频率的稳定性
6.2频率的稳定性
0.4
0.2
20 40 80 120 160 200 240 280 320 360 400
试验总次数
数学史实
人们在长期的实践中发现,在随机试验 中,由于众多微小的偶然因素的影响,每次 测得的结果虽不尽相同,但大量重复试验所 得结果却能反应客观规律.
频率稳定性定理 频率的稳定性是由瑞士数学 家雅布·伯努利(1654- 1705)最早阐明的,他还提 出了由频率可以估计事件发 生的可能性大小。
0<P(A) < 1
小凡做了5次抛掷均匀硬币的实验,其中有3次正 面朝上,2次正面朝下,他认为正面朝上的概率大 2 3 约为 5 ,朝下的概率为 5 ,你同意他的观点吗? 你认为他再多做一些实验,结果还是这样吗?
因为试验的次数不多(只有5次),此时用频率来 估计概率,其误差一般较大,所以,认为“正面朝
2
1、下列事件发生的可能性为0的是( ) D A.掷两枚骰子,同时出现数字“6”朝上 B.小明从家里到学校用了10分钟, 从学校回到家里却用了15分钟 C.今天是星期天,昨天必定是星期六 D.小明步行的速度是每小时40千米
BACK
2、 口袋中有9个球,其中4个红球, 3个蓝球,2个白球,在下列事件 中,发生的可能性为1的是( C )
)
(B)0.44
(C)0.50
(D)0.56
掷一枚均匀的骰子。 (1)会出现哪些可能的结果? (2)掷出点数为1与掷出点数为2的可能 性相同吗? 掷出点数为1与掷出点数为3的可能 性相同吗? (3)每个出现的可能性相同吗?
(2)累计全班同学的试验结果, 并将实 验数据汇总填入下表:
实验总次数 正面朝上 的次数 正面朝上 的频率 正面朝下 的次数 正面朝下 的频率 20 40 60 80 100 120 140 160 180 200 10 22 32 41 47 57 67 79 89 99
2 频率的稳定性
1.频率
(1)定义:在 n 次重复试验中,不确定事件 A 发生了 m 次,则比值 m 称为事件 A n
发生的 频率
.
ቤተ መጻሕፍቲ ባይዱ
(2)频率的稳定性:在试验次数很大时,事件发生的频率都会在一个 常数 附
近摆动,这就是频率的稳定性.
2.概率 (1)我们把刻画事件A发生的 可能性 大小的数值,称为事件A发生的概率,记
(2)小明的说法错误;因为只有当试验的次数足够大时,该事件发生的频率稳 定在事件发生的概率附近.小明只做100次试验,试验次数较少,事件发生的频 率不具有稳定性.
频率是指在试验中,事件发生的次数与总试验次数的比,随试验次数 的不断增多而趋于稳定.
探究点二:用频率估计概率
【例2】 (2019杭州)一个猜想是否正确,科学家们要经过反复的实验论证.下 表是几位科学家“掷硬币”的试验数据:
3.(2019黔东)从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述 过程,一共摸了150次,其中有50次摸到黑球,已知口袋中仅有黑球10个和白球若 干个,这些球除颜色外,其他都一样,由此估计口袋中有 20 个白球. 4.对一批西装质量的抽检情况如下:
抽检件数 200
400
600
800
1 000 1 200
朝上的点数 1
2
3
4
5
6
出现的次数 14
15
23
16
20
12
(1)计算“4点朝上”的频率; (2)小明说:“试验中出现3点朝上的频率最大,所以随机投掷骰子一次,出现3点 朝上的概率最大”.他的说法正确吗?为什么? 【导学探究】 1.共做了 100 次试验,“4点朝上”的次数为 16 . 2.质地均匀的正方体有6个面,随机投掷骰子一次,会出现6种可能结果,而出现3 点朝上结果只有 1 种.
6.2频率的稳定性(教案)
突破方法:指导学生学会从大量数据中寻找规律,通过画图、计算等方法,降低偶然性因素的影响。
(4)逻辑推理能力的提升:学生在推理过程中,容易忽略细节,导致推理错误。
突破方法:教师应引导学生关注细节,培养学生的逻辑推理能力,让学生学会从特殊到一般的推理方法。
3.重点难点解析:在讲授过程中,我会特别强调频率稳定性定理和利用频率稳定性估计概率这两个重点。对于难点部分,我会通过抛硬币实验和数据分析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与频率稳定性相关的实际问题。
2.实验操作:为了加深理解,我们将进行抛硬币和掷骰子实验操作。这些操作将演示频率稳定性的基本原理。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解频率稳定性的基本概念。频率稳定性是指在相同条件下,大量重复试验中事件发生的频率会趋于一个固定值。它是概率理论的一个重要依据,可以帮助我们估计事件发生的概率。
2.案例分析:接下来,我们来看一个具体的案例。通过抛硬币实验,观察不同次数下正面朝上的频率,分析频率稳定性在实际中的应用,以及如何帮助我们估计概率。
2.教学难点
(1)理解频率与概率的区别与联系:学生容易混淆频率和概率的概念,难以理解它们之间的关系。
突破方法:通过实例和图表,让学生直观地感受到频率是随着试验次数变化的数据,而概率是理论上的固定值。
(2)频率稳定性定理的应用:学生在运用频率稳定性定理解决实际问题时,往往不知道如何下手。
突破方法:教师需给出具体的案例,引导学生学会将实际问题抽象为数学模型,并运用定理进行求解。
6.2频率的稳定性(教案)
频率的稳定性 课件-高一下学期数学人教A版(2019)必修第二册
课堂精讲
【例 1】 下表是某品牌乒乓球的质量检查统计表:
抽取球数 50 100 200 500 1 000 2 000
优等品数 45 92 194 470 954 1 902
优等品频率
(1)计算各组优等品频率,填入上表;
(2)根据频率的稳定性估计事件“抽取的是优等品”的概率.
解
优等品数
(1)根据优等品频率=抽取球数,
(1)将各组的频率填入表中; (2)根据上述统计结果,估计灯管使用寿命不足 1 的概率.
500 小时
[1 500,1 700) [1 700,1 900) [1 900,+∞)
193 165 42
0.193 0.165 0.042
(2)样本中使用寿命不足 1 500 小时的灯管的频率是
0.048+0.121+0.208+0.223=0.6,
射击次数 n 10 20 50 100 200 500
击中靶心次数 m 8 19 44 92 178 455
击中靶心的频率mn (1)填写表中击中靶心的频率;
(2)这个射手射击一次,击中靶心的概率约是多少?
解 (1)表中依次填入的数据为:
射击次数 n 10 20 50 100 200 500
0.80,0.95,0.88,0.92,0.89,0.91. 击中靶心次数 m 8 19 44 92 178 455
(2)由于频率稳定在常数 0.9 附近, 所以这个射手射击一次,
击中靶心的频率mn 0.80 0.95 0.88 0.92 0.89 0.91
击中靶心的概率约是 0.9.
7
10.3.1 频率的稳定性
题型二 游戏公平性的判断
数学
8
知识梳理
北师大版数学七年级下册6.2《频率的稳定性》教案
北师大版数学七年级下册6.2《频率的稳定性》教案一. 教材分析北师大版数学七年级下册6.2《频率的稳定性》是统计学的一个基本概念。
本节内容通过具体实例让学生了解频率的稳定性,掌握频率稳定性概念,并能够运用频率稳定性分析实际问题。
教材通过生活中的实例,引导学生探究频率的稳定性,培养学生的统计观念和数据分析能力。
二. 学情分析学生在学习本节内容前,已经学习了数据的收集、整理和表示方法,对统计学有了一定的了解。
但学生对频率稳定性的理解可能存在一定的困难,需要通过具体实例和活动让学生感受和理解频率的稳定性。
三. 教学目标1.让学生了解频率的稳定性概念,理解频率稳定性在实际问题中的应用。
2.培养学生收集、整理、分析数据的能力,发展学生的统计观念。
3.培养学生通过实例分析问题、解决问题的能力。
四. 教学重难点1.重点:频率稳定性的概念及其在实际问题中的应用。
2.难点:频率稳定性的理解和运用。
五. 教学方法1.采用问题驱动法,让学生在解决问题的过程中理解频率稳定性。
2.采用实例分析法,通过具体实例让学生感受频率稳定性。
3.采用小组合作学习法,培养学生的团队协作能力。
六. 教学准备1.准备相关的生活实例和数据,用于引导学生探究频率稳定性。
2.准备教学课件,用于辅助教学。
七. 教学过程1.导入(5分钟)教师通过引入生活中的一些实例,如抛硬币、掷骰子等,引导学生思考:在这些实验中,结果出现的频率是否会发生变化?从而引出频率稳定性的概念。
2.呈现(10分钟)教师呈现一些具体实例,如大量抛硬币实验的数据,让学生观察和分析频率的稳定性。
学生通过观察数据,发现频率在大量实验中趋近于一个稳定的值。
3.操练(10分钟)教师学生进行小组合作学习,让学生自己设计实验,收集数据,分析频率的稳定性。
学生通过自主探究,加深对频率稳定性的理解。
4.巩固(10分钟)教师提出一些问题,让学生回答,以巩固对频率稳定性的理解。
如:频率稳定性是什么意思?为什么频率会趋近于一个稳定的值?频率稳定性在实际问题中的应用等。
频率的稳定性-频率与概率
案例二:电力系统中的频率稳定性问题
电力系统中的频率稳定性问题
在电力系统中,频率的稳定性对于保证电力系统的稳定运行至关重要。频率不稳定会导致电力系统的负荷波动, 严重时甚至可能导致系统崩溃。
解决电力系统频率稳定性问题的方法
解决电力系统中的频率稳定性问题需要从多个方面入手,如优化电源配置、进行负荷管理、采用稳定的控制系统 等。
条件概率
一个事件发生的概率,在另一个事件 已经发生的情况下。
期望值
随机变量的平均值,或期望值,通常 表示为E(X)。
方差
衡量随机变量偏离其期望值的程度。
CHAPTER 03
频率稳定性的影响因素
系统因素
设备稳定性
设备的稳定性和可靠性对频率稳 定性有重要影响。设备故障或异 常运行可能会导致频率波动,影
案例三:运动状态的频率稳定性研究
运动状态下的频率稳定性研究
对于运动状态下的系统,如机械振动、电磁振荡等,频率的稳定性是保证系统稳定运行的关键。
提高运动状态下的频率稳定性的方法
提高运动状态下的频率稳定性需要从多个方面入手,如优化机械结构设计、选择合适的材料、进行动 态调整等。
案例四:工业生产过程中的频率稳定性控制
频率稳定性案例分析
案例一:通信系统的频率稳定性优化
频率稳定性在通信系统中的重要性
在通信系统中,频率的稳定性直接影响到信号的传输质量和速度。频率不稳定 会导致信号失真、传输错误等问题,从而影响通信质量。
频率稳定性优化的方法
为了提高通信系统的频率稳定性,可以采用多种方法,如采用高精度的频率源 、进行频率校准、采用稳定的传输介质等。
要点一
工业生产过程中的频率稳定性控 制
在工业生产过程中,尤其是化工、制药等领域,生产过程 中对于温度、压力、流量等参数的频率稳定性要求较高。
【高中数学】频率的稳定性 (教学课件) 高一数学同步备课系列(人教A版2019必修第二册)
第10章 概率
10.3.1 频率的稳定性
学习目标
1、理解频率的稳定性;
2、理解频率与概率的关系,掌握用频率估计概率
重点:用频率估计概率
难点:频率与概率的关系以及用频率估计概率
新知导入
小刚抛掷一枚硬币100次,出现正面朝上48次.
【问题】
(1)你能计算出正面朝上的频率吗?
果是否准确呢?
降水的概率是气象专家根据气象条件和经验,经分析推断得到的.对“降水的
概率为90%”比较合理的解释是:大量观察发现,在类似的气象条件下,大约有
90%的天数要下雨.
只有根据气象预报的长期记录,才能评价预报的准确性.如果在类似气象条件
下预报要下雨的那些天(天数较多)里,大约有90%确实要下雨了,那么应该认为预
事件的概率,我们需要寻求新的求概率的方法.
我们知道,事件的概率越大,意味着事件发生的可能性越大,在重复试验中,
相应的频率一般也越大;事件的概率越小,则事件发生的可能性越小,在重复试验
中,相应的频率一般也越小.在初中,我们利用频率与概率的这种关系,通过大量重
复试验,用频率去估计概率.那么,在重复试验中,频率的大小是否就决定了概率的
有随机性.一般地,随着试验次数的增大,频率偏离概率的幅度会缩小,即事件
发生的频率 ()会逐渐稳定于事件发生的概率().我们称频率的这个性质为频
率的稳定性.因此,我们可以用频率 ()估计概率().
例1 新生婴儿性别比是每100名女婴对应的男婴数. 通过抽样调查得知,我国2014年、
我们发现:
(1)试验次数相同,频率 ()可能不同,这说明随机事件发生的频率具有随机性.
(2)从整体来看,频率在概率0.5附近波动.当试验次数较少时,波动幅度较大;当
6.2 频率的稳定性课件(第1、2课时)
课堂检测
6.2 频率的稳定性/
基础巩固题
4.养鱼专业户为了估计他承包的鱼塘里有多少条鱼(假设这个塘里 养的是同一种鱼),先捕上100条做上标记,然后放回塘里,过了 一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条 ,发现其中带标记的鱼有10条,鱼塘里大约有鱼多少条?
解:设鱼塘里有鱼x条,根据题意可得
巩固练习
变式训练
6.2 频率的稳定性/
小明练习射击,共射击60次,其中有38次击中靶子,由此可估 计,小明射击一次击中靶子的频率稳定在( C )
A.38% C.约63%
B.60% D.无法确定
探究新知
6.2 频率的稳定性/
素养考点 2 频率稳定性的应用
例2 在一个不透明的布袋中,红球、黑球、白球共有若干个,除
钉尖朝上频率(钉尖朝上次数/ 试验总次数) 钉尖朝下频率(钉尖朝下次数/ 试验总次数)
探究新知
6.2 频率的稳定性/
频率:在n次重复试验中,不确定事件A发生了m次,则
比值 m
n
称为事件A发生的频率.
(2)累计全班同学的试验结果,并将试验数据汇总
填入下表:
试验总次数n 20 40 80 120 160 200 240 280 320 360 400
制了下面的折线统计图,观察图像,钉尖朝上的频率的变化
有什么规律?
结论:
钉尖朝上的频率
在试验次数很
1.0
大时,钉尖朝
0.8
上的频率都会 在一个常数附
0.6
近摆动,即钉
0.4
尖朝上的频率
0.2
具有稳定性.
20 40 80 120 160 200 240 280 320 360 400 试验总次数
《频率的稳定性》概率初步
03
频率的稳定性的计算方法
频率的稳定性的计算公式
频率稳定性计算公式
频率稳定度通常用频率偏移与标称频率的比 值表示,即 Δf/f。其中,Δf是实际频率与标 称频率的偏差,f是标称频率。频率稳定度 越高,意味着频率偏差越小,信号质量越佳 。
频率稳定度的单位
频率稳定度的单位通常是赫兹(Hz),也 可以用百分比表示。在用百分比表示时,频
在物理学、经济学、工程学等领域中,频率的稳定性被广泛应用于信号处理、数据分析、模型预测等 方面。
频率的稳定性的重要性
频率的稳定性是时间序列数据的一个重 要特征,它可以反映出一个系统的内在 规律和性质。
在数据分析中,频率的稳定性对于预测未来 的趋势和变化具有重要意义,因为稳定的频 率可以提供更可靠和精确的预测结果。
THANKS
感谢观看
率稳定度 = (Δf/f) × 100%。
频率的稳定性的计算实例
要点一
例子1
一个10 MHz的信号源,其频率稳定度为10 Hz,那么 它的频率偏差为 Δf = 10 Hz,标称频率 f = 10 MHz 。根据频率稳定度的计算公式,其频率稳定度为 (Δf/f) × 100% = (10 Hz/10 MHz) × 100% = 0.01%。
03
风险管理模型
频率稳定性对于构建风险管理模型也 至关重要。这些模型通常基于历史数 据和分析,以预测和减轻潜在的市场 风险。
在气象预报中的应用
气候预测
频率稳定性在气候预测中发挥重要作用。通过对历史气象数据的频率分析,可以预测未来一段时间内 的天气趋势,为农业、交通和能源等行业提供决策依据。
天气预报
06
频率的稳定性在概率初步中的应 用
在金融风险管理中的应用
电力系统中的频率稳定性分析
电力系统中的频率稳定性分析第一章引言在电力系统中,频率稳定性是一个至关重要的问题。
频率的稳定性对于电力系统运行的可靠性、经济性和安全性均具有重要影响。
因此,深入研究电力系统中的频率稳定性分析成为了电力系统领域的热门课题。
第二章电力系统的频率稳定性2.1 频率稳定性的定义和意义频率稳定性是指电力系统中发电频率维持在稳定水平的能力。
正常情况下,电力系统的频率应该维持在额定频率附近,即通常为50Hz或者60Hz。
频率的稳定性直接关系到电力系统的稳定运行,对于保证用户供电质量、均衡负载以及实现电力系统的互联互通具有重要作用。
2.2 频率稳定性的影响因素电力系统中的频率稳定性不仅受到外界环境的影响,还受到电力系统内部各种因素的影响。
主要的影响因素包括负载变化、发电机功率变化、电力输送线路以及控制系统等。
2.3 频率稳定性指标为了衡量电力系统的频率稳定性,通常使用频率偏差和频率偏离率两个指标。
频率偏差表示实际频率与额定频率之间的差异,频率偏离率则表示频率变化的速度。
第三章电力系统频率稳定性分析方法3.1 功率频率特性法功率频率特性法是一种常用的频率稳定性分析方法。
该方法通过改变系统负载或发电机出力,观察频率响应的变化情况,从而判断电力系统的频率稳定性。
3.2 线性化模型法线性化模型法是一种基于电力系统线性模型的频率稳定性分析方法。
通过将非线性电力系统模型线性化,可以利用频率响应和稳定裕度等指标来评估电力系统的频率稳定性。
3.3 非线性时序仿真法非线性时序仿真法是一种基于电力系统实时仿真的频率稳定性分析方法。
通过对电力系统进行时序仿真,可以获取系统中各种因素的变化情况,并结合频率响应来评估电力系统的频率稳定性。
第四章频率稳定性改善措施4.1 发电机控制策略通过调整发电机的调节器参数和控制策略,可以有效改善电力系统的频率稳定性。
包括自动励磁调节器和无功功率调节器等控制设备。
4.2 输电线路和变压器的控制适当调整输电线路和变压器的传输能力,采取合理的电压和无功功率调节措施,可以有效提高电力系统的频率稳定性。
10.3.1频率的稳定性10.3.2 随机模拟
三、例题精讲
例1.从你所在班级任意选出6名同学,调查他们出生月份,假设出生在一月, 二月,··· ···十二月是等可能的.设事件A=“至少有两人出生月份相同”, 设计一种试验方法,模拟20次,估计事件A发生的概率.
方法1:
方法2:随机模拟
例2.在一次奥运会男子羽毛球单打比赛中,运动员甲和乙进入了决赛.假设 每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4.利用计算机模拟试验, 估计甲获得冠军的概率.
随机模拟
四、课堂变式
盒子中仅有4个白球和5个黑球, 从中任意取出一个球.
(1)“取出的球是黄球”是什么事件?它的概率是多少? (2)“取出的球是白球”是什么事件?它的概率是多少? (3)“取出的球是白球或黑球”是什么事件?它的概率 是多少?
(4)设计计算机模拟上面的取球试验,并模拟100次,估计“取出的 球是白球”的概率.
10.3.2随 机 模 拟 制作:申占宝
一、引入新课 用频率估计概率,需要做大量的重复试验,有没有其他办法可以代替试验呢? 抛掷硬币,出现正面向上为事件A,求概率
二、探究新知
一个袋中装有2个红球和3个白球,这些球除颜色不同外没有其他差别,估计从
袋中摸出一个球为红球的概率.
n 下表是用电子表格软件模拟上述摸球试验的结果,其中
10.3.1 频率的稳定性 制作:申占宝
一、探究
重复做同时抛掷两枚质地均匀的硬币的试验,设事件A=“一个正面朝上, 一个反面朝上”,统计A出现的次数并计算频率,再与其概率进行比较.你发
现了什么规律?
1、利用计算机模拟掷两枚硬币的试验,在重复试验次数为 20,100,500 时各做 5 组试验,得到事件 A=“一个正面 朝上,一个反面朝上”发生的频数 nA 和频率 fn ( A) 如下表:
6.2 频率的稳定性
频率的稳定性
1.在n次重复试验中,事件A发生了m次,则比值 称为事件 A发生的频率.无论是掷质地均匀的硬币还是掷图钉,在试验次数很 大时正面朝上(钉尖朝上)的频率都会在一个常数附近摆动,这就 是 频率的稳定性 . 2.由于事件A发生的频率,表示该事件发生的频繁程度,频率越大, 事件A发生越频繁,这就意味着事件A发生的可能性也越大,因而,我 们就用这个常数来表示事件A发生的可能性的大小.我们把刻画事 概率 件A发生的可能性大小的数值,称为事件A发生的 ,记 P(A) 为 .一般地,大量重复的试验中,我们常用随机事件A发 生的频率来估计事件A发生的 概率 . 3.必然事件发生的概率为 1 ;不可能事件发生的概率 为 0 ;随机事件A发生的概率P(A)是 0与1 之间的一个常 数.
������ ������
1
2
3
4
1.事件A:打开电视,它正在播广告;事件B:抛掷一枚质地均匀的骰子, 朝上的点数小于7;事件C:在标准大气压下,温度低于0 ℃时冰融化. 这三个事件的概率分别记为P(A),P(B),P(C),则P(A),P(B),P(C)的大 小关系正确的是( ) A.P(C)<P(A)=P(B) B.P(C)<P(A)<P(B) C.P(C)<P(B)<P(A) D.P(A)<P(B)<P(C)
关闭
B
答案
1
2
3
4
2.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正 确的是( ) A.频率就是概率 B.频率与试验次数无关 C.概率是随机的,与频率无关 D.随着试验次数的增加,频率一般会越来越接近概率
关闭
D
答案
1
2
3
4
《频率的稳定性》教案 (公开课)2022年北师大版数学
6.2频率的稳定性1.理解频率和概率的意义;2.了解频率与概率的关系,能够用频率估计某一事件的概率.(重点,难点)一、情境导入养鱼专业户为了估计他承包的鱼塘里有多少条鱼(假设这个鱼塘里养的是同一种鱼),先捕上100条做上标记,然后放回塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,塘里大约有鱼多少条?二、合作探究探究点一:频率的稳定性在一个不透明的布袋中装有红色、白色玻璃球共60个,除颜色外其他完全相同.小明通过屡次摸球试验后发现,其中摸到红色球的频率稳定在25%左右,那么口袋中红色球可能有()A.5个B.10个C.15个D.45个解析:∵摸到红色球的频率稳定在25%左右,∴口袋中红色球的频率为25%,故红球的个数为60×25%=15(个).应选C.方法总结:频率在一定程度上可以反映随机事件发生的可能性的大小,在大量重复试验的条件下才可以近似地作为这个事件的概率.解题时由“频数=数据总数×频率〞计算即可.探究点二:用频率估计概率【类型一】用频率估计概率为了看图钉落地后钉尖着地的概率有多大,小明做了大量重复试验,发现钉尖着地的次数是实验总次数的40%,以下说法错误的选项是()A.B.随着试验次数的增加,C.D.前20次试验结束后,钉尖着地的次数一定是8次解析:A.,故此选项说法正确;B.随着试验次数的增加,,故此选项说法正确;C.∵,∴钉尖着地的概率大约是,故此选项说法正确;D.前20次试验结束后,钉尖着地的次数应该在8次左右,故此选项说法错误.应选D.【类型二】利用频率估计球的个数王老师将1个黑球和假设干个白球放入一个不透明的口袋并搅匀,让假设干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据(结果保存两位小数):(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是________;(2)估算袋中白球的个数.解析:(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可;(2)根据概率公式列出方程求解即可.解:(1)251÷1000≈0.25.∵,∴估计从袋中摸出一个球是黑球的概率是0.25;(2)设袋中白球为x 个,11+x,x =3.答:估计袋中有3个白球.方法总结:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=mn.【类型三】 利用频率折线图估计概率一粒木质中国象棋棋子“車〞,它的正面雕刻一个“車〞字,它的反面是平的,将棋子从一定高度下抛,落地反弹后可能是“車〞字面朝上,也可能是“車〞字朝下.由于棋子的两面不均匀,为了估计“車〞字朝上的时机,某实验小组做了棋子下抛实验,并把实验数(1)请将表中数据补充完整,并画出折线统计图中剩余局部;(2)如果实验继续进行下去,根据上表数据,这个实验的频率将接近于该事件发生的概率,请估计这个概率约是多少?解析:(1)根据表中信息,用频数除以实验次数,得到频率,由于试验次数较多,可以用频率估计概率.描点连线,可得折线图;(2)根据表中数据,,,,,,,,,即可估计概率的大小.解:(1)120×0.55=66,88÷160,故所填数字为66;补全折线图如下;(2)如果实验继续进行下去,根据上表数据,这个实验的频率将接近于该事件发生的概率,这个概率约是0.55.方法总结:用频率估计概率时,一般观察所计算的各频率数值的变化趋势,即观察各数值主要接近在哪个数附近,这个常数就是所求概率的估计值.【类型四】 利用概率解决实际问题(1)(2)这批篮球优等品的概率估计值是多少?解析:(1)根据表中信息,用优等品频数m 除以抽取的篮球数n 即可;(2)根据表中数据,,,,,,,即可估计这批篮球优等品的概率.解:(1)570600,744800,9401000,11281200,; (2)这批篮球优等品的概率估计值是0.94.三、板书设计1.频率及其稳定性:在大量重复试验的情况下,事件的频率会呈现稳定性,即频率会在一个常数附近摆动.随着试验次数的增加,摆动的幅度有越来越小的趋势.2.用频率估计概率:一般地,在大量重复实验下,随机事件A 发生的频率会稳定到某一个常数p ,于是,我们用p 这个常数表示随机事件A 发生的概率,即P (A )=p .教学过程中,学生通过比照频率与概率的区别,体会到两者间的联系,从而运用其解决实际生活中遇到的问题,使学生感受到数学与生活的紧密联系第2课时 三角形的三边关系1.掌握三角形按边分类方法,能够判定三角形是否为特殊的三角形;2.探索并掌握三角形三边之间的关系,能够运用三角形的三边关系解决问题.(难点)一、情境导入数学来源于生活,生活中处处有数学.观察下面的图片,你发现了什么?问:你能不能给三角形下一个完整的定义? 二、合作探究探究点一:三角形按边分类以下关于三角形按边分类的集合中,正确的选项是( )解析:三角形根据边分类⎩⎪⎨⎪⎧不等边三角形等腰三角形⎩⎪⎨⎪⎧只有两边相等的三角形三边相等的三角形〔等边三角形〕应选D.方法总结:三角形按边分类,分成不等边三角形与等腰三角形,知道等边三角形是特殊的等腰三角形是解此题的关键.探究点二:三角形中三边之间的关系【类型一】 判定三条线段能否组成三角形以以下各组线段为边,能组成三角形的是( ) A .2cm ,3cm ,5cm B .5cm ,6cm ,10cm C .1cm ,1cm ,3cm D .3cm ,4cm ,9cm解析:选项A 中2+3=5,不能组成三角形,故此选项错误;选项B 中5+6>10,能组成三角形,故此选项正确;选项C 中1+1<3,不能组成三角形,故此选项错误;选项D 中3+4<9,不能组成三角形,故此选项错误.应选B.方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.【类型二】 判断三角形边的取值范围一个三角形的三边长分别为4,7,x ,那么x 的取值范围是( ) A .3<x <11 B .4<x <7 C .-3<x <11 D .x >3解析:∵三角形的三边长分别为4,7,x ,∴7-4<x <7+4,即3<x A.方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.【类型三】 三角形三边关系与绝对值的综合假设a ,b ,c 是△ABC 的三边长,化简|a -b -c |+|b -c -a |+|c +a -b |.解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.解:根据三角形的三边关系,两边之和大于第三边,得a -b -c <0,b -c -a <0,c +a -b >0.∴|a -b -c |+|b -c -a |+|c +a -b |=b +c -a +c +a -b +c +a -b =3c +a -b .方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.三、板书设计1.三角形按边分类:有两边相等的三角形叫做等腰三角形,三边都相等的三角形是等边三角形,三边互不相等的三角形是不等边三角形.2.三角形中三边之间的关系:三角形任意两边之和大于第三边,三角形任意两边之差小于第三边.本节课让学生经历一个探究解决问题的过程,抓住“任意的三条线段能不能围成一个三角形〞引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,重点研究“能围成三角形的三条边之间到底有什么关系〞.通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论.这样教学符合学生的认知特点,既增加了学习兴趣,又增强了学生的动手能力。
6.2频率的稳定性(教案)
2.逻辑推理能力:通过观察频率随实验次数的变化,引导学生发现规律,提高逻辑推理能力;
3.问题解决能力:培养学生运用频率稳定性原理解决实际问题的能力,增强数学应用意识;
4.数学思维:激发学生对数据变化趋势的好奇心,发展数学思维和探究精神;
最后,我意识到在课程的总结回顾环节,需要更加注重学生对知识点的反馈。我会鼓励学生们提出疑问,并及时解答,确保他们能够真正理解并吸收课堂内容。
我还观察到,在实践活动中的实验操作环节,一些学生动手能力较弱,对实验步骤的掌握不够熟练。这可能影响了他们对频率稳定性原理的理解。针对这个问题,我计划在下次课中增加一个简短的实验操作培训,确保每个学生都能够熟练地进行实验操作。
此外,我发现学生们在解决实际问题时,有时候会忽略频率稳定性的应用,而是直接给出一个主观的概率估计。这可能是由于他们对频率稳定性在实际中的应用还不够熟悉。为了改善这一点,我打算在接下来的课程中,引入更多贴近生活的案例,让学生们看到频率稳定性在现实世界中的具体应用。
1.频率的定义与计算;
2.实验探究:抛硬币、摸球等实验,记录数据并计算频率;
3.频率稳定性:观察实验次数增加时,频率的变化趋势;
4.频率与概率的关系:运用频率估计概率,分析数据;
5.实际问题:运用频率稳定性解决简单实际问题。
二、核心素养目标
本节课的核心素养目标旨在培养学生的数据分析观念、逻辑推理能力以及问题解决能力。通过以下方式实现:
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与频率稳定性相关的实际问题,如购物抽奖活动中奖概率的分析。
2.实验操作:为了加深理解,我们将进行抛硬币实验。这个操作将演示频率稳定性的基本原理。
《频率的稳定性》课件
目录
• 频率稳定性的定义 • 影响频率稳定性的因素 • 提高频率稳定性的方法 • 频率稳定性在各领域的应用 • 未来频率稳定性技术的发展趋势
01
频率稳定性的定义
频率稳定性的定义
频率稳定性是指在一定的时间范围内,信号的频率保持不变或变化极小的特性。
频率稳定性是衡量信号质量的重要指标之一,对于通信、测量、控制等领域具有重 要意义。
频率偏移
测量信号频率与标称频率之间 的偏差。
相位噪声
衡量信号中由于相位抖动或漂 移引起的噪声。
长期频率稳定性
评估信号在较长时间内的频率 稳定性。
短期频率稳定性
评估信号在较短时间内的频率 稳定性。
02
影响频率稳定性的因素
环境因素
01
02
03
温度变化
温度变化会影响电子元件 的物理特性,导致频率产 生偏差。
频率稳定性的网络化与云服务
总结词
网络化与云服务是未来频率稳定性技术的重要应用方向,通过将频率稳定性系统与互联网和云计算技 术相结合,可以实现远程监控、数据共享和协同工作等功能,提升系统的整体性能和可靠性。
详细描述
网络化与云服务的应用将促进频率稳定性技术与物联网、大数据和人工智能等领域的深度融合,为远 程监测、故障诊断和系统优化提供强大的技术支持。同时,这种应用模式将促进信息共享和资源整合 ,提高整个行业的协作效率和创新能力。
无线通信
在无线通信中,频率稳定性尤为重要,因为无线 信号在传输过程中容易受到各种干扰。
卫星通信
卫星通信对频率稳定性的要求极高,因为卫星的 位置和传输路径会受到地球自转和磁场的影响。
电力领域
电力系统稳定
01
随机事件必然事件不可能事件关系频率的稳定性频率和概率的区别与联系
一、频率的稳定性即大量重复试验时,任何结果(事件)出现的频率尽管是随机的,却“稳定”在某一个常数附近,试验的次数越多,频率与这个常数的偏差大的可能性越小,这一常数就成为该事件的概率;二、“频率”和“概率”这两个概念的区别是频率具有随机性,它反映的是某一随机事件出现的频繁程度,它反映的是随机事件出现的可能性;概率是一个客观常数,它反映了随机事件的属性。
三、随机事件的定义:在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,随机事件通常用大写英文字母A、B、C等表示。
必然事件的定义:必然会发生的事件叫做必然事件;不可能事件:肯定不会发生的事件叫做不可能事件;概率的定义:1.在大量进行重复试验时,事件A发生的频率总是接近于某个常数,在它附近摆动。
这时就把这个常数叫做事件A的概率,记作P(A)。
2.m,n的意义:事件A在n次试验中发生了m次。
3.因0≤m≤n,所以,0≤P(A)≤1,必然事件的概率为1,不可能发生的事件的概率0。
四、随机事件概率的定义:对于给定的随机事件A,随着试验次数的增加,事件A发生的频率总是接近于区间[0,1]中的某个常数,我们就把这个常数叫做事件A的概率,记作P(A)。
五、必然事件包括不可能事件吗必然事件不包括不可能事件。
必然事件,在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件。
必然事件发生的概率为1,但概率为1的事件不一定为必然事件。
不可能事件:概率论中把在一定条件下不可能发生的事件叫不可能事件。
必然事件和不可能事件统称为确定事件。
概率论术语:表示在一定条件下,必然出现的事情。
如从混有四件次品的产品中任意抽取五件,那么“其中必有一件是正品”就是一个必然事件。
是随机事件的一种极端情形。
必然事件发生的概率为1,但概率为1的事件不一定为必然事件连续型随机变量X,取值为样本空间中任意有限个点的概率为0,从整个样本空间剔除这有限个点,取到'非该有限个点'概率依然为1。
频率的稳定性名词解释
频率的稳定性名词解释频率的稳定性是指一个事物或现象在一段时间内保持相对恒定的程度或状态。
在物理学和工程学领域中,频率的稳定性是指一个振动或波动系统在一定时间内保持固定的震动次数或周期。
在计算机科学和通信技术领域中,频率的稳定性是指电子设备或通信信号保持稳定的时钟频率或数据传输速率。
频率的稳定性在很多领域具有重要的意义。
例如,在无线通信中,稳定的频率对于确保信号的传输质量至关重要。
假设我们的手机在通话或数据传输过程中频繁出现频率不稳定的情况,这将导致通话断断续续或者数据传输出错,影响用户体验和工作效率。
在科学研究和实验中,频率的稳定性对于准确测量和实验控制也是至关重要的。
许多实验仪器或设备需要以精确的频率进行工作,任何频率不稳定性都可能对实验结果产生误差或不确定性。
例如,在原子钟实验中,频率的稳定性是保证钟表准确度的关键因素。
原子钟利用原子内部的能级跃迁作为频率基准,频率的稳定性决定了钟表对于时间精度的追踪和保持。
在音乐领域,频率的稳定性对于演奏乐器或合唱团保持和谐的音高非常重要。
演奏者需要保持稳定的频率才能达到音乐作品所要求的音准和音质,而合唱团的成员需要相互协调,保持一致的频率才能呈现出美妙的和声效果。
频率的稳定性还涉及到科学测量领域中的频率标准和校准。
国际上的标准频率基准是通过由多个原子钟产生的恒定频率的平均值确定的。
这样可以消除每个原子钟的频率不稳定性,从而获得更精确和稳定的标准频率。
频率的稳定性也影响到各种科学仪器的校准和标定,确保其测量结果的准确性和可靠性。
为了实现频率的稳定性,科学家和工程师们采取了多种措施。
在通信和电子设备中,使用精确的时钟发生器来稳定频率,利用反馈控制的方法持续监测和调整频率。
在实验和科学研究中,应用锁相环技术或者调幅调频技术来实现频率稳定。
总结而言,频率的稳定性在不同领域都具有重要的意义。
它关系到通信信号的质量、实验仪器的准确度、音乐演奏的和谐以及科学测量的精确性。
频率的稳定性(教学设计)
一、内容和内容解析内容:频率的稳定性.内容解析:本节课选自《普通高中课程标准数学教科书必修第二册》(人教A版)第十章第3节第1课时的内容.事件的概率越大,意味着事件发生的可能性越大,在重复实验中,相应的频率一般也越大;事件的概率越小,则事件发生的可能性越小,在重复实验中,相应的频率一般也越小.而本节课研究的就是频率与概率之间的关系.通过探究频率与概率的关系,进一步让学生体会概率与统计的思想,发展学生的直观想象、逻辑推理、数学建模的核心素养.二、目标和目标解析目标:(1)通过实验让学生理解当试验次数较大时,实验频率稳定在某一常数附近,并据此能估计出某一事件发生的频率.(2)通过对实际问题的分析,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值.目标解析:(1)概率的稳定性是概率论的理论基础,用频率估计概率是获得随机事件概率的方法之一,也是一种重要的概率思想,只有深刻理解概率与频率的关系,才能更好理解概率的意义.(2)让学生经历重复试验,收集、整理试验数据,利用图表表示试验数据,通过观察、比较发现频率的特征,提升直观想象和数据分析素养.(3)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.在本节课的教学中,用前面所学的概率统计的知识解决是进行数学建模教学的好机会.基于上述分析,本节课的教学重点定为:通过实验让学生理解当试验次数较大时,实验频率稳定在某一常数附近,并据此能估计出某一事件发生的频率.三、教学问题诊断分析1.教学问题一:频率与概率的关系,学生在初中时对此已有初步认识,但理解不够深刻,如何进一步加深理解是本节课的第一个教学问题.解决方案:结合具体的随机试验,通过具体的试验来认识频率与概率的关系.2.教学问题二:对频率的稳定性的理解是本节课的第二个教学问题.这不仅是本节课的重点,也是教学难点.解决方案:让学生经历重复试验,收集、整理试验数据,利用图表表示试验数据,通过观察、比较发现频率的特征,提升直观想象和数据分析素养.3.教学问题三:如何用频率估计概率是第三个教学问题.解决方案:结合例题,让学生体会用试验验证概率模型的合理性,或通过试验发现规律从而建立概率理论模型的思想.基于上述情况,本节课的教学难点定为:大量重复实验得到频率的稳定值的分析.四、教学策略分析本节课的教学目标与教学问题为我们选择教学策略提供了启示.为了让学生通过观察、比较得到频率与概率的区别和联系,能用频率去估计概率,应该为学生创造积极探究的平台.因此,在教学过程中结合具体的随机试验,用事实说话,可以让学生从被动学习状态转到主动学习状态中来.在教学设计中,采取问题引导方式来组织课堂教学.问题的设置给学生留有充分的思考空间,让学生围绕问题主线,通过自主探究达到突出教学重点,突破教学难点.在教学过程中,重视对频率稳定性规律的理解,具体的试验或计算机模拟试验其实就是数学模型的建立与应用的典范.因此,本节课的教学是实施数学具体内容的教学与核心素养教学有机结合的尝试.五、教学过程与设计字1,2,3,4,5,6,7的两个转盘(如图所示),设计了一种游戏方案:两人同时各转动一个转盘一次,将转到的数字相加,和为偶数时(1)班代表获胜,否则(2)班代表获胜.该方案对双方是否公平?为什么?课堂小结升华认知[问题5]通过这节课,你学到了什么知识?在解决问题时,用到了哪些数学思想?[课后练习]1.抛掷一枚硬币100次,正面向上的次数为48次,下列说法正确的是( )A.正面向上的概率为0.48C.正面向上的频率为0.482.设某厂产品的次品教师11:提出问题5.学生10:学生10:学生课后进行思考,并完成课后练习.【答案】1.C 2.B 3.①④⑤ 4.不公平师生共同回顾总结.引领学生感悟数学认知的过程,体会数学核心素养.课后练习是对定理巩固,是对本节知识的一个深化认识,同时也为下节内容做好铺垫.或“不公平”).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电脑模拟试验
(3)根据上面试验表,完成下面的折线统计图。
频率
实验总次数
20 40 60 80 100 120 140 160 180 200
(4)观察上面的折线统计图,你 发现了什么规律?
新发现,新知识
1、 在实验次数很大时事件发生的频率, 都会在一个常数附近摆动,这个性质称为 频率的稳定性。
2、我们把这个刻画事件A发生的 可能性大小的数值,称为 事件A发生的概率,记为P(A)。
一般的,大量重复的实验中,我们常用 不确定事件A发生的频率来估计事件A发生 的概率。
事件A发生的概率P(A)的取值范围是 什么?必然事件发生的概率是多少?不可 能事件发生的概率又是多少?
必然事件发生的概率为1;不可能事 件发生的概率为0;不确定事件A发生的 概率P(A)是0与1之间的一个常数。
1.对某批乒乓球的质量进行随机抽查,如下表所示: 随机抽取的 10 20 50 100 200 500 1000 乒乓球数 n 优等品数 m 7 16 43 81 164 414 825 优等品率m/n 0.7 0.8 0.86 0.81 0.82 0.828 0.825 (1)完成上表; (2)根据上表,在这批乒乓球中任取一个,它 为优等品的概率是多少?
第六章 频率与概率
频率的稳定性2. 举例说明什么是不可能事件。 3. 举例说明什么是随机事件。
问题的引出
必然事件发生的可能性大小是 1 不可能事件发生的可能性大小是 随机事件发生的可能性大小 0~1
0
怎么确定随机事件发生的可能性 大小呢?
任意掷一枚均匀的硬币,可能出现哪些结 果?每种结果出现的可能性相同吗?正面 朝上的概率是多少?
我们来做一做,试一试
(1) 同桌两人做20次掷硬币的游戏, 并将记录记载在下表中:
试验总次数 正面朝上的次数 正面朝下的次数 正面朝上的频率 动起 来! 你能 行。
正面朝下的频率
(2)累计全班同学的试验结果, 并将实验 数据汇总填入下表:
实验总次数 正面朝上 的次数 正面朝上 的频率 正面朝下 的次数 正面朝下 的频率 20 40 60 80 100 120 140 160 180 200
2、小明抛掷一枚均匀的硬币,正面朝上
的概率为
,那么,抛掷100次硬币,你
能保证恰好50次正面朝上吗?
小
1、频率的稳定性。 2、事件A的概率,记为P(A)。
结
3、一般的,大量重复的实验中,我们 常用不确定事件A发生的频率来估计事 件A发生的概率。 4、必然事件发生的概率为1; 不可能事件发生的概率为0; 不确定事件A发生的概率P(A)是0与1 之间的一个常数。