第一章基本概念
工程热力学第一章 基本概念 热力系统
J
或 kJ
J/s W kJ/s kW
附: 1kWh 3600kJ
31
6.讨论 有用功(useful work)概念
Wu W Wl Wp
其中:
pb
f
W—膨胀功(compression/expansion work); Wl—摩擦耗功; Wp_排斥大气功。
例A7001331
1.功的力学定义 2.功的热力学定义:通过边界传递的能量其全部 效果可表现为举起重物。 3.可逆过程功的计算
W δW
1
2
pAdx pdV
1 1
2
2
▲功是过程量 ▲功可以用p-v图上过程线 与v轴包围的面积表示
30
4.功的符号约定: 系统对外作功为“+”
外界对系统作功为“-”
分 类
共同本质:由媒介物通过吸热—膨胀作功—排热
2
二、工质(working substance; working medium)
定义:实现热能和机械能相互转化的媒介物质。
对工质的要求:
1)膨胀性 2)流动性 物质三态中 气态最适宜。
3)热容量
4)稳定性,安全性 5)对环境友善 6)价廉,易大量获取
pA F cos pb A ( f 0)
准静态过程,可逆
28
讨论: 1.可逆=准静态+没有耗散效应
2.准静态着眼于系统内部平衡,可逆着眼于
系统内部及系统与外界作用的总效果
3.一切实际过程不可逆
4.内部可逆过程的概念
5.可逆过程可用状态参数图上实线表示
29
1-6 功和热量
一、功(work)的定义和可逆过程的功
工程热力学-01 基本概念及定义
平衡状态1
p1 v1
p
p2
2
压容图 p-v图
平衡状态2
p1
1
p2 v2
O
v2
v1
v
12
1-4 状态方程式
在平衡状态下,由气态物质组成的系统,只要知道两个独立的 状态参数,系统的状态就完全确定,即所有的状态参数的数值随之 确定。这说明状态参数间存在某种确定的函数关系,状态参数之间 存在着确定的函数关系,这种函数关系就称为热力学函数。
(2)当系统处于热力学平衡状态时,只要没有外界的影响, 系统的状态就不会发生变化。
(3)整个系统可用一组具有确定数值的温度、压力及其他参
? 数来描述其状态。
10
经验表明,确定热力学系统所处平衡状态所需的独立状 态参数的数目,就等于系统和外界间进行能量传递方式的数 目。对于工程上常见的气态物质组成的系统,系统和外界间传递 的能量只限于热量和系统容积变化所作的功两种形式,因此只需 要两个独立的状态参数即可描述一个平衡状态。
3、平衡状态、稳定状态、均匀状态
(1)关于稳定状态与平衡状态
稳定状态时,状态参数虽不随时间改 变,但它是依靠外界影响来维持的。而平 衡状态是不受外界影响时,参数不随时间 变化的状态。
85℃ 20℃
90℃
15℃
铜棒
平衡必稳定,稳定未必平衡。
(2)关于均匀状态与平衡 水
质统称为外界。 通常选取工质作为热力学系统,把高温热源、低温热源
等其他物体取作外界。
3、边界 ——热力学系统和外界之间的分界面称为边界。
边界可以是固定的,也可以是移动的; 边界可以是实际的,也可以是假想的。
3
二、热力学系统的分类 依据——有无物质或能量的交换
第一章 基本概念
二、代数系统的同构及性质
三、代数系统同构的意义
一、代数系统的同态及性质
定义1 设集合 M及 M 各有代数运算 o 及o, 且 ϕ是 M到 M 的一个映射 .
___ _ ___
如果 ϕ满足以下条件:对 M中任意元素 a, b, 在 ϕ之下由
a → a, b → b 总有 a o b → a o b,
n次置换
1.3
代数运算
一、代数运算的概念
近世代数的主要任务是研究各种抽象的代数系统(带有运算的集合)。 如何定义运算,先看几个我们熟悉的例子: (1)非负整数集Z上的普通加法“+”; (2)数域F上全体n阶矩阵集上的乘法。 可见运算“+” ,矩阵乘法就是个映射。 定义1 设M是一个集合.如果有一个法则,它对M中的任 意两个有次序的元素a 与b,在M中有一个惟一确定的元素 d与它们对应,则称这个法则是集合M的一个代数运算.
设ε表示集合 M的恒等变换,则对 ∀σ ∈T ( M ),有
σε ( x ) = εσ ( x ) = σ ( x ), (∀x ∈ M ),
从而 εσ = σε = σ,
在变换的乘法中,恒等变换着数1在数的普通乘法中相同的作用。
结论:设S(M)表示集合M的全体双射变换作成的集合,则
S ( M ) ⊆ T ( M ), 且变换乘法也是S ( M )的一个代数运算。
f o g, 即 f o g : X → Z,
对∀x ∈ X , ( f o g )( x ) = f [ g ( x )].
四、变换
定义:集合X 到自身的映射,叫做集合X的一个变换 . 定理3 含n个元素的任意集合共有n!个双射变换.
对有限集合的双射变换 ϕ,常用以下特殊符号表 示: L 2 n ⎞ ⎛ 1 ϕ =⎜ ⎜ ϕ (1) ϕ ( 2) L ϕ ( n) ⎟ ⎟ ⎝ ⎠
信号与系统基本概念
(1)
o t0
t
(t)(t
t0 )dt 0, (t
1 t0 )
31
冲激函数的性质
为了信号分析的需要,人们构造了 t 函数,它属于广 义函数。就时间 t 而言, t 可以当作时域连续信号处
理,因为它符合时域连续信号运算的某些规则。但由于
t 是一个广义函数,它有一些特殊的性质。
1.抽样性 2.奇偶性
41
系统方框图(基本元件)
1.加法器 e1t
r t
e1t r t
2.乘法器
e2 t e1 t
e2 t
e2t rt e1t e2 t
r t
rt e1t e2 t
3.微分器
et
d
r t
d
rt de(t)
dt
4.积分器
et
rt
t
r(t) e( )d
42
§1.6 线性时不变系统
线性系统与非线性系统
线性系统:指具有线性特性的系统。
线性:指均匀性,叠加性。
均匀性(齐次性):
et rt ket krt
叠加性:
e1(t ) e2 (t )
r1 r2
(t) (t )
e1(t )
e2
(t)
r1(t )
r2
(t
)
43
判断方法
先线性运算,再经系统=先经系统,再线性运算
若 HC1 f1t C2 f2t C1H f1t C2H f2t
(t)具有筛选f (t)在t 0处函数值的性质 (t t0 )具有筛选f (t)在t t0处函数值的性质 33
奇偶性
(t) (t)
•由定义2,矩形脉冲本身是偶函数,故极限
第二次课 第一章 基本概念
无温差-热的平衡 热力平衡状态 无压差-力的平衡 化学平衡 平衡的本质:不存在不平衡势差 为什么要引入平衡概念?? 如果系统平衡,可用一组确切的参数(压力 p,温度T)来描述
Ï思考题
1)平衡状态与均匀状态之间的关系?
平衡状态是相对时间而言的 均匀状态是相对空间而言的
— 平衡可不均匀 均匀并非系统处于平衡状态的必须条件
吸气 工作物质:
压缩
燃烧、 膨胀
排气
高温燃气 能量转换: 燃料化学能 燃气热能 排入大气 机械能
2)涡扇发动机
压缩
燃烧
膨胀
排气
工作物质: 高温燃气
3)蒸汽轮机
锅炉:燃烧,形成过热蒸汽,化学能转换为热能 汽轮机:膨胀,对外做功,热能转换为机械能 冷凝器:乏汽对环境放热,冷凝为水 水泵:对水进行加压,送入锅炉
mc BT 2
2
3 B k 2
k 为波尔兹曼常数 c 为分子移动的均方根速度
c) 温标: 温度的数值表示法。 建立温标的三个要素: ① 选择温度的固定点,规定其数值; ② 确定温度标尺的分度方法和单位; ③ 选择某随温度变化的物性作为温度测量的 依据。
摄氏温标: 瑞典天文 学 家 摄尔 修斯 ( Celsius ) 于 1742 年 建 立 。用 摄 氏 温 标 确 定的 温度 称 为 摄 氏 温度 ,用 符号t 表示,单位为℃ 。 在标准大气压下,纯水的冰点温度为0 ℃ ,纯 水的沸点温度为100 ℃,纯水的三相点(固、液、 汽三相平衡共存的状态点)温度为0.01℃ 。 选 择 水 银 的 体 积 作 为 温度 测 量的 物性 , 认 为 其 随温度线性变化,并将0 ℃ 和100 ℃温度下的体积 差均分100份,每份对应1 ℃。
对工质的要求: 1)膨胀性 2)流动性 3)热容量 4)稳定性,安全性 5)对环境友善 6)价廉,易大量获取 例如:空气、燃气、水蒸气、氨蒸气等。 物质三态中 气态最适宜。
第一章流体力学基本概念
分别运动至A’,B’,C’,D’点,则有
A
B
A'
B'
udt
E D D D A A (u d)d u u t d dtudt
图1-2 速度梯度
由于
du ED
dt
因此得速度梯度 duED tgd d
dy dydt dt dt
可以看出dθ为矩形ABCD在dt时间后剪切变形角度,这就表明速度梯度实质上就 是流体运动时剪切变形角速度
•第一章流体力学基本概念
随着科学技术的不断进步,计算机的发展和应用,流体力学的研究领域和应用范 围将不断加深和扩大。从总的发展趋势来看,随着工业应用日益扩大,生产技术 飞速发展,不仅可以推动人们对流动现象深入了解,为科学研究提供丰富的课题 内容,而且也为验证已有的理论、假设和关系提供机会。理论和实践密切结合, 科学研究和工业应用相互促进,必将推动本学科逐步成熟并趋于完善。
第一章 流体力学基本概念
第一节 流体力学的发展、应用及其研究方法 第二节 流体的特征和连续介质假设 第三节 流体的主要物理性质及分类 第四节 作用在流体上的力
•第一章流体力学基本概念
第一节 流体力学的发展、应用及其研究方法
一、流体力学发展简史
流体力学是研究流体的平衡及运动规律,流体与固体之间的相互作 用规律,以及研究流体的机械运动与其他形式的运动(如热运动、化学 运动等)之间的相互作用规律的一门学科。 流体力学属于力学范畴,是 力学的一个重要分支。其发展和数学、普通力学的发展密不可分。流体 力学起源于阿基米德(Archimedes,公元前278~公元前212)对浮力的 研究。
流体的压缩性及相应的体积弹性模量是随流体的种类、温度和压力而变化 的。当压缩性对所研究的流动影响不大,可以忽略不计时,这种流动成为不可 压缩流动,反之称为可压缩流动。通常,液体的压缩性不大,所以工程上一般 不考虑液体的压缩性,把液体当作不可压缩流体来处理。当然,研究一个具体 流动问题时,是否考虑压缩性的影响不仅取决于流体是气体还是液体,而更主 要是由具体条件来决定。
同济大学 理论力学 孙杰 第一章 基本概念与基本理论
i j k z Fz y Fy
B
F
A
y
r
O
M x 0 Fx
矩阵计算
x
( yFz zF y )i ( zFx xFz ) j ( xFy yFx )k
MOy = zFx - xFz MOz矢量与投影关系 = xFy - yFx
Fx
x
q
F
y `
Fxy
Fy
平面内投影
§1-5 力矩的概念
一、力对点的矩
度量力使物体绕某点转动效应的物理量
1、在平面内
O:力矩中心 矩心 d:力臂
力矩中心 不一定是 转动中心
力矩平面
力矩: MO (F )= ±Fd
正负号
+ _
单位:kN· m
2、在空间内
2、在空间内 转动效应:力矩平面 等 z M0 r F 矢量表示 M (F ) r F O 力矩矢 r xi yj zk ,
§1-1 力:物体间相互的机械作用
1、作用效应:a.运动效应 b.变形效应 2、力的三要素:
运动效应
大小 、方向(方位与指向) 、作用点。
力的表示
定位矢量
力的作用线 刚体静力学 变形效应
F
A
§1-2 力学模型 :质点、质点系、刚体
质点:只计及质量 而不计大小和形状的物体
质点系:相互联系的有限或无限多的质点的总称
F
A
B
力对刚体作用的三要素:大小、方向、作用线
推论2:三力平衡汇交定理
设三个力不平行,且有两个力相交于一点,若力系平衡。
《工程热力学》第一章 基本概念
9
1.3.1、基本术语-状态、状态参数
1、状态:工质在热力变化过程中某一瞬间所呈现的宏观 物理状况称状态
2、状态参数:表示状态特征的物理量称为状态参数
状态与状态参数是一一对应的
3、状态参数特点
数学特征为点函数: 微元变化的微增量具全微分性质
4、热力学基本状态参数为三个:比容、压力、 温度
10
1.3.2、基本状态参数--比容及密度
C 1 2 B B A
16
1-4
平衡状态、状态方程式、坐标图
1.4.1 平衡状态与非平衡态 平衡状态:系统在不受外界影响的条件下, 如果宏观热力性质不随时间而变化,系统 内、外同时建立了热平衡、力平衡(及 化学平衡),此时系统所处状态为平衡态 非平衡态: 系统与外界,系统内部各部分间 存在能量传递及相对位移,状态将随时间 变化,称系统处于非平衡态
受逐渐变化的压力作用下的活塞的移动过程 发生系统状态变化 (力作用)(NEXT)
受变化的恒温热源缓慢加热的活塞系统发生 系统状态变化(热的作用) (NEXT)
26
P3 P2
P1
工质 工 质
工质
受逐渐变化压力作用下的活塞移动过程发生系 统状态变化(P、V、T变化) (力作用)
27
工质
工质
工质
热源T
31
1-6
过程功与热量
1.6.1 功的定义: 1、功的力学定义: 将物体间通过力的作用而传递的能量称为功并 定义:功等于力F与物体在力作用方向上的位移X 的乘积(点积) dW = F ·dX 2、功的热力学定义: 热力学系统和外界通过边界而传递的能量, 其效果可表现为举起重物
区别:功与系统动能、重力位能等“储存能”变化传递 的机械能的本质区别
第一章 热力学基本概念
工程热力学与传热学第一章基本概念典型问题分析典型问题一.基本概念分析1闭口系统具有恒定的质量,但具有恒定质量的系统不一定就是闭口系统。
2孤立系统一定是闭口的,反之则不然。
3孤立系统一定是绝热系统,但绝热系统不一定都是孤立的。
4孤立系统的热力学状态不能发生变化。
5平衡状态的系统不一定是均匀的,均匀系统则一定处于平衡状态。
6摄氏温度的零点相当于热力学温度的273.15K。
7只有绝对压力才能表示工质所处的状态,才是状态参数。
8只有平衡状态,才能用状态参数坐标图上的一点来表示。
9非平衡状态,因为没有确定的状态参数,无法在状态参数坐标图中表示。
10不平衡过程,一定是不可逆过程;11不可逆过程就是指工质不能恢复原来状态的过程;12一个可逆过程必须同时也是一个准平衡过程,但准平衡过程不一定是可逆的。
13实际过程都是不可逆过程。
14功可以全部转变为热,但热不能全部转变为热15质量相同的物体A和B,若T A >T B,则物体A具有的热量比物体B多。
二.计算题分析1测得容器内气体的表压力为0.25MPa,当地大气压为755mmHg,求容器内气体的绝对压力p,并分别用(1)MPa(兆帕);(2)bar(巴);(3)atm(物理大气压);(4)at(工程大气压)表示。
2某种气体工质从状态1(p1,V1)可逆地膨胀到状态2。
膨胀过程中:(1)工质的压力服从p=a-bV,其中a,b为常数;(2)工质的pV保持恒定为p1V1。
试分别求两过程中气体的膨胀功。
3利用体积为2m3的储气罐中的压缩空气给气球充气,开始时气球内完全没有气体,呈扁平状,可忽略其内部容积。
设气球弹力可忽略不计,充气过程中气体温度维持不变,大气压力为0.9 ╳105Pa。
为使气球充到2m3,问气罐内气体最低初压力及气体所作的功是多少?已知空气满足状态方程式pV=mR g T。
分析解答一. 基本概念分析解答1 √;2 √;3 √;4 ╳;5 √;6 √;7 √;8 √;9 √;10 √;11 ╳;12 √;13 √;14 ╳;15 ╳;二. 计算题分析解答1 解:依据: Pa Pa Pa p Pa mmHg p p p b e 66107305.04322.1337551025.04332.1331,⨯=⨯+⨯==+=单位换算:at Pa Pa atm PaPa bar Pa Pa MPa PaPa 7575.35.06698107305.0)4(7460.3325101107305.0)3(057.310107305.0)2(7305.010107305.01665666=⨯=⨯=⨯=⨯)( 2 解:过程为可逆过程: 1211212121212221122121ln )2()(2)()(1V V V p V dV pV pdV W V V b V V a dV bV a pdV W ===---=-==⎰⎰⎰⎰--)( 分析:在上述两过程中,系统的初,终态相同,但中间途径不同,因而气体的膨胀功也不同。
初中化学第一章复习基本概念和基本理论
初中化学第⼀章复习基本概念和基本理论初中化学第⼀章复习第⼀部分基本概念和基本理论⼀、物质的变化和性质物理变化—物质在变化过程中,没有⽣成其他物质的变化。
物质的变化化学变化—物质在变化过程中,⽣成其他物质的变化。
物理变化例⼦如:空⽓分离法制氧⽓,⽯油分馏,固体NaOH潮解,浓硫酸吸⽔,浓盐酸挥发,活性炭吸附⽓体,物质的三态变化,物质的形状变化。
化学变化例⼦如:晶体失去结晶⽔,风化,⽆⽔硫酸铜变成蓝⾊晶体,⽣⽯灰吸⽔,NaOH吸收⼆氧化碳变质,煤的⼲馏,物质分解,燃烧,物质之间相互反应,钢铁⽣锈、⾷物腐败、酸碱指⽰剂变⾊等。
物理性质—物质不需要发⽣化学变化就能表现出来的性质。
物质的性质化学性质—物质在化学变化中表现出来的性质。
物理性质例⼦如:状态,⽓味,溶解性,挥发性,吸附性,延展性,熔点,沸点,硬度,颜⾊、密度。
化学性质例⼦如;不稳定性,稳定性,酸性,碱性,中性,脱⽔性,可燃性,腐蚀性,活泼性,不活泼性,氧化性,还原性,助燃性,毒性。
⼆、化学反应的类型化合反应—由⼆种或⼆种以上的物质⽣成另⼀种物质的反应。
分解反应—由⼀种物质⽣成两种或两种以上其他物质的反应。
化学反应的类型置换反应—由⼀种单质跟⼀种化合物反应,⽣成另⼀种单质和另⼀种化合物的反应。
复分解反应—由两种化合物互相交换成分,⽣成另外两种化合物的反应。
化合反应(⼏合⼀或多变⼀)(A+B→AB)分解反应(⼀分⼏或⼀变多)(AB→A+B)常见能分解的物质如:H2O ,H2CO3,C u(O H)2,F e(O H)3,CaCO3,KClO,3NH4HCO3,C u2(O H)2C O3置换反应(单+化→单+化)(A+BC→AC+B);注意:根据⾦属活动性顺序排在前⾯的⾦属能把排在后⾯的⾦属从盐溶液中置换出来或置换酸中的氢,铁在置换反应中⽣成亚铁盐。
复分解反应(化+化→化+化)(AB+CD→AD+CB)注意:复分解反应发⽣在酸,碱,盐之间。
⽣成物中必须有沉淀、⽓体、⽔⽣成。
大学物理化学授课课件基本概念及定义(本科专业)
8
1-4 状态方程式
状态方程式:三个基本状态参数(p、v、T)之间的函数关系,即:
F(p,v,T)=0
显函数形式:T=f1(p,v),p=f2(v,T),v=f3(p,T)
理想气体:相互之间没有作用力的质点组成的可压缩流体。
理想气体状态方程式(克拉贝龙方程):
对1mol理想气体: pVm=RT R=8.314 510 J/(mol·K) —摩尔气体常数;Vm—摩尔容积,m3/mol 。
系统状态变化,取决于系统和外界间的能量传递。状态公理表
明,确定系统平衡状态所需的独立状态参
数的数目等于系统和外界间进行能量传递
方式的数目。对于常见的气态物质组成的
系统,没有化学反应时,它和外界间传递
的能量只有热量和系统容积变化功,因此
只要有两个独立的状态参数即可确定系统
的状态。
2020年4月18日
第一章 基本概念及定义
第一章 基本概念及定义
1-1 热力学系统 1-2 热力学系统的状态及基本状态参数 1-3 平衡状态和状态参数坐标图 1-4 状态方程式 1-5 准静态过程和可逆过程 1-6 可逆过程的功 1-7 热量 1-8 热力循环
2020年4月18日
第一章 基本概念及定义
1Hale Waihona Puke 1-1 热力学系统热力学系统(热力系统、热力系、系统)——人为选定的某些确 定的物质或某个确定空间中的物质 。
2
2020年4月18日
dp p2 p1 p1,2
1
第一章 基本概念及定义
4
基本状态参数:
一、比体积v ——单位质量物质占有的体积。描述系统内部物质 分布状况的参数。
v V m3/kg m
密度和比体积互为倒数,即
第一章复习 化学基本概念和原理
三、物质的性质和变化
物理变化、化学变化 物理性质、化学性质 化合反应、分解反应、置换反应、复分解 反应 氧化反应、还原反应 质量守恒定律 金属活动性顺序及其应用
催化剂 燃烧和燃烧的条件,缓慢氧化和自然 化学反应中的吸热和放热现象 爆炸,常见易燃物和易爆物的安全知识
ቤተ መጻሕፍቲ ባይዱ
四、化学用语和化学量
化学符号的含义,正确书写常见的元素符号 化学式的书写 化学式的应用 相对原子质量、相对分子质量 化学方程式的含义 化学方程式的书写和配平 根据化合价书写化学式,根据化学式判断化合价 原子结构示意图 离子符号的含义 酸、碱、盐的电离方程式
五、溶液
溶液、溶质、溶剂 饱和溶液、不饱和溶液 溶解度 溶液的导电性 温度、压强对气体溶解度的影响 固体溶解度曲线 常见的结晶水合物 混合物分离的常见方法:过滤、结晶等 风化 、潮解 溶液中溶质的质量分数 PH---溶液酸碱度的表示方法
第一章 化学基本概念和原理
一、物质的组成和分类
分子和原子的概念,分子和原子的区别和 联系 离子的含义,原子和离子的区别和联系 原子团的概念 元素的含义,元素与原子的区别和联系 混合物、纯净物 酸、碱、盐 氧化物、酸性氧化物、碱性氧化物
二、物质的结构
原子的结构----原子核(质子、中子)和核 外电子 核外电子排布的初步知识 离子化合物与共价化合物的形成过程 (NaCl、HCl)
机械工程控制基础1.基本概念
输出量(全部或一部分)通过测量装置返回系统的 输入端,使之与输入量进行比较,产生偏差(给定信 号与返回的输出信号之差)信号。输出量的返回过程 称为反馈。返回的全部或部分输出信号称为反馈信号。
负反馈
Hale Waihona Puke 正反馈l1Q1 Q1
l1
H
l2 Q2 l2 Q2
H
College of Mechanical & Material Engineering
三峡大学机械与材料学院
第一章 基本概念
Part 1.3 控制理论的中心问题 稳定性: 系统动态过程的振荡倾向及其恢复平衡状态的能 力。稳定的系统当输出量偏离平衡状态时,其输 出能随时间的增长收敛并回到初始平衡状态。 稳定性是控制系统正常工作的先决条件。控制系 统稳定性由系统结构所决定,与外界因素无关。 稳定性由控制系统内部储能元件的能量不可能突 变所产生的惯性滞后作用所导致。 气动伺服实例
College of Mechanical & Material Engineering
三峡大学机械与材料学院
第一章 基本概念
第一章 绪论
本章主要内容: I.1 控制的定义
I.2 系统的工作原理和组成
I.3 控制理论的中心问题
I.4 控制理论基础(Ⅰ)的学习内容
I.5 控制理论的历史发展
College of Mechanical & Material Engineering
三峡大学机械与材料学院
第一章 基本概念
系统原理方块图
[实质] 检测偏差 纠正偏差。
第一章-互换性与标准化的基本概念
*
二、优先数(GB/T321—1980 ) 优先数就是一种对各种技术参数进行简化、协调和统一的一种科学的数值制度。 工程技术涉及参数很多,且选定某产品的一项参数后,数值参数指标会向相关制品、材料的有关参数扩散,如图所示。标准化的一项重要内容是将工程技术参数进行简化、协调和统一,用尽量少的参数满足生产实际的需求。
2.50
2.50
5.60
5.60
1.18
2.65
6.00
1.25
1.25
1.25
2.80
2.80
6.30
6.30
6.30
6.30
1.32
3.00
6.70
1.40
1.40
3.15
3.15
3.15
7.10
7.10
1.50
3.35
7.50
1.60
1.60
1.60
1.60
3.55
3.55
8.00
8.00
8.00
第一章 互换性与标准化的基本概念
*
三、互换性的重要性 不仅是使用上的需要,也是设计、制造上的需要。 使用上如军工产品易损件子弹、炮弹都具有互换性;民用产品,如汽车备胎、电子元件等等的互换性,给日常生活带来极大方便。制造上,可采用先进的生产方式(专业化生产、流水线、自动线), 产品单一,分工精细,可采用专用设备,提高生产率,进行文明生产。设计上,采用了互换性原则设计和生产的标准零部件,可简化设计、计算、制图工作量,缩短了设计周期,并便于用计算机进行辅助设计。 总之,遵循互换性原则进行设计、制造和使用,可大大降低产品成本,提高生产率,降低劳动强度。也为标准化、系列化、通用化奠定了基础。所以,互换性原则是机械工业中的重要原则。
01基本概念及定义热力学2013-文档资料
第一章 基本概念及定义
12
2. 准静态过程 quasi-static state process
过程中系统经历的是一系列平衡状态,并在 每次状态变化时仅是无限小地偏离平衡状态。 实现准静态过程的条件: 系统和外界△→0 大部分实际过程可以近似地当作准静态过程。
在状态参数坐标图上,可用一条过 程曲线定性地表示该准静态过程。
第一章 基本概念及定义
6
3. 温度 Temperature , T ( t )
温度是标志系统冷、热程度的参数。 温度的建立以及测量是以热力学第零定律为基础的。
热力学第零定律(热平衡定律)The Zeroth Law of Thermodynamics : 两个系统分别与第三个系统处于热平衡,则这两个系统彼此也
是衡量可逆过程中工质与外 界是否发生热交换的标志。
在p-v图上: 一点:一个平衡状态 一实线:一个准静态过程
在T-s图上:一点:一个平衡状态 一实线:一个准静态过程
曲线下面积:
可逆过程中系统所 做的容积变化功。
功是过程量
第一章 基本概念及定义
曲线下面积:
可逆过程中系统与 外界所交换热量。
热量是过程量
状态参数坐标图:
应用两个独立状态参数,可组成状态参数坐标图。
ex: P-V, T-s, h-s, p-h
注意:①图上任意一点代表一个平衡状态;
②若系统处于不平衡状态, 则无法在状态参数坐标图上描述。
第一章 基本概念及定义
10
1-4 状态方程式
1. 状态方程式
三个基本状态参数(p、v、T)之间的函数关系。即:
• 功量是过程量,仅存在于过程中,过程 一旦结束,功量这种能量形式就不复存在。
工热热力学名词解释
工程热力学概念第一章基本概念1.热力系:就是具体指定的研究对象。
(用界面将所要研究的对象将周围环境分开,这种人为分割的研究对象,称为热力系统。
)2.边界:分割系统与外界的分界面称为边界。
3.外界:与热力系有相互作用的周围物体称为外界。
4.根据热力系内部情况不同,热力系可分为:单元系:由单一化学成分组成。
多元系:由多种化学成分组成。
单相系:由单一的相组成。
复相系:由多种相组成。
均匀系:各部分性质均匀一致。
非均匀系:各部分性质不均匀。
5.根据热力系和外界相互作用情况不同,热力系可分为:闭口系:和外界无物质交换。
开口系:和外界有物质交换。
绝热系:和外界无热量交换。
孤立系:和外界无任何相互作用。
6.状态:是热力系在指定瞬间所呈现的全部宏观性质的总称。
7.状态参数:从各个不同方面描写宏观状态的物理量称为工质的状态参数。
8.基本状态参数:在工程热力学中常用的状态参数有6个,即压力、比体积、温度、热力学能、焓和熵。
其中压力、比体积、温度可以直接测量,也比较直观,称为基本状态参数。
9.真空度:当气体的绝对压强低于大气压力时,真空计所指示的是绝对压力低于大气压的部分,称为真空度。
10.热力学能:组成热力系的大量微观粒子本身所具有的能量(不包括热力系宏观运动的能量和外场作用的能量)。
11.比热力学能:单位质量物质的热力学能称为比热力学能。
12.平衡状态:是指热力系在没有外界作用的情况下宏观性质不随时间变化的状态。
13.简单热力系:和外界只有热能和机械能交换的热力系统称为简单热力系。
14.过程:是指热力系从一个状态向另一个状态变化时所经历的全部状态的总和。
15.内平衡过程:热力系从一个平衡(均匀)状态连续经历一系列(无数个)平衡的中间状态过渡到另一个平衡状态,这样的过程称为内平衡过程。
内平衡过程也称作准静态过程。
16.循环过程:热力系从某一状态开始,经过一系列中间状态后,有回复到原来状态。
17.做功量:热力系通过界面和外界进行的机械能的交换量称为做功量,简称功。
《工程热力学》 第一章—基本概念
状态参数的分类
★ 基本状态参数:可以直接测量的状态参数。 如压力p、温度T、比体积v。 ★ 导出状态参数:由基本状态参数间接求得的 参数。 如内能U、焓H、熵S等。
1. 压力
● 压力的定义
◆ 沿垂直方向作用在单位面积上的力称为压
力(即物理中压强)。
◆ 对于容器内的气态工质来说,压力是大量 气 体分子作不规则运动时对器壁单位面积撞 击 作用力的宏观统计结果。
压力的单位
压力的单位是N/m2 ,符号是帕(Pa)
常用压力单位的换算见附表1(222页)
1 atm = 760 mmHg = 1.013105 Pa
1 at = 1 kgf/ cm2 = 9.8067 104 Pa
1 MPa = 106Pa= 103kPa= 10bar
压力的表示方法
◆ 绝对压力(p)、表压力(pg)、
如果系统的宏观状态不随时间变化,则该系
统处于平衡状态。
● 不能把平衡态简单地说成不随时间而改变的状态, 也不能说成外界条件不变的状态。
平衡态是指系统的宏观性质不随时间变化的状态。 ● 平衡与均匀:均匀系统一定处于平衡状态,
反之则不然。
● 实现平衡的条件
◆ 热平衡 ◆ 力平衡 ◆ 相平衡 ◆ 化学平衡 温度相等 压力相等 各相间化学位相等 反应物与生成物化学 位相等
2. 温度
◆ 传统:温度是物体冷热程度的标志。
◆ 微观:温度是衡量分子平均动能的量度。
T 0.5 m c2 T=0 0.5 m c2=0 分子一切运动停止,零动能。
● 热力学第零定律
◆ 热平衡:不同物体的冷热程度相同,则它们处于热平衡。 ◆ 热力学第零定律(热力学中的一个基本实验结果): 若两个热力系分别与第三个热力系处于热平衡,那么这 两个热力系也处于热平衡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温度计
物质 (水银,铂电阻) 特性 (体积膨胀,阻值) 温度计 基准点 刻度 温标
温标
热力学温标(绝对温标)Kelvin scale (Britisher, L. Kelvin, 1824-1907)T(K ) 摄氏温标Celsius scale (Swedish, A. Celsius, 1701-1744)t(℃) 华氏温标Fahrenheit scale (German, G. Fahrenheit, 1686-1736) F 朗肯温标Rankine scale (W. Rankine, 1820-1872) R
摄氏温标 t ℃:
基 准 点:标准大气压力下纯水的冰点和
沸点温度为基准点,规定冰点温度为0℃。 沸点温度为100℃。 分度方法:认定测温物质的测温属性随温度 的变化是线性的。0℃与100℃这两个基准点
之间分成100等分,每一等分为1度。
热力学温标T (K):
基 准 点:纯水的汽、液、固三相平衡共存 的状态点(三相点)为基准点,并规定它的温
3、外界与边界
外界:系统以外的所有物质 边界(界面):系统与外界的分界面 系统与外界的能量(功和热) 与物质的迁移都通过边界
边界可以是固定的,
也可以是移动的, 也可以是虚拟的。
例1:真实、固定不动的界面
系
统
界面
例2:边界可以移动
界面 外界
热力系统
外界
热 源
例3:界面是虚拟的、运动的
三、状态参数的分类:
按能否用仪器或仪表进行直接或间接测量划分 基本状态参数
能够用仪器仪表直接或间接测量的参数称为
基本状态参数。 如 :温度、压力、比体积
导出状态参数
不能用仪器仪表直接或间接测量的参数称为 导出状态参数。 如热力学能(内能)、焓、熵。
按照与物质的量的关系:强度参数与广延参数 强度参数:与物质的量无关的参数 对于均匀系统,如 压力 p、温度T,系
环境压力指压力表所处环境的压力
注意: 环境压力一般为 大气压,但不一定。
大气压力
大气压随时间、地点变化
标准大气压 1atm = 760mmHg=101325Pa
当h变化不大,ρ常数 1mmHg = ρgh = 133.322Pa 当h变化大,ρ ρ(h)
p (h) gdh
压力计
C
1
2
B
A
解:
p1 pC pb 97 110 207kPa
p 2 p1 pB 207 75 132kPa
pA p 2 pb 132 97 35kPa
2、温度T
传统定义:描述物体的冷热程度的物理 量。同样室温下,摸到木头和铁的感觉 不同,跟导热有关。 微观定义:是处于热平衡系统微观粒子 热运动强弱程度的度量。对气体,是大 量分子平移动能平均值的量度。
一、平衡状态
二、状态公理 三、状态方程 四、坐标图
一、平衡状态
在不受外界影响的条件下(重力场除 外),如果系统的状态参数能够始终保持不 变,则系统的这种状态称为平衡状态。 不受外界影响,指的是与外界没有能量 交换,内部没有能量交换,也没有外力场的 作用,重力除外。
系统内各部分之间:
没有热量的传递 系统处于热的平衡 系统处于力的平衡 系统还应处于化学 平衡 系统还应处于相变 平衡
界面
系 统
系
统
例4:界面是假想的、固定不动的,系 统体积一定,一般称为控制体积 界面
系 统
外 界
外 界
二、热力系统分类
以系统与外界关系划分:
有
是否传质 是否传热 是否传功 是否传热、功、质 开口系 非绝热系 非绝功系 非孤立系
无
闭口系 绝热系 绝功系 孤立系
多媒体课件 1-1封闭可移动边界 1-2开口系统 1-3孤立系统
统中单元体参数与整个系统的参数值相同,与 质量多少无关,没有可加性。当强度性参数不 相等时,便会发生能量的传递,如有温差时发 生热传递,在有力差时发生功的传递。强度性 参数在能量传递中起着推动力作用,称为广义 力或者势。一切实际热力过程都是在某种势差 推动下进行的。
说明
对于均匀系统,系统内部各部分同名
第1章基本概念
§1.1热力系统
§1.2工质的热力状态及其基本状态参数
§1.3平衡状态、状态公理及状态方程
§1.4准静态过程与可逆过程
§1.5功量、热量、熵 §1.6热力循环
§1-1
热力系统
一、工质、系统、边界与外界
二、热力系统分类
一、工质、系统、边界与外界
1、工质
概念:在热力工程中,完成热能与机械能之 间相互转换所采取的介质。
1 2 mc BT 2 c 分子移动的均方根速度 3 B K,K为波尔兹曼常数 2
两个物体接触时,通过接触面上分子的 碰撞进行动能交换,能量从平均动能较 大的一方,即温度高的物体,传到了平 均动能较小的一方,即温度低的物体, 这种微观的动能交换就是热能的交换, 也就是两个温度不同的物体间进行的热 量传递。传递的方向总是由温度高的物 体传向温度低的物体,直至两物体温度 相等时为止。
1
2
1+2+3+4 孤立系 非孤立系+相关外界 =孤立系
热力系统其它分类方式
物理化学性 质 其它分类方式
工质种类
均匀系 非均匀系 单元系
多元系
相态
单相
多相
简单可压缩系统
简单系统是指与外界之间只存在一种形 式的功,即准静态容积功的系统
最重要的系统 简单可压缩系统 一个可压缩系统在没有电、磁、重力、 运动和表面张力的作用时,即只交换热量 和一种准静态的容积变化功,称为简单可 压缩系统。
用的测温物质某种物理特性来表示 的。当温度改变时,物质的某些物 理性质,如液体的体积、定压下气 体的容积、定容下气体的压力、金 属导体的电阻、不同金属组成的热 电偶等都随之变化。利用这些物理 性质随温度的变化来标志温度,就 建立起各种类型的温度计。
常用温度计
日常:水银温度计,酒精温度计, 工业:热电偶 热电阻 辐射温度计 计量:铂电阻温度计
状态参数是只由状态决定的,过程中参数的变化 只跟初、终态有关,与过程经过的路径无关。
过程量是指过程中表现出来的量,过程量的变化 不仅由初、终态决定,还跟过程经过的路中,可以直接测量的参数有温 度T,压力p,比容v;不可直接测量的状态参数 有热力学能u,焓h,熵s。
§1-3 平衡状态、状态公理及状态方程
高精度测量:活塞压力计
工业或一般科研测量:压力传感器
多媒体1-4U形管压力计原理
例题、某容器被一个刚性壁分为两个部分,在容器的不同 部位安装有压力表。如图所示,已知压力表B上读数为 75kPa,压力表C上的读数为0.11MPa.如果大气压压力为 97kPa,试确定压力表A上读数以及容器两部分内气体的 绝对压力。(南京航空航天大学2006考研试题 )
比参数----广延参数除以系统的总质量, 即为单位质量的广延性参数或者称为比 参数。
比参数:
V v m 比容
U u m 比内能
H h m 比焓
S s m 比熵
单位:/kg /kmol 具有强度参数的性质, 没有可加性。
强度参数与广延参数
速度 高度
温度 应力 (强)
动能 位能
内能
(广) (广)
用来确定一个系统是否与其他系
统处于热平衡的判据:温度
处于热平衡的系统具有相同的
温度,这是可以用温度计测量 物体温度的依据。当温度计与 被测物体达到热平衡时,温度计 的温度即等于被测物体的温度.
热力学第零定律
热力学第零定律(R.W. Fowler in 1931)
如果两个系统分别与第三个系统处于 热平衡,则两个系统彼此必然处于热平衡。
各部分之间没有相 对位移
如果有化学反应 如果有相变
平衡的本质:不存在不平衡势
不平衡势差是驱使状态变化的原因
,而处于平衡状态的系统,其参数 不随时间改变,则是因为没有不平 衡势差。
3、比容 v
V v m
[m3/kg]
工质聚集的疏密程度
物理上常用密度
[kg/m3]
v
1
思考题
某工质热力状态保持一定,试
问,测定该工质的压力表读值 能否发生变化?为什么?
例题、状态参数与过程量有什么不同?常用的状 态参数哪些是可以直接测量的?哪些是不可直接 测量的?(西安交通大学2003考研试题)
压力p测量
绝对压力与环境压力的相对值 ——相对压力
注意:只有绝对压力 p 才是状态参数
压力测量
入口段负压,出口段正压,测出的 都是相对压力。
绝对压力p与相对压力
当 p > pb 当 p < pb 表压力 pg 真空度 pH
pg p pb pH pb p
压力表
环境压力与大气压力
判断参数z是否为状态参数。
dz 2 xydx x dy
2
(2 xy ) x 2x 2 x y x
2
是状态参数。
练习
dy ( x z )dx ( x z )dz
dx y e dz ye dy
2 z z
4、热力学中常用状态参数:
温度、压力、比体积、热力学能、焓、 熵。
度为273.16K。 (0.01 ℃) ,热力学温度的
每单位开尔文,等于水的三相点热力学温度 的1/273.16 热力学温标与摄氏温标之间的关系: T = t + 273.15
常用温标之间的关系
绝对K
373.15
摄氏℃
100 水沸点
华氏F
212
朗肯R
671.67