ④
① + ④,得
2x 2
∴ x 1
把 x=1 代入方程①、③,分别得
y 2, z 3
x 1 所以,原方程组的解是 y 2 z 3
可不可以只用方程组中的两个就求解出方程的解? x y 3 ① 例2 解方程组 y z 5 ②
z x 4
③ ④ ① ④
1 .
解 :
化“三元”为“二元”
③-②,得
x y 1
4-y=0

x+y+z=2, x-y+z=0, x-z=4.
① ② ③
注:如果三个方程中有一个方程是二元一次 方程(如例1中的③),则可以先通过对另 外两个方程组进行消元,消元时就消去三个 元中这个二元一次方程(如例1中的③)中 缺少的那个元。缺某元,消某元。
在三元化二元时,对于具体方法的选取应 该注意选择最恰当、最简便的方法。
x
5 把 x= 2
5 2
代入③,得
5 z4 2
3 z 2
课堂练习
x+y+z=12, x+2y+5z=22, x=4y.
例2 解方程组
x y 3 y z 5 z x 4
① ② ③
1 .
化“三元”为“二元”
x y 1
x y 3
解:③-②,得

×
方程个数不一定是三个, 方程中含有未知 但至少要有两个。 数的个数是三个


x+y =20


x 2 y z 3 3 x y z 2 2 xy y z 11
y+z=19
x+z=21
×
方程中含有未知数的 项的次数都是一次

方程组中一共有 三个未知数
x y 3
x y 1
原方程组中有 哪个方程还没 有用到?
yz 5 x y 1
可不可以不用①?
② ④
zx4 ③

x y 1
在消去一个未知数得出比原方程组少一个未知数的 二元一次方程组的过程中,原方程组的每一个方程 一般都至少要用到一次.
x y 3 y z 5 z x 4
3x y 2 1、解二元一次方程组 的方法有哪些? 2 x y 3
代入消元法
加减消元法
2、解二元一次方程组的基本思路是什么?
消元
消 元
二元一次方程组
一元一次方程
怎样解三元一次方程组?ຫໍສະໝຸດ 三元一次方程组 消元 总 结 二元一次方程组
消元
一元一次方程
三元一次方程组求法步骤:
1.化“三元”为“二(也就是消去一个未知数) 元” 2.化“二元”为“一元”
① ② ③
例2 也可以这样解:
①+②+③,得 即, ⑤-①,得 ⑤-②,得
2( x y z) 12
④ ⑤
x yz 6
z3
x 1
⑤-③,得
y2
所以,原方程组的解是
x 1 y 2 z 3
小结
(一)三元一次方程组的概念是什么? (二)解三元一次方程组的基本思路是什么? (三)在三元化二元时,对于具体方法的选取 应该注意什么?
① ② ③
解法二:消去x
由③得,x=z+4 ④ 把④代入①、②得, (z+4)+y+z=2 ⑤ (z+4)-y+z=0 ⑥ 化简得, 2z+y=-2 2z-y =-4 ⑦ ⑧
x+y+z=2, x-y+z=0, x-z=4.
① ② ③
解法三:消去z
由③得,z=x-4 ④
把④代入①、②得 x+y+(x-4)=2,⑤ x-y+(x-4)=0,⑥ 化简得, 2x+y=6 ⑦
相关文档
最新文档