平面向量的坐标及运算教案
6.2.3平面向量的坐标及其运算-人教B版高中数学必修第二册(2019版)教案
6.2.3平面向量的坐标及其运算-人教B版高中数学必修第二册(2019版)教案教学目标1.理解平面向量的概念,掌握向量坐标表示方法和向量的基本运算法则;2.理解向量的加、减、数乘和数量积的几何意义,并能熟练运用;3.能够解决平面向量的线性方程组问题;4.能够灵活运用平面向量的计算方法,解决与平面向量有关的几何问题。
教学重难点重点:向量坐标表示方法,向量的基本运算法则。
难点:向量的线性方程组问题。
教学过程1. 引入教学向学生展示两个不同的向量,向学生询问是否能知道这两个向量的大小和方向,引发学生对向量的疑惑和兴趣。
2. 向量的概念向学生讲解向量的概念,引导学生感受向量的大小、方向和作用,并向学生展示向量在几何图形中的应用。
3. 向量的表示方法引导学生进行向量的初、末点表示法,并着重讲解向量的坐标表示方法及坐标表示的唯一性。
4. 向量的基本运算法则教师示范简单的向量加、减、数乘和数量积的计算方法,引导学生进行独立练习,并针对学生经常出错的运算法则进行重点讲解。
5. 向量的线性方程组问题引导学生掌握向量的线性方程组的数学意义和解的方法,让学生通过实际问题进行解题实践,达到掌握的目的。
6. 平面向量的应用针对实际问题让学生进行平面向量的运用,并引导学生感受平面向量在几何问题中的应用。
教学方法采用讲述法、演示法、示范法、独立练习法、引导式教学法等多种教学方法,以培养学生的学习兴趣和独立思考能力。
教学评价通过课堂练习和教学评测,进行学生认识形式的反馈。
同时,教师也需要认真备课,制定细致的教学计划和教学目的,做到全方位培养学生对向量概念和运算方法的掌握。
教学反思本节课中,教师采用多种教学方法,可以让学生在学习中感受到探究的乐趣,并能够熟练掌握向量的坐标表示方法和运算法则。
本节课教学评价要求学生进行独立思考和探究,同时也要注意反馈学生的实际认知情况,做到因材施教。
教学设计1:5.2 平面向量的基本定理及向量的坐标表示
5.2平面向量的基本定理及坐标表示1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模:设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21. (2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB =(x 2-x 1,y 2-y 1),|AB |=x 2-x 12+y 2-y 12.3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ∥b ⇔x 1y 2-x 2y 1=0.1.若a 、b 为非零向量,当a ∥b 时,a ,b 的夹角为0°或180°,求解时容易忽视其中一种情形而导致出错;2.要区分点的坐标与向量坐标的不同,尽管在形式上它们完全一样,但意义完全不同,向量坐标中既有方向也有大小的信息.3.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,应表示为x 1y 2-x 2y 1=0. [试一试]1.(2014·南京、盐城一模)若向量a =(2,3),b =(x ,-6),且a ∥b ,则实数x =________. 解析:由a ∥b 得2×(-6)=3x ,解得x =-4. 答案:-42.已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值是________. 解析:∵u =(1+2x,4),v =(2-x,3),u ∥v ,∴8-4x =3+6x ,∴x =12.答案:12用基向量表示所求向量时,注意方程思想的运用. [练一练]设e 1、e 2是平面内一组基向量,且a =e 1+2e 2,b =-e 1+e 2,则向量e 1+e 2可以表示为另一组基向量a ,b 的线性组合,即e 1+e 2=________a +________b . 解析:由题意,设e 1+e 2=m a +n b .因为a =e 1+2e 2,b =-e 1+e 2, 所以e 1+e 2=m (e 1+2e 2)+n (-e 1+e 2)=(m -n )e 1+(2m +n )e 2.由平面向量基本定理,得⎩⎪⎨⎪⎧m -n =1,2m +n =1,所以⎩⎨⎧m =23,n =-13.答案:23 -13考点一平面向量的坐标运算1.(2014·苏中三市、宿迁调研(一))在平面直角坐标系中,已知向量AB =(2,1),AC =(3,5),则向量BC 的坐标为________. 解析:BC =AC -AB =(1,4). 答案:(1,4)2.(2013·北京高考)向量a ,b ,c 在正方形网格中的位置如下图所示.若c =λa +μb (λ,μ∈R ),则λμ=________.解析:设i ,j 分别为水平方向和竖直方向上的正向单位向量,则a =-i +j ,b =6i +2j ,c =-i -3j ,所以-i -3j =λ(-i +j )+μ(6i +2j ),根据平面向量基本定理得λ=-2,μ=-12,所以λμ=4.答案:43.已知A (-2,4),B (3,-1),C (-3,-4).设AB =a ,BC =b ,CA =c . (1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n .解:由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧ -6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.[备课札记] [类题通法]1.向量的坐标运算实现了向量运算代数化,将数与形结合起来,从而可使几何问题转化为数量运算.2.两个向量相等当且仅当它们的坐标对应相同.此时注意方程(组)思想的应用.平面向量基本定理及其应用[典例] 如下图,在梯形ABCD 中,AD ∥BC ,且AD =13BC ,E ,F 分别为线段AD 与BC 的中点.设BA =a ,BC =b ,试用a ,b 为基底表示向量EF ,DF ,CD .[解析] EF =EA +AB +BF =-16b -a +12b =13b -a ,DF =DE +EF =-16b +⎝⎛⎭⎫13b -a =16b -a , CD =CF +FD =-12b -⎝⎛⎭⎫16b -a =a -23b . [备课札记] [类题通法]用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理. [针对训练](2014·济南调研)如下图,在△ABC 中,AN =13NC ,P 是BN 上的一点,若AP =m AB +211AC ,则实数m 的值为________.解析:因为AP =AB +BP =AB +k BN =AB +k (AN -AB )=AB +k (14AC -AB )=(1-k ) AB +k4AC ,且AP =m AB +211AC ,所以1-k =m ,k 4=211,解得k =811,m =311. 答案:311考点三平面向量共线的坐标表示[典例] 平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1). (1)求满足a =m b +n c 的实数m ,n ; (2)若(a +k c )∥(2b -a ),求实数k ;[解] (1)由题意得(3,2)=m (-1,2)+n (4,1),所以⎩⎪⎨⎪⎧-m +4n =3,2m +n =2,得⎩⎨⎧m =59,n =89.(2)a +k c =(3+4k,2+k ),2b -a =(-5,2), 由题意得2×(3+4k )-(-5)×(2+k )=0.∴k =-1613.[备课札记]在本例条件下,若d 满足(d -c )∥(a +b ),且|d -c |=5,求d . 解:设d =(x ,y ),d -c =(x -4,y -1),a +b =(2,4),由题意得⎩⎪⎨⎪⎧ 4x -4-2y -1=0,x -42+y -12=5,得⎩⎪⎨⎪⎧ x =3,y =-1或⎩⎪⎨⎪⎧x =5,y =3.∴d =(3,-1)或(5,3). [类题通法]1.向量共线的两种表示形式设a =(x 1,y 1),b =(x 2,y 2),①a ∥b ⇒a =λb (b ≠0);②a ∥b ⇔x 1y 2-x 2y 1=0,至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②. 2.两向量共线的充要条件的作用判断两向量是否共线(平行),可解决三点共线的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值. [针对训练]已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a ,b 的关系式; (2)若AC =2AB ,求点C 的坐标.解:(1)由已知得AB =(2,-2),AC =(a -1,b -1),∵A ,B ,C 三点共线,∴AB ∥AC .∴2(b -1)+2(a -1)=0,即a +b =2. (2)∵AC=2AB ,∴(a -1,b -1)=2(2,-2).∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,解得⎩⎪⎨⎪⎧a =5,b =-3.∴点C 的坐标为(5,-3).[课堂练通考点]1.(2013·南京二模)若平面向量a ,b 满足|a +b |=1,a +b 平行于y 轴,a =(2,-1),则b =________.解析:设b =(x ,y ),则a +b =(2+x ,y -1),由条件知2+x =0,|y -1|=1,解得x =-2,y =0或x =-2,y =2,故b =(-2,0)或(-2,2). 答案:(-2,2)或(-2,0)2.已知向量a =(2,3),b =(-1,2),若(m a +n b )∥(a -2b ),则mn 等于________.解析:由题意得m a +n b =(2m -n,3m +2n )a -2b =(4,-1),由于(m a +n b )∥(a -2b ),可得-(2m -n )-4(3m +2n )=0,可得m n =-12.答案:-123.(2014·苏北四市质检)已知向量a =(sin θ,cos θ),b =(3,-4),若a ∥b ,则tan 2θ=________.解析:由题意,得-4sin θ-3cos θ=0,所以tan θ=-34,所以tan 2θ=2×⎝⎛⎭⎫-341-⎝⎛⎭⎫-342=-247.答案:-2474.已知点A (2,1),B (0,2),C (-2,1),O (0,0),给出下面的结论: ①直线OC 与直线BA 平行;②AB +BC =CA ; ③OA +OC =OB ;④AC =OB -2OA . 其中正确结论的个数是________.解析:∵由题意得k OC =1-2=-12,k BA =2-10-2=-12,∴OC ∥BA ,①正确;∵AB +BC =AC ,∴②错误; ∵OA +OC =(0,2)=OB ,∴③正确;∵OB -2OA =(-4,0),AC =(-4,0),∴④正确. 答案:35.已知两点A (1,0),B (1,1),O 为坐标原点,点C 在第二象限,且∠AOC =135°,设OC =-OA +λOB (λ∈R ),则λ的值为________.解析:由∠AOC =135°知,点C 在射线y =-x (x <0)上,设点C 的坐标为(a ,-a ),a <0,则有(a ,-a )=(-1+λ,λ),得a =-1+λ,-a =λ,消掉a 得λ=12.答案:126.在△ABC 中,M 为边BC 上任意一点,N 为AM 中点,AN =λAB +μAC ,则λ+μ的值为________.解析:∵M 为边BC 上任意一点,∴可设AM =x AB +y AC (x +y =1). ∵N 为AM 中点,∴AN =12AM =12x AB +12y AC =λAB +μAC .∴λ+μ=12(x +y )=12.答案:12。
向量的坐标表示及其运算教案
向量的坐标表示及其运算教案一、教学目标:1. 理解向量的概念,掌握向量的坐标表示方法。
2. 学会向量的线性运算,包括加法、减法、数乘和点乘。
3. 能够运用向量的坐标表示和运算解决实际问题。
二、教学内容:1. 向量的概念:向量是有大小和方向的量。
2. 向量的坐标表示:在二维和三维空间中,向量可以用坐标表示,如\(\vec{a} = (a_x, a_y)\) 和\(\vec{b} = (b_x, b_y, b_z)\)。
3. 向量的加法:两个向量\(\vec{a}\) 和\(\vec{b}\) 的和向量为\(\vec{a} + \vec{b} = (a_x + b_x, a_y + b_y)\) 和\(\vec{a} + \vec{b} = (a_x + b_x, a_y + b_y, a_z + b_z)\)。
4. 向量的减法:两个向量\(\vec{a}\) 和\(\vec{b}\) 的差向量为\(\vec{a} \vec{b} = (a_x b_x, a_y b_y)\) 和\(\vec{a} \vec{b} = (a_x b_x, a_y b_y, a_z b_z)\)。
5. 向量的数乘:一个标量\(k\) 乘以向量\(\vec{a}\) 得到\(k\vec{a} = (ka_x, ka_y)\) 和\(k\vec{a} = (ka_x, ka_y, ka_z)\)。
6. 向量的点乘:两个向量\(\vec{a}\) 和\(\vec{b}\) 的点乘为\(a_x b_x + a_y b_y\) 和\(a_x b_x + a_y b_y + a_z b_z\)。
三、教学方法:1. 采用讲授法,讲解向量的概念、坐标表示和运算方法。
2. 利用多媒体演示向量的加法、减法、数乘和点乘运算。
3. 引导学生通过小组讨论和实例分析,掌握向量的坐标表示和运算。
4. 利用练习题巩固所学知识,提高学生的实际运用能力。
人教B版必修第二册6.2.3第1课时平面向量的坐标及其运算、两点间的距离公式与中点坐标公式学案
6.2.3平面向量的坐标及其运算第1课时平面向量的坐标及其运算、两点间的距离公式与中点坐标公式(教师独具内容)课程标准:1.借助平面直角坐标系,掌握平面向量的正交分解及坐标表示.2.会用坐标表示平面向量的加、减运算与数乘运算.教学重点:1.了解正交基底,掌握向量的正交分解及坐标表示.2.掌握两个向量和、差及数乘向量的坐标运算法则.3.掌握平面直角坐标系内两点之间的距离公式与中点坐标公式.教学难点:平面向量坐标运算的应用.知识点一平面向量的坐标(1)向量的垂直平面上的两个非零向量a与b,如果它们所在的直线互相垂直,我们就称向量a与b□01垂直,记作□02a⊥b.(2)正交基底:如果平面向量的基底{e1,e2}中,e1⊥e2,就称这组基底为□03正交基底.(3)正交分解:在正交基底下向量的分解称为向量的□04正交分解.(4)坐标的定义①给定平面内两个相互垂直的单位向量e1,e2,对于平面内的向量a,如果a=x e1+y e2,则称□05(x,y)为向量a的坐标,记作□06a=(x,y).②如图,在平面上指定一点O作为原点,以e1的方向为x轴的正方向,以e2的方向为y轴的正方向,以e1(或e2)的模为单位长度建立平面直角坐标系,对于平面上任意一个向量a,如果我们把它的始点平移到原点O,那么a的□07终点对应的坐标就是向量a的坐标.(5)向量的坐标表示若OA →=x e 1+y e 2=(x ,y ),则□08OA →的坐标为(x ,y )⇔□09点A 的坐标为(x ,y ).知识点二 向量的运算与坐标的关系 (1)向量坐标的运算已知平面上的两个向量a ,b ,满足a =(x 1,y 1),b =(x 2,y 2).①a =b ⇔□01x 1=x 2且y 1=y 2.即平面上两个向量相等的充要条件是□02它们的坐标对应相等.②a +b =□03(x 1+x 2,y 1+y 2). ③u a +v b =□04(ux 1+v x 2,uy 1+v y 2). ④u a -v b =□05(ux 1-v x 2,uy 1-v y 2). (2)向量的模向量a =(x ,y ),则|a |=□06x 2+y 2.知识点三 两点之间的距离公式与中点坐标公式 设A (x 1,y 1),B (x 2,y 2)为平面直角坐标系中的两点. (1)两点之间的距离公式 AB =|AB →|=□01 (x 2-x 1)2+(y 2-y 1)2.(2)中点坐标公式设线段AB 的中点为M (x ,y ),则x =□02x 1+x 22,y =□03y 1+y 22.1.求平面上向量坐标的三种方法 (1)将向量用单位向量e 1,e 2表示出来;(2)将向量的始点平移到原点,读出终点的坐标; (3)用向量终点的坐标减去始点的坐标. 2.向量的坐标与点的坐标的区别(1)当且仅当向量的始点为坐标原点时,向量坐标与终点坐标相同. (2)(x ,y )在直角坐标系中有双重含义,既可以表示一个点,也可以表示一个向量.为了区分,我们通常说点(x ,y ),向量(x ,y ).(3)向量坐标前带“=”而点的坐标前不带. 注意:两个相等向量的始点和终点可以不同.3.向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关.若a =(a 1,a 2),则将a 任意平移后其坐标仍为(a 1,a 2).4.通过平面直角坐标系,可以将平面内任一向量用一个有序实数对来表示;反过来,任一有序实数对也表示一个向量.也就是说,一个平面向量就是一个有序实数对.这样就可以把许多几何问题代数化.1.判一判(正确的打“√”,错误的打“×”)(1)把一个向量分解成两个互相垂直的基向量,叫做向量的正交分解.( ) (2)AB→=(-2,-1)即表示B (-2,-1),A (0,0).( ) (3)两个相等向量的始点和终点相同.( ) 答案 (1)√ (2)× (3)×2.做一做(请把正确的答案写在横线上)(1)已知AB→=(x ,y ),B 的坐标是(-2,1),那么OA →的坐标为________.(2)在平面直角坐标系内,已知i ,j 分别是x 轴、y 轴正方向上的单位向量,若a =i -2j ,则向量用坐标表示为a =________.(3)若点A (3,5),B (2,1),则向量AB→的坐标为________.(4)若a =(3,2),b =(0,-1),则2b -a 的坐标是________. 答案 (1)(-2-x,1-y ) (2)(1,-2) (3)(-1,-4) (4)(-3,-4)题型一 平面向量的坐标表示例1 已知向量e 1=(1,0),e 2=(0,1),对坐标平面内的任一向量a ,给出下列四个结论:①存在唯一的一对实数x ,y ,使得a =(x ,y );②若x 1,x 2,y 1,y 2∈R ,a =(x 1,y 1)≠(x 2,y 2),则x 1≠x 2,且y 1≠y 2; ③若x ,y ∈R ,a =(x ,y ),且a ≠0,则a 的始点是原点O ; ④若x ,y ∈R ,a ≠0,且a 的终点坐标是(x ,y ),则a =(x ,y ). 其中正确结论的个数是( ) A .1 B .2 C .3D .4[解析] 由平面向量基本定理,知①正确;例如,a =(1,0)≠(1,3),但1=1,故②错误;因为向量可以平移,所以a =(x ,y )与a 的始点是不是原点无关,故③错误;当a 的终点坐标是(x ,y )时,a =(x ,y )是以a 的起点是原点为前提的,故④错误.[答案] A向量的坐标与其终点的坐标不一定相同.由于向量的起点可以任意选取,如果向量是以坐标原点为始点的,则向量的坐标就与其终点的坐标相同;如果向量不以坐标原点为始点,则向量的坐标就与其终点的坐标不同.如图,分别用单位正交基底{i ,j }表示向量a ,b ,c ,d ,并求出它们的坐标.解 由图可知a =AA 1→+AA 2→=2i +3j ,∴a =(2,3). 同理可得b =-2i +3j =(-2,3), c =-2i -3j =(-2,-3), d =2i -3j =(2,-3).题型二 平面向量的坐标运算例2 设向量a ,b 的坐标分别是(-1,2),(3,-5),求下列各向量的坐标. (1)a +b ;(2)a -b ;(3)3a ;(4)2a +5b .[解] (1)a +b =(-1,2)+(3,-5)=(2,-3). (2)a -b =(-1,2)-(3,-5)=(-4,7). (3)3a =3(-1,2)=(-3,6).(4)2a +5b =2(-1,2)+5(3,-5)=(-2,4)+(15,-25)=(13,-21).平面向量坐标的线性运算(1)若已知向量的坐标,则直接应用两个向量和、差及数乘的运算法则进行. (2)向量坐标的线性运算可完全类比数的运算进行.(1)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则|c |=________; (2)已知向量a =(x 2-3x -4,x +3),b =(0,2),若a =b ,求x 的值. 答案 (1)1853 (2)见解析解析 (1)由已知得3c =-a +2b =(-5,2)+(-8,-6)=(-13,-4),所以c =⎝ ⎛⎭⎪⎫-133,-43, ∴|c |=⎝ ⎛⎭⎪⎫-1332+⎝ ⎛⎭⎪⎫-432=1853. (2)根据“两向量相等,则其对应坐标相等”列方程组求解.∵a =b ,∴⎩⎪⎨⎪⎧x 2-3x -4=0,x +3=2,解得x =-1.题型三 两点间的距离公式与中点坐标公式例3 已知平面内的三个点A (1,-2),B (7,0),C (-5,6). (1)求AB→+12AC →的坐标;(2)求AB +AC 的长.[解] (1)∵A (1,-2),B (7,0),C (-5,6),∴AB→=(7-1,0+2)=(6,2),AC →=(-5-1,6+2)=(-6,8).∴12AC →=(-3,4),∴AB →+12AC →=(6,2)+(-3,4)=(3,6). (2)由两点间的距离公式得, AB =(7-1)2+(0+2)2=36+4=210. AC =(-5-1)2+(6+2)2=36+64=10.∴AB +AC =10+210. 故AB +AC 的长为10+210.(1)在求一个向量的坐标时,可以先求出这个向量的始点坐标和终点坐标,再用终点坐标减去始点坐标即可得到该向量的坐标.(2)求线段的长度时,注意利用两点间的距离公式求解.已知点A (0,1),B (3,2),向量AC →=(-4,-3),点M 为BC 的中点.(1)求点M 的坐标; (2)求BC +2BM 的长.解 (1)设C (x ,y ),则AC →=(x -0,y -1)=(x ,y -1)=(-4,-3),即⎩⎪⎨⎪⎧x =-4,y -1=-3,解得⎩⎪⎨⎪⎧x =-4,y =-2,所以C (-4,-2),由中点坐标公式知,M ⎝ ⎛⎭⎪⎫3-42,2-22, 即M ⎝ ⎛⎭⎪⎫-12,0.(2)由两点间的距离公式,可知 BC =(-4-3)2+(-2-2)2=49+16=65. BM =⎝ ⎛⎭⎪⎫-12-32+(0-2)2=494+4=652.∴BC +2BM =65+65=265. ∴BC +2BM 的长为265.题型四 平面向量坐标运算的应用例4 已知平面上三个点的坐标为A (3,7),B (4,6),C (1,-2),求点D 的坐标,使得这四个点为构成平行四边形的四个顶点.[解] 设点D 的坐标为(x ,y ),(1)当平行四边形为ABCD 时,AB →=DC →,∴(4,6)-(3,7)=(1,-2)-(x ,y ),∴⎩⎪⎨⎪⎧ 1-x =1,-2-y =-1,∴⎩⎪⎨⎪⎧x =0,y =-1.∴D (0,-1); (2)当平行四边形为ABDC 时,同(1)可得D (2,-3); (3)当平行四边形为ADBC 时,同(1)可得D (6,15). 综上所述,点D 可能为(0,-1)或(2,-3)或(6,15).1.进行向量坐标运算的常见方法(1)向量的坐标运算主要是利用向量的加法、减法、数乘运算法则进行,若已知有向线段两端点的坐标,则应先求出向量的坐标,然后进行向量的坐标运算,另外,解题过程中要注意方程思想的运用.(2)利用向量的坐标运算解题,主要是根据相等向量的坐标对应相等这一原则,通过列方程(组)进行求解.(3)利用坐标运算求向量的基底表示,一般是先求出基底向量和被表示向量的坐标,再利用待定系数法求出相应系数.2.利用向量的坐标运算求参数的思路已知含参数的向量等式,依据某点的位置探求参数的问题,其本质是向量坐标运算的运用,用已知点的坐标和参数表示出该点的坐标,利用该点的位置确定其横、纵坐标应满足的条件,建立关于参数的方程(组)或不等式(组)进行求解.在平面直角坐标系xOy 中,点A (-1,2),B (4,3),C (3,6),AP →=AB →+λAC →(λ∈R ).(1)试求实数λ为何值时,点P 在第二、四象限的角平分线上; (2)试求实数λ为何值时,点P 在第三象限内.解 设P (x ,y ),因为AP→=AB →+λAC →,所以OP →=O A →+AP →=O A →+AB →+λAC →=OB →+λAC →=(4,3)+λ(4,4)=(4+4λ,3+4λ).(1)因为点P 在第二、四象限的角平分线上,所以x =-y ,所以4+4λ=-(3+4λ),解得λ=-78,所以当λ=-78时,点P 在第二、四象限的角平分线上. (2)因为点P 在第三象限内,所以⎩⎪⎨⎪⎧ x <0,y <0,所以⎩⎪⎨⎪⎧4+4λ<0,3+4λ<0,解得λ<-1.所以当λ<-1时,点P 在第三象限内.1.已知MA →=(-2,4),MB →=(2,6),则12AB →=( ) A .(0,5) B .(0,1) C .(2,5) D .(2,1)答案 D解析 ∵AB →=MB →-MA →=(2,6)-(-2,4)=(4,2),∴12AB →=(2,1).2.若向量a =(x -2,3)与向量b =(1,y +2)相等,则x =________,y =________. 答案 3 1解析 ⎩⎪⎨⎪⎧ x -2=1,3=y +2,解得⎩⎪⎨⎪⎧x =3,y =1.3.如下图,向量a ,b ,c 的坐标分别是________、________、________.答案 (-4,0) (0,6) (-2,-5)解析 解法一:将各向量向基底所在直线分解. a =-4i +0j ,∴a =(-4,0). b =0i +6j ,∴b =(0,6), c =-2i -5j ,∴c =(-2,-5).解法二:分别将向量a ,b ,c 的始点平移到原点,则终点坐标即为向量的坐标,得a =(-4,0),b =(0,6),c =(-2,-5).解法三:根据一个向量的坐标等于向量终点的坐标减去始点的坐标,知a =(-6,2)-(-2,2)=(-4,0);b =(2,6)-(2,0)=(0,6);c =(-3,-6)-(-1,-1)=(-2,-5).4.设AB →=(-2,-5),B 点坐标为(-1,3),则A 点坐标为________. 答案 (1,8)解析 设A (x ,y ),则⎩⎪⎨⎪⎧-1-x =-23-y =-5,解得x =1,y =8,即A (1,8).5.已知a +b =(2,-8),a -b =(-8,16),求a 和b . 解 解法一:设a =(m ,n ),b =(p ,q ),则有⎩⎨⎧m +p =2,n +q =-8,m -p =-8,n -q =16,解得⎩⎨⎧m =-3,n =4,p =5,q =-12.所以a =(-3,4),b =(5,-12). 解法二:a =12[(a +b )+(a -b )]=(-3,4),1b=2[(a+b)-(a-b)]=(5,-12).。
2024年送教上门教案(
2024年送教上门教案 (一、教学内容本节课选自《新编高中数学》第五章“平面向量的坐标运算”,详细内容为5.3节“向量的线性运算及其几何意义”。
通过本节内容的学习,使学生掌握向量的坐标表示,理解向量的线性运算,并能运用坐标运算解决实际问题。
二、教学目标1. 知识与技能:掌握向量的坐标表示,学会向量的线性运算,并能运用坐标运算解决实际问题。
2. 过程与方法:通过实践情景引入,培养学生运用数学知识解决实际问题的能力,提高学生的逻辑思维能力。
3. 情感态度价值观:激发学生学习数学的兴趣,培养学生合作交流的意识,增强学生的几何直观。
三、教学难点与重点教学难点:向量的线性运算及其几何意义。
教学重点:向量的坐标表示及其运算。
四、教具与学具准备教具:多媒体课件、黑板、粉笔。
学具:直尺、圆规、量角器、计算器。
五、教学过程1. 实践情景引入利用多媒体展示一组实际情景,如力的合成、速度的叠加等,引导学生从实际问题中抽象出向量的线性运算。
2. 例题讲解讲解例题1:已知向量a=(3,4),求向量a的坐标表示。
讲解例题2:已知向量a=(3,4)和向量b=(1,2),求向量a+b、向量ab的坐标。
3. 随堂练习练习1:已知向量a=(2,3)和向量b=(1,4),求向量a+b、向量ab的坐标。
练习2:已知向量a=(x,y),向量b=(1,2),向量c=(3,1),且向量a+b=向量c,求向量a的坐标。
5. 课堂小结对本节课所学内容进行小结,强调重点,指出难点。
六、板书设计1. 黑板左侧:向量的坐标表示、线性运算公式。
2. 黑板右侧:例题解答、随堂练习答案。
七、作业设计1. 作业题目作业1:已知向量a=(4,3)和向量b=(2,5),求向量a+b、向量ab的坐标。
作业2:已知向量a=(x,y),向量b=(1,1),向量c=(3,2),且向量a+b=向量c,求向量a的坐标。
答案:作业1:向量a+b=(6,2),向量ab=(2,8)。
平面向量的坐标运算(说课稿)
平面向量的坐标运算(说课稿)北师大附中荣红莉一、【教材的地位和作用】本节内容在教材中有着承上启下的作用,它是在学生对平面向量的基本定理有了充分的认识和正确的应用后产生的,同时也为下一节定比分点坐标公式和中点坐标公式的推导奠定了基础;向量用坐标表示后,对立体几何教材的改革也有着深远的意义,可使空间结构系统地代数化,把空间形式的研究从“定性”推到“定量”的深度。
引入坐标运算之后使学生形成了完整的知识体系(向量的几何表示和向量的坐标表示),为用“数”的运算解决“形”的问题搭起了桥梁。
二、【学习目标】根据教学大纲的要求以及学生的实际知识水平,以期达到以下的目的:1.知识方面:理解平面向量的坐标表示的意义;能熟练地运用坐标形式进行运算。
2.能力方面:数形结合的思想和转化的思想三、【教学重点和难点】理解平面向量坐标化的意义是教学的难点;平面向量的坐标运算则是重点。
我主要是采用启发引导式,并辅助适量的题组练习来帮助学生突破难点,强化重点。
四、【教法和学法】本节课尝试一种全新的教学模式,以建构主义理论为指导,教师在本节课中起的根本作用就是“为学生的学习创造一种良好的学习环境”,结合本节课是新授课的特点,我主要从以下几个方面做准备:(1)提供新知识产生的铺垫知识(2)模拟新知识产生过程中的细节和状态,启发引导学生主动建构(3)创设新知识思维发展的前景(4)通过“学习论坛时间”组织学生的合作学习、讨论学习、交流学习(5)通过“老师信箱时间”指导解答学生的疑难问题(6)通过“深化拓展区”培养学生的创新意识和发现能力。
整个过程学生始终处于交互式的学习环境中,让学生用自己的活动对已有的数学知识建构起自己的理解;让学生有了亲身参与的可能并且这种主动参与就为学生的主动性、积极性的发挥创造了很好的条件,真正实现了“学生是学习的主体”这一理念。
五、【学习过程】1.提供新知识产生的理论基础课堂教学论认为:要使教学过程最优化,首先要把已学的材料与学生已有的信息联系起来,使学生在学习新的材料时有适当的知识冗余。
高中数学北师大版2019必修第二册教案平面向量及运算的坐标表示
平面向量的坐标及其运算【教学过程】一、基础铺垫1.平面向量的坐标平面上的两个非零向量a与b,如果它们所在的直线互相垂直,我们就称向量a与b垂直,记作a⊥b.规定零向量与任意向量都垂直.如果平面向量的基底{e1,e2}中,e1⊥e2,就称这组基底为正交基底;在正交基底下向量的分解称为向量的正交分解.一般地,给定平面内两个相互垂直的单位向量e1,e2,对于平面内的向量a,如果a=x e1+y e2,则称(x,y)为向量a的坐标,记作a=(x,y).方便起见,以后谈到平面直角坐标系时,默认已经指定了与x轴及y轴的正方向同向的两→对应的个单位向量.此时,如果平面上一点A的坐标为(x,y)(通常记为A(x,y)),那么向量OA→=(x,y);反之结论也成立.坐标也为(x,y),即OA2.平面上向量的运算与坐标的关系设平面上两个向量a,b满足a=(x1,y1),b=(x2,y2),则a=b⇔x1=x2__且y1=y2;a+b=(x1+x2,y1+y2).设u,v是两个实数,那么u a+v b=(ux1+vx2,uy1+vy2),u a-v b=(ux1-vx2,uy1-vy2).如果向量a=(x,y),则|a|■名师点拨(1)向量的坐标只与起点、终点的相对位置有关,而与它们的具体位置无关.(2)当向量确定以后,向量的坐标就是唯一确定的,因此向量在平移前后,其坐标不变.3.平面直角坐标系内两点之间的向量公式与中点坐标公式设A (x 1,y 1),B (x 2,y 2)为平面直角坐标系中的两点,则AB →=(x 2-x 1,y 2-y 1); 设线段AB 中点为M (x ,y ),则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y 224.向量平行的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 2y 1=x 1y 2.■名师点拨两向量的对应坐标成比例,这种形式较易记忆,而且不易出现搭配错误.二、合作探究1.平面向量的坐标表示【例1】如图,在平面直角坐标系xOy 中,已知OA =4,AB =3,∠AOx =45°,∠OAB =105°,OA→=a ,AB →=b ,四边形OABC 为平行四边形. (1)求向量a ,b 的坐标;(2)求向量BA→的坐标; (3)求点B 的坐标.【解】(1)作AM ⊥x 轴于点M ,则OM =OA ·cos 45°=4×22=22,AM =OA ·sin 45°=4×22=22, 所以A (22,22),故a =(22,22).因为∠AOC =180°-105°=75°,∠AOy =45°,所以∠COy =30°.又OC =AB =3,所以C ⎝ ⎛⎭⎪⎫-32,332, 所以AB →=OC →=⎝ ⎛⎭⎪⎫-32,332, 即b =⎝ ⎛⎭⎪⎫-32,332.(2)BA →=-AB →=⎝ ⎛⎭⎪⎫32,-332. (3)因为OB→=OA →+AB → =(22,22)+⎝ ⎛⎭⎪⎫-32,332 =⎝⎛⎭⎪⎫22-32,22+332. 所以点B 的坐标为(22-32,22+332).【规律方法】平面内求点、向量坐标的常用方法(1)求一个点的坐标:可利用已知条件,先求出该点相对应坐标原点的位置向量的坐标,该坐标就等于相应点的坐标.(2)求一个向量的坐标:首先求出这个向量的始点、终点的坐标,再运用终点坐标减去始点坐标即得该向量的坐标.2.平面向量的坐标运算【例2】(1)已知a +b =(1,3),a -b =(5,7),则a =________,b =________.(2)已知A (-2,4),B (3,-1),C (-3,-4),且CM→=3CA →,CN →=2CB →,求M ,N 及MN →的坐标.【解】(1)由a +b =(1,3),a -b =(5,7),所以2a =(1,3)+(5,7)=(6,10),所以a =(3,5),2b =(1,3)-(5,7)=(-4,-4),所以b =(-2,-2).(2)法一(待定系数法):由A (-2,4),B (3,-1),C (-3,-4),可得CA→=(-2,4)-(-3,-4)=(1,8), CB→=(3,-1)-(-3,-4)=(6,3), 所以CM→=3CA →=3(1,8)=(3,24), CN→=2CB →=2(6,3)=(12,6). 设M (x 1,y 1),N (x 2,y 2),则CM →=(x 1+3,y 1+4)=(3,24),x 1=0,y 1=20;CN →=(x 2+3,y 2+4)=(12,6),x 2=9,y 2=2,所以M (0,20),N (9,2),MN→=(9,2)-(0,20)=(9,-18). 法二(几何意义法):设点O 为坐标原点,则由CM→=3CA →,CN →=2CB →, 可得OM→-OC →=3(OA →-OC →),ON →-OC →=2(OB →-OC →), 从而OM→=3OA →-2OC →,ON →=2OB →-OC →, 所以OM→=3(-2,4)-2(-3,-4)=(0,20), ON→=2(3,-1)-(-3,-4)=(9,2), 即点M (0,20),N (9,2),故MN→=(9,2)-(0,20)=(9,-18). 【规律方法】平面向量坐标的线性运算的方法(1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进行.(2)若已知有向线段两端点的坐标,则可先求出向量的坐标,然后再进行向量的坐标运算.(3)向量的线性坐标运算可完全类比数的运算进行.3.判定直线平行、三点共线【例3】(1)已知A ,B ,C 三点共线,且A (3,-6),B (-5,2),若C 点的横坐标为6,则C 点的纵坐标为()A .-13B .9C .-9D .13(2)已知A (-1,-1),B (1,3),C (1,5),D (2,7),向量AB→与CD →平行吗?直线AB 平行于直线CD 吗?【解】(1)选C .设C (6,y ),因为AB→∥AC →, 又AB→=(-8,8),AC →=(3,y +6), 所以-8×(y +6)-3×8=0,所以y =-9.(2)因为AB→=(1-(-1),3-(-1))=(2,4), CD→=(2-1,7-5)=(1,2). 又2×2-4×1=0,所以AB→∥CD →. 又AC→=(2,6),AB →=(2,4),所以2×4-2×6≠0, 所以A ,B ,C 不共线,所以AB 与CD 不重合,所以AB ∥CD .【规律方法】向量共线的判定方法4.已知平面向量共线求参数【例4】已知a =(1,2),b =(-3,2),当k 为何值时,k a +b 与a -3b 平行?平行时它们是同向还是反向?【解】法一(共线向量定理法):k a +b =k (1,2)+(-3,2)=(k -3,2k +2),a -3b =(1,2)-3(-3,2)=(10,-4),当k a +b 与a -3b 平行时,存在唯一实数λ,使k a +b =λ(a -3b ).由(k -3,2k +2)=λ(10,-4),所以⎩⎨⎧k -3=10λ,2k +2=-4λ,解得k =λ=-13. 当k =-13时,k a +b 与a -3b 平行,这时k a +b =-13a +b =-13(a -3b ),因为λ=-13<0,所以k a +b 与a -3b 反向.法二(坐标法):由题知k a +b =(k -3,2k +2),a -3b =(10,-4),因为k a +b 与a -3b 平行,所以(k -3)×(-4)-10×(2k +2)=0,解得k =-13.此时k a +b =⎝ ⎛⎭⎪⎫-13-3,-23+2=-13(a -3b ), 所以当k =-13时,k a +b 与a -3b 平行,并且反向.【规律方法】已知平面向量共线求参数的思路(1)利用共线向量定理a =λb (b ≠0)列方程组求解.(2)利用向量平行的坐标表达式x 1y 2-x 2y 1=0直接求解.三、课堂练习1.给出下面几种说法:①相等向量的坐标相同;②平面上一个向量对应于平面上唯一的坐标;③一个坐标对应于唯一的一个向量;④平面上一个点与以原点为始点,该点为终点的向量一一对应.其中正确说法的个数是()A .1B .2C .3D .4解析:选C .由向量坐标的定义不难看出一个坐标可对应无数个相等的向量,故③错误.2.下列向量组中,能作为表示它们所在平面内所有向量的一组基底的是()A .a =(0,0),b =(2,3)B .a =(1,-3),b =(2,-6)C .a =(4,6),b =(6,9)D .a =(2,3),b =(-4,6)解析:选D .只有D 选项中两个向量不共线,可以作为表示它们所在平面内所有向量的一组基底,故选D .3.已知两点A (2,-1),B (3,1),则与AB→平行且方向相反的向量a 可以是() A .(1,-2)B .(9,3)C .(-2,4)D .(-4,-8)解析:选D .由题意,得AB→=(1,2),所以a =λAB →=(λ,2λ)(其中λ<0).符合条件的只有D 项,故选D .4.已知平行四边形OABC ,其中O 为坐标原点,若A (2,1),B (1,3),则点C 的坐标为________.解析:设C 的坐标为(x ,y ),则由已知得OC→=AB →,所以(x ,y )=(-1,2). 答案:(-1,2)5.已知点A (1,3),B (4,-1),则与向量AB→同方向的单位向量为________. 解析:AB →=(3,-4),则与AB →同方向的单位向量为AB →|AB →|=15(3,-4)=⎝ ⎛⎭⎪⎫35,-45. 答案:⎝ ⎛⎭⎪⎫35,-45。
教案平面向量的坐标表示
平面向量的坐标表示教学目标:1. 理解平面向量的概念。
2. 学习平面向量的坐标表示方法。
3. 掌握平面向量的线性运算与坐标表示。
教学重点:1. 平面向量的概念。
2. 坐标表示方法。
3. 线性运算与坐标表示。
教学难点:1. 理解平面向量的坐标表示方法。
2. 掌握平面向量的线性运算与坐标表示。
教学准备:1. 教学PPT。
2. 教学素材。
教学过程:一、导入(5分钟)1. 向量概念的复习。
2. 向量表示方法的学习。
二、平面向量的概念(10分钟)1. 引导学生了解平面向量的定义。
2. 通过实例让学生理解平面向量的概念。
三、坐标表示方法(15分钟)1. 讲解平面向量的坐标表示方法。
2. 让学生通过实例掌握坐标表示方法。
四、线性运算与坐标表示(20分钟)1. 讲解平面向量的线性运算。
2. 让学生通过实例掌握线性运算与坐标表示。
五、巩固练习(10分钟)1. 让学生完成一些有关平面向量的练习题。
2. 引导学生运用所学的知识解决实际问题。
教学反思:本节课通过讲解平面向量的概念、坐标表示方法以及线性运算与坐标表示,让学生掌握平面向量的基本知识。
在教学过程中,要注意引导学生通过实例理解概念和方法,提高学生的实际操作能力。
要加强练习,使学生巩固所学知识。
六、平面向量的几何解释(15分钟)1. 向量起点与终点的表示。
2. 通过图形让学生理解向量的几何解释。
七、向量加法与坐标表示(20分钟)1. 讲解平面向量的加法。
2. 让学生通过实例掌握向量加法与坐标表示。
八、向量减法与坐标表示(15分钟)1. 讲解平面向量的减法。
2. 让学生通过实例掌握向量减法与坐标表示。
九、数乘向量与坐标表示(15分钟)1. 讲解平面向量的数乘。
2. 让学生通过实例掌握数乘向量与坐标表示。
十、向量共线定理(20分钟)1. 讲解向量共线定理。
2. 让学生通过实例理解向量共线定理的应用。
十一、向量垂直与坐标表示(20分钟)1. 讲解平面向量垂直的条件。
2. 让学生通过实例掌握向量垂直与坐标表示。
教案平面向量的坐标表示
平面向量的坐标表示教案内容:一、教学目标1. 让学生理解平面向量的概念,掌握平面向量的坐标表示方法。
2. 能够运用坐标表示法解决一些简单的向量问题。
3. 培养学生的空间想象能力和逻辑思维能力。
二、教学重点与难点1. 重点:平面向量的概念,坐标表示方法的推导及应用。
2. 难点:平面向量坐标的运算规律,空间想象能力的培养。
三、教学方法1. 采用讲授法,讲解平面向量的概念及坐标表示方法。
2. 利用图形演示,帮助学生直观理解向量的坐标表示。
3. 运用例题解析,引导学生掌握向量坐标的运算规律。
4. 开展小组讨论,培养学生合作解决问题的能力。
四、教学准备1. 教学课件:平面向量坐标表示的相关图片和动画。
2. 教学素材:多媒体设备,黑板,粉笔。
3. 练习题:针对本节课内容的练习题。
五、教学过程1. 导入:回顾标量与向量的概念,引出平面向量的定义。
2. 讲解:向量的概念,向量的坐标表示方法,向量坐标的运算规律。
3. 演示:利用图形演示向量的坐标表示,让学生直观理解。
4. 例题:解析平面向量坐标的运算规律,引导学生运用坐标表示法解决问题。
5. 练习:学生独立完成练习题,巩固所学知识。
6. 总结:本节课的主要内容,强调平面向量坐标表示的重要性。
7. 作业:布置相关作业,巩固所学知识。
教学反思:在教学过程中,要注意引导学生理解平面向量的概念,并通过图形演示,让学生直观地理解向量的坐标表示。
在讲解向量坐标的运算规律时,要结合实例进行分析,让学生更好地掌握。
要关注学生的学习反馈,及时调整教学方法和节奏,确保学生能够扎实掌握所学知识。
六、教学拓展1. 引导学生思考:坐标表示法在实际问题中的应用,如物理学中的力的分解、几何中的位移等。
2. 讲解向量坐标的转换:如何将空间直角坐标系中的向量转换为平面坐标系中的向量。
七、课堂互动1. 提问:请同学们举例说明平面向量的坐标表示在实际问题中的应用。
2. 小组讨论:如何利用向量坐标表示法解决几何问题。
平面向量的基本定理及坐标表示(教学设计)
2.3 平面向量的基本定理及坐标表示(1)(教学设计)2.3.1平面向量基本定理;2.3.2平面向量的正交分解及坐标表示[教学目标]一、知识与能力:1. 了解平面向量基本定理。
2.掌握平面向量基本定理,理解平面向量的正交分解及坐标表示;3.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.二、过程与方法:体会数形结合的数学思想方法;培养学生转化问题的能力.三、情感、态度与价值观:培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题.教学重点:平面向量基本定理,向量的坐标表示;平面向量坐标运算教学难点:平面向量基本定理.一、复习回顾:1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa(1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa =02.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa .二、师生互动,新课讲解:思考:给定平面内任意两个向量e 1,e 2,请作出向量3e 1+2e 2、e 1-2e 2,平面内的任一向量是否都可以用形如λ1e 1+λ2e 2的向量表示呢?.在平面内任取一点O ,作OA =e 1,OB =e 2,OC =a ,过点C 作平行于直线OB 的直线,与直线OA 交于点M ;过点C 作平行于直线OA 的直线,与直线OB 交于点N . 由向量的线性运算性质可知,存在实数λ1、λ2,使得OM =λ1e 1,ON =λ2e 2. 由于OC OM ON =+,所以a =λ1e 1+λ2e 2,也就是说任一向量a 都可以表示成λ1e 1+λ2e 2的形式.1. 平面向量基本定理 (1)定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.把不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底.(2)向量的夹角已知两个非零向量a 和b ,作OA =a ,OB =b ,则∠AOB=θ(0︒≤θ≤180︒)叫做向量a 与b 的夹角,当θ=0︒时,a 与b 同向;当θ=180︒时,a 与b 反向.如果a 与b 的夹角是90︒,则称a 与b 垂直,记作a ⊥b .例1 (课本P94例1)已知向量e 1、e 2,求作向量-2.5e 1+3e 2。
平面向量教案3篇
平面向量教案3篇平面向量教案1一、教学目标:1. 理解平面向量的定义及相关术语;2. 掌握平面向量的基础运算和性质,如向量的加、减、数乘、模长等;3. 能够利用向量解决几何、三角学以及力学等问题。
二、教学重难点:教学重点:向量的基础运算和性质;教学难点:向量问题的解答。
三、教学方法:讲述法、举例法、实验法。
四、教学过程:1. 前置知识概括为了有利于学生对本次课程的学习,首先需要对平面向量有一定的了解。
向量是运用在三角学以及计算机科学中的一个概念,它表示一个方向和一个大小。
在二维空间中,向量通常用一个有序数对(x, y)表示,其中x和y分别表示向量在x轴和y轴上的分量。
然而,在本课程中,我们将会介绍另一种同样重要的表现向量的方式:平面向量。
2. 讲解平面向量的定义及相关术语平面向量即为有向线段,表示为 $\vec{a}$,具有大小和方向。
平面向量有以下几个重要的术语:(1)起点:向量 $\vec{a}$ 的起点是线段的始点,表示为 $A$。
(2)终点:向量 $\vec{a}$ 的终点是线段的末点,表示为 $B$。
(3)长度:向量 $\vec{a}$ 的长度等于线段 $AB$ 的长度,可以用$|\vec{a}|$表示。
(4)方向角:向量 $\vec{a}$ 的方向角是向量与$x$轴正方向的夹角,通常用 $\theta$表示。
(5)方向余弦:向量 $\vec{a}$ 的方向余弦分别是向量在$x$和$y$轴上的投影与向量长度的比值,分别用 $\cos\alpha$ 和$\cos\beta$表示。
(6)坐标表示:用有序数对 $(a_x, a_y)$ 表示向量 $\vec{a}$,其中 $a_x$ 和 $a_y$ 分别表示向量在$x$轴和$y$轴上的分量。
3. 讲解向量的基本运算及性质(1)向量的加法:设 $\vec{a}$ 和 $\vec{b}$ 为两个向量,它们的和记为 $\vec{a}+\vec{b}$,可通过作一平行四边形得到。
平面向量基本定理及其坐标表示教案
平面向量基本定理及其坐标表示教案教学目标:1. 理解平面向量的基本定理;2. 学会用坐标表示平面向量;3. 掌握平面向量的坐标运算。
教学重点:1. 平面向量的基本定理;2. 坐标表示平面向量;3. 平面向量的坐标运算。
教学难点:1. 平面向量的基本定理的理解;2. 坐标表示平面向量的推导;3. 平面向量的坐标运算的熟练运用。
教学准备:1. 教材或教案;2. 投影仪或黑板;3. 粉笔或教鞭。
教学过程:一、导入(5分钟)1. 引导学生回顾初中阶段学习的向量知识,如向量的定义、向量的加法、减法等;2. 提问:向量是否可以只有大小没有方向?为什么?二、平面向量的基本定理(15分钟)1. 介绍平面向量的基本定理:任意两个平面向量都可以唯一地分解为两个互垂直的向量的和;2. 用图形和实例来说明基本定理的意义;3. 引导学生理解基本定理的重要性。
三、坐标表示平面向量(15分钟)1. 介绍坐标系的概念,如直角坐标系、平面极坐标系等;2. 推导平面向量的坐标表示方法,即用坐标表示向量的位置;3. 举例说明如何用坐标表示平面向量。
四、平面向量的坐标运算(15分钟)1. 介绍平面向量的坐标运算,如坐标加法、减法、数乘等;2. 用公式和实例来说明坐标运算的规则;3. 引导学生熟练掌握坐标运算的方法。
五、巩固练习(10分钟)1. 给出一些关于平面向量的练习题,让学生独立完成;2. 针对学生的疑问进行解答和讲解;3. 强调平面向量基本定理及其坐标表示的重要性。
教学反思:在教学过程中,要注意通过实例和图形来帮助学生理解平面向量的基本定理及其坐标表示,以及坐标运算的规则。
要鼓励学生积极参与课堂讨论,提出疑问,以提高他们的学习兴趣和动力。
六、向量加法的平行四边形法则(15分钟)1. 介绍平行四边形法则,即以两个向量首尾相接所构成的平行四边形的对角线所代表的向量等于这两个向量的和;2. 用图形和实例来说明平行四边形法则的应用;3. 引导学生理解并掌握平行四边形法则。
向量的坐标表示及其运算教案
向量的坐标表示及其运算教案第一章:向量的概念及其坐标表示1.1 向量的定义引导学生回顾初中阶段所学到的向量概念,向量是有大小和方向的量。
解释向量在高中数学中的重要性,特别是在坐标系中的运用。
1.2 向量的表示方法介绍向量的表示方法,包括用箭头表示和用字母表示。
强调在坐标系中,向量可以用有序数对(a, b) 表示,其中a 表示向量在x 轴上的分量,b 表示向量在y 轴上的分量。
1.3 向量的模解释向量的模是指向量的大小,用||v|| 表示。
引导学生利用坐标系计算向量的模,即||v|| = √(a²+ b²)。
第二章:向量的加法和减法2.1 向量的加法解释向量的加法是指将两个向量首尾相接,形成一个新的向量。
引导学生利用坐标系进行向量的加法运算,即将对应分量相加。
2.2 向量的减法解释向量的减法是指从第一个向量中减去第二个向量,即加上第二个向量的相反向量。
引导学生利用坐标系进行向量的减法运算,即将对应分量相减。
第三章:向量的数乘3.1 向量的数乘概念解释向量的数乘是指将一个向量与一个实数相乘,得到一个新的向量。
强调数乘不改变向量的方向,只改变向量的大小。
3.2 向量的数乘运算引导学生利用坐标系进行向量的数乘运算,即将每个分量与实数相乘。
举例说明数乘运算的性质,如a(b·c) = (a·b)c 等。
第四章:向量的点积4.1 向量的点积概念解释向量的点积是指两个向量的对应分量相乘后相加的结果,用v·w 表示。
强调点积的计算结果是一个标量,而不是向量。
4.2 向量的点积运算引导学生利用坐标系进行向量的点积运算,即将对应分量相乘后相加。
举例说明点积的性质,如v·w = w·v、v·(w+z) = v·w + v·z 等。
第五章:向量的叉积5.1 向量的叉积概念解释向量的叉积是指两个非共线的向量形成的平行四边形的面积,用v×w 表示。
教案运用平面向量的坐标求内积
平面向量内积的坐标表示教案章节一:向量内积的概念介绍教学目标:1. 了解向量内积的定义和几何意义。
2. 掌握向量内积的计算公式。
教学内容:1. 向量内积的定义:两个向量a和b的内积定义为a·b = |a||b|cosθ,其中θ为a和b之间的夹角。
2. 向量内积的几何意义:向量内积可以表示为两个向量的数量积,即向量a和b的模长的乘积与它们之间夹角的余弦值的乘积。
3. 向量内积的计算公式:在坐标系中,向量a和b可以表示为a = (a1, a2)和b = (b1, b2),则它们的内积为a·b = a1b1 + a2b2。
教学活动:1. 引入向量内积的概念,通过图形和实际例子解释向量内积的定义和几何意义。
2. 引导学生理解向量内积的计算公式,并给出具体的计算例子。
作业:1. 练习计算两个向量的内积,包括坐标表示和数量积的计算。
教案章节二:向量内积的性质教学目标:1. 掌握向量内积的基本性质。
2. 学会运用向量内积的性质解决问题。
教学内容:1. 向量内积的交换律:a·b = b·a。
2. 向量内积的分配律:a·(b+c) = a·b + a·c。
3. 向量内积的数乘性质:λa·b = (λa)·b = λ(a·b)。
4. 向量内积的非负性:a·b ≥0,且当a和b夹角为0度时,a·b取最大值|a||b|。
教学活动:1. 引导学生通过实例验证向量内积的交换律、分配律和数乘性质。
2. 讲解向量内积的非负性,并解释其几何意义。
作业:1. 运用向量内积的性质计算一些具体的向量内积。
教案章节三:向量内积的应用教学目标:1. 学会运用向量内积解决实际问题。
2. 掌握向量内积在几何和物理中的应用。
教学内容:1. 向量内积在几何中的应用:计算向量的夹角、判断平行或垂直关系等。
2. 向量内积在物理中的应用:力的合成与分解、动能和势能的计算等。
教案运用平面向量的坐标求内积
平面向量内积的概念及坐标表示一、教学目标:1. 让学生了解平面向量的概念,理解向量的几何意义。
2. 掌握平面向量的坐标表示方法,学会用坐标表示向量的内积。
3. 能够运用坐标求解向量的内积,并解决相关的几何问题。
二、教学内容:1. 平面向量的概念及几何表示。
2. 向量的坐标表示方法。
3. 向量内积的定义及坐标表示。
4. 向量内积的运算性质。
5. 运用坐标求解向量内积的实例分析。
三、教学重点与难点:1. 重点:平面向量的概念、坐标表示方法,向量内积的定义及其坐标表示。
2. 难点:向量内积的运算性质,运用坐标求解向量内积。
四、教学方法:1. 采用讲授法,讲解平面向量的概念、坐标表示方法,向量内积的定义及其坐标表示。
2. 利用多媒体演示,直观展示向量的几何意义及坐标表示。
3. 运用例题解析,让学生掌握运用坐标求解向量内积的方法。
4. 开展小组讨论,引导学生探究向量内积的运算性质。
五、教学过程:1. 导入:回顾高中数学中关于向量的知识,引导学生思考向量的几何意义。
2. 新课讲解:(1)介绍平面向量的概念,解释向量的几何表示。
(2)讲解向量的坐标表示方法,举例说明。
(3)引入向量内积的定义,阐述其几何意义。
(4)推导向量内积的坐标表示,解释其含义。
3. 例题解析:选取典型例题,讲解如何运用坐标求解向量内积,引导学生思考解题思路。
4. 小组讨论:让学生分组讨论向量内积的运算性质,总结规律。
5. 课堂练习:布置相关练习题,巩固所学知识。
6. 总结:对本节课内容进行总结,强调重点知识点。
7. 作业布置:布置适量作业,巩固所学知识。
六、教学拓展:1. 引导学生思考向量内积的应用,例如在几何中的运用,如计算平行四边形的面积、判断两个向量是否垂直等。
2. 探讨向量内积在物理中的意义,例如在力学中,两个向量的内积可以表示力的大小和方向的乘积。
七、课堂小结:1. 回顾本节课所学内容,强调平面向量的概念、坐标表示方法,向量内积的定义及其坐标表示。
高中数学_平面向量的坐标运算教学设计学情分析教材分析课后反思
平面向量的坐标运算教学设计:Ⅰ.复习回顾:上一节,我们学习了平面向量的基本定理,这一节,我们将利用此定理推得平面向量的坐标表示.我们知道,在直角坐标系内,第一个点都可以用一个有序实数对(x ,y )来表示,本节我们将把向量放入直角坐标平面内,同样用有序数对(x ,y )来表示.在平面直角坐标系中,i 、j 为x 轴、y 轴正方向的单位向量(一组基底),由平面向量的基本定理可知:平面内任一向量a ,有且只有一对实数x ,y ,使→→→+=j y i x a 成立.2.探索新知:知识点1:平面向量的坐标加减法运算问题一:已知)3,1(=→a ,)1,5(=→b ,如何求→→+b a ,→→-b a 的坐标呢?猜想:若),(),,(2211y x b y x a ==→→则),(2121y y x x b a ++=+→→,),(2121y y x x b a --=-→→ 平面向量的坐标运算法则证明若→→→→→→+==+==j y i x y x b j y i x y x a 22221111),(,),( 则),()()(21212121y y x x j y y i x x b a ++=+++=+→→→→ ),()()(21212121y y x x j y y i x x b a --=-+-=-→→→→结论:两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。
问题二:探究:若已知 点A 、B 的坐标分别为 (1,3),(4,2),如何求 AB 的坐标呢? O xyBA→AB =→OB -→OA =( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1)若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=→一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.思考:坐标为()1212,y y x x --的点P 在哪里?设计目的 :此环节教师充当引导者,以学生为主体,让学生在讨论思考中享受成功的快乐。
《平面向量的坐标运算》教学设计【高中数学人教A版必修2(新课标)】
《平面向量的坐标运算》教学设计 本节内容包括“平面向量的正交分解及坐标表示、坐标运算、平面向量共线的坐标表示”,这些内容是上一节所讨论问题的深入,为平面向量的坐标表示奠定理论基础,因为只有确定了任意一个向量在两个不共线的基底上能进行唯一分解,建立坐标系才有了依据,同时,只有正确地构建向量的坐标才能有向量的坐标运算.(1)借助平面直角坐标系,掌握平面向量的正交分解及坐标表示;会用坐标表示平面向量的线性运算;能用坐标表示向量共线的条件.(2)体会平面向量的正交分解是向量分解中常用且重要的一种分解;引入向量的坐标表示可使向量运算代数化;不仅向量的线性运算可以通过坐标来实现,向量的位置关系也可以通过坐标研究.(3)建立数与形的联系,利用几何图形描述问题,借助几何直观理解问题;理解运算对象,掌握运算法则,探究运算思路,求得运算结果.【问题1】如图,光滑斜面上一个木块受到重力G 的作用,产生两个效果,一是木块受平行 于斜面的力1F 的作用,沿斜面下滑;一是木块产生垂直于斜面的压力2F .问重力G 与力1F 和2F 有什么关系?【设计意图】通过学生熟悉的力的分解问题,引出本节的主题,由此可以使学生感受到向量的正交分解与现实的联系.任意一个向量可以分解为两个不共线的向量,实际上是平面向量基本定理的一个应用.【师生活动】(1)学生:12G F F =+.(2)老师:由平面向量基本定理,对平面上的任意向量a 均可以分解为不共线的两个向量11a λ和22a λ,使1122a a a λλ=+.(3)老师:在不共线的向量中,垂直是一种重要的特殊情形.把一个向量分解为两个互相垂◆ 教学过程◆ 教学目标◆ 教材分析 G F 1 F 2直的向量,叫做向量正交分解.正交分解是向量分解中常见的一种情形.【问题2】在平面直角坐标系中,每一个点都可用一对有序实数(即它的坐标)表示.对直角 坐标平面内的每一个向量,如何表示呢?【设计意图】通过类比平面直角坐标系中点用有序数对表示,提示学生思考在直角坐标系中 表示一个平面向量的方法.【师生活动】(1)老师:结合平面向量基本定理,如何在平面直角坐标系中选两个向量作为基底?(2)学生:分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.(3)教师:对于平面内的一个向量,由平面向量基本定理可知,有且只有一对实数,x y , 使得a xi y j =+.所以a 就由,x y 唯一确定.有序数对(,)x y 叫做向量的坐标,记作 (,)a x y =,其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,(,)a x y =叫做向量的坐标表示.【问题3】设OA xi y j =+,则向量OA 的坐标与点A 的坐标有什么关系?【设计意图】使学生知道向量的的坐标与表示该向量的有向线段的起点、终点的具体位置没有关系,只与其相对位置有关系.【师生活动】(1)老师:O(2)学生:向量OA 的坐标(,)x y 就是终点A 的坐标;反过来,终点A 的坐标(,)x y 也就是向量OA 的坐标.(3)老师:在平面直角坐标系内,每一个平面向量都可以用一有序实数对唯一表示. 例1.如图,分别用基底i 、j 表示向量a 、b 、c 、d ,并求出它们的坐标.【设计意图】平面向量正交分解的应用,要充分运用图形之间的几何关系,求向量的坐标.【问题4】已知1122(,),(,)a x y b x y ==,你能得出,,a b a b a λ+-的坐标吗?【设计意图】运用向量线性运算的交换律、结合律、分配律,推导两个向量的和、差、以及 数乘运算的坐标运算.(1)学生1:11221212()()()()a b x i y j x i y j x x i y y j +=+++=+++1212(,)a b x x y y ∴+=++.(2)学生2:11221212()()()()a b x i y j x i y j x x i y y j -=+-+=-+-1212(,)a b x x y y ∴-=--.(3)学生3:1111()a x i y j x i y j λλλλ=+=+11(,)a x y λλλ∴=.(4)教师:以上推导过程体现了向量的坐标形式与向量形式的相互转化.练习1:已知1122(,),(,)A x y B x y ,求AB 的坐标.(5)学生:22112121(,)(,)(,)AB OB OA x y x y x x y y =-=-=--.(6)教师:两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差);实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标.(7)教师:如何在平面直角坐标系中标出坐标为2121(,)x x y y --的点P ?有什么发现?(8)学生:向量AB 的坐标与以原点为起点、点P 为终点的向量的坐标是相同的.(9)教师:试求向量AB 的模长.(10)学生:222121()()AB OP x x y y ==-+-.例2. 如图,已知ABCD 的三个顶点,,A B C 的坐标分别是(2,1)(1,3)(3,4--、、),试求顶点D 的坐标.(1)学生:利用AB DC =,求出点D 的坐标.(2)学生:利用OD OB BD OB BA BC =+=++,求出点D 的坐标.(3)学生:利用11()()22OM OB OD OA OC =+=+,求出点D 的坐标. 【设计意图】让学生熟悉向量的坐标运算.解题过程中,关键是充分利用图形中各线段的位 置关系(主要是平行关系),数形结合,将顶点的坐标表示为已知点的坐标.【问题5】设1122(,),(,)a x y b x y ==,其中0b ≠.若a 与b 共线,这两个向量的坐标会有 什么关系?【设计意图】向量的线性运算可以通过坐标运算实现,引导学生思考向量的共线、垂直的坐 标表示.【师生活动】(1)学生:若a 与b 共线,则当且仅当存在实数λ,使得a b λ=,从而1122(,)(,)x y x y λ=,所以1212x x y y λλ=⎧⎨=⎩ 消去λ得到12210x y x y -=. 例3.已知(11)(13),(25A B C --,,,,),试判断A B C ,,三点的位置关系.【设计意图】引导学生三点共线的实质是从同一点出发的两个向量共线.(1)学生:口述解题思路,书写解题过程.(2)老师:引导学生总结思想方法.例4.设点P 是线段12P P 上的一点,12P P 、的坐标分别是1122(,)(,)x y x y 、. (1)当点P 是线段12P P 的中点时,求点P 的坐标;(2)当点P 是线段12P P 的一个三等分点时,求点P 的坐标.【设计意图】本例实际上是给出了线段的中点坐标公式,线段的三等分点坐标公式.引导学生推导线段的定比分点公式.利用向量共线的坐标表示求线段的定比分点坐标公式,只要通过简单的向量线性运算就可实现,这是向量的坐标运算带来的优越性.【师生活动】(1)学生:利用121()2OP OP OP =+,求得点P 的坐标. (2)学生:利用121233OP OP OP =+(或122133OP OP OP =+),求得点P 的坐标. (3)老师:三等分点有两种可能的位置,如果学生没有回答全面,要引导学生讨论补充.(4)老师:当12PP PP λ=时,点P 的坐标是什么? (5)学生:由学生类比求得中点坐标及三等分点坐标的过程,给出一般定比分点的坐标公式,进一步熟练向量的坐标运算,体会其中的数学思想方法.【问题6】你能够总结一下本节课我们学习的内容吗?【设计意图】课堂小结,由学生完成,概括本节课所学习的基本概念和运算法则,由教师提炼和总结本节课获得基本原理的数学研究方法.【习题检测】1.课中检测:(完成练习,拍照上传)练习1.已知点(0,0)O ,向量(2,3),(6,3),OA OB ==-点P 是线段AB 的三等分点,求点P 的坐标.练习2.已知(2,3),(4,3)A B -,点P 在线段AB 的延长线上,且32AP PB =,求点P 的坐 标.2.课后检测请完成课后练习,检测学习效果.。
平面向量的坐标表示教案
平面向量共线的坐标表示教学目的:(1)理解平面向量的坐标的概念;(2)掌握平面向量的坐标运算;(3)会根据向量的坐标,判断向量是否共线.教学重点:平面向量的坐标运算教学难点:向量的坐标表示的理解及运算的准确性授课类型:新授课教具:多媒体、实物投影仪教学过程:一、复习引入:1.平面向量的坐标表示分别取与x 轴、y轴方向相同的两个单位向量、j作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yjxia把),(y x 叫做向量a 的(直角)坐标,记作),(y x a 其中x 叫做a 在x 轴上的坐标,y叫做a 在y轴上的坐标,特别地,)0,1(i,)1,0(j,)0,0(0.2.平面向量的坐标运算若),(11y x a ,),(22y x b ,则b a ),(2121y y x x ,ba),(2121y y x x ,),(y x a .若),(11y x A ,),(22y x B ,则1212,y y x x AB 二、讲解新课:a ∥b(b 0)的充要条件是x 1y 2-x 2y 1=0设a =(x 1, y 1) ,b =(x 2, y 2) 其中b a . 由a =λb 得, (x 1, y 1) =λ(x 2, y 2)2121y y x x 消去λ,x 1y 2-x 2y 1=0探究:(1)消去λ时不能两式相除,∵y 1, y 2有可能为0,∵b 0∴x 2, y 2中至少有一个不为0(2)充要条件不能写成2211x y x y ∵x 1, x 2有可能为0(3)从而向量共线的充要条件有两种形式:a ∥b(b 0)1221y x y x b a 三、讲解范例:例1已知a =(4,2),b =(6, y),且a ∥b ,求y.例2已知A(-1, -1),B(1,3),C(2,5),试判断A ,B ,C 三点之间的位置关系.例3设点P 是线段P 1P 2上的一点, P 1、P 2的坐标分别是(x 1,y 1),(x 2,y 2).(1)当点P 是线段P 1P 2的中点时,求点P 的坐标;(2) 当点P是线段P1P2的一个三等分点时,求点P的坐标.例4若向量a=(-1,x)与b=(-x, 2)共线且方向相同,求x解:∵a=(-1,x)与b=(-x, 2)共线∴(-1)×2- x?(-x)=0∴x=±2∵a与b方向相同∴x=2例5已知A(-1, -1),B(1,3),C(1,5) ,D(2,7) ,向量AB与CD 平行吗?直线AB与平行于直线CD吗?解:∵AB=(1-(-1), 3-(-1))=(2, 4) ,CD=(2-1,7-5)=(1,2) 又∵2×2-4×1=0 ∴AB∥CD又∵AC=(1-(-1),5-(-1))=(2,6),AB=(2, 4),2×4-2×60 ∴AC与AB不平行∴A,B,C不共线∴AB与CD不重合∴AB∥CD四、课堂练习:1.若a=(2,3),b=(4,-1+y),且a∥b,则y=()A.6B.5C.7D.82.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为()A.-3B.-1C.1D.33.若AB=i+2j,DC=(3-x)i+(4-y)j(其中i、j的方向分别与x、y 轴正方向相同且为单位向量). AB与DC共线,则x、y的值可能分别为()A.1,2B.2,2C.3,2D.2,44.已知a=(4,2),b=(6,y),且a∥b,则y=.5.已知a=(1,2),b=(x,1),若a+2b与2a-b平行,则x的值为.6.已知□ABCD四个顶点的坐标为A(5,7),B(3,x),C(2,3),D(4,x),则x=.五、小结。
【教案】平面向量数乘运算的坐标表示教学设计-高一下学期数学人教A版(2019)必修第二册
§6.3.4 平面向量数乘运算的坐标表示一、内容和内容解析内容:平面向量数乘运算的坐标表示.内容解析:本节是高中数学人教A版必修2第六章第3节第四课时的内容.前面已经找出两个向量共线的条件,本节则进一步地把向量共线的条件转化为坐标表示,只要将向量用坐标表示出来,再运用向量相等的条件就可以得出平面向量共线的坐标表示.掌握两个向量数乘的坐标运算法则,培养学生数学运算的核心素养;能根据平面向量的坐标,判断向量是否共线,培养学生逻辑推理的核心素养.二、目标和目标解析目标:(1)掌握向量数乘运算的坐标表示.(2)会根据向量的坐标,判断向量是否共线.目标解析:(1)利用平面向量正交分解将向量用基底表示,利用分配律,推导出向量数乘运算的坐标表示.(2)三点共线问题和定比分点问题都可以转化为向量平行问题,利用共线向量基本定理推导得出结论.(3)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.在平面向量数乘运算的坐标表示的教学中,从已知向量的坐标推导向量数乘运算的坐标是进行数学推理教学的很好机会.基于上述分析,本节课的教学重点定为:向量数乘运算的坐标表示,根据向量的坐标,判断向量是否共线.三、教学问题诊断分析1.教学问题一:研究向量数乘运算的坐标表示是本节课的第一个教学问题.解决方案:利用正交分解表示向量,结合平面向量的坐标表示推理出结论.2. 教学问题二:研究三点共线和定比分点问题是本节课的第二个教学问题.解决方案:将三点共线转为两个向量平行,利用共线向量基本定理,结合平面向量基本定理推导出结论.基于上述情况,本节课的教学难点定为:向量的坐标表示的理解及运算的准确性.四、教学策略分析本节课的教学目标与教学问题为我们选择教学策略提供了启示.为了让学生通过观察、归纳得到平面向量数乘运算的坐标表示,应该为学生创造积极探究的平台.因此,在教学过程中以问题串的形式引导学生探究,可以让学生从被动学习状态转到主动学习状态中来.在教学设计中,采取问题引导方式来组织课堂教学.问题的设置给学生留有充分的思考空间,让学生围绕问题主线,通过自主探究达到突出教学重点,突破教学难点的目的.在教学过程中,重视平面向量数乘运算的坐标表示,让学生体会数学推理的基本过程.因此,本节课的教学是实施数学具体内容的教学与核心素养教学有机结合的尝试.五、教学过程与设计教学环节问题或任务师生活动设计意图创设情境生成问题贝贝和晶晶同做一道数学题:“一人从A地到E地,依次经过B地、C地、D地,且相邻两地之间的距离均为502 km.问从A地到E地的行程有多少?”其解答方法是:贝贝:502+502+502+502=1 004+502+502=1506+502=2 008(km).晶晶:502×4=2 008(km).可以看出,晶晶的计算较简捷,乘法是加法的简便运算,构建了乘法运算体系后,给一类问题的解决带来了很大的方便.用实际问题引入,激发学生学习的积极性.探索交流,解决问题[问题1]当a∥b时,a,b的坐标成比例吗?[问题2]如果两个非零向量共线,你能通过其坐标判断它们是同向还是反向吗?[问题3]已知a=(x,y),你能得出2a、3a的坐标吗?【练习】已知向量a=(2,4),b=(-1,1),则2a-b=________.[问题4]如果向量a=(x1,y1),b=(x2,y2)(b≠0),根据共线向教师1:提出问题1.学生1:学生思考.横、纵坐标均不为0时成比例.教师2:提出问题2.学生2:能.将b写成λa形式,λ>0时,b与a同向,λ<0时,b与a反向.教师3:提出问题3.学生3:2a=a+a=(x,y)+(x,y)=(2x,2y);3a=2a+a=(2x,2y)+(x,y)=(3x,3y).教师4:平面向量数乘运算的坐标表示:已知a=(x,y),λ∈R,则λa=(λx,λy),即实数与向量的积的坐标等于用这个实数乘以原来向量的相应坐标.教师5:完成练习学生4:2a-b=2(2,4)-(-1,1)=(5,7).教师6:提出问题4.通过复习共线向量定理引入本节新课.建立知识间的联系,提高学生概括、类比推理的能力.量定理,a 与b 共线时,存在唯一实数λ,使a =λb ,那么根据向量数乘运算的坐标表示,你能发现a 与b 的坐标之间的关系吗?[问题5]如图,线段P 1P 2的端点P 1,P 2的坐标分别为),(),,(2211y x y x ,点P 是直线P 1P 2上的一点,当21PP P P λ=时,点P 的坐标是什么?学生5:若a =(x 1,y 1),b =(x 2,y 2),且a 与b 共线,则x 1y 2=x 2y 1.教师7:平面向量共线的坐标表示设a =(x 1,y 1)),b =(x 2,y 2),其中b ≠0.向量a ,b (b ≠0)共线的充要条件是x 1y 2-x 2y 1=0.教师8:中点坐标公式 若P 1,P 2的坐标分别是(x 1,y 1),(x 2,y 2),线段P 1P 2的中点P 的坐标为(x ,y ), 则⎩⎨⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式.教师9:提出问题5.学生6:)1,1(2121λλλλ++++y y x x P通过探究让学生掌握向量的数乘的坐标表示,培养数学运算的核心素养.通过探究得出一般结论,通过学生解决问题的能力.典例分析巩固落实 1.向量数乘运算的坐标表示 例1.已知向量a =(1,2),b =(3,-4),c =(-2,6),试求a +3b, 3a -2b +12c .2.平面向量共线的坐标运算 例2.已知a =(1,2),b =(-3,2),当k 为何值时,k a +b 与a -3b教师10:完成例1.学生7:因为a =(1,2),b =(3,-4),c =(-2,6),所以a +3b =(1,2)+3(3,-4)=(1,2)+(9,-12)=(10,-10),3a -2b +12c =3(1,2)-2(3,-4)+12(-2,6)=(3,6)-(6,-8)+(-1,3)=(-4,17). 教师11:完成例2学生8:k a +b =k (1,2)+(-3,2)=(k -3,2k +2), a -3b =(1,2)-3(-3,2)=(10,-4),通过例1进一步掌握向量加法、减法、数乘向量的坐标运算,提高学生的观察、概括能力.通过例2练习共线向量的坐标运算,平行?平行时它们是同向还是反向?3.向量共线的判定及解决点共线问题例3.如果向量AB →=i -2j ,BC →=i +m j ,其中i ,j 分别是x 轴、y 轴正方向上的单位向量,试确定实数m 的值,使A ,B ,C 三点共线.[课堂练习] 1.已知()()2,1,3,4a b ==- ,求34a b +的坐标.2.已知()()4,2,6,a b y ==,且a b ,求y .当k a +b 与a -3b 平行时,存在唯一实数λ,使k a +b =λ(a -3b ).由(k -3,2k +2)=λ(10,-4).得⎩⎪⎨⎪⎧k -3=10λ,2k +2=-4λ,解得k =λ=-13.当k =-13时,k a +b 与a -3b 平行,这时k a +b =-13a +b =-13(a -3b ),∵λ=-13<0,∴k a +b 与a -3b 反向.学生9:k a +b =(k -3,2k +2), a -3b =(10,-4), ∵k a +b 与a -3b 平行, ∴(k -3)×(-4)-10(2k +2)=0, 解得k =-13.故k a +b 与a -3b 反向.教师12:完成例3学生10:∵A ,B ,C 三点共线,即AB →,BC →共线, ∴存在实数λ,使得AB →=λBC →,即i -2j =λ(i +m j ).于是⎩⎪⎨⎪⎧λ=1,λm =-2,∴m =-2.故m =-2时,A ,B ,C 三点共线. 教师13:布置课堂练习1、2. 学生11:完成课堂练习,并核对答案.提高学生解决问题的能力.通过例3练习共线向量的坐标运算,提高学生解决问题的能力.[问题6]通过这节课,你学到了什么知识?教师13:提出问题6.学生11:师生共同回顾总结:引领课堂小结升华认知在解决问题时,用到了哪些数学思想?[课后练习]1.若a=(2,1),b=(1,0),则3a-2b的坐标是()A.(5,3)B.(4,3)C.(8,3)D.(0,-1)2.已知a=(-6,2),b=(m,-3),且a∥b,则m=()A.-9B.9C.3D.-33.与向量a=(1,2)平行,且模等于5的向量为________.4.已知向量a=(1,2),b=(x,1),u=a+2b,v=2a-b,且u∥v,求实数x的值.学生12:学生课后进行思考,并完成课后练习.答案:B、B、(1,2)或(-1,-2)、x=12.学生感悟数学认知的过程,体会数学核心素养.课后练习:是对定理巩固,是对本节知识的一个深化认识,同时也为下节内容做好铺垫.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连州市连州中学课堂教学设计表
教学过程设计(详细过程)
一、复习提问
1.在平面内有点A和点B,向量AB表示
2.平面向量基本定理的内容?什么叫基底?
3.分别与x 轴、y 轴方向相同的两单位向量i 、j能否作为基底?
二、讲解新课
(一)定义
任一向量a ,用基底i,j可表示为有且只有一对实数x、y,使得
a =x i +y j.
(x,y)叫做向量a的坐标,记作
a=(x,y)
那么i=(1 ,0 ),j=(0,1), 0=(0,0)
(二)、概念理解
1.以原点O为起点作OA,点A的位置由谁确定?
由a唯一确定
2.点A的坐标与向量a的坐标的关系?
两者相同
向量a 一一对应坐标(x,y)
3.两个向量相等的充要条件,利用坐标如何表示?
例1.如图,分别用基底i ,j 表示向量a、b 、c 、d ,并求出它们的坐标。
解:如图可知
同理
(三)、平面向量的坐标运算
练习:1.已知a=(x1,y1),b=(x2,y2),求a+b,a-b
解:a+b= (x1i+y1j)+(x2i+y2j)= (x1+ x2) i +( y1+y2)
即a+b= (x1+ x2,y1+y2)
同理可得a-b=(x1- x2,y1-y2)
两个向量和与差的坐标分别等于这两向量相应坐标的和与差
2
1
2
1
y
且y
b
a=
=
⇔
=x
x
12
a=AA+AA=2i+3j
a=(2,3)
∴
b=-2i+3j=(-2,3);
c=-2i-3j=(-2,-3);
d=2i-3j=(2,-3).
11
(,)
x y
λλ
a
λ=
解法1:设点D
x=2,y=2 解法2:由平行四边形法则可得
1324 x
y
∴=-=-(1,3)(3,4)(, AB DC x y AB DC =-=-= 且(1,2)(3,4x y ∴=--(2(1),13)(3,1)
BD BA BC
=+=----=-
=+ OD OB BD。