2.1从位移、速度、力到向量

合集下载

2015-2016学年高中数学 第2章 1从位移、速度、力到向量课件 北师大版必修4

2015-2016学年高中数学 第2章 1从位移、速度、力到向量课件 北师大版必修4

→ → → → 又已知两正方形对应边平行,所以 AB = DC =a, BC = AD → → → → → → → =c, BA = CD =e, CB = DA =g, AC =b, CA =f, BD =d, → DB=h. (2)已知两正方形对应边平行,则对应对角线也平行,所 → 以与AB共线的向量有:a、e; → 与BC共线的向量有:c、g; → 与AC共线的向量有:b、f; → 与BD共线的向量有:d、h.
向量表示的模型
一辆汽车从A点出发向西行驶了100千米到达点 B,然后又改变方向向西偏北50° 行驶了200千米到达点C,最 后又改变方向,向东行驶了100千米到达点D. → → → (1)作出向量AB,BC,CD; → (2)求|AD|.
[思路分析]
首先确立指向标,然后再根据行驶方向和距
离作出向量,进而求解.
[规律总结]
(1)寻找相等向量要把握住向量的两要素:大
小和方向,相等向量必须二者都相同才成立.同时,也可以看 出,向量是可以平移的,相等向量的起点并不一定要相同. (2)对于非零向量,共线向量只需把握向量的方向要素,与 向量的大小无关,故寻找非零共线向量时,只需判断两向量所 在的直线是否共线或者重合即可.
再确定向量的方向,然后根据向量的大小确定向量的终点. (2) 要能够运用向量的观点将实际问题抽象成数学模型, “数学建模”是今后能力培养的主要方向,需要在日常学习中
不断积累经验.
已知飞机从甲地按北偏东30° 的方向飞行2000km到达乙 地,再从乙地按南偏东30° 的方向飞行2000km到达丙地,再从 丙地按西南方向飞行1000 2 km到达丁地,问丁地在甲地的什 么方向?丁地距甲地多远? [解析] 如图所示,A、B、C、D分别表示甲地、乙地、

五种版本教材比较

五种版本教材比较

关于五种版本必修教材章节设置的比较研究──使用人教B版教材后的思考北京人大附中吴中才人教B版教材是人民教育出版社根据课程标准编写的一套教科书,与人教A版、北师大版、苏教版、湘教版一样,属于“一纲多本”。

这些不同版本的教材有什么不同呢?它们难道就是呈现知识的背景材料不同、习题设置不同吗?或者说简单的就是难易程度不一样吗?或者说是体例不同?栏目设置不同?本文将研究其核心的东西——课程内容,就目前五套教材必修教材的章节设置作一比较与分析。

特别说明之一,由于笔者使用的教材有的是电子版,教材具体版本不详,故可能会有一些章节目录设置存在一些出入;之二,各套教材表示章节的符号有所不同,为了便于对比,本文统一了表示符号;之三,本文仅比较到二级目录,不比较到更细致的目录。

一、各版本必修教材的目录设置几何点、线、面关何和解方角第一章三角函数[1]1.1 弧度制与任意角1.2 任意角的三角函数1.3 三角函数的图象与性质1.4 函数的图象与性质第二章向量2.1 什么是向量2.2 向量的加法2.3 向量与实数相乘2.4 向量的分解与坐标表示2.5 向量的数量积2.6 向量的应用第三章三角恒等变换3.1 两角和与差的三角函数3.2 二倍角的三角函数3.3 简单的三角恒等变换2.1 随机抽样2.2 用样本估计总体2.3 变量间的相关关系第三章概率3.1 随机事件的概率3.2 古典概型3.3 几何概型案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 事件与概率3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用字特征1.5 用样本估计总体1.6 统计活动:结婚年龄的变化1.7 相关性1.8 最小二乘估计第二章算法初步2.1 算法的基本思想2.2 算法的基本结构及设计2.3 排序问题2.4 几种基本语句第三章概率3.1 随机事件的概率3.2 古典概型3.3 模拟方法――概率的应用1.4 算法案例第二章统计2.1 抽样方法2.2 总体分布的估计2.3 总体特征数的估计2.4 线性回归方程第三章概率3.1 随机事件及其概率3.2 古典概型3.3 几何概型3.4 互斥事件2.1 点的坐标2.2 直线的方程2.3 圆与方程2.4 几何问题的代数解法2.5 空间直角坐标系必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数的图象1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示第一章基本初等函数(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与第一章三角函数1.1 周期现象与周期函数1.2 角的概念的推广1.3 弧度制1.4 正弦函数1.5 余弦函数1.6 正切函数1.7 函数的图象1.8 同角三角函数的基本关系第二章平面向量2.1 从位移、速度、力到向量2.2 从位移的合成到向量的加法2.3 从速度的倍数到数乘向量2.4 平面向量第一章三角函数1.1 任意角、弧度1.2 任意角的三角函数1.3 三角函数的图象和性质第二章平面向量2.1 向量的概念及表示2.2 向量的线性运算2.3 向量的坐标表示2.4 向量的数量积2.5 向量的应用第三章三角恒等变换3.1 两角和与差的三角函数3.2 二倍角的三角函数第一章解三角形1.1 正弦定理1.2 余弦定理1.3 解三角形的应用举例第二章数列2.1 数列的概念2.2 等差数列2.3 等比数列2.4 分期付款问题中的有关计算第三章不等式3.1 不等式的基本性质3.2 一元二次不等式3.3 基本不等式及其应用3.4 简单线性规划第一章解三角形1.1 正弦定理和余弦定理1.2 应用举例1.3 实习作业第二章数列2.1 数列的概念与简单表示2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列的前n项和第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题3.4 基本不等式:第形1.1和余弦定理1.2第二章数列2.12.22.3第三章不等式3.1与不等式3.2式3.3不法3.4应用3.5不等式简划问题日中角理中形举次等性第一章解三角形1.1 正弦定理1.2 余弦定理1.3 正弦定理、余弦定理的应用第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系3.2 一元二次不等式3.3 二元一次不等式组与简单的线性规划问题3.4 基本不等式第步1.1念1.2与程序框图1.3语句1.4第初步2.1体2.2方法2.3布布2.4关性第三章概率3.1件3.2计算3.3率二、差异性比较1. 必修次序的调整人教A版、人教B版、北师大版、苏教版的必修次序设置与课程标准完全一致,湘教版将必修五个模块的次序作了一些调整:它的第一册内容是课程标准的必修1,第二册是必修4,第三册是必修2,第四册是必修5,第五册是必修3。

数学:2.1 从位移、速度、力到向量 教案 (北师大必修4)

数学:2.1 从位移、速度、力到向量 教案 (北师大必修4)

2.1 从位移、速度、力到向量
本节教材分析:
(1)三维目标:
1、知识与技能
(1)理解向量与数量、向量与力、速度、位移之间的区别;
(2)理解向量的实际背景与基本概念,理解向量的几何表示,并体会学科之间的联系.
(3)通过教师指导发现知识结论,培养学生抽象概括能力和逻辑思维能力
2、过程与方法
通过力与力的分析等实例,引导学生了解向量的实际背景,帮助学生理解平面向量与向量相等的含义以及向量的几何表示;最后通过讲解例题,指导学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题.
3、情感态度与价值观
通过本节的学习,使同学们对向量的实际背景、几何表示有了一个基本的认识;激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神.
(2)教学重点:向量及向量的有关概念、表示方法.
(3)教学难点:向量及向量的有关概念、表示方法.
(4)教学建议:本节要求学生掌握向量的基本概念及几何表示,本节内容从几何意义与向量的定义两方面学习,1、适当利用有趣问题和物理实例调动学生讨论问题的积极性感性认识向量;
2、类比方法引导学生从数学的角度分析这种现象,归纳出向量的概念;
3、让学生观察分析向量的数学表示,几何表示及相互之间的关系;
4、本节重点找出几何条件下的向量关系。

新课导入设计
导入一:
1. 趣味导入,引起学生的兴趣,结合物理生活背景理向量的概念;
2.通过几何意义与范例分析让学生对向量的表示与应用有个初步了解。

导入二:
1、通过对常见的向量问题分析,引入向量的概念,通过范例巩固向量概念的理解与应用。

从位移、速度、力到向量

从位移、速度、力到向量

子洲县职教中心 数学 导学案2013-2014学年第 一 学期 高二 年级 3班 组 姓名 编写者 王治强 审核者 使用时间2013年 10 月 日课题 :从位移、速度、力到向量学习目标:(1)理解向量与数量、向量与力、速度、位移之间的区别; (2)理解向量的几何表示 重点难点:向量及向量的有关概念、表示方法 自主学习 (一)、情景设置:如图,老鼠由A 向西北逃窜,猫在B 处向东追去,设问:猫能否追到老鼠?(画图)(二)、新课学习学习过程1、数量与向量的区别?2.向量的表示方法? ① ② ③④向量AB 的大小――长度称为向量的模,记作 .3.有向线段:具有方向的线段就叫做有向线段,三个要素: . 向量与有向线段的区别:(1) .(2) . 4、零向量、单位向量概念:① 叫零向量,记作0. 0的方向是任意的.注意0与0的含义与书写区别.② 叫单位向量. 说明:零向量、单位向量的定义都只是限制了大小. 5、平行向量定义:① 叫平行向量;②我们规定0与 平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a ∥b∥c.6、相等向量定义: 叫相等向量。

说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等; (3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向...线段的起点无关........7、共线向量与平行向量关系:平行向量就是共线向量,这是因为(与有向线段.....的起点无关)....... 说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系. 合作交流 1.判断 (1)平行向量是否一定方向相同?ABCDA(起点)B(终点)a(2)不相等的向量是否一定不平行?(3)与零向量相等的向量必定是什么向量?(4)与任意向量都平行的向量是什么向量?(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(6)两个非零向量相等的当且仅当什么?(7)共线向量一定在同一直线上吗?2.如图,设O 是正六边形ABCDEF 的中心,①分别写出图中与向量−→−OA 、−→−OB 、−→−OC 相等的向量;②分别写出图中与向量−→−OD 、−→−OE 、−→−OE 共线的向量.达标训练1.下列各量中不是向量的是( ) A.浮力 B.风速 C.位移 D.密度 2.下列说法中错误..的是( ) A.零向量是没有方向的 B.零向量的长度为0C.零向量与任一向量平行D.零向量的方向是任意的3.把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是( ) A.一条线段 B.一段圆弧 C.圆上一群孤立点 D.一个单位圆4.下列命题正确的是( )A.a与b共线,b与c共线,则a与c 也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行 5.判断下列命题是否正确,若不正确,请简述理由.①向量AB 与CD 是共线向量,则A 、B 、C 、D 四点必在一直线上;②单位向量都相等;③任一向量与它的相反向量不相等;④四边形ABCD 是平行四边形当且仅当AB =DC⑤一个向量方向不确定当且仅当模为0;⑥共线的向量,若起点不同,则终点一定不同.DEOAB CF。

2.1从位移、速度、力到向量----导学案

2.1从位移、速度、力到向量----导学案

从位移、速度、力到向量(导学案)使用说明:1.自学71~73页内容,提高自学能力;2.限时完成导学案的预习案部分,找出自己的疑惑和需要解决的问题,准备课上讨论探究,学有余力的学生可提前完成其他部分。

【学习目标】(1)理解向量与数量、向量与力、速度、位移之间的区别;(2)理解向量的实际背景与基本概念,理解向量的几何表示,并体会学科之间的联系. (3)通过学习发现知识结论,培养自己抽象概括能力和逻辑思维能力 【重点难点】 重点: 向量及向量的有关概念、表示方法.难点: 向量及向量的有关概念、表示方法.相关知识:1.在物理学中,位移、速度和力这些物理量都是既有大小,又有方向的量,在物理中称为“矢量”。

它们和长度、面积、质量等只有大小的量是不同的。

2.前面我们提到过三角函数线(正弦线和余弦线)。

你是如何理解的? 教材助读:1.向量的定义既有________又有________的量统称为向量. 2.有向线段具有________和________的线段叫作有向线段.以A 为起点,B 为终点的有向线段记作,线段AB 的长度也叫作有向线段________的长度,记作________. 3.向量的表示向量可以用________来表示,有向线段的长度表示________,箭头所指的方向表示________.向量也可以用黑体小写字母如a ,b ,c 来表示,书写用来表示.4.向量的模、零向量、单位向量______________表示向量(或a )的大小,即长度(也称模).________的向量称为零向量,记作________.与向量a 同方向,________的向量,叫作a 方向上的单位向量,记作a 0.5.相等向量长度________且方向________的向量,叫作相等向量,向量a 和向量b 相等.记作________.6.共线向量如果表示两个向量的有向线段所在的直线________,则称这两个向量平行或共线,a 与b 平行或共线,记作________.规定零向量与任一向量________. 预习自测1.下列说法中错误的是( )A .零向量是没有方向的B .零向量的长度为0C .零向量与任一向量平行D .零向量的方向是任意的 2.下面有四个说法: ①向量的长度与向量的长度相等;②任何一个非零向量都可以平行移动; ③所有的单位向量都相等;④两个有共同起点的相等向量,其终点必相同. 其中正确说法的个数是( ) A .4 B .3 C .2 D .13.下列说法正确的是( )预习案A.方向相同的向量叫相等向量B.零向量的长度为0C.共线向量是在一条直线上的向量D.零向量是没有方向的向量基础知识探究综合应用探究如图,设O是正六边形ABCDEF的中心,①分别写出图中与向量−→−OA、−→−OB、−→−OC相等的向量;②分别写出图中与向量−→−OD、−→−OE、−→−OE共线的向量.当堂检测1.|a|=1,则向量a是________向量;若|a|=0,则向量a是________向量.2.如图,D、E、F分别是△ABC三边AB、BC、AC的中点.(1)与相等的向量为________;(2)与共线的向量为________.我的收获:D EOABC F。

北师大版(2019)高中数学必修第二册课程目录与教学计划表

北师大版(2019)高中数学必修第二册课程目录与教学计划表

北师大版(2019)高中数学必修第二册课程目录与教学计划表教材课本目录是一本书的纲领,是教与学的路线图。

不管是做教学计划、实施教学活动,还是做学习计划、复习安排、工作总结,都离不开目录。

目录是一本书的知识框架,要做到心中有书、胸有成竹,就从目录开始吧!课程目录教学计划、进度、课时安排必修第二册第一章三角函数1 周期变化2 任意角2.1 角的概念推广2.2 象限角及其表示本节综合与测试3 弧度制3.1 弧度概念3.2 弧度与角度的换算本节综合与测试4 正弦函数和余弦函数的概念及其性质4.1 单位圆与任意角的正弦函数、余弦函数定义4.2 单位圆与正弦函数、余弦函数的基本性质4.3 诱导公式与对称4.4 诱导公式与旋转本节综合与测试5 正弦函数、余弦函数的图象与性质再认识5.1 正弦函数的图象与性质再认识5.2 余弦函数的图象与性质再认识本节综合与测试6 函数y=Asin(wx+φ)性质与图象6.1 探究w对y=sinwx的图象的影响6.2 探究φ对y=sin(x+φ)的图象的影响第六章立体几何初步1 基本立体图形1.1 构成空间几何体的基本元素1.2 简单多面体——棱柱、棱锥和棱台1.3 简单旋转体——球、圆柱、圆锥和圆台本节综合与测试2 直观图3 空间点、直线、平面之间的位置关系3.1 空间图形基本位置关系的认识3.2 刻画空间点、线、面位置关系的公理本节综合与测试4 平行关系4.1 直线与平面平行4.2 平面与平面平行本节综合与测试5 垂直关系5.1 直线与平面垂直5.2 平面与平面垂直本节综合与测试6 简单几何体的再认识6.1 柱、锥、台的侧面展开与面积6.2 柱、锥、台的体积6.3 球的表面积和体积本节综合与测试本章综合与测试本册综合。

从位移、速度、力到向量

从位移、速度、力到向量

B A 上面的向量记为AB, A为向量的起点, B为向量的终点;
也可记为a
有向线段的三要素:起点、方向、长度 向线段的起点和终点字母表示,如 AB .
特别注意:把有向线段(即向量)任意 平移,向量不变,即看作同一向量,因 为向量的大小和方向没有改变。
a
c 等小写字母表示;或用表示有 2.字母表示法: 用 a、 b、
(4).下列说法正确的是 ( A ) A) 方向相同或相反的向量是平行向量. B) 零向量是 0 . C)长度相等的向量叫做相等向量. D) 共线向量是在一条直线上的向量.
(5).已知a、b是任意两个向量,下列条件: ①a=b; ②|a|=|b|; ③a与b的方向相反; ④a=0或b=0; ⑤ a与b都是单位向量. 其中是向量a与b平行的充分不必要条件是①③④ _____.
(1)若a = b,b = c,则a = c。
(2)若|a|=0,则a = 0
(3)若|a|=|b|,则a = b (4)两个向量a、b相等的充要条件是 |a|=|b| a ∥b (5)若A、B、C、D是不共线的四点,则AB=DC是
四边形ABCD是平形四边形的充要条件。
其中正确的个数是( A.0 B. 1 C. 2
(1)错 (4)对
(2)错 (5)错
(3)错
例2:已知O为正六边形ABCDEF的中心,在图中 所标出的向量中:
( 1 )试找出与FE共线的向量;
(2)确定与FE相等的向量;
(3) OA与BC相等吗?
解:( 1 ) OA, BC (2) BC (3)因为方向相反,所以不 相等。
E
D
F A
O
B
C
例3:在4 5达到方格中有一个向量 AB,以图中 的格点为起点和终点作 向量,其中与AB相等的

【新教材】2.1.1 从位移,速度,力到向量 课件-北师大版高中数学必修第二册(共16张PPT)

【新教材】2.1.1 从位移,速度,力到向量 课件-北师大版高中数学必修第二册(共16张PPT)

情境 3 如图 2 - 3,汽车沿倾斜角为 的坡路向上行驶,汽车的牵引力为 F
思考交流
上面三个情境中反映的物理量有什么共同的特点?
【结论】位移、速度和力这些物理量都是既有大小又有方向的量
向量概念引入
既有大小又有方向的量统称为向量.
注意:“大小”和“方向”是向量的两个重要方面 !
有向线段
在数学中,这种具有方向和长度的线段称为有向线段(如图 2-4). 以
A 为起点,B 为终点的有向线段,记作 AB ,线段 AB 的长度称为有向线
段 | AB |的长度,记作| AB |
平面向量的表示
1.几何表示 向量常用一条有向线段来表示.
i : 有向线段的长度表示向量的大小. ii: 箭头所指的方向表示向量的方向. iii:向量可以用有向线段的起点和终点字母表示,如:AB
典型例题
【例 1】
小明从学校的教学楼出就餐, 用餐后又从食堂向西走了 2 000 m 来 到操场运动.请选择 适当的比例尺画图,用向量表示小明每次的位 移.

设比例尺为 1:50 000,如图(2-6).小明的位移表示如下: 向量 OA 表示从教学楼到图书馆的距离与方向; 向量 AB 表示从图书馆到食堂的距离与方向; 向量 BC 表示从食堂到操场的距离与方向.
【题型扩充】判断下列说法是否正确:
1.由于零上温度可以用正数来表示,零下温度可以用负数来表示,所以温度 是向量.
错误:因为温度没有方向.
2.坐标平面上的 x 轴和 y 轴是向量. 错误: 因为无法刻画 x 轴和 y 轴的大小.
作业
P75页:第1,2题,
掌握向量及向量的有关概念、表示方法,了解两个特殊向量的性质
第二章 平面向量及应用

必修4-2.1 从力、速度、位移到向量

必修4-2.1      从力、速度、位移到向量

16
本课所学的知识点有哪些? 向量的概念及几何表示; 零向量、单位向量、相等向量、共线向量.
你有何收获?
17
1、P75习题2-4,A组1、2、3、4, 2、高中同步测控优化设计“训练与测评 ”P13 3、预习:P76、§2从位移的合成到向量的加法
18
19
向量a与b相等,记作a b .
因此,当用有向线段 表示向量时,起点可以任 意选取,同向且等长的有 向线段都表示同一向量, 或者说向量可以在平面内 平行移动 .
A1B1 A2 B2 A3 B3
13
B1 B2
B3 A2 A1 A3
4、平行向量: 如果表示两个向量的有向线段所在的直线平行或重合, 则称这两个向量平行或共线 .
哈尔滨
北京
重庆 广州
上海
5
飞机向东北方向飞行了150km,飞行时间为半 小时,那么飞行速度的大小是300km/h,方向是 东北 . 假如学校位于你家东偏北30°方向,距离你家 2000m . 从家到学校,可能有长短不同的几条路 . 无论走那条路,你的位移都是东偏北30°方向移 动了 2000m .
B(终点)
A(起点)
有向线段的三个要素:起点、方向、长度
10
2、向量的几何表示:用有向线段表示 .
向量AB 的大小,也就是有向线 段 AB 的长度(也称 模),记作| AB | .
长度为0 的向量称为零向量,记 作0 或0.
长度为单位1的向量,叫作单位向量 .
思考: “向量就是有向线段, 有向线段就是向量.”的说法 对吗?
F 图2-7
解 (1)在以A,B,C,D,E,F为起点或终点的 向量中,与向量DE相等的向量有:AF和FC; (2)在以A,B,C,D,E,F为起点或终点的向 量中,与向量DF相等的向量有:BE,EB,EC, CE,BC,CB,FD .

【北师大版】高中数学必修四全册学案(全册共340页 附答案)

【北师大版】高中数学必修四全册学案(全册共340页 附答案)

【北师大版】高中数学必修四全册学案(全册共340页附答案)目录§1周期现象§2角的概念的推广§3弧度制4.1 单位圆与任意角的正弦函数、余弦函数的定义4.2 单位圆与周期性4.3 单位圆与正弦函数、余弦函数的基本性质4.4 单位圆的对称性与诱导公式(一)4.4 单位圆的对称性与诱导公式(二)5.1 正弦函数的图像5.2 正弦函数的性质§6余弦函数的图像与性质7.1 正切函数的定义7.2 正切函数的图像与性质7.3 正切函数的诱导公式§8函数y=A sin(ωx+φ)的图像与性质(一)§8函数y=A sin(ωx+φ)的图像与性质(二)§9三角函数的简单应用章末复习课第二章平面向量§1从位移、速度、力到向量2.1 向量的加法2.2 向量的减法3.1 数乘向量3.2 平面向量基本定理§4平面向量的坐标§5从力做的功到向量的数量积§1周期现象内容要求 1.了解周期现象,能判断简单的实际问题中的周期(重点).2.初步了解周期函数的概念,能判断简单的函数的周期性(难点).知识点周期现象(1)概念:相同间隔重复出现的现象.(2)特点:①有一定的规律;②不断重复出现.【预习评价】1.(正确的打“√”,错误的打“×”)(1)地球上一年春、夏、秋、冬四季的变化是周期现象.(√)(2)钟表的分针每小时转一圈,它的运行是周期现象.(√)2.观察“2,0,1,7,2,0,1,7,2,0,1,7,…”寻找规律,则第25个数字是________.解析观察可知2,0,1,7每隔四个数字重复出现一次,具有周期性,故第25个数字为2. 答案 2题型一周期现象的判断【例1】判断下列现象是否为周期现象,并说明理由.(1)地球的自转;(2)连续抛掷一枚骰子,朝上一面的点数;(3)钟表的秒针的转动;(4)某段高速公路每天通过的车辆数.解(1)地球每天自转一圈,并且每一天内的任何时段总会重复前一天内相同时段的动作,因此是周期现象.(2)连续抛掷一枚骰子,朝上一面的点数有可能为1,2,…,6,并且前一次出现的点数,下一次可能出现,也可能不出现,故出现的点数是随机的,因此不是周期现象.(3)钟表的秒针的转动,每一分钟转一圈,并且每分钟总是重复前一分钟的动作,因此是周期现象.(4)某段高速公路每天通过的车辆数,会因时间、天气、交通状况等因素而发生变化,没有一个确定的规律,因此不是周期现象.规律方法周期现象的判断关键:首先要认真审题,明确题目的实际背景,然后应牢牢抓住“间隔相同,现象(或值)重复出现”这一重要特征进行判断.【训练1】判断下列现象是否为周期现象:(1)每届奥运会的举办时间;(2)北京天安门广场的国旗,日出时升旗,日落时降旗,则其每天的升旗时间;(3)中央电视台每晚7:00的新闻联播.解(1)奥运会每4年一届,所以其举办时间呈周期现象.(2)北京每天的日出、日落随节气变化,并非恒定,相邻两天的升旗时间间隔是变化的,不是常数,所以不是周期现象.(3)每24小时,新闻联播重复一次,所以是周期现象.题型二周期现象的应用【例2】一个地区不同日子里白昼的时长是不同的,所给表是某地一年中10天测量的白昼时间统计表(时间近似到0.1小时):坐标系中画出这些数据的散点图,并估计该地区一年中大约有多少天白昼时间大于15.9小时.(2)白昼时间的变化是否具有周期现象?你估计该地区来年6月21日的白昼时间是多少?解(1)散点图如图所示,因为从4月27日至8月13日的白昼时间均超过15.9小时,所以该地区一年白昼时间超过15.9小时的大约有3+31+30+31+12=107(天).(2)由散点图可知,白昼时间的变化是周期现象,该地区来年6月21日的白昼时间为19.4小时.规律方法收集数据、画散点图,分析、研究数据特点从而得出结论是用数学方法研究现实问题的常用方法.【训练2】受日月的引力,海水会发生涨落,这种现象叫做潮汐.已知某海滨浴场的海浪高度y(米)是时间t(0≤t≤24,单位:时)的函数,记作y=f(t),下表是某日各时的浪高数据:几次?时间最长的一次是什么时候?有多长时间?解由题中表可知,一天内能开放三次,时间最长的一次是上午9时至下午3时,共6个小时.【例3】2017年5月1日是星期一,问2017年10月1日是星期几?解按照公历记法,2017年5、7、8这三个月份都是31天,6、9月份各30天.从2017年5月1日到2017年10月1日共有153天,因为每星期有7天,故由153=22×7-1知,从2017年5月1日再过154天恰好与5月1日相同都是星期一,这一天是公历2017年10月2日,故2017年10月1日是星期日.【迁移1】试确定自2017年5月1日再过200天是星期几?解由200=28×7+4知自2017年5月1日再过200天是星期五.【迁移2】从2017年5月1日到2017年10月1日经过了几个星期五?几个星期一?解因为从2017年5月1日到2017年10月1日的153天中有21个完整的周期零6天,在每个周期中有且仅有一个星期五和一个星期一,故共经过了22个星期五,21个星期一.【迁移3】试确定自2017年5月1日再过7k+3(k∈Z)天后那一天是星期几?解每隔七天,周一至周日依次循环,故7k天后为周一,7k+3天后为星期四.规律方法应用周期性解决实际问题的两个要点特别提醒计算两个日期的间隔时间时要注意有的月份30天,有的月份31天,二月份有28天(或29天).课堂达标1.下列自然现象:月亮东升西落,气候的冷暖,昼夜变化,火山爆发.其中是周期现象的有( )A.1个B.2个C.3个D.4个解析月亮东升西落及昼夜变化为周期现象;气候的冷暖与火山爆发不是周期现象,故选B.答案 B2.如果今天是星期五,则58天后的那一天是星期( )A.五B.六C.日D.一解析每隔七天循环一次,58=7×8+2,故58天后为周日.答案 C3.共有50架飞机组成编队,按侦察机、直升机、轰炸机、歼击机的顺序轮换编队,则最后一架飞机是________飞机.解析周期为4,50=12×4+2,所以最后一架是直升机.答案直升机4.某物体作周期运动,如果一个周期为0.4秒,那么运动4秒,该物体经过了________个周期.解析4÷0.4=10,所以经过了10个周期.答案105.某班有48名学生,每天安排4名同学进行卫生值日,按一周上五天课,一学期二十周计算,该班每位同学一学期要值日几次?解共有48名学生,每天安排4名,则12个上课日就轮完一遍.一学期有5×20=100(个)上课日,而12×8=96(个)上课日,所以一个学期内该班每位同学至少值日8次,有部分同学要值日9次.课堂小结1.对于某些具有重复现象的事件,研究其规律,可预测未来在一定时间该现象发生的可能性及发生规律,具有一定的研究价值.2.利用散点图可以较直观地分析两变量之间的某种关系,然后再利用这种关系选择一种合适的函数去拟合这些散点,从而可以避免因盲目选择函数模型而造成的不必要的失误.基础过关1.下列是周期现象的为( ) ①闰年每四年一次;②某交通路口的红绿灯每30秒转换一次; ③某超市每天的营业额; ④某地每年6月份的平均降雨量. A .①②④B .②④C .①②D .①②③解析 ①②是周期现象;③中每天的营业额是随机的,不是周期现象;④中每年6月份的降雨量也是随机的,不是周期现象. 答案 C2.把17化成小数,小数点后第20位是( )A .1B .2C .4D .8解析 17=0.1·42857·,小数点后“142857”呈周期性变化,且周期为 6.∵20=3×6+2,∴第20位为4. 答案 C3.按照规定,奥运会每4年举行一次.2016的夏季奥运会在巴西举办,那么下列年份中不举办夏季奥运会的应该是( ) A .2020 B .2024 C .2026D .2028解析 C 中2026不是4的倍数,选C. 答案 C4.把一批小球按2个红色,5个白色的顺序排列,第30个小球是________色. 解析 周期为7,30=4×7+2,所以第30个小球与第2个小球颜色相同,为红色. 答案 红5.如图所示,变量y与时间t(s)的图像如图所示,则时间t至少隔________ s时y=1会重复出现1次.答案 26.若今天是星期一,则第7天后的那一天是星期几?第120天后的那一天是星期几?(注:今天是第一天)解每星期有7天,从星期一到星期日,呈周期性变化,其周期为7.∴第7天后的那一天是星期一.∵120=17×7+1,∴第120天后的那一天是星期二.7.水车上装有16个盛水槽,每个盛水槽最多盛水10升,假设水车5分钟转一圈,计算1小时内最多盛水多少升?解因为1小时=60分钟=12×5分钟,且水车5分钟转一圈,所以1小时内水车转12圈.又因为水车上装有16个盛水槽,每个盛水槽最多盛水10升,所以每转一圈,最多盛水16×10=160(升,)所以水车1小时内最多盛水160×12=1 920(升).能力提升8.钟表分针的运动是一个周期现象,其周期为60分钟,现在分针恰好指在2点处,则100分钟后分针指在( )A.8点处B.10点处C.11点处D.12点处解析由于100=1×60+40,所以100分钟后分针所指位置与40分钟后分针所指位置相同,现在分针恰好指在2点处,经过40分钟分针应指在10点处,故选B.答案 B9.设钟摆每经过1.8秒回到原来的位置.在图中钟摆达到最高位置A点时开始计时,经过1分钟后,钟摆的大致位置是( )A.点A处B.点B处C.O、A之间D.O、B之间解析 钟摆的周期T =1.8 秒,1分钟=(33×1.8+0.6)秒,又T 4<0.6<T2,所以经过1分钟后,钟摆在O 、B 之间. 答案 D10.今天是星期六,再过100天后是星期________. 解析 100=14×7+2,∴再过100天是星期一. 答案 一11.一个质点,在平衡位置O 点附近振动,如果不考虑阻力,可将此振动看作周期运动,从O 点开始计时,质点向左运动第一次到达M 点用了0.3 s ,又经过0.2 s 第二次通过M 点,则质点第三次通过M 点,还要经过的时间可能是________ s.解析 质点从O 点向左运动,O →M 用了0.3 s ,M →A →M 用了0.2 s ,由于M →O 与O →M 用时相同,因此质点运动半周期T2=0.2+0.3×2=0.8(s),从而当质点第三次经过M 时用时应为M →O →B →O →M ,所用时间为0.3×2+0.8=1.4(s). 答案 1.412.游乐场中的摩天轮匀速旋转,每转一圈需要12分钟,其中心O 距离地面40.5米,半径40米.如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时,请解答下列问题:(1)你与地面的距离随时间的变化而变化,这个现象是周期现象吗? (2)转四圈需要多少时间?(3)你第四次距地面最高需要多少时间? (4)转60分钟时,你距离地面是多少? 解 (1)是周期现象,周期12分钟/圈. (2)转四圈需要时间为4×12=48(分钟).(3)第1次距离地面最高需122=6(分钟),而周期是12分钟,所以第四次距地面最高需12×3+6=42(分钟).(4)∵60÷12=5,∴转60分钟时你距离地面与开始时刻距离地面相同,即40.5-40=0.5(米).13.(选做题)下面是一个古希腊的哲学家、数学家、天文学家毕达哥拉斯的故事:有一次毕达哥拉斯处罚学生,让他来回数在黛安娜神庙的七根柱子(这七根柱子的标号分别为A,B,C,…,G),如图所示,一直到指出第1 999个数的柱子的标号是哪一个才能够停止.你能帮助这名学生尽快结束这个处罚吗?解通过观察可发现规律:数“2,3,4,…,1 997,1 998,1 999”按标号为“B,C,D,E,F,G,F,E,D,C,B,A”这12个字母循环出现,因此周期是12.先把1去掉,(1 999-1)÷12=166……6,因此第1 999个数的柱子的标号与第167个周期的第6个数的标号相同,故数到第1 999个数的柱子的标号是G.§2角的概念的推广内容要求 1.理解正角、负角、零角与象限角的概念(知识点1 角的概念(1)角的概念:角可以看成平面内一条射线绕着端点O从一个位置OA旋转到另一个位置OB 所形成的图形.点O是角的顶点,射线OA,OB分别是角α的始边和终边.(2)按照角的旋转方向,分为如下三类:(正确的打“√”,错误的打“×”)(1)按逆时针方向旋转所成的角是正角(√)(2)按顺时针方向旋转所成的角是负角(√)(3)没有作任何旋转就没有角对应(×)(4)终边和始边重合的角是零角(×)(5)经过1小时时针转过30°(×)知识点2 象限角如果角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是第几象限角.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.【预习评价】1.锐角属于第几象限角?钝角又属于第几象限角?提示锐角属于第一象限角,钝角属于第二象限角.2.第二象限的角比第一象限的角大吗?提示不一定.如120° 是第二象限的角,390°是第一象限的角,但120°<390°.知识点3 终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任何一个与角α终边相同的角,都可以表示成角α与周角的整数倍的和.【预习评价】(正确的打“√”,错误的打“×”)(1)终边相同的角一定相等(×)(2)相等的角终边一定相同(√)(3)终边相同的角有无数多个(√)(4)终边相同的角它们相差180°的整数倍(×)题型一角的概念的推广【例1】写出下图中的角α,β,γ的度数.解要正确识图,确定好旋转的方向和旋转的大小,由角的概念可知α=330°,β=-150°,γ=570°.规律方法 1.理解角的概念的三个“明确”2.表示角时的两个注意点(1)字母表示时:可以用希腊字母α,β等表示,“角α”或“∠α”可以简化为“α”.(2)用图示表示角时:箭头不可以丢掉,因为箭头代表了旋转的方向,也即箭头代表着角的正负.【训练1】(1)图中角α=________,β=________;(2)经过10 min,分针转了________.解析(1)α=-(180°-30°)=-150°β=30°+180°=210°.(2)分针按顺时针过了周角的16,即-60°.答案(1)-150°210°(2)-60°题型二终边相同的角【例2】已知α=-1 910°.(1)把α写成β+k×360°(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求θ,使θ与α的终边相同,且-720°≤θ<0°.解(1)-1 910°=250°-6×360°,其中β=250°,从而α=250°+(-6)×360°,它是第三象限角.(2)令θ=250°+k×360°(k∈Z),取k=-1,-2就得到满足-720°≤θ<0°的角,即250°-360°=-110°,250°-720°=-470°.所以θ为-110°,-470°.规律方法将任意角化为α+k·360°(k∈Z,且0°≤α<360°)的形式,关键是确定k.可用观察法(α的绝对值较小时适用),也可用除以360°的方法.要注意:正角除以360°,按通常的除法进行,负角除以360°,商是负数,且余数为正值.【训练2】写出终边在阴影区域内(含边界)的角的集合.解 终边在直线OM 上的角的集合为M ={α|α=45°+k ·360°,k ∈Z }∪{α|α=225°+k ·360°,k ∈Z }={α|α=45°+2k ·180°,k ∈Z }∪{α|α=45°+(2k +1)·180°,k ∈Z } ={α|α=45°+n ·180°,n ∈Z }.同理可得终边在直线ON 上的角的集合为{α|α=60°+n ·180°,n ∈Z }, 所以终边在阴影区域内(含边界)的角的集合为 {α|45°+n ·180°≤α≤60°+n ·180°,n ∈Z }.【探究1】 在四个角-20°,-400°,-2 000°,1 600°中,第四象限角的个数是( ) A .0 B .1 C .2D .3解析 -20°是第四象限角,-400°=-360°-40°与-40°终边相同,是第四象限角,-2 000°=-6×360°+160°与160°终边相同,是第二象限角,1 600°=4×360°+160°与160°终边相同,是第二象限角,故第四象限角有2个. 答案 C【探究2】 写出终边落在第一象限和第二象限内的角的集合.解 根据终边相同的角一定是同一象限的角,又可以先写出第一象限锐角范围和第二象限钝角的范围,再加上360°的整数倍即可. 所以表示为:第一象限角的集合:S ={β|β=k ·360°+α,0°<α<90°,k ∈Z },或S ={β|k ·360°<β<k ·360°+90°,k ∈Z }.第二象限角的集合:S ={β|β=k ·360°+α,90°<α<180°,k ∈Z },或S ={β|k ·360°+90°<β<k ·360°+180°,k ∈Z }.【探究3】 已知α为第二象限角,那么2α,α2分别是第几象限角?解 ∵α是第二象限角,∴90+k ×360°<α<180°+k ×360°,180°+2k ×360°<2α<360°+2k ×360°,k ∈Z .∴2α是第三或第四象限角,或是终边落在y 轴的非正半轴上的角.同理45°+k 2×360°<α2<90°+k2×360°,k ∈Z .当k 为偶数时,不妨令k =2n ,n ∈Z ,则45°+n ×360°<α2<90°+n ×360°,此时,α2为第一象限角;当k 为奇数时,令k =2n +1,n ∈Z ,则225°+n ×360°<α2<270°+n ×360°,此时,α2为第三象限角.∴α2为第一或第三象限角. 【探究4】 已知α为第一象限角,求180°-α2是第几象限角.解 ∵α为第一象限角,∴k ·360°<α<k ·360°+90°,k ∈Z , ∴k ·180°<α2<k ·180°+45°,k ∈Z , ∴-45°-k ·180°<-α2<-k ·180°,k ∈Z ,∴135°-k ·180°<180°-α2<180°-k ·180°,k ∈Z .当k =2n (n ∈Z )时,135°-n ·360°<180°-α2<180°-n ·360°,为第二象限角;当k =2n +1(n ∈Z )时,-45°-n ·360°<180°-α2<-n ·360°,为第四象限角.∴180°-α2是第二或第四象限角.规律方法 1.象限角的判定方法(1)根据图像判定.利用图像实际操作时,依据是终边相同的角的概念,因为0°~360°之间的角与坐标系中的射线可建立一一对应的关系.(2)将角转化到0°~360°范围内,在直角坐标平面内,0°~360°范围内没有两个角终边是相同的.2.α,2α,α2等角的终边位置的确定方法不等式法:(1)利用象限角的概念或已知条件,写出角α的范围. (2)利用不等式的性质,求出2α,α2等角的范围.(3)利用“旋转”的观点,确定角终边的位置.例如,如果得到k ×120°<α3<k ×120°+30°,k ∈Z ,可画出0°<α3<30°所表示的区域,再将此区域依次逆时针或顺时针转动120°(如图所示).易错警示 由α的范围确定2α的范围时易忽视终边在坐标轴上的情况.课堂达标1.-361°的终边落在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析 因为-361°的终边和-1°的终边相同,所以它的终边落在第四象限,故选D. 答案 D2.设A ={θ|θ为锐角},B ={θ|θ为小于90°的角},C ={θ|θ为第一象限的角},D ={θ|θ为小于90°的正角},则下列等式中成立的是( ) A .A =B B .B =C C .A =CD .A =D解析 直接根据角的分类进行求解,容易得到答案. 答案 D3.将-885°化为α+k ·360°(0°≤α<360°,k ∈Z )的形式是________________. 答案 195°+(-3)×360°4.与-1 692°终边相同的最大负角是________. 解析 ∵-1 692°=-5×360°+108°, ∴与108°终边相同的最大负角为-252°. 答案 -252°5.如图所示,写出终边落在阴影部分的角的集合.解设终边落在阴影部分的角为α,角α的集合由两部分组成.①{α|k·360°+30°≤α<k·360°+105°,k∈Z}.②{α|k·360°+210°≤α<k·360°+285°,k∈Z}.∴角α的集合应当是集合①与②的并集:{α|k·360°+30°≤α<k·360°+105°,k∈Z}∪{α|k·360°+210°≤α<k·360°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}∪{α|(2k+1)180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,或(2k+1)·180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|n·180°+30°≤α<n·180°+105°,n∈Z}.课堂小结1.对角的理解,初中阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理解这一概念时,要注意“旋转方向”决定角的“正负”,“旋转量”决定角的“绝对值大小”.2.区域角的表示形式并不唯一,如第二象限角的集合,可以表示为{α|90°+k×360°<α<180°+k×360°,k∈Z},也可以表示为{α|-270°+k×360°<α<-180°+k×360°,k∈Z}.基础过关1.下列各组角中,终边相同的是( )A.495°和-495°B.1 350°和90°C.-220°和140°D.540°和-810°解析-220°=-360°+140°,∴-220°与140°终边相同.答案 C2.设A={小于90°的角},B={锐角},C={第一象限角},D={小于90°而不小于0°的角},那么有( )A.B C A B.B A CC.D A∩C) D.C∩D=B解析锐角、0°~90°的角、小于90°的角及第一象限角的范围,如下表所示.答案 D3.若α是第四象限角,则180°-α是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析可以给α赋一特殊值-60°,则180°-α=240°,故180°-α是第三象限角.答案 C4.已知角α=-3 000°,则与角α终边相同的最小正角是______.解析∵-3 000°=-9×360°+240°,∴与-3 000°角终边相同的最小正角为240°.答案240°5.在-180°~360°范围内,与2 000°角终边相同的角是______.解析因为2 000°=200°+5×360°,2 000°=-160°+6×360°,所以在-180°~360°范围内与2 000°角终边相同的角有-160°,200°两个.答案-160°,200°6.在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°;(3)-950°15′.解(1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角.7.写出与25°角终边相同的角的集合,并求出该集合中满足不等式-1 080°≤β<-360°的角β.解与25°角终边相同的角的集合为S={β|β=k·360°+25°,k∈Z}.令k=-3,则有β=-3×360°+25°=-1 055°,符合条件;令k=-2,则有β=-2×360°+25°=-695°,符合条件;令k =-1,则有β=-1×360°+25°=-335°,不符合条件. 故符合条件的角有-1 055°,-695°.能力提升8.以下命题正确的是( ) A .第二象限角比第一象限角大B .A ={α|α=k ·180°,k ∈Z },B ={β|β=k ·90°,k ∈Z },则ABC .若k ·360°<α<k ·360°+180°(k ∈Z ),则α为第一或第二象限角D .终边在x 轴上的角可表示为k ·360°(k ∈Z ) 解析 A 不正确,如-210°<30°.在B 中,当k =2n ,k ∈Z 时,β=n ·180°,n ∈Z . ∴AB ,∴B 正确.又C 中,α为第一或第二象限角或在y 轴的非负半轴上, ∴C 不正确.显然D 不正确. 答案 B9.集合M =⎩⎨⎧⎭⎬⎫x |x =k ·180°2±45°,k ∈Z ,P =⎩⎨⎧⎭⎬⎫x |x =k ·180°4±90°,k ∈Z ,则M 、P之间的关系为( ) A .M =P B .M P C .M PD .M ∩P =∅解析 对集合M 来说,x =(2k ±1)·45°,即45°的奇数倍;对集合P 来说,x =(k ±2)·45°,即45°的倍数. 答案 B10.已知角α、β的终边相同,那么α-β的终边在________. 解析 ∵α、β终边相同, ∴α=k ·360°+β(k ∈Z ).∴α-β=k ·360°,故α-β终边会落在x 轴非负半轴上. 答案 x 轴的非负半轴上11.若α为第一象限角,则k ·180°+α(k ∈Z )的终边所在的象限是第________象限. 解析 ∵α是第一象限角,∴k 为偶数时,k ·180°+α终边在第一象限;k 为奇数时,k ·180°+α终边在第三象限. 答案 一或三12.求终边在直线y =x 上的角的集合S .解 因为直线y =x 是第一、三象限的角平分线,在0°~360°之间所对应的两个角分别是45°和225°,所以S ={α|α=k ·360°+45°,k ∈Z }∪{α|α=k ·360°+225°,k∈Z }={α|α=2k ·180°+45°,k ∈Z }∪{α|α=(2k +1)·180°+45°,k ∈Z }={α|α=n ·180°+45°,n ∈Z }.13.(选做题)已知角α、β的终边有下列关系,分别求α、β间的关系式: (1)α、β的终边关于原点对称; (2)α、β的终边关于y 轴对称.解 (1)由于α、β的终边互为反向延长线,故α、β相差180°的奇数倍(如图1),于是α-β=(2k -1)·180°(k ∈Z ).(2)在0°~360°内,设α的终边所表示的角为90°-θ,由于α、β关于y 轴对称(如图2),则β的终边所表示的角为90°+θ.于是α=90°-θ+k 1·360°(k 1∈Z ),β=90°+θ+k 2·360°(k 2∈Z ).两式相加得α+β=(2k +1)·180°(k ∈Z ).§3 弧度制内容要求 1.了解弧度制的意义,能正确地进行弧度与角度的换算,熟记特殊角的弧度数(重点).2.掌握弧度制下的弧长公式,会用弧度解决一些实际问题(难点).知识点1 弧度制 (1)角度制与弧度制的定义(2)如果半径为r 的圆的圆心角α所对弧的长为l ,那么角α的弧度数的绝对值是|α|=lr. 【预习评价】(正确的打“√”,错误的打“×”)(1)“度”与“弧度”是度量角的两种不同的度量单位(√) (2)1°的角是周角的1360,1 rad 的角是周角的12π(√)(3)1°的角比1 rad 的角要大(×)(4)1 rad 的角的大小和所在圆的半径的大小有关(×) 知识点2 角度制与弧度制的换算 常见角度与弧度互化公式如下:请填充完整下表,一些特殊角的角度数与弧度数的对应关系有:设扇形的半径为R ,弧长为l ,α(0<α<2π)为其圆心角,则1.一个扇形的半径为2 cm ,圆心角为π6,则该扇形所对的弧长l =________cm.答案π32.一个扇形的半径为2 cm ,其对应的弧长为2.则该扇形的面积为________cm 2. 答案 2知识点4 利用弧度制表示终边相同的角在弧度制下,与α终边相同的角连同α在内可以表示为2k π+α(k ∈Z ),其中α的单位必须是弧度. 【预习评价】1.与30°终边相同的角为( ) A .2k π+π3(k ∈Z )B .2k π+π6(k ∈Z )C .360°k +π3(k ∈Z )D .2k π+30°(k ∈Z )答案 B2.终边在x 轴上的角的集合用弧度制表示为________. 答案 {α|α=k π,k ∈Z }题型一 角度与弧度的互化【例1】 将下列角度与弧度进行互化: (1)20°;(2)-15°;(3)7π12;(4)-115π.解 (1)20°=20×π180 rad =π9 rad.(2)-15°=-15×π180 rad =-π12 rad.(3)712π rad =712×180°=105°. (4)-115π rad =-115×180°=-396°.规律方法 角度制与弧度制互化的原则、方法以及注意点(1)原则:牢记180°=π rad ,充分利用1°=π180rad 和1 rad =⎝ ⎛⎭⎪⎫180π°进行换算.(2)方法:设一个角的弧度数为α,角度数为n ,则α rad =α·180°;n °=n ·π180rad.(3)注意点:①用“弧度”为单位度量角时,“弧度”二字或“rad”可以省略不写;②用“弧度”为单位度量角时,“常常把弧度数写成多少π的形式,如无特别要求,不必把π写成小数;③度化弧度时,应先将分、秒化成度,再化成弧度. 【训练1】 将下列各角度与弧度互化: (1)512π;(2)-76π;(3)-157°30′. 解 (1)512π=512×180°=75°;(2)-76π=-76×180°=-210°;(3)-157°30′=-157.5°=-157.5×π180rad=-78π rad.题型二 用弧度制表示终边相同的角【例2】 (1)把-1 480°写成α+2k π(k ∈Z )的形式,其中0≤α<2π; (2)若β∈[-4π,0),且β与(1)中α终边相同,求β. 解 (1)∵-1 480°=-74π9=-10π+16π9,0≤16π9<2π,∴-1 480°=16π9-2×5π=16π9+2×(-5)π.(2)∵β与α终边相同,∴β=2k π+16π9,k ∈Z .又∵β∈[-4π,0),∴β1=-2π9,β2=-209π.【训练2】 用弧度制表示终边在图中阴影区域内角的集合(包括边界)并判断 2 015°是不是这个集合的元素.解 因为150°=5π6.所以终边在阴影区域内角的集合为S =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫β⎪⎪⎪5π6+2k π≤β≤3π2+2k π,k ∈Z . 因为2 015°=215°+5×360°=43π36+10π,又5π6<43π36<3π2.所以2 015°=43π36∈S ,即2 015°是这个集合的元素.方向1 求弧长【例3-1】 已知扇形OAB 的圆心角α为120°,半径长为6.求的长;解 ∵α=120°=23π,r =6,∴的长l =23π×6=4π.方向2 求圆心角【例3-2】 已知扇形周长为10,面积是4,求扇形的圆心角. 解 设圆心角是θ,半径是r , 则⎩⎪⎨⎪⎧2r +r θ=10,12θ·r 2=4⇒⎩⎪⎨⎪⎧r =4,θ=12或⎩⎪⎨⎪⎧r =1,θ=8(舍).故扇形圆心角为12.方向3 求面积的最值【例3-3】 已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?解 设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S , 则l +2r =40,∴l =40-2r . ∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100.∴当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2,此时θ=l r =40-2×1010rad =2 rad.∴当扇形的圆心角为2 rad ,半径为10 cm 时,扇形的面积最大为100 cm 2.规律方法 灵活运用扇形弧长公式、面积公式列方程组求解是解决此类问题的关键,有时运用函数思想、转化思想解决扇形中的有关最值问题,将扇形面积表示为半径的函数,转化为r 的二次函数的最值问题.课堂达标1.与120°角终边相同的角为( ) A .2k π-2π3(k ∈Z )B.11π3C .2k π-10π3(k ∈Z )D .(2k +1)π+2π3(k ∈Z )解析 120°=2π3且2k π-10π3=(2k -4)π+2π3(k ∈Z ),∴120°与2k π-10π3(k ∈Z ),终边相同.答案 C2.-23π12化为角度应为( )A .-345°B .-15°C .-315°D .-375°解析 -23π12=-2312×180°=-345°.答案 A3.已知扇形的半径为12,弧长为18,则扇形圆心角为________.解析 由弧长公式l =αR 得α=l R =1812=32.答案 324.下列结论不正确的是________(只填序号).①π3 rad =60°;②10°=π18 rad ;③36°=π5 rad ;④5π8 rad =115°. 解析5π8 rad =58×180°=112.5°,∴④错. 答案 ④5.一个扇形的面积为1,周长为4,求圆心角的弧度数. 解 设扇形的半径为R ,弧长为l ,则2R +l =4, ∴l =4-2R ,根据扇形面积公式S =12lR ,得1=12(4-2R )·R ,∴R =1,∴l =2,∴α=l R =21=2,即扇形的圆心角为2 rad.课堂小结1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad”这一关系式. 3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,具体应用时,要注意角的单位取弧度.基础过关1.在半径为10的圆中,240°的圆心角所对弧长为( )A.403πB.203π C.2003π D.4003π 解析 240°=240×π180 rad =43π rad ,∴弧长l =|α|·r =43π×10=403π,故选A.答案 A2.下列与9π4的终边相同的角的表达式中,正确的是( )A .2k π+45°(k ∈Z )B .k ·360°+9π4(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )答案 C3.若α=-3,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析 ∵-π<-3<-π2,∴-3是第三象限角.答案 C4.若三角形三内角之比为4∶5∶6,则最大内角的弧度数是____________. 答案 25π5.如果一扇形的弧长变为原来的32倍,半径变为原来的一半,则该扇形的面积为原扇形面积的________.解析 由于S =12lR ,若l ′=32l ,R ′=12R ,则S ′=12l ′R ′=12×32l ×12R =34S .答案 346.把下列各角化为2k π+α(0≤α<2π,k ∈Z ) 的形式且指出它是第几象限角,并写出与它终边相同的角的集合.(1)-46π3;(2)-1 485°;(3)-20.解 (1)-46π3=-8×2π+2π3,它是第二象限角,终边相同的角的集合为。

2020年高中数学必修第二册: 位移、速度、力与向量的概念 导学案(北师大版)

2020年高中数学必修第二册: 位移、速度、力与向量的概念 导学案(北师大版)

第二章平面向量及其应用第1节从位移、速度、力到向量第1课时位移、速度、力与向量的概念⑴通过对位移、速度、力等实例的分析,形成平面向量的概念;⑵学会平面向量的表示方法,理解向量集形与数于一身的基本特征;1.通过实例分析,形成平面向量的概念.2.会表示向量,并理解向量的基本特征.1.向量的概念:既有_____又有______的量叫向量2.向量的两要素:_______、_________.3.向量AB(或a)的大小,即长度(也称______),记作:_______或________.4.模长为0的向量叫做________,记作:_______5.模长为1的向量叫做________,记作:_______一、情景引入,温故知新情景1:学校位于小明家北偏东60°方向,距离小明家2000m,从小明家到学校,可能有长短不同的几条路.无论走哪条路,位移都是向北偏东60°方向移动了2000m(如图2-1).θ=,出手速率为v=28.35m/s(如情景2:某著名运动员投掷标枪时,其中一次记录为:出手角度43.242图2-2).情景3:如图2-3,汽车沿倾斜角为 的坡路向上行驶,汽车的牵引力为F问题:1上面三个情境中反映的物理量有什么共同的特点?2.请再举出一些含有类似性质的物理量实例进行分析,与同学交流向量的历史大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到.二、探索新知探究一向量的概念情境1. .老鼠由A向西北逃窜,猫在B处向东追去.猫能否追到老鼠?情境2. 民航从北京飞往重庆、广州、上海、哈尔滨等地的航班,这些航班的位移相同吗?情景3:起重机吊装物体时,物体既受到竖直向下的重力作用,同时又受到竖直向上的起重机拉力的作用.当拉力的大小超过重力的大小时,物体即被吊起思考:1物理中,既有大小又有方向的量,叫作什么?.2.在数学中,既有大小又有方向的量又叫作什么呢?归纳新知:向量的概念:既有大小又有方向的量叫向量向量的两要素:大小(模)、方向.(定义向量的模)问题1.现实生活中有哪些量既有大小又有方向?问题2.哪些量只有大小没有方向?例1.下列量中哪些是向量?悬挂物受到的拉力,压强,摩擦力,频率,加速度.问题:数量与向量的区别是什么?练习1:给出下列物理量:①密度;②路程;③速度;④质量;⑤功;⑥位移.下列说法正确的是( )A.①②③是数量,④⑤⑥是向量B.②④⑥是数量,①③⑤是向量C.①④是数量,②③⑤⑥是向量D.①②④⑤是数量,③⑥是向量例2.如图,某人上午从A到达了B,下午从B到达了C,请在图上用有向线段表示出该人上午的位移、下午的位移以及这一天内的位移.练习2.已知飞机从甲地按北偏东30°的方向飞行2000 km到达乙地,再从乙地按南偏东30°的方向飞行2000。

北师大版数学必修四课件:2.1从位移、速度、力到向量

北师大版数学必修四课件:2.1从位移、速度、力到向量
uu u r uuu r 则A、B、C、D四点必能组成平行四边形. AB DC,
uu u r
uuu r
uu u r
uuu r
r r r r 则r r (3)若 a ac b,b c,
r r r r r r (4)若 a P b, b P c, 则 a P c
【审题指导】结合共线向量及相等向量的概念求解.
uu u r
uuu r uur 【解析】易知四边形ABDE为平行四边形 ,则 AB ED, uur uuu r 又∵D是CE的中点,则 ED DC. uuu r uur 答案: DC,ED
5.判断下列各命题是否正确 (1)两个有共同起点并且相等的向量,其终点必相同; (2)两个有共同终点的向量,一定是共线向量; (3)向量就是有向线段. 【解析】(1) 正确,结合向量的定义可知只要大小相等和方 向相同的两个向量就是相等向量; (2)结合共线向量的定义可知(2)不正确; (3)不正确,有向线段是向量的一种表示形式.
【误区警示】对解答本题时易犯的错误具体分析如下:
1.下列物理量:
①质量;②速度;③位移;④加速度;⑤路程;⑥力;⑦密
度;⑧功.其中不是向量的有(
(A)1个 (B)2个
)
(C)3个 (D)4个
【解析】选D.看一个量是不是向量,主要看它是否具备向量 的两个要素,即大小和方向 .②③④⑥既有大小又有方向, 故它们是向量,而①⑤⑦⑧只有大小没有方向,故它们不是 向量.
确;对于(3),尽管零向量的方向不确定,但规定零向量与 任意向量平行,故(3)不正确;依据向量平行的定义可知(4) 正确.综上可知正确的命题有1个.
【例】判断下列命题的正误 (1)若向量 AB 与 CD 是共线向量,则A,B,C,D四点共线. (2)若四边形ABCD是平行四边形,则 AB DC; 反之,若

北师大版必修4高中数学第2章平面向量11.1位移速度和力1.2向量的概念

北师大版必修4高中数学第2章平面向量11.1位移速度和力1.2向量的概念

1.准确画出向量的方法是先确定向量的起点,再确定向量的方 向,然后根据向量的大小确定向量的终点.用有向线段来表示向量是 向量的几何表示,必须确定起点、长度和终点,三者缺一不可.
2.起点相同,长度也相同的向量的终点组成以该起点为圆心、 向量长度为半径的圆.
2.一辆消防车从 A 地去 B 地执行任务,先从 A 地向北偏东 30°方向行驶 2 千米到 D 地,然后 从 D 地沿北偏东 60°方向行驶 6 千米到达 C 地, 从 C 地又向南偏西 30°方向行驶了 2 千米才到达 B 地.
→ OA.
1.向量共线有三种情形: ①共线且同向;②共线且反向;③有一个是零向量. 2.向量的平行与直线平行的关系 两条直线平行时,直线上的有向线段平行,两向量平行时,表示 向量的有向线段所在直线不一定平行,也可能重合.若直线 m,n,l, m∥n,n∥l,则 m∥l;若向量 a,b,c,a∥b,b∥c,而 a,c 不一定 平行.
向量的表示 【例 2】 一艘军舰从基地 A 出发向东航行了 200 海里到达基地 B,然后改变航线向东偏北 60°航行了 400 海里到达 C 岛,最后又改 变航线向西航行了 200 海里到达 D 岛. (1)试作出向量A→B,B→C,C→D;
(2)求|A→D |.
[思路探究] 准确画出向量的方法是先确定向量的起点,再确定 向量的方向,然后结合向量的大小确定向量的终点.
(1)在如图所示的坐标系中画出A→D,D→C,C→B,A→B; (2)求 B 地相对于 A 地的位置向量.
[解] (1)向量A→D,D→C,C→B,A→B如图所示.
(2)由题意知A→D=B→C,∴AD 綊 BC, ∴四边形 ABCD 为平行四边形, ∴A→B=D→C, ∴B 地相对于 A 地的位置向量为“北偏东 60°,6 千米”.

第二章 平面向量(第1课时)

第二章  平面向量(第1课时)
7中学 高中数学 必修④
从位移、速度、力到向量
• 我们在物理学中已经学过“位移”、“速度”和 “力”相关的概念,知道他们不仅有大小而且还 有方向。因此,我们在解决实际问题时,不仅仅 只考虑他们的大小问题,而且要考虑方方向问题。 ————那么在数学中,如何解决类似于“位 移”、“速度”、“力”这样的问题呢?
例如: AB
CD
DE
(起点) A
a
②可以用黑体小写的字母
例如:a,b,c,d…… 书写用a, b, c, d
新余市第六中学 高中数学 必修④
向量的长度(模)
AB (或 a )表示向量 AB(或a)的大小,即长度(也称模)
特殊向量
①长度为零的向量称为零向量,其方向为任意方向, 记作0或0
②长度为单位1 的向量叫做单位向量, 记作:a0
新余市第六中学 高中数学 必修④
从位移、速度、力到向量
• 像“位移”、“速度”,“力”这样既有大小又 有方向的量叫做向量
思考题 请问“加速度”、“时间”,“密度”、“功”、“重 力”、“质量”、“角速度”、哪些是向量?为什么?
加速度,重力,角速度是向量,因为他们既有大小又有方向 时间,密度,功,质量不是向量,因为他们只有大小没有方 向
目录
§3 从速度的倍数到数乘向量
3.1 数乘向量
3.2 平面向量基本定理
第二章 平面向量
§4 平面向量的坐标
4.1 平面向量的坐标表示 4.2 平面向量线性运算的坐标表示 4.3 向量平行的坐标表示
新余市第六中学 高中数学 必修④
目录
第二章 平面向量
§5 从力的做功到向量的数量积 §6 平面向量数量积的坐标表示 §7 向量应用举例
新余市第六中学 高中数学 必修④

新课标高中数学教材目录大全

新课标高中数学教材目录大全

新课标高中数学教材目录大全新课标人教 A 版2.3 变量间的相关关系本章小结与复习必修一第三章概率第一章集合与函数的概念3.1 随机事件的概率1.1集合3.2 古典概型1.2函数及其表示3.3 几何概型1.3函数的基本性质本章小结与复习本章小结与复习必修四第二章基本初等函数(I)第一章三角函数2.1指数函数1.1 任意角和弧度制2.2对数函数1.2 任意角的三角函数2.3幂函数1.3 三角函数的诱导公式本章小结与复习1.4 三角函数的图象与性质第三章函数的应用3.1 函数与方程1.5 函数y=Asin( x+ )的图象3.2 函数模型及其应用1.6 三角函数模型的简单应用本章小结与复习本章小结与复习必修二第二章平面向量第一章空间几何体2.1 平面向量的实际背景及基本概.1.1 空间几何体的结构2.2 平面向量的线性运算1.2 空间几何体的三视图和直观图2.3 平面向量的基本定理及坐标表.1.3 空间几何体的表面积与体积2.4 平面向量的数量积本章小结与复习2.5 平面向量应用举例第二章点、直线、平面之间的位置关.本章小结与复习2.1 空间点、直线、平面之间的位.第三章三角恒等变换2.2 直线、平面平行的判定及其性. 3.1 两角和与差的正弦、余弦和正.2.3 直线、平面垂直的判定及其性. 3.2 简单的三角恒等变换本章小结与复习本章小结与复习必修五第三章直线与方程3.1 直线的倾斜角与斜率第一章解三角形3.2 直线的方程1.1 正弦定理和余弦定理3.3 直线的交点坐标与距离公式1.2 应用举例本章小结与复习1.3 实习作业第四章圆与方程本章小结与复习4.1 圆的方程第二章数列4.2 直线、圆的位置关系2.1 数列的概念与简单表示法4.3 空间直角坐标系2.2 等差数列本章小结与复习2.3 等差数列的前n 项和必修三2.4 等比数列第一章算法初步2.5 等比数列前n 项和1.1 算法与程序框图本章小结与复习1.2 基本算法语句第三章不等式1.3 算法案例3.1 不等关系与不等式本章小结与复习3.2 一元二次不等式及其解法第二章统计3.3 二元一次不等式(组)与简单的.2.1 随机抽样2.2 用样本估计总体3.4 基本不等式ab≤a b2( a ≥ 0, b ≥0)WORD格式本章小结与复习1.2导数的计算选修 1——1 1.3 导数在研究函数中的应用第一章常用逻辑用语2.4生活中的优化问题举例1.1 命题及其关系 1.5 定积分的概念1.2 充分条件与必要条件 1.6 微积分基本定理1.3 简单的逻辑联结词 1.7 定积分的简单应用1.4 全称量词与存在量词本章小结与复习本章小结与复习第二章推理与证明第二章圆锥曲线与方程2.1合情推理与演绎推理2.1 椭圆 2.2 直接证明与间接证明2.2 双曲线 2.3 数学归纳法2.3 抛物线本章小结与复习本章小结与复习第三章数系的扩充与复数的引入第三章导数及其应用3.1数系的扩充和复数的概念3.1 变化率与导数 3.2 复数代数形式的四则运算3.2 导数的计算本章小结与复习3.3 导数在研究函数中的应用选修 2——33.4 生活中的优化问题举例第一章计数原理本章小结与复习1.1分类加法计数原理与分步乘法计.选修 1——21.2排列与组合第一章统计案例1.3二项式定理1.1 回归分析的基本思想及其初步.本章小结与复习1.2 独立性检验的基本思想及其初.第二章随机变量及其分布本章小结与复习2.1离散型随机变量及其分布列第二章推理与证明2.2二项分布及其应用2.1 合情推理与演绎证明 2.3 离散型随机变量的均值与方差2.2 直接证明与间接证明 2.4 正态分布本章小结与复习本章小结与复习第三章数系的扩充与复数的引入第三章统计案例3.1 数系的扩充和复数的概念 3.1 回归分析的基本思想及其初步应.3.2 复数代数形式的四则运算 3.2 独立性检验的基本思想及其初步.本章小结与复习本章小结与复习第四章框图新课标人教 B 版4.1 流程图4.2 结构图必修一第一章集合本章小结与复习综合复习与测试1.1集合与集合的表示方法选修 2——11.2集合之间的关系与运算本章小结与复习第一章常用逻辑用语1.1命题及其关系第二章函数1.2充分条件与必要条件2.1 函数WORD格式1.3简单的逻辑联结词2.2 一次函数和二次函数1.4全称量词与存在量词2.3 函数的应用(I)本章小结与复习2.4函数与方程第二章圆锥曲线与方程本章小结与复习2.1曲线与方程第三章基本初等函数(I)2.2椭圆3.1 指数与指数函数2.3双曲线3.2 对数与对数函数2.4抛物线3.3 幂函数本章小结与复习3.4函数的应用(II)第三章空间向量与立体几何本章小结与复习3.1空间向量及其运算必修二3.2立体几何中的向量方法第一章立体几何初步本章小结与复习1.1 空间几何体选修 2——2 1.2 点、线、面之间的位置关系第一章导数及其应用本章小结与复习1.1变化率与导数第二章平面解析几何初步WORD格式2.1 平面直角坐标系中的基本公式第一章常用逻辑用语2.2 直线方程1.1 命题与量词2.3 圆的方程1.2 基本逻辑联结词2.4 空间直角坐标系1.3 充分条件、必要条件与命题的.本章小结与复习本章小结与复习必修三第二章圆锥曲线与方程第一章算法初步2.1 椭圆1.1 算法与程序框图2.2 双曲线1.2 基本算法语句2.3 抛物线1.3 中国古代数学中的算法案例本章小结与复习本章小结与复习第三章导数及其应用第二章统计3.1 导数2.1 随机抽样3.2 导数的运算2.2 用样本估计总体3.3 导数的应用2.3 变量的相关性本章小结与复习选修 1——2 本章小结与复习第一章统计案例 , 第三章概率3.1 随机现象 1.1 独立性检验3.2 古典概型 1.2 回归分析3.3 随机数的含义与应用本章小结与复习3.4 概率的应用第二章推理与证明 ,本章小结与复习2.1合情推理与演绎推理必修四 2.2 直接证明与间接证明第一章基本初等函数(Ⅱ)本章小结与复习1.1 任意角的概念与弧度制第三章数系的扩充与复数的引入, 1.2 任意角的三角函数 3.1 数系的扩充与复数的引入1.3 三角函数的图象与性质 3.2 复数的运算本章小结与复习第四章框图,第二章平面向量2.5流程图2.1 向量的线性运算 4.2 结构图2.2 向量的分解与向量的坐标运算本章小结与复习选修 2——1 2.3 平面向量的数量积2.4 向量的应用第一章常用逻辑用语本章小结与复习2.2命题与量词第三章三角恒等变换2.3基本逻辑联结词3.1 和角公式 1.3 充分条件、必要条件与命题的.3.2 倍角公式和半角公式本章小结与复习3.3 三角函数的积化和差与和差化.第二章圆锥曲线与方程本章小结与复习3.2曲线与方程必修五 2.2 椭圆第一章解斜角三角形1.4双曲线WORD格式1.1 正弦定理和余弦定理 2.4 抛物线1.2 应用举例 2.5 直线与圆锥曲线本章小结与复习本章小结与复习第二章数列第三章空间向量与立体几何2.1 数列 3.1 空间向量及其运算2.2 等差数列 3.2 空间向量在立体几何中的应用2.3 等比数列本章小结与复习选修 2——2 本章小结与复习第三章不等式第一章导数及其应用3.1 不等关系与不等式 1.1 导数3.2 均值不等式 1.2 导数的运算3.3 一元二次不等式及其解法 1.3 导数的应用3.4 不等式的实际应用 1.4 定积分与微积分基本定理3.5 二元一次不等式(组)与简单线 .本章小结与复习本章小结与复习第二章推理与证明选修 1——1 2.1 合情推理与演绎推理WORD格式1.4直接证明与间接证明 1.6 垂直关系1.5数学归纳法 1.7 简单几何体的面积和体积1.6本章小结与复习2.6面积公式和体积公式的简单应用本章小结与复习第三章数系的扩充与复数2.4数系的扩充与复数的概念第二章解析几何初步2.5复数的运算 2.1 直线与直线的方程本章小结与复习3.3圆的圆的方程选修 2——33.4空间直角坐标系第一章计数原理本章小结与复习1.5基本计数原理必修三1.6排列与组合第一章统计1.7二项式定理 1.1 统计活动:随机选取数字本章小结与复习2.3从普查到抽样第二章概率2.4抽样方法1.3离散型随机变量及其分布列 1.4 统计图表1.4条件概率与事件的独立性 1.5 数据的数字特征1.5随机变量的数学特征 1.6 用样本估计总体1.6正态分布 1.7 统计活动:结婚年龄的变化本章小结与复习1.5相关性第三章统计案例1.6最小二乘估计2.5独立性检验本章小结与复习2.6回归分析第二章算法初步本章小结与复习2.5算法的基本思想北师大版2.6算法的基本结构及设计2.7排序问题必修一 2.4 几种基本语句第一章集合本章小结与复习3.5集合的含义与表示第三章概率3.6集合的基本关系 3.1 随机事件的概率3.7集合的基本运算 3.2 古典概型本章小结与复习2.7模拟方法 --概率的应用第二章函数本章小结与复习3.3生活中的变量关系必修四3.4对函数的进一步认识第一章三角函数3.5函数的单调性 1.1 周期现象与周期函数3.6二次函数性质的再研究 1.2 角的概念的推广3.7简单的幂函数 1.3 弦度制本章小结与复习3.8正弦函数第三章指数函数和对数函数3.9余弦函数1.2正整数指数函数 1.6 正切函数1.3指数概念的扩充 1.7 函数的图像1.4指数函数 1.8 同角三角函数的基本关系1.5对数本章小结与复习1.6对数函数第二章平面向量1.7指数函数、幂函数、对数函数.2.1 从位移、速度、力到向量本章小结与复习2.2从位移的合成到向量的加法第四章函数应用2.3从速度的倍数到数乘向量4.1函数与方程 2.4 平面向量的坐标4.2实际问题的函数建模 2.5 从力做的功到向量的数量积本章小结与复习2.6平面向量数量积的坐标表示必修二 2.7 向量应用举例第一章立体几何初步本章小结与复习1.1简单几何体第三章三角恒等变形1.2三视图 3.1 两角和与差的三角函数1.3直观图 3.2 二倍角的正弦、余弦和正切1.4空间图形的基本关系与公理 3.3 半角的三角函数1.5平行关系 3.4 三角函数的和差化积与积化和.1.7三角函数的简单应用第四章数系的扩充与复数的引入本章小结与复习2.7数系的扩充与复数的引入必修五 4.2 复数的四则运算第一章数列本章小结与复习选修 2——12.6数列2.7等差数列第一章常用逻辑用语2.8等比数列 1.1 命题2.9数列在日常经济生活中的应用 1.2 充分条件必要条件2.10本章小结与复习3.5全称量词与存在量词第二章解三角形3.6逻辑联结词“且”或“非”.1.8正弦定理与余弦定理本章小结与复习1.9三角形中的几何计算第二章空间向量与立体几何1.10解三角形的实际应用举例2.1 从平面向量到到空间向量本章小结与复习2.5空间向量的运算第三章不等式2.6向量的坐标表表示和空间向量.1.7不等关系2.4 用向量讨论垂直与平行1.8一元二次不等式2.5 夹角的计算1.9基本不等式2.6 距离的计算1.10简单线性规划本章小结与复习本章小结与复习第三章圆锥曲线与方程选修 1——13.1 椭圆第一章常用逻辑用语1.7抛物线2.8命题3.3 双曲线2.9充分条件必要条件3.4 曲线与方程2.10全称量词与存在量词本章小结与复习选修 2——2 1.4 逻辑联结词“且”或“非”本章小结与复习第一章推理与证明第二章圆柱曲线与方程2.8归纳与类比3.10椭圆 1.2 综合法与分析法3.11抛物线 1.3 反证法3.12双曲线 1.4 数学归纳法本章小结与复习本章小结与复习第三章变化率与导数第二章变化率与导数3.8变化的快慢与变化率 2.1 变换的快慢与变化率3.9导数的概念及其几何意义 2.2 导数的概念及其几何意义3.10计数导数 2.3 计数导数3.11导数的四则运算法则 2.4 导数的四则运算法则本章小结与复习1.8简单复合函数的求导法则第四章导数应用本章小结与复习2.4函数的单调性与极值第三章导数应用2.5导数在实际问题中的应用3.1 函数的单调性与极值本章小结与复习WORD格式4.3导数在实际问题中的应用选修 1——2本章小结与复习第一章统计案例第四章定积分2.7回归分析 4.1 定积分的概念2.8独立性检验 4.2 微积分基本定理本章小结与复习2.6定积分的简单应用第二章框图本章小结与复习1.6流程图第五章数系的扩充与复数的引入1.7结构图 5.1 数系的扩充与复数的引入本章小结与复习5.2复数的四则运算法则第三章推理与证明本章小结与复习3.1归纳与类比苏教版3.2数学证明3.3综合法与分析法必修一3.4反证法第一章集合本章小结与复习1.1集合的含义及其表示WORD格式1.8子集、全集、补集2.3 等比数列1.9交集、并集第三章不等式第二章函数概念与基本初等函数I 3.1 不等关系2.8函数的概念和图像3.2 一元二次不等式2.9指数函数3.3 二元一次不等式组与简单线性.2.10对数函数2.11幂函数2.12函数与方程2.11基本不等式ab≤a b2( a ≥ 0, b ≥0)选修1—— 1 2.6 函数模型及其应用必修二第 1 章常用逻辑用语第一章立体几何初步1.1 命题及其关系1.1 空间几何体1.2 简单的逻辑联结词1.2 点、线、面之间的位置关系1.3 全称量词与存在量词1.3 空间几何体的表面积和体积本章小结与复习第二章平面解析几何初步第 2 章圆锥曲线与方程2.1 直线与方程2.1 圆锥曲线2.2 圆与方程2.2椭圆2.3 空间直角坐标系2.3 双曲线必修三2.4 抛物线第一章算法初步2.5 圆锥曲线与方程1.1 算法的含义本章小结与复习1.2 流程图第 3 章导数及其应用1.3 基本算法语句3.1 导数的概念1.4 算法案例3.2 导数的运算第二章统计3.3 导数在研究函数中的应用2.1 抽样方法3.4 导数在实际生活中的应用2.2 总体分布的估计本章小结与复习选修1—— 2 2.3 总体特征数的估计2.4 线性回归方程第 1 章统计案例第三章概率1.1 假设检验3.1 随机事件及其概率1.2 独立性检验3.2 古典概型1.3 线性回归分析3.3 几何概型1.4 聚类分析3.4 互斥事件本章小结与复习必修四第 2 章推理与证明第一章三角函数2.1 合情推理与演绎推理1.1 任意角、弧度2.2 直接证明与间接证明1.2 任意角的三角函数2.3 公理化思想1.3 三角函数的图象与性质本章小结与复习第二章平面向量第 3 章数系的扩充与复数的引入2.1 向量的概念与表示3.1 数系的扩充2.2 向量的线性运算3.2 复数的四则运算2.3 向量的坐标表示3.3 复数的几何意义2.4 向量的数量积本章小结与复习2.5 向量的应用第 4 章框图第三章三角恒等变换4.1 流程图WORD格式图3.1 两角和与差的三角函数4.2 结构3.2 二倍角的三角函数本章小结与复习选修2—— 1 3.3 几个三角恒等式用语必修五第 1 章常用逻辑第一章解三角形1.1 命题及其关系1.1 正弦定理1.2 简单的逻辑连接词1.2 余弦定理1.3 全称量词与存在量词1.3 正弦定理、余弦定理的应用本章小结与复习第 2 章圆锥曲线与方程第二章数列3.7数列2.1 圆锥曲线3.8等差数列2.2椭圆WORD 格式2.3 双曲线 2.3 幂函数2.4 抛物线本章小结与复习2.5 圆锥曲线的统一定义必修二2.6 曲线与方程第三章三角函数本章小结与复习3.1弧度制与任意角第 3 章空间向量与立体几何 3.2 任意角的三角函数3.1 空间向量及其运算 3.3 三角函数的图象与性质3.2 空间向量的应用本章小结与复习2.13函数 y=Asin( x+ )的图象与性质选修 2——2本章小结与复习第一章导数及其应用第四章向量1.1 导数的概念 4.1 什么是向量1.2 导数的运算 4.2 向量的加法1.3 导数在研究函数中的应用 4.3 向量与实数相乘1.4 导数在实际生活中的应用 4.4 向量的分解与坐标表示1.5 定积分 4.5 向量的数量积本章小结与复习2.12向量的应用第二章推理与证明本章小结与复习2.1 合情推理与演绎推理第五章三角恒等变换2.2 直接证明与间接证明 5.1 两角和与差的三角函数2.3 数学归纳法 5.2 二倍角的三角函数本章小结与复习3.9简单的三角恒等变换第三章数系的扩充与复数的引入本章小结与复习3.1 数系的扩充必修三3.2 复数的四则运算第六章立体几何初步3.3 复数的几何意义 6.1 空间的几何体本章小结与复习1.11空间的直线与平面选修 2——3本章小结与复习第一章计数原理第七章解析几何初步1.1 两个基本原理7.1 解析几何初步1.2 排列7.2 直线的方程1.3 组合7.3 圆与方程1.4 计数应用题7.4 几何问题的代数解法1.5 二项式定理7.5 空间直角坐标系本章小结与复习本章小结与复习第二章概率必修四2.1 随机变量及其概率分布第八章解三角形2.2 超几何分布8.1 正弦定理2.3 独立性8.2 余弦定理2.4 二项分布8.3 解三角形的应用举例2.5 离散型随机变量的均值与方差本章小结与复习2.6 正态分布第九章数列本章小结与复习2.7数列的概念WORD格式第三章统计案例9.2 等差数列3.1 独立性检验9.3 等比数列3.2 回归分析9.4 分期付款问题中的有关计算本章小结与复习本章小结与复习湘教版第十章不等式1.11不等式的基本性质必修一10.2 一元二次不等式第一章集合与函数10.3 基本不等式及其应用1.8集合10.4 简单线性规划1.9函数的概念和性质本章小结与复习必修五本章小结与复习第二章指数函数、对数函数和幂函数第十一章算法初步2.11指数函数11.1 算法概念和例子2.12对数函数11.2 程序框图的结构WORD格式1.10基本的算法语句本章小结与复习本章小结与复习第二章圆锥曲线与方程第十二章统计初步2.14椭圆12.1 随机抽样 2.2 双曲线12.2 数据表示和特征提取 2.3 抛物线12.3 用样本估计总体 2.4 圆锥曲线的应用12.4 变量的相关性 2.5 曲线与方程本章小结与复习本章小结与复习第十三章概率第三章空间向量与立体几何13.1 概率的意义 3.1 尝试用向量处理空间图形13.2 互斥事件的概率加法公式 3.2 空间中向量的概念和运算13.3 古典概型 3.3 空间向量的坐标13.4 随机数与几何概型 3.4 直线的方向向量本章小结与复习2.13直线与平面的垂直关系选修 1——12.14平面的法向量第一章常用逻辑用语2.15直线与平面、平面与平面所成.3.10命题的概念和例子 3.8 点到平面的距离3.11简单的逻辑联结词 3.9 共面与平行3.12本章小结与复习本章小结与复习选修 2——2 第二章圆锥曲线与方程1.12椭圆第四章导数及其应用1.13双曲线 4.1 导数概念1.14抛物线 4.2 导数的运算1.15圆锥曲线的应用 4.3 导数在研究函数中的应用本章小结与复习2.8生活中的优化问题举例第三章导数及其应用2.9定积分与微积分基本定理1.12导数概念本章小结与复习1.13导数的运算第五章数系的扩充与复数1.14导数在研究函数的应用 5.1 解方程与数系的扩充1.15生活中的优化问题举例 5.2 复数的概念1.16本章小结与复习1.10复数的四则运算选修 1——21.11复数的几何表示第四章点数统计案例本章小结与复习2.13随机对照实验案例第六章推理与证明2.14事件的独立性 6.1 合情推理和演绎推理2.15列联表独立性分析案例 6.2 直接证明与间接证明2.16一员线性回归案例 6.3 数系归纳法2.17本章小结与复习本章小结与复习选修 2——3 第五章推理与证明2.9合情推理和演绎推理第七章计数原理2.10直接证明与间接证明7.1 两个计数原理本章小结与复习3.13排列第六章框图3.14组合WORD格式3.12知识结构图7.4 二项式定理3.13工序流程图本章小结与复习3.14程序框图第八章统计与概率本章小结与复习1.9随机对照试验第七章数系的扩充与复数1.10概率2.7解方程与数系的扩充8.3 正态分布曲线2.8复数的概念8.4 列联表独立性分析案例2.9复数的四则运算8.5 一元线性回归案例2.10副数的几何表示本章小结与复习本章小结与复习高中沪教版选修 2——1高一上册第一章常用逻辑用语4.4命题及其关系第一章集合和命题4.5简单逻辑联结词 1.1 集合WORD格式1.11四种命题的形式第十一章坐标平面上的直线1.12充分条件和必要条件11.1 直线的方程本章小结与复习2.15直线的倾斜角和斜率第二章不等式2.16两条直线的位置关系2.16不等式的基本性质11.4 点到直线的距离2.17一元二次不等式的解法本章小结与复习2.18其他不等式的解法第十二章圆锥曲线2.19基本不等式及其运用12.1 曲线和方程2.20不等式的证明12.2 圆的方程本章小结与复习3.13椭圆的标准方程第三章函数的基本性质3.14椭圆的性质1.16函数的概念12.5 双曲线的标准方程1.17函数关系的建立12.6 双曲线的性质1.18函数的运算12.7 抛物线的标准方程1.19函数的基本性质12.8 抛物线的方程本章小结与复习本章小结与复习第四章幂函数、指函数和对数函数第十三章复数2.10幂函数的性质和对数函数13.1 复数的概念2.11指数函数的图像与性质13.2 复数的坐标表示本章小结与复习1.17复数的加法与减法高一下册13.4 复数的乘法与除法第四章幂函数、指函数和对数函数13.5 复数的平方根与立方根1.12对数13.6 实系数一元二次方程1.13反函数本章小结与复习1.14对数函数高三上册1.15指数函数和对数函数第十四章空间直线与平面本章小结与复习2.18平面及其基本性质第五章三角比2.19空间直线与直线的位置关系2.11任意角的三角比14.3 空间直线与平面的位置关系2.12三角恒等式14.4 空间平面与平面的位置关系2.13解斜三角形本章小结与复习本章小结与复习第十五章简单几何体第六章三角函数3.15多面体的概念3.15三角函数的图像与性质15.2 多面体的直观图1.11反三角函数与最简三角方程15.3 旋转体的概念本章小结与复习2.11几何体的表面积高二上册15.5 几何体的体积第七章数列与数学归纳法15.6 球面距离4.6数列本章小结与复习4.7数学归纳法第十六章排列组合和二项式定理4.8数列的极限16.1 技术原理Ⅰ—乘法原理WORD格式本章小结与复习2.9排列第八章平面向量的坐标表示2.10技术原理Ⅱ—加法原理1.8向量的坐标表示及其运算16.4 组合1.9向量的数量积16.5 二项式定理1.10平面向量的分解定理本章小结与复习1.11向量的应用高三下册本章小结与复习第十七章概率论初步第九章矩阵和行列式初步5.3古典概念3.5矩阵17.2 频率与概念3.6行列式本章小结与复习本章小结与复习第十八章基本统计方法第十章算法初步1.2总体和样本10.1算法的概念18.2 抽样技术10.2程序框图18.3 统计估计本章小结与复习18.4实例分析高二下册本章小结与复习。

北师大版高中数学课本目录(含重难点及课时分布)

北师大版高中数学课本目录(含重难点及课时分布)
3平均值不等式
4不等式的证明
5不等式的应用
第二章几个重妻的不等式
1柯西不等式
2排序不等式
3数学归纳法与贝努利不等式
选修4-6
第一章带余除法与书的进位制
1、整除与带余除法
2、二进制
第二章可约性
1、素数与合数
2、最大公因数与辗转相除法
3、算术基本定理及其应用
4、不定方程
第三章同余
1、同余及其应用
2、欧拉定理
2导数在实际问题中的应用
2.1实际问题中导数的意义
2.2最大、最小值问题(重、难点)
【5课时】
第四章定积分
1定积分的概念
1.1定积分背景-面积和路程问题(重点)
1.2定积分
2微积分基本定理
3定积分的简单应用(重点)
3.1平面图形的面积
3.2简单几何体的体积
【4课时】
第五章数系的扩充与复数的引入(重点)
2.2独立性检验
2.3独立性检验的基本思想
2.4独立性检验的应用(重点、难点)
【4课时】
第二章框图(重点,高考必考点)
1流程图
2结构图【1.5课时】
第三章推理与证明
1归纳与类比
1.1归纳推理
1.2类比推理
2数学证明
3综合法与分析法
3.1综合法
3.2分析法
4反证法【2课时】
第四章数系的扩充与复数的引入
重点15课时第二章空间向量与立体几何重点在解决立体几何方面有很大的帮助?1从平面向量到空间向量用向量讨论垂直与平行?5夹角的计算课时?第三章圆锥曲线与方程重点高考大题必考知识点?1椭圆?11椭圆及其标准方12椭圆的简单性质抛物线?21抛物线及其标准方程?22抛物线的简单性质双曲线?31双曲线及其标准方程32双曲线的简单性质曲线与方程41曲线与方程42圆锥曲线的共同特征43直线与圆锥曲线的交点课时?选修22?第一章推理与证明重点?1归纳与类比?2合法与分析法?3反证法?4数学归纳法2课时?第二章变化率与导数重点变化的快慢与变化率?2导数的概念及其几何意义21导数的概念?22导数的几何意义?3计算导数?4导数的四则运算法则?41导数的加法与减法法则?42导数的乘法与除法法则简单复合函数的求导法则2课时第三章导数应用重点?1函数的单调性与极值11导数与函数的单调性?12函数的极值重难点导数在实际问题中的应用21实际问题中导数的意义?22最大最小值问题重难点课时第四章定积分?1定积分的概念11定积分背景面积和路程问题重点12定积分?2微积分基本定理定积分的简单应用重点?31平面图形的面积32简单几何体的体积课时第五章数系的扩充与复数的引入重点?1数系的扩充与复数的引入?11数的概念的扩展?12复数的有关概念?2复数的四则运算21复数的加法与减法22复数的乘法与除法?2课时选修23第一章计数原理重点?1

北师版数学高一-必修4学案 -1.2 位移、速度和力 向量的概念

北师版数学高一-必修4学案 -1.2 位移、速度和力 向量的概念

§1 从位移、速度、力到向量1.1 位移、速度和力 1.2 向量的概念[学习目标] 1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区别.2.会用有向线段作向量的几何表示,了解有向线段与向量的联系与区别,会用字母表示向量.3.理解零向量、单位向量、平行向量、共线向量、相等向量及向量的模等概念,会辨识图形中这些相关的概念.[知识链接]1.力和位移都是既有大小,又有方向的量,在物理学常称为矢量,在数学中叫作向量;而把那些只有大小,没有方向的量称为数量,在物理学常称为标量. 2.已知下列各量:①力;②功;③速度;④质量;⑤温度;⑥位移;⑦加速度;⑧重力;⑨路程;⑩密度. 其中是数量的有②④⑤⑨⑩,是向量的有①③⑥⑦⑧. 3.向量与数量有什么联系和区别?答 联系是向量与数量都是有大小的量;区别是向量有方向且不能比较大小,数量无方向且能比较大小. [预习导引]1.向量:既有大小,又有方向的量叫作向量.2.向量的几何表示:以A 为起点、B 为终点的有向线段记作AB →. 3.向量的有关概念:(1)零向量:长度为0的向量,叫作零向量,记作0或0→. (2)单位向量:长度为单位1的向量叫作单位向量. (3)相等向量:长度相等且方向相同的向量叫作相等向量.(4)平行向量(共线向量):如果表示两个向量的有向线段所在的直线平行或重合,则称这两个向量平行或共线.①记法:向量a 平行于b ,记作a ∥b . ②规定:零向量与任一向量平行.要点一 向量的概念 例1 给出下列各命题: (1)零向量没有方向; (2)若|a |=|b |,则a =b ; (3)单位向量都相等; (4)向量就是有向线段;(5)两相等向量若其起点相同,则终点也相同; (6)若a =b ,b =c ,则a =c ; (7)若a ∥b ,b ∥c ,则a ∥c ;(8)若四边形ABCD 是平行四边形,则AB →=CD →,BC →=DA →. 其中正确命题的序号是________. 答案 (5)(6)解析 (1)该命题不正确,零向量不是没有方向,只是方向不确定; (2)该命题不正确,|a |=|b |只是说明这两向量的模相等,但其方向未必相同; (3)该命题不正确,单位向量只是模为单位长度1,而对方向没要求;(4)该命题不正确,有向线段只是向量的一种表示形式,但不能把两者等同起来;(5)该命题正确,因两相等向量的模相等,方向相同,故当它们的起点相同时,其终点必重合; (6)该命题正确.由向量相等的定义知,a 与b 的模相等,b 与c 的模相等,从而a 与c 的模相等;又a 与b 的方向相同,b 与c 的方向相同,从而a 与c 的方向也必相同,故a =c ; (7)该命题不正确.因若b =0,则对两不共线的向量a 与c ,也有a ∥0,0∥c ,但a ≠c ; (8)该命题不正确.如图所示,显然有AB →≠CD →,BC →≠DA →.规律方法 要充分理解与向量有关的概念,明白它们各自所表示的含义,搞清楚它们之间的区别是解决与向量概念有关问题的关键. 跟踪演练1 下列命题中,正确的是( ) A .a ,b 是两个单位向量,则a 与b 相等 B .若向量a 与b 不共线,则a 与b 都是非零向量 C .两个相等的向量,起点、方向、长度必须都相同 D .共线的单位向量必是相等向量 答案 B解析 若a 与b 中有一个是零向量,则a 与b 是平行向量,即向量a 与b 共线,与前提矛盾,所以a 与b 都是非零向量. 要点二 向量的表示例2 在如图所示的坐标纸上(每个小方格边长为1),用直尺和圆规画出下列向量:(1)OA →,使|OA →|=42,点A 在点O 北偏东45°; (2)AB →,使|AB →|=4,点B 在点A 正东; (3)BC →,使|BC →|=6,点C 在点B 北偏东30°.解 (1)由于点A 在点O 北偏东45°处,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA →|=42,小方格边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 位置可以确定,画出向量OA →如图所示.(2)由于点B 在点A 正东方向处,且|AB →|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 位置可以确定,画出向量AB →如图所示.(3)由于点C 在点B 北偏东30°处,且|BC →|=6,依据勾股定理可得:在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 位置可以确定,画出向量BC →如图所示.规律方法 在画图时,向量是用有向线段来表示的,用有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向.应该注意的是有向线段是向量的表示,并不是说向量就是有向线段.跟踪演练2 中国象棋中规定:马走“日”字.下图是中国象棋的半个棋盘,若马在A 处,可跳到A 1处,也可跳到A 2处,用向量AA 1→或AA 2→表示马走了“一步”.试在图中画出马在B ,C 处走了“一步”的所有情况.解 根据规则,画出符合要求的所有向量. 马在B 处走了“一步”的情况如图(1)所示; 马在C 处走了“一步”的情况如图(2)所示.要点三 相等向量与共线向量例3 如图所示,O 为正方形ABCD 对角线的交点,四边形OAED 、OCFB 都是正方形.(1)写出与AO →相等的向量; (2)写出与AO →共线的向量; (3)向量AO →与CO →是否相等?→相等的向量为:OC→、BF→、ED→.解(1)与AO→共线的向量为:OA→、OC→、CO→、AC→、CA→、ED→、DE→、BF→、FB→.(2)与AO→与CO→不相等,因为AO→与CO→的方向相反,所以它们不相等.(3)向量AO规律方法判断一组向量是否相等,关键是看这组向量是否方向相同、长度相等,与起点和终点的位置无关.对于共线向量,则只要判断它们是否同向或反向即可.跟踪演练3如图,在正方形ABCD中,M,N分别为AB和CD的中点,在以A,B,C,D,M,N为起点和终点的所有向量中,相等的向量分别有多少对?解不妨设正方形的边长为2,则以A,B,C,D,M,N为起点和终点的向量中:→=DC→,BA→=CD→,AD→=BC→,DA→=CB→,AD→=MN→,DA→=NM→,(1)模为2的相等向量共有8对,AB→=MN→,CB→=NM→.BC→同向的有MB→,DN→,NC→,这四个向量组成相等的向(2)模为1的相等向量有12对,其中与AM量有6对,即AM→=→,AM→=DN→,AM→=NC→,MB→=DN→,MB→=NC→,DN→=NC→,同理与AM→反向的也有6对.MB→=MC→,NA→=CM→,MD→=BN→,DM→=NB→.(3)模为5的相等向量共有4对,AN1.下列说法正确的是()A.零向量没有大小,没有方向B.零向量是唯一没有方向的向量C.零向量的长度为0D.任意两个单位向量方向相同答案C解析零向量的长度为0,方向是任意的,故A,B错误,C正确.任意两个单位向量的长度相等,但方向不一定相同,故D错误.2.如图,在四边形ABCD 中,若AB →=DC →,则图中相等的向量是( )A.AD →与CB →B.OB →与OD →C.AC →与BD →D.AO →与OC →答案 D解析 ∵AB →=DC →,∴四边形ABCD 是平行四边形,∴AC 、BD 互相平分,∴AO →=OC →. 3.如图,在△ABC 中,若DE ∥BC ,则图中是共线向量的有________.答案 ED →与CB →,AD →与BD →,AE →与CE →解析 观察图形,并结合共线向量的定义可得解.4.在四边形ABCD 中,AB →∥CD →且|AB →|≠|CD →|,则四边形ABCD 的形状是________. 答案 梯形解析 ∵AB →∥CD →且|AB →|≠|CD →|,∴AB ∥DC ,且AB ≠DC ,∴四边形ABCD 是梯形.1.向量是既有大小又有方向的量,从其定义看出向量既有代数特征又有几何特征,因此借助于向量,我们可以将某些代数问题转化为几何问题,又将几何问题转化为代数问题,故向量能起数形结合的桥梁作用.2.共线向量与平行向量是一组等价的概念.平行向量是指向量所在直线平行或重合,是一种广义的平行.3.注意两个特殊向量——零向量和单位向量,零向量与任何向量都平行,单位向量有无穷多个,起点相同的所有单位向量的终点在平面内形成一个单位圆.一、基础达标 1.有下列说法:①若向量a 与向量b 不平行,则a 与b 方向一定不相同; ②若向量AB →,CD →满足|AB →|>|CD →|,且AB →与CD →同向,则AB →>CD →; ③若|a |=|b |,则a ,b 的长度相等且方向相同或相反; ④由于零向量方向不确定,故其不能与任何向量平行. 其中,正确说法的个数是( ) A .1 B .2 C .3D .4答案 A解析 对于①,由共线向量的定义知,两向量不平行,方向一定不相同,故①正确; 对于②,因为向量不能比较大小,故②错误;对于③,由|a |=|b |,只能说明a ,b 的长度相等,不能确定它们的方向,故③错误; 对于④,因为零向量与任一向量平行,故④错误. 2.下列说法中错误的是( )A .有向线段可以表示向量但不是向量,且向量也不是有向线段B .若向量a 与b 不共线,则a 与b 都是非零向量C .长度相等但方向相反的两个向量不一定共线D .方向相反的两个非零向量必不相等 答案 C解析 长度相等但方向相反的两个向量一定共线,由向量的概念及向量的模的意义可判断A 、B 、D 选项内容都是正确的. 3.给出下列六个命题:①两个向量相等,则它们的起点相同,终点相同; ②若|a |=|b |,则a =b ;③若AB →=DC →,则四边形ABCD 是正方形; ④平行四边形ABCD 中,一定有AB →=DC →; 其中不正确的命题的个数为( ) A .2 B .3 C .4 D .5答案 B解析 不正确的是①②③.4.设O 是正方形ABCD 的中心,则向量AO →,BO →,OC →,OD →是( ) A .相等的向量B .平行的向量C .有相同起点的向量D .模相等的向量答案 D解析 这四个向量的模相等.5.若a 是任一非零向量,b 是模为1的向量,下列各式:①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1.其中正确的是( )A .①④B .③C .①②③D .②③ 答案 B解析 a 任一非零向量,故|a |>0.6.如图,等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F 分别在两腰AD ,BC 上,EF 过点P ,且EF ∥AB ,则( )A.AD →=BC →B.AC →=BD →C.PE →=PF →D.EP →=PF → 答案 D解析 由平面几何知识知,AD →与BC →方向不同,故AD →≠BC →;AC →与BD →方向不同,故AC →≠BD →;PE →与PF →模相等而方向相反,故PE →≠PF →;EP →与PF →模相等且方向相同,故EP →=PF →.7.如图,在四边形ABCD 中,AB →=DC →,N 、M 分别是AD 、BC 上的点,且CN →=MA →.求证:DN →=MB →.证明 ∵AB →=DC →, ∴|AB →|=|CD →|且AB ∥CD , ∴四边形ABCD 是平行四边形, ∴|DA →|=|CB →|,且DA ∥CB . 又∵DA →与CB →的方向相同,∴CB →=DA →.同理可证,四边形CNAM 是平行四边形, ∴CM →=NA →.∵|CB →|=|DA →|,|CM →|=|NA →|, ∴|DN →|=|MB →|.∵DN ∥MB 且DN →与MB →的方向相同, ∴DN →=MB →. 二、能力提升8.以下命题:①若AB →=DC →,则A 、B 、C 、D 四点是平行四边形的四个顶点;②若m =n ,n =k ,则m =k ;③单位向量都是共线向量.其中,正确命题的个数是( ) A .0 B .1 C .2 D .3 答案 B解析 ①A 、B 、C 、D 四点可能共线;③单位向量的模相等,但方向不确定,所以未必共线. 9.给出下列四个条件:①a =b ;②|a |=|b |;③a 与b 方向相反;④|a |=0或|b |=0.其中能使a ∥b 成立的条件是________. 答案 ①③④解析 因为a =b ⇒a ∥b ,即①能够使a ∥b 成立;由于|a |=|b |并没有确定a 与b 的方向,即②不能够使a ∥b 成立;因为a 与b 方向相反时,a ∥b ,即③能够使a ∥b 成立;因为零向量与任意向量共线,所以|a |=0或|b |=0时,a ∥b 能够成立.故使a ∥b 成立的条件是①③④. 10.一辆汽车从A 点出发向西行驶了100 km 到达B 点,然后又改变方向向北偏西40°走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点. (1)作出向量AB →、BC →、CD →; (2)求|AD →|.解 (1)向量AB →、BC →、CD →如图所示:(2)由题意,易知AB →与CD →方向相反,故AB →与CD →共线, 又|AB →|=|CD →|,∴在四边形ABCD 中,AB 綊CD . ∴四边形ABCD 为平行四边形. ∴AD →=BC →,∴|AD |→=|BC →|=200 km.11.如图,已知矩形ABCD 中,设点集M ={A ,B ,C ,D },求集合T ={PQ →|P 、Q ∈M ,且PQ →=0}.解 集合T ={PQ →|P 、Q ∈M ,且PQ →≠0}中的元素为非零向量PQ →,且向量的起点与终点分别为矩形的顶点ABCD .这些向量为AB →,AC →,AD →,BA →,BC →,BD →,CB →,CA →,CD →,DA →,DB →,DC →. 由于AB →=DC →,AD →=BC →,BA →=CD →,DA →=CB →,根据集合元素的互异性,得集合T ={AB →,AC →,AD →,BD →,CD →,CA →,DA →,DB →}. 12.如图所示,已知AA ′→=BB ′→=CC ′→.求证:(1)△ABC ≌△A ′B ′C ′; (2)AB →=A ′B ′→,AC →=A ′C ′→. 证明 (1)∵AA ′→=BB ′→, ∴|AA ′→|=|BB ′→|,且AA ′→∥BB ′→.打印版高中数学 又∵A 不在BB ′→上,∴AA ′∥BB ′.∴四边形AA ′B ′B 是平行四边形.∴|AB →|=|A ′B ′→|.同理|AC →|=|A ′C ′→|,|BC →|=|B ′C ′→|.∴△ABC ≌△A ′B ′C ′.(2)由(1)知,四边形AA ′B ′B 是平行四边形,∴AB →∥A ′B ′→,且|AB →|=|A ′B ′→|.∴AB →=A ′B ′→.同理可证AC →=A ′C ′→.三、探究与创新13.如图,在平行四边形ABCD 中,O 是两对角线AC ,BD 的交点,设点集S ={A ,B ,C ,D ,O },向量集合T ={MN →|M ,N ∈S ,且M ,N 不重合},试求集合T 中元素的个数.解 由题意知,集合T 中的元素实质上是S 中任意两点连成的有向线段,共有20个,即AB →,AC →,AD →,AO →;BA →,BC →,BD →,BO →;CA →,CB →,CD →,CO →;DA →,DB →,DC →,DO →;OA →,OB →,OC →,OD →.由平行四边形的性质可知,共有8对向量相等,即AB →=DC →,AD →=BC →,DA →=CB →,BA →=CD →,AO →=OC →,OA →=CO →,DO →=OB →,OD →=BO →.∵集合中元素具有互异性,∴集合T 中的元素共有12个.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
uuur uuur uur CB, DO, FE
1、右图中的向量是什么关系?
uuuur uuuuur uuuuur
B1
A1B1 A2B2 A3B3
B3
说明:任意两个非零相等向 A1
B2
量可用同一条有向线段表示,
A3
与有向线段的起点无关.
A2
练习2、判断下列各命题是否正确? r r r ur
(1)a b ,则a b;
(2)若两个向量相等,则它们的起点相同,终点相同; uuur uuur
(3)若AB CD,则四边形ABCD是平行四边形; r rr r r r
(4)若a b,b c,则a c; r rr r r r
(5)若a / /c,b / /c,则a / /b
(1)错 (4)对
(2)错 (5)错
(3)错
用 如表Auu示Bur.有向线段的起点和终点字母表示,
思考:
向量
uuur AB
与向量
uuur BA
是不是同一向量?为
什么?
不是同一向量,因为方向不同.
探究三、向量的长度:
向量
uuur AB
的大小,即长度(也称模).
uuur
记作:| AB |
问题1:长度为0的向量应该叫作什么向量?
如何表示?它是否有方向? r
6.起重机吊装物体时,物体既受到竖直向下 的重力作用,同时又受到竖直向上的起重机 拉力的作用.当拉力的大小超过重力的大小时, 物体即被吊起.
F
G
7.汽车爬倾斜角为θ的坡路时,汽车的牵引
力大小为F(N),方向倾斜向上,与水平方向
成θ角.
F
θ
力既有大小又有方向.
这些量都具有哪些基本特征?它们和以往 学习的长度、面积、体积等量相比有什 么不同?
(-1,2),C(-2,2),请用有向线段分别表示A
到B,B到C,C到A的位移.
y CB 2
1
A -2 -1 O 1 x
向量
定义 表示法
既有大小,又有方向 a
几何表示法:A
B
模 大小 方向
字母表示法:如a , b , AB 等
AB 或 a
特殊向量
零向量 单位向量
平行向量或共线向量
大小相等 方向相同 相等向量
uuur AB
,以图中的
格点为起点和终点作向量,其中与
uuur AB
相等的向量有
uuur 多少个?与 AB长度相等且共线的向量有多少个?

uuur AB
除外)
B
相等的有7个.
长度相等且共线的有 15个. A
练习5、用有向线段表示两个相等的向量,这两个有
向线段一定重合吗?
不一定
练习6、在直角坐标系xoy中,有三点A(1,0),B
平行的向量(共线的向量).
(6)两个非零向量相等的条件是什么? 模相等且方向相同.
(7)共线的向量一定在同一直线上. ×
例2.如图,D,E,F依次是等边三角形ABC的边
AB,BC,AC的中点,在以A,B,C,D,E,F为起点或终点的
A
向量中,
(1)找出与向量 DuuEur相等的向量; D
F
(2)找出与向量 DuuuFr 共线的向量.
探究二、向量的表示方法:
1.几何表示法:有向线段. 有向线段——具有方向和长度的线段. B
A
有向线段的三要素:起点、方向、长度.
在数学中我们研究的是仅由大小和方向确定, 而与起点位置无关的向量,也称为自由向量.
以A为起点、B为终点的有向线段记作 AB
2.字母表示法:
rrr 用 a, b,c 等小写字母表示;
位向量,它们终点的轨迹是什么图形?
y
o
x
答:如图,轨迹是以O为圆心,半径为1的 圆(单位圆).
探究四、向量平行与相等向量
1.向量平行:如果表示两个向量的有向线段
所在的直线平行或重合,则称
r
如:
a r
b
r
c
这两个向量平行或共线.
rrr 记作:a∥b∥c.
规定:零向量与任一向量平行.
r
r
思考:根据定义判断下图中向量 a 与向量 b
答:应该叫作零向量. 表示为 0.
它的方向是任意的.
问题2:与向量 a 同方向且长度为单位1的向
量应该叫作什么向量?
答:应该叫作 a方向上的单位向量.记作
uur a0.
问题3:有几个单位向量?单位向量的大小 是否相等?
答:有无数个单位向量,单位向量的大小相 等.
思考:平面直角坐标系内,起点在原点的单
2.平行的向量一定是相等向量吗? 不是
例1.判断下列说法是否正确或给出问题 的答案
(1)平行的向量的方向一定相同. ×
(2)不相等的向量一定不平行.
×
(3)与零向量相等的向量是什么向量? 零向量
(4)存在与任何向量都平行的向量吗?
零向量
(5)若两个向量在同一直线上,则这两个 向量一定是什么向量?
解:由三角形中位线定理不难得到: B
E
C
(1)在以A,B,C,D,E,F为起点
或终点的向量中,与向量 D相E 等的向量有: AF和FC;
(2)在以A,B,C,D,E,F为起点或终点的向量中,与
向量
uuur
D共F 线的向量有:
uuur uuur uuur uuur uuur uuur uuur BE,EB,EC,CE,BC,CB,FD.
第二章 平面向量
2.1 从位移、速度、 力到向量
思考:力,时间,路程,功是向 量吗?速度,加速度是向量吗?
数量:只有大小,没有方向的量。
向量的两要素:方向、大小
向量:既有大小,又有方向的量。
1.老鼠由A向西北逃窜,猫在B处向东追去.
猫能否追到老鼠?


不能.猫的速度再快也 没用, 因为方向错了. A
同的几条路.
北 学校
无论走哪条路, 你的位移都是向 东偏北30°方向 移动了2 000 m.
30


4.飞机向东北方向飞行了150 km,飞行时间
为半小时,飞行速度的大小是300 km/h,方
向是东北.


5.某著名运动员投掷标枪时,标枪的初始速 度的记录资料是:平均出手角度θ=43.242°, 平均出手速度大小为v=28.35 m/s.
抽 象 概 括
向量
探究一、向量的概念
既有大小,又有方向的量统称为向量. 1.现实生活中还有哪些量既有大小又有方向? 位移、力、速度、加速度、电场强度等. 2.哪些量只有大小没有方向? 距离、身高、质量、时间、面积等.
注意:数量与向量的区别 1.数量只有大小,是一个数,可以进行代数 运算、比较大小; 2.向量不仅有大小还有方向,具有双重性, 不能比较大小.
例3.如图,设O是正六边形ABCDEF的中心,写出
图中与向量 OuuAur相等的向量.
uuur uuur uuur OA DO=CB.
变式一:与向量
uuur OA
长度相等的向量有多少个?
11
个 变式二:是否存在与向量
uuur OA
长度相等,方向相反的向量?
uur
存在,为 FE.
变式三:与向量 OuuAur 长度相等且共线的向量有哪些?
速度是既有大小又有
B
方向的量.
2.民航每天都有从北京飞往上海、 广州、重庆、哈尔滨等地的航班. 每次飞行都是民航客机的一次位移.
北京
由于飞行的距离和方 向各不相同,因此,它们 是不同的位移.
重庆
位移既有大小又有方向. 广州
哈尔滨 上海
3.假如学校位于你家东偏北30°方向,距
离你家2 000 m.从家到学校,可能有长短不
是否平行?
r a
r b
答:是. 向量平行也称向量共线.
r 2.若非零向量 a
r b
,则
r a
一定相同或相反吗? 是

r 与 b 的方向
2.相等向量
注意方向 和长度
长度相等且方向相同的向量,叫作相等向量.
若向量
ar 与
r b
相等,记作:ar
r b.
规定: 零向量与零向量相等.
思考: 1.相等向量一定平行吗? 是
练习3、已知O为正六边形ABCDEF的中心,在图中
所标出的向量中:
uuur
(1)试找出与FE共线的向量;
uuur
(2)确定与FE相等的向量; uuur uuur
E
D
(3)OA与BC相等吗?
解:(1)OA, BC
FO
C
(2)B
练习4、在4*5的方格纸中有一个向量
相关文档
最新文档