锅炉飞灰含碳量偏高的原因及处理管理

合集下载

某电厂锅炉飞灰含碳量高的原因分析

某电厂锅炉飞灰含碳量高的原因分析

某电厂锅炉飞灰含碳量高的原因分析合理控制飞灰含碳量的指标,有利于降低发电成本,提高机组运行的经济性。

本文针对某电厂实际生产数据分析飞灰含碳量高的成因及解决办法。

关键词:飞灰含碳量;经济指标;成因及解决办法飞灰含碳量是反应燃煤机组锅炉效率的重要经济指标,合理控制锅炉飞灰含碳量,对机组经济安全生产运行具有重要意义。

据现代火力发电机组相关数据统计,锅炉飞灰含碳量每上升1%,标准煤耗约增加1.0~1.3g/kwh。

某电厂#1、2#锅炉发生了飞灰含碳量异常升高的现象,现对其产生的原因展开分析。

1)一次风的影响一次风作为输送、干燥煤粉及前期助燃的作用。

一次风压过低,影响磨干燥出力,甚至造成一次风管堵塞,着火点过于靠前,燃烧贴壁。

一次风压过高,造成一次风速过高,降低煤粉气流的加热程度,使着火点推迟,大颗粒的煤可能不能完全燃烧,造成飞灰含碳量增大。

在《印尼煤分仓掺烧运行相关规定》中要求,燃烧印尼煤期间,风量稳定期间不小于90 T/H,一次风机母管压力不小于8.5Kpa,以维持较高风速。

除此之外,建议不提高一次风母管压力偏置。

2)煤质的影响煤的化学组分主要是碳、氢、氧、氮、硫五种元素,以及水分和灰分。

煤的工业分析主要是测定煤中水分(M)、挥发分(V)、固定碳(FC)和灰分(A)的含量。

挥发分是煤在加热过程中所分解出的可燃性气体,挥发分高的煤容易着火,燃烧速度快,并有助于燃尽。

因此,燃烧挥发分高的煤会降低飞灰含碳量。

高水分燃煤在燃烧时会吸收热量,放出的有效热量相对减少,会降低炉膛温度,增加着火热,不利于煤燃尽,飞灰含碳量升高。

同时,它还会生成大量的水蒸汽使排烟量加大,影响锅炉安全运行,还会给尾部受热面发生低温腐蚀提供条件。

灰分是煤种的主要杂质。

灰分增大时,煤中的可燃成分相对减少,飞灰含碳量略有下降,但煤的发热量降低,总的机械损失增大。

灰分增大同时会造成煤粉着火困难和难以燃尽,未燃尽的煤随烟气排走,造成锅炉飞灰含碳量增大,并且引起尾部受热面磨损加剧,形成受热面上结焦、结渣,影响传热。

锅炉飞灰含碳量成因及降低措施

锅炉飞灰含碳量成因及降低措施

锅炉飞灰含碳量成因及降低措施飞灰含碳量表示锅炉燃烧的效率,含碳量越高则锅炉燃烧效率低,生产成本就会越高,直接说明了煤粉质量不好,同时也会带来生产安全问题,容易造成爆炸等事故。

因此锅炉飞灰含碳量是否达标严重影响着企业效益与生产安全。

本文就锅炉飞灰含碳量形成的原因进行探究分析,找出问题的根本,并提出了降低含碳量的有效措施,以此解决锅炉煤粉燃烧时的效率问题和安全问题,使企业更好更长久的走下去。

标签:锅炉设备;飞灰含碳量;成因问题;降低措施引言对于很多电厂来说,锅炉燃烧是很重要的能源设施,煤粉能否合理的利用也就成了大家比较关注和重视的话题。

飞灰含碳量直接反映燃烧效率,其含碳量的高低又受到煤粉自身质量和锅炉运行情况等多种因素的影响,同时也与企业效益直接挂钩,所以下文直接着眼于飞灰含碳量高的原因,从根源上提出优化措施和方案。

1、造成飞灰含量高的成因1.1 煤粉的质量。

因受市场与成本的影响,目前大多数电厂所用的燃煤均为挥发分低、灰分较大并且煤质易发生改变。

像挥发分低,则导致煤粉所需着火温度较之升高,原有的温度不能满足当下着火条件,不易燃烧,因此会导致煤粉的燃烧效率降低,飞灰中的含碳量明显提高。

而灰分较大则一经燃烧就产生灰烬,生成的灰烬附着在未燃烧煤粉表面一定程度上影响了煤粉的燃烧,阻挡了火势,造成煤粉燃烧不充分,同样也会造成飞灰含碳量升高。

最后煤质变化多,在与炉火燃烧时本质发生变化,原有的燃烧效率不复存在,改变的越频繁则越易出现燃烧不足,飞灰含碳量也会越高。

1.2 煤粉颗粒大小。

越细的煤粉燃烧时与空气接触的面积也就越大,越容易点着,当炉内煤粉都着火时则炉膛也就达到了所谓的着火点,着火点提前则相应的燃烧时间也就增长,煤粉燃烧的更加充分,飞灰含碳量就会减少。

有科学研究表明煤粉燃烧殆尽的时间与煤粉颗粒直径的大小有一定线性关系,所以应尽量使煤粉的颗粒更加细小,常见的措施有增加磨煤机旋转分离器转速或是减小在入口的一次风压。

锅炉飞灰含碳量偏高的原因及处理

锅炉飞灰含碳量偏高的原因及处理

锅炉飞灰含碳量偏高的原因及处理火力发电关键词: 锅炉飞灰含碳量粉煤灰1、前言吕四港电厂#1、2、3、4炉是哈尔滨锅炉厂有限责任公司生产制造,由三菱重工业株式会社提供技术支持的超超临界参数变压运行直流锅炉。

锅炉是单炉膛、结构,炉膛尺寸(宽,深,高)19.268/19.230/19.453。

设计煤种神府东胜煤,燃烧器采用摆动式上下浓淡分离直流燃烧器,分六层布置,四墙切圆燃烧。

制粉系统采用中速磨正压直吹式。

2、飞灰含碳量主要影响因素根据燃烧理论和实际运行经验得出,引起飞灰含碳量偏高的主要因素有以下几个方面:燃烧时炉内氧量不足;煤粉细度不合适;配风方式不合理;燃煤品质;燃烧时间。

这几个因素相互影响互相制约。

为了找出一个合适的工况来指导运行,我们对这几个因素一一加以分析。

2.1烟气氧量煤粉随着热一次风进入炉膛后,一方面由于卷吸高温烟气的对流加热作用以及高温火焰和炉壁的辐射作用,使煤粉很快着火燃烧,初始时由于氧气充足,燃烧速度由化学反应控制,到燃烧后期,由于氧气不充足,燃烧速度由氧气的混合速度控制。

在缺氧状态下,碳粒发生不完全氧化反应和还原反应,造成碳粒不完全燃烧,加大了不完全燃烧热损失。

因此,保证一定的过量空气系数是必需的。

根据经验,此系数应在1.15~1.3之间,折算成烟气氧量是2.6~5。

吕四港电厂#1、2、3、4炉设计烟气氧量为3~5,但由于实际燃用煤种和设计煤种有差别,因此为了保证安全,氧量一般被取下限。

为了摸清具体情况,不同工况下我们作了变氧量试验,试验结果如下:不同负荷不同氧量下的飞灰指标通过试验,我们找出了每台炉的最佳氧量。

并在实际运行中按照负荷曲线进行调整。

2.2煤粉细度在锅炉煤粉燃烧中,对流热交换强度和氧气向粉粒表面的扩散强工与颗粒直径大小成反比,所以尽管细煤粉颗粒使紊流交换强度降低,可是,分子扩散交换及对流交换强度增强,煤粉单位重量的表面积大大增加,有利于煤粉的着火、混合与燃烬。

有试验表明,煤粉燃烬时间与颗粒初始直径的1~2次方成正比。

循环流化床锅炉飞灰含碳量高的原因以及措施

循环流化床锅炉飞灰含碳量高的原因以及措施

循环流化床锅炉飞灰含碳量高的原因以及措施咱们都知道,锅炉是现代社会不可或缺的“大力士”,无论是工厂里的蒸汽机还是家里的暖气,都离不开它。

但是,这台“大力士”有时候也会闹点小脾气,比如飞灰含碳量高。

那么,为什么循环流化床锅炉会这么干呢?别急,让我来给你娓娓道来。

咱们得说说这“大力士”的心脏——燃烧室。

想象一下,如果心脏里充满了血液,那它就能有力地跳动。

但要是心脏里全是灰烬和煤渣,那它还怎么跳呢?这就是飞灰含碳量高的第一个原因。

就像心脏里长了草,怎么能保持活力呢?再来说说这“大力士”的胃——炉膛。

想象一下,胃里有太多食物,消化起来可就费劲了。

同样的道理,如果炉膛里塞满了灰烬和煤渣,那燃料怎么能充分燃烧呢?这就导致了飞灰含碳量的增加。

就像胃里全是石头,怎么可能吃得下东西呢?接下来,咱们得聊聊这“大力士”的脚——分离器。

想象一下,如果脚上穿着一双破拖鞋,走路都不稳当。

而分离器如果处理不当,那飞灰中的碳颗粒就会像脱线的玩具一样四处乱飞。

这就是为什么飞灰含碳量高的第二个原因。

就像脚上穿着一双不合适的鞋,怎么能走得稳当呢?那么,面对这些问题,咱们该如何解决呢?别急,让我来给你支几招。

咱们可以加强燃烧室的维护,定期清理燃烧室,确保燃烧室内没有过多的灰烬和煤渣。

这样,“大力士”的心脏就能保持健康,跳动有力。

咱们可以在炉膛中安装一个高效的旋风分离器,将飞灰中的碳颗粒及时分离出去。

这样,“大力士”的胃就不会太难受,燃料也能更好地燃烧。

咱们还可以加强对分离器的监控和维护,确保它能够正常运行。

这样,飞灰中的碳颗粒就不会到处乱飞,“大力士”就能更稳定地工作。

当然啦,除了这些措施,咱们还需要注意日常的保养和清洁工作。

比如定期检查锅炉的运行状态,及时清理积灰;注意燃料的质量和稳定性,避免使用劣质燃料;等等。

只有这样才能确保“大力士”始终保持最佳状态,为我们提供源源不断的动力。

循环流化床锅炉飞灰含碳量高的问题虽然令人头疼,但只要我们用心去解决,相信“大力士”一定能发挥出更强的力量。

锅炉飞灰含碳量升高的分析和调整

锅炉飞灰含碳量升高的分析和调整

锅炉飞灰含碳量升高的分析和调整随着社会的发展,人们生活水平不断提高,对各个行业的要求也就越来越高,电力作为现代社会发展的重要支柱之一,同时也对人们的生活起着至关重要的作用,其发展的问题受到广大群众的普遍关注。

火力发电是中国电力行业中的主要发电方式之一,燃煤锅炉作为其重要设备,它的经济安全等问题自然就成为发电厂最重视的问题,对发电厂来说,保证锅炉机组各项设备指标稳定安全,同时提高锅炉工作效率是保证电厂持续发展的关键。

本文就山西运城发电厂内600MW机组为例,简单论述锅炉飞灰含碳量升高的分析和调整的问题,希望可以对国内电力行业的发展尽到绵薄之力。

标签:锅炉600MW 飞灰含碳量调整引言火力发电是我国主要的发电方式,电站锅炉作为火力电站的三大主机设备之一,伴随着我国火电行业的发展而发展。

近年来,环保节能成为中国电力工业结构调整的重要方向,火电行业在“上大压小”的政策导向下积极推进产业结构优化升级,关闭大批能效低、污染重的小火电机组,在很大程度上加快了国内火电设备的更新换代。

中国的电站锅炉产业,它既不是“朝阳产业”,也不是“夕阳产业”,而是与人类共存的永恒产业。

伴随我国国民经济的蓬勃发展,近年来工业锅炉制造业取得了长足的进步。

其突出成效是:行业标准日益规范,技术水平逐步提高,产品品种不断增加,经济规模显著扩大。

下面就造成锅炉飞灰含碳量升高的原因以及解决措施两个问题分别进行论述。

一、造成锅炉飞灰含碳量高的原因1.入炉煤种原因1.1 上层制粉系统若是燃煤品质较差,会造成燃烧不充分的问题,这种情况下,很容易出现未完全燃烧的煤渣落入捞渣机内部,从而导致锅炉灰渣的含碳量升高。

1.2 下层制粉系统若是燃煤的品质较差,则会出现收到基低位发热量低、干燥无灰基挥发分低的情况,从而造成燃煤燃烧不完全的现象。

1.3 挥发分如果出现干燥无灰基挥发分小于设计煤种挥发分或者是挥发分小于等于百分之二十六的情况时,就会直接影响其燃烧的稳定性。

飞灰含碳量偏高的控制办法

飞灰含碳量偏高的控制办法

锅炉飞灰含碳量是反映锅炉运行效率和锅炉机组性能的关键指标,由于在实际生产过程中会受到煤质、设备运行参数以及其他方面等多种因素的影响,导致出现锅炉飞灰含碳量偏高的情况,从而影响生产效率,降低了设备的使用寿命,对环境也造成了更大破坏。

因此必须要想方设法研究锅炉飞灰含碳量偏高的原因,找出制约因素,并采取有效的措施加以解决,从而更好地提升电厂运行效率和生产质量。

锅炉飞灰含碳量偏高对锅炉生产运行的影响飞灰含碳量是燃煤锅炉机组燃烧情况的重要反映和控制指标,如果工艺控制不当,造成飞灰含碳量偏高,一方面能够造成锅炉机组机械不完全燃烧损失增多。

机械不完全燃烧损失是指锅炉中还有飞灰灰渣没有燃尽的物质,从而造成热量的损耗,进而对锅炉的热效率产生影响,导致煤耗相应增大。

另一方面飞灰含碳量偏高,将导致飞灰的质量下降,从而影响干灰的综合处理和应用,对环境造成污染。

因此必须要高度重视飞灰含碳量这一影响指标。

造成飞灰含碳量偏高主要有以下几方面原因:根本原因是燃料不完全燃烧(1)由于各种因素造成炉膛火焰中心偏上,使煤粉在炉内燃烧不完全造成飞灰含碳量增大。

(2)风粉配合不均或燃烧调整不合理,造成燃料燃烧不充分飞灰含碳量增大。

(3)制粉系统的运行情况,从多次煤粉取样情况来看,煤粉的合格率也不理想。

主要是磨煤机本身性能与设计性能有较大的差距,另外粗粉分离挡板、磨煤机风量以及煤的可磨性会直接影响煤粉细度,使飞灰含碳量增大。

(4)空预器漏风率偏大,炉膛氧量不足。

空预器的漏风率高达30%~40%,大大高于设计值20%,锅炉由于漏风缺氧燃烧,使飞灰含碳量严重偏高。

(5)吹灰器不能正常投运、二次风量及配风不合理,以及二次风温等锅炉燃烧的外围条件影响到锅炉的燃烧好坏,进而影响到飞灰含碳量。

(6)煤质差:由于掺烧燃煤变化频繁,如灰分大、挥发份低的煤粉,水份较大的原煤,或是含碳量较高的无烟煤,由于不符合设计煤种,都会造成燃料燃烧不充分,飞灰含碳量增大。

飞灰含碳量高原因及调整

飞灰含碳量高原因及调整

飞灰含碳量高原因及调整1. 煤质特性参数的影响(1) 燃煤挥发分的影响.当挥发分增大时,煤粉着火温度降低,着火迅速,燃烧完全,使飞灰含碳量低;反之挥发分降低, 造成飞灰含碳量高升高.(2)燃煤水分的影响.燃煤水分增大时,着火热会随之增大,煤粉着火推迟,火焰中心上栘,使得炉膛整体温度水平下降,煤粉的燃尽程度降低, 造成飞灰含碳量高.(3)燃煤灰分的影响.当燃煤灰分增加时,由于加热灰分的热量增加和灰分会影响碳和氧的接触,造成火焰温度随之下降,煤粉的燃尽程度降低, 造成飞灰含碳量高.(4)煤粉细度的影响.煤粉细度直接影响飞灰可燃物的变化,煤粉越细,越均匀,则与空气接触的单位质量的煤粉面积与体积增大,燃烧就越充分,能充分燃尽,可以使飞灰含碳量降低.2. 运行方面的影响(1)过量空气系数.当炉膛过量空气系数减少时,煤粉颗粒接触到的氧减少,碳的氧化速度减慢,煤粉燃尽程度降低,煤粉发生不完全燃烧,造成飞灰含碳量高.(2)机组负荷的影响.当锅炉负荷增加时,由于气流扰动加强,风煤混合更加均匀,燃烧更充分,但当锅炉在75%~80%额定负荷以上时,增加负荷会使炉膛的容积热负荷增加,缩短煤粉在炉内停留时间,使燃烧不充分.(3)风煤配比的影响.一次风过高时将使煤粉着火推迟,影响锅炉燃烧的稳定性且使经济性降低;一次风量过低,不仅易造成制粉系统出力不足,氧量不足,还使煤粉挥发分燃烧不充分,导致飞灰含碳量高,此外,还有造成粉管堵的危险.(4)磨出口各一次煤粉管压力,速度及煤粉浓度不均匀性的影响.若同一台磨出口一次煤粉管静压、速度及煤粉浓度不同,将造成炉内火焰充满程度不好,火焰中心不集中,火焰可能会发生偏斜、贴壁等情况,造成炉内温度场分布不均匀,理论燃烧温度降低,炉内火焰充满度不好,局部燃烧不完全,使飞灰含碳量增加。

若一次风速过高将导致煤粉着火推迟,火焰中心上移,燃烧不充分,使飞灰含碳量增加。

同样二次风分配不匀也将造成燃烧的不流通分,使飞灰含碳量增加。

循环流化床锅炉飞灰含碳量高的原因以及措施

循环流化床锅炉飞灰含碳量高的原因以及措施

循环流化床锅炉飞灰含碳量高的原因以及措施参考的段落如下:新的生路还很多,我必须跨进去,因为我还活着。

但我还不知道怎样跨出那第一步。

有时,仿佛看见那生路就像一条灰白的长蛇,自己蜿蜒地向我奔来,我等着,等着,看看临近,但忽然便消失在黑暗里了。

参考后创作的内容如下:在那个被煤烟笼罩的时代,锅炉房里的火焰就像是一团跳跃的火苗,而飞灰就是那火苗留下的余烬。

可是,有时候,这余烬里的碳似乎特别多,就像是一场没完没了的派对,人们围着它转,却不知道什么时候才能散去。

说起飞灰含碳量高的问题,真是让人头疼。

就像是一个调皮的孩子,总是喜欢在大人不注意的时候捣乱一样。

每当锅炉房的烟囱冒出一缕缕黑烟时,我们都知道那是燃烧不充分的燃料留下的“礼物”。

但是,当这些“礼物”变成了飞灰,它们就变得不一样了。

有人说,飞灰含碳量高是因为锅炉的燃烧不够充分。

这话听起来就像是在说,我们做饭时水放少了,饭自然就不好吃了一样。

但其实,问题可能并没有这么简单。

有时候,锅炉房里的那个小伙计可能并不那么听话,它可能想要更多的炭火来温暖这个大家伙。

这样一来,飞灰中的碳含量自然就高了。

不过别担心,这个问题也不是没有办法解决的。

我们可以试着改变一下锅炉房里的小伙计的行为习惯。

比如说,给它加点料,让它更有动力去燃烧那些燃料。

这样,飞灰中的碳含量自然就会变低了。

这需要我们付出一些努力和时间,但是为了我们的健康和环境,这些都是值得的。

除了改变锅炉房里的小伙计的行为习惯,我们还可以通过其他的方式来降低飞灰中的碳含量。

比如说,我们可以从源头上控制燃料的质量。

如果燃料中本来就含有过多的碳,那么飞灰中的碳含量自然会高一些。

因此,选择高质量的燃料就显得尤为重要了。

总的来说,飞灰含碳量高的问题虽然让人头疼,但是只要我们用心去寻找解决问题的方法,就一定能够找到解决之道。

就像我们在生活里遇到的困难一样,只要我们勇敢地面对,用心地去解决,就一定能够度过难关。

锅炉飞灰含碳量、炉渣可燃物问题原因与解决方法

锅炉飞灰含碳量、炉渣可燃物问题原因与解决方法

锅炉飞灰含碳量、炉渣可燃物问题原因与解决方法一、飞灰含碳量(%):(一)、可能存在问题的原因:1、燃煤挥发分低,锅炉燃烧效率与燃烧稳定性下降。

2、燃煤灰分高,着火温度高、着火推迟,炉膛温度降低,燃烬程度变差。

3、燃煤水分高,水汽化吸收热量,炉膛温度降低,着火困难,燃烧推迟。

4、煤粉粗,着火及燃烧反应速度慢。

(煤粉炉)。

5、燃烧器辅助风门开度与指令有偏差。

(煤粉炉)。

6、锅炉氧量低,过剩空气系数小,燃烧不完全。

7、一次、二次风速及一、二次风量配比不当。

8、燃烧器喷嘴烧损变形,造成一次风速度发生变化。

(煤粉炉)。

(二)、解决问题的方法:1、运行措施:①、根据煤质和炉内燃烧工况,及时调整磨煤机通风量,保持合适的风煤比。

②、合理调整一、二次风配比,保持最佳锅炉氧量,使煤粉充分燃烧。

③、提高入炉煤混配均匀性,保证锅炉燃烧稳定。

④、保持制粉系统运行稳定,尽量减少启、停次数。

2、日常维护及试验:①、进行燃烧优化调整试验,确定不同煤质下经济煤粉细度。

②、每班检查燃烧器辅助风门开度情况,发现问题及时处理。

(煤粉炉)。

③、定期测试煤粉细度,发现异常及时调整处理。

(煤粉炉)。

④、定期取样化验分析飞灰可燃物,发现异常及时分析,对磨煤机弹簧加载力、间隙和折向门开度进行调整。

⑤、煤质变化较大时应严密关注煤的燃烧特性,并进行相应的燃烧调整。

⑥、不定期对磨煤机相关部件磨损情况检查处理,如对磨辊套及磨碗衬板进行调换等。

3、C/D修、停机消缺(煤粉炉):①、对预热器进行清灰,提升预热器的换热效率,提高热风温度。

②、燃烧器位置、摆角、磨损、烧损、结焦检查处理,更换或修补损坏的喷嘴、喷管及钝体。

③、校正辅助风和燃料风门挡板开度位置。

4、A/B修及技术改造(煤粉炉):①、浓缩器及钝体采用陶瓷片、碳化硅等防磨措施,调整确定燃烧器摆角位置。

②、检查处理风门严密性和管道漏风。

③、加装飞灰含碳量在线测量装置。

④、根据空气动力场试验结果做好有关调整工作。

飞灰含碳量高和除尘灰颜色发红的主要原因分析及采取的措施

飞灰含碳量高和除尘灰颜色发红的主要原因分析及采取的措施

飞灰含碳量高和除尘灰颜色发红的主要原因分析及采取的措施一、240T/H循环流化床锅炉飞灰含碳量高的主要原因分析及采取的措施。

1、主要原因分析目前,我公司环流化床锅炉飞灰可燃物含量达12~13%,与投运初期≤10%相比,存在着飞灰可燃物偏高的问题,飞灰含碳量的偏高使循环流化床锅炉的机械不完全燃烧热损失增加,严重影响了锅炉的燃烧效率,引起飞灰含碳量高因素很多,从以下几个方面阐述。

& C# z# q, s& M7 I% _ `( z⑴煤种对飞灰含碳量的影响不同组分煤的H/C比、燃烧活性、灰份含量有很大差异。

其孔隙率、真比重、晶格化程度等也不同,而且在燃烧过程中这些性质还会发生变化,这对于煤的燃烧特性有很大影响。

人们一般从微观上将煤分为镜质组、丝质组和稳定组。

,其孔隙率、真比重、晶格化程度等也不同不同组分煤的H/C比、燃烧活性、灰份含量有很大差异。

与其它组分相比较,丝质组燃烧过程并不剧烈,同时有机质内部几乎没有形成孔隙,颗粒内部的有机质无法与外部氧气发生反应。

对飞灰可燃物进行分析,发现丝质组形成飞灰残碳的可能性更大。

无烟煤中的丝质组组分要比其它煤种低得多。

因而燃用无烟煤的循环流化床锅炉飞灰含碳量普遍比燃用其它煤种锅炉高。

热电厂240T/H循环流化床锅炉现在烧的烟煤并不是纯烟煤,掺了更多的无烟煤末,丝质组组分要比以前烧的纯烟煤要低,颗粒内部的无机质无法与外界氧气发生反应,从而导致飞灰含碳量比以前要高。

⑵颗粒尺寸分布与床温对飞灰含碳量的影响碳粒的燃烬时间与颗粒尺寸和床温有很大关系。

在一定的温度下,碳颗粒的燃烬时间随粒径的增大而延长。

循环流化床锅炉对燃料粒径要求小于等于13mm,而我们燃料的破碎系统达不到设计要求,燃料颗粒粒径分布不均,两极分化严重,粗颗粒和细颗粒较多,呈两头多,中间少的粒径分布特点。

实际的入炉煤粒径范围要大得多,不同粒径的燃料很难达到同时燃烬。

在相同的粒径下,温度越高,碳颗粒所需的燃烬时间越短。

飞灰含碳量高的对策

飞灰含碳量高的对策

灰渣含碳量高的对策要降低灰渣含碳量,就是要使燃料的燃烧尽量接近完全燃烧,也就是在保证炉内不结渣的前提下,燃烧速度要快而且要燃烧完全,以得到最高的燃烧效率。

根据灰渣含碳量的影响因素,可从以下几个方面来组织良好的燃烧过程,降低灰渣含碳量。

1.控制合适的燃料颗粒度燃料颗粒度的降低,单个颗粒燃烬所需时间减少,同时增加了燃料和空气的接触面,加快了燃烧速度。

所以应加强料场燃料管理,尽可能维持理想的燃料颗粒度。

2.加强空预器吹灰,防止堵灰提高传热效果,提高一、二次风温度,同时也防止由于空预器差压大而造成引风机出力不足,从而限制锅炉总风量。

锅炉负压不能过高,炉膛负压适当,控制在±100 Pa之内,使燃料在炉膛内有足够的燃烧时间。

严密关闭各孔、门,保持密封正常。

减小锅炉漏风。

3.提供合适的空气量综合考虑不致使排烟热损失过度增大的前提下,适当提高过剩氧量。

适当增加总风量,有助于降低灰渣含碳量。

一次风从布风板下鼓进,主要是满足物料流化的需要;其次是对密相区燃料进行欠氧燃烧。

一次风量直接影响密相区和稀相区的燃烧份额,从而影响着灰渣含碳量的高低。

一次风量的加入有最佳的风量,太少或太高都会使得锅炉飞灰含碳量增加,从而影响锅炉燃烧效率。

因此一次风量不宜太高或太低。

基本应保持在略大于基本硫化风量。

二次风量较高时,其射流的穿透深度越强,炉内扰动越剧烈,燃料颗粒和挥发物的横向扩散也越强烈,从而使燃料在床内分布得越均匀,燃烧也越完全,进而灰渣含碳量越少。

一二次风比保持在0.96,最为适宜。

适当降低一次风量,增加二次风量,有助于降低灰渣含碳量。

为了增强二次风的混和,提高了二次风的速度,可以明显减少灰渣含碳量。

所以可以适当增加二次风压,改变二次风的吹入方式等来加强混合。

4.床温的影响提高床温有利于提高燃烧速率和缩短燃尽时间。

所以应当保证入炉燃料热值。

5.具有足够的燃烧时间燃料在炉内的停留时间,主要取决于燃料水分,水分越高,燃料在炉内停留时间越短,保持合适水分有助于减少飞灰含碳量。

A电厂锅炉飞灰含碳量高的问题分析

A电厂锅炉飞灰含碳量高的问题分析

A电厂锅炉飞灰含碳量高的问题分析
一、煤粉细度不合格
制粉系统试验结果显示,煤粉细度均不合格,R90,R200均超标。

需加强磨煤机检修维护,进行制粉系统优化试验,尽量使煤粉细度在合格范围内。

同时,厂内煤粉细度监控工作必须严格执行,日常运行中发现细度不合格应立即处理。

二、风粉不平
磨煤机出口各粉管风粉不平,燃烧器负荷分配不均等。

检修期间对磨煤机出口可调缩孔进行检修、维护、更换,确保下次调整期间可调缩孔可用。

三、煤质不佳,波动大
从历史统计来看,飞灰含碳量与入炉煤挥发分和灰分有直接关系,掺烧煤种中有部分贫煤,燃尽性能不好,造成飞灰含碳量升高。

同一天不同时间段入炉煤质经常出现较大幅度的波动,影响运行人员运行调整。

需加强煤场管理,严格控制掺混指标,确保煤质不出现大幅度波动。

若条件允许,可根据不同煤种的燃烧特性和燃尽特性制定掺混煤方案。

四、燃烧控制不合理
为控制氮氧化物生成,锅炉运行氧量明显低于设计氧量,造成煤粉燃烧不彻底。

另外,机组投产后一直未进行过燃烧优化试验,二次风箱压力过低,需开展燃烧优化调整试验,优化燃烧参数。

五、炉本体存在无组织漏风
漏风点主要集中在炉底和燃烧器与水冷套之间缝隙。

无组织漏风未经过燃烧器组织,无法发挥旋流燃烧器的优势,降低了煤粉燃烧效率。

需加强对炉底清渣的管理,要求清渣结束后必须对观察口进行密封;停机期间检查燃烧器与水冷套之间缝隙,若存在较明显间隙须进行封堵。

飞灰可燃物含碳量过高的原因及对策

飞灰可燃物含碳量过高的原因及对策
4 炉膛 漏风 的影 响 . 炉膛 漏风 大会 造 成 炉 内燃烧 不 稳 , 且 将 直 而 接影 响尾部 受 热面 的吸 热情况 。 5 设计 煤种 的影 响 .
渣系统 处理好 , 其关 闭严 密 , 使 以减少 漏风 。 4 对 F挡 板进行 适 当调整 .
中孚电二 公 司 二单 元 2x3 0 MW 机 组 采 用 0 2 热风 温度偏低 .
东方 锅炉 厂 制 造 的 D 12 / 8 2一Ⅱ1 G 05 1. 4型 亚 临 界压力 , 一次 中间再 热 , 自然循 环 , 拱形单 炉膛 , 双 燃 烧器 布置 于下炉膛 前 后拱 上 , w” “ 型火 焰 燃烧 方式 , 额定 蒸发 流量 8 7 0 h 7 .9t 。燃烧 系统 采用 3 /
G{ AN i LI GoNG HE HI C N6 S
飞灰 可燃 物含 碳 量 过 高 的原 因 及对 策
张黎 燕 徐 军涛。 ,
摘 要 : 所周知 , 30 W 机 组而 言 , 众 就 0M 飞灰含碳 量 一般 大都在 3 左 右。 飞灰含 % 碳 量每上升 1 , % 煤耗就 上升 12 g k h 中孚 电二 公 司# .3/w 。 4锅 炉 自投 运 以
首 先 ,4机 组 热 二 次 风 温 度 设 计 为 33C。 # 3o 而实 际热 风 温 度 平 均 在 30C左 右 , 2 ̄ 比设 计 值 平
台 B D 02双 进双 出钢球磨 煤机 正 压直 吹 系统 , B 46
燃 烧方式 为 w 型火焰 下喷燃 烧 , 前后 墙各 布置 1 2 个按 F 技术设 计制造 的双旋风 简 分离式 煤粉 燃 w 烧器 , 列 布置在锅 炉下炉膛 的前后 拱上 , 错 每个 燃 烧器二 次风用 隔板分 开 , 此独立 , 彼 使每个 燃烧 器

飞灰含碳量高的原因分析与对策

飞灰含碳量高的原因分析与对策

飞灰含碳量高的原因分析与对策降低飞灰含碳量,不但对控制锅炉煤粉气流的燃烧非常必要,而且可大大提高锅炉机组的经济性,从而降低锅炉烟尘排放量,减少环境污染。

1飞灰含碳量偏高的原因分析当煤粉气流在炉膛内的燃烧和燃尽过程不充分时,势必造成机械未完全燃烧热损失增大,表现为飞灰含碳量升高。

影响飞灰含碳量变化的因素主要有:煤粉细度、煤种特性、燃烧器的结构特性、热风温度、炉内空气动力场和锅炉负荷等。

(1) 煤粉细度的影响煤粉细度对其煤粉的燃烧和燃尽性能有较大影响。

煤粉细度越大,即煤粉颗粒粒径越大,其燃尽性能较小粒径颗粒越差,势必造成煤粉燃尽时间延长,不完全燃烧损失增大,飞灰含碳量升高,从而降低锅炉效率。

细煤粉虽然容易着火和燃烧,但煤粉颗粒过细将会增加制粉系统的耗电量和加大磨煤机的磨损量。

因此,在锅炉设备运行中,应综合考虑不完全燃烧损失和制粉能耗的要求,使之达到最小,即寻找煤粉经济细度或最佳细度,以保证较高的锅炉效率和较低的飞灰含碳量。

煤粉经济细度与燃料性质和煤粉颗粒的均匀程度有关。

对于高挥发分的煤,因其容易燃烧可允许磨得粗些;对于低挥发分和可磨性指数较低的煤,因较难燃烧而应尽量磨得细些。

如果煤粉颗粒比较均匀,造成不完全燃烧损失的大颗粒则相对较少,可允许煤粉粗些,这与磨煤机和分离器的形式以及运行工况有关。

降低煤粉细度是控制飞灰含碳量升高的有效措施。

电厂的运行实践也表明:煤粉颗粒比较均匀时,飞灰含碳量也有所下降。

(2) 煤种特性的影响目前,国内大多数电厂存在锅炉燃烧实际煤种与设计煤种不符的情况,这是因为电厂用煤来源比较复杂,大矿煤与小窑煤混用的情况非常普遍,造成煤质成分如挥发分、水分、灰分和发热量等主要指标不稳定,从而对煤粉的完全燃烧产生很大的影响,导致飞灰含碳量发生显著变化。

煤粉燃烧过程是在挥发成份燃烧完之后才开始焦炭的燃烧。

因此,燃料性质中挥发分的含量对煤粉燃烧的影响最为重要。

对于高挥发分燃煤,挥发分燃烧释放出大量热量,形成炉内高温氛围,有利于焦炭的迅速着火和燃尽,机械未完全燃烧损失减小,飞灰含碳量较低;相反,对于低挥发分燃煤,则容易引起飞灰含碳量的升高。

锅炉飞灰含碳量偏高的原因分析和对策

锅炉飞灰含碳量偏高的原因分析和对策

锅炉飞灰含碳量偏高的原因分析和对策刘文(广州中电荔新电力实业有限公司,广东增城511340)应用科技脯要j电站锅炉运行中飞灰舍碳量偏高,严重影响锅炉效率。

分析飞友含碳量偏高的原因,提出改造燃烧器,加装敛.体和浓淡分离器。

改造后,锅炉燃烧状况得到明显改善,飞灰合碟量显著降低,提高了锅炉的效率。

鹾搀枣词飞灰含碳量;燃烧器;钝体;浓淡分离器飞灰含碳量升高对锅炉的经济性有很大影响。

首先,它是造成锅炉机械不完全燃烧损失增加的主要因素,而机械不完全燃烧损失是锅炉热损失中仅次于排烟损失的第二大损失。

对于现代火力发电机组,锅炉热效率每降1%,将使整套机组的热效率刚氏0:3—04%,标准煤耗增加3—49/kW ho其次,飞灰含碳量上升,飞灰品质下降,将影响干灰的综合利用,增加污染物排放量。

因此,电厂应尽量降低飞灰含碳量,减少损失,增加电厂效益。

近年来,由于煤炭市场等多方面原因的影响,电厂的实际燃煤发生了较大变化,燃用大量的较低挥发份煤,造成锅炉不完全燃烧,损失增大,灰飞含碳量偏高,效率降低等问题,影响了锅炉运行的经济性。

通过对锅炉进行改造,燃用较低挥发份的贵港煤时,燃烧显著改善,飞灰含碳量大幅度下降,解决了锅炉飞灰含碳量偏高的问题。

1锅炉设备概况1.1锅炉设计参数某电厂锅炉为额定蒸发量220t/h高压自然循环锅炉,呈兀型露天布置,炉膛断面尺寸为7570m m×7570m m,燃烧器为正四角切向布置的直流燃烧器,每组燃烧器喷口按3—2—1—2—1—2的顺序排列,三次风喷口下倾约5℃,为典型的烟煤型燃烧器。

炉内四角形成的假想切圆直径@800m m,配有两套中间仓储式钢球磨制粉系统,热风送粉。

12锅炉燃煤情况由表1可知,贵港煤挥发份明显比设计煤种低,但发热量高,根据热力计算,这可能导致排姻温度升高约1a℃阳比设计煤种),引起飞灰含碳量上升,从而刚氐了锅炉效率。

表1煤质参数C ar H”0ar N舯S盯A ar M口V ar Q ar煤样%%%%%%%%kJ/kg 设计煤45.662.793.891.14O.9836.3l9.2331.3817107贵港煤60.963.531.220.95O.8326.226.2924.2222654 2飞灰含碳置偏高的原因分析经过对锅炉的实际工况及运行情况等方面进行分析,并采用锅炉燃烧调整试验、常规分析法、着火指数炉法和热天平法等来分析煤样的燃烧特性,总结出该电厂飞灰含碳量过高的原因:1)贵港煤相比诵寸煤种,有着火难、燃尽性差的特点,这将导致飞灰含碳量上晰噶炉效率的刚氏o2)四角切圆燃烧锅炉由其结构布置特点,必然存在两个角的一次风浓相在火焰的向火面,淡相在火焰的背火面,另外2个角的情况恰恰相反,在炉内形成背火墙,不利于煤粉与空气的良好混合。

锅炉飞灰含碳量大的原因分析及对策

锅炉飞灰含碳量大的原因分析及对策
以前浓淡型燃烧器由于浓淡比例不合理,在高负荷时浓侧的一次风管容易堵塞而影响其推广,目前这个问题已经解决。同时为提高浓淡型燃烧器对负荷及机组的适应性,目前已出现了煤粉浓度可连续调节双稳燃浓淡型燃烧器。在高负荷时降低浓股气流的浓度防止堵管,低负荷时提高浓股气流的浓度以提高稳燃能力。
目前浓淡燃烧技术已十分成熟,该型燃烧器已全面推广,大部分电厂均采用浓淡型燃烧器。
一、燃烧调整试验:
1. 利用配风装置按设计风速(一次风速30m/s)调平一次风。
2. 提高下排一次风速(一次风速35m/s)。
3. 调整风量,提高二次总风压,增加氧量。改变二次风配比,采取上小,下大配风方式,增加下二次风刚性,增加下二次风的托粉能力。
4. 采取两头保持燃烧工况相对稳定的前提下,减少下排给粉机给粉量,下排给粉机转速控制在500—550rpm,降低下一次风煤粉浓度,以进一步相对提高下二次风的托粉能力。
6. 在各个工况下,测量炉膛温度,取灰样、煤样,化验其大、小灰百分数,及煤粉细度,记录各运行参数。
二、分析:
通过燃烧调整可以降低飞灰含碳量,但其手段是有限的。提高一次风速及降低下排给粉机转速均受到机组负荷的限制,负荷降低采用这种措施将影响燃烧的稳定性。在低负荷时受总风压的限制提高一层二次风的幅度是有限的,并且提高一层二次风影响燃烧的稳定性。降低煤粉细度将导致制粉单耗的增加,影响厂用电率。而提高二次风压将导致风机单耗增加,同时增加了预热器漏风。目前我厂#5、#6炉在高负荷时引风量不足,漏风率的增加将进一步加剧高负荷时缺风的问题。
清华大学设计的多重富集燃烧器是其为解决富集型燃烧器飞灰大问题而设计的燃烧器。其原理根本上仍是浓淡型燃烧器,出口射流为水平射流。目前应用在田家庵电厂。由于该燃烧器装在中排,与我厂安装位置不一样,虽然飞灰含碳量不高,也不具有可比性。在其他电厂还没有得到推广。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.5燃烧时间
煤粉进入炉膛到离开断膛的时间段称为在炉内停留时间,这个时间同样分为着火时间、燃烧和燃烬时间,这个时间越长,煤粉燃烬度越高,但是一台锅炉设计完成之后,其尺寸也被确定,不可能再作多大改变。但是燃烧时间与煤质也有相当大的关系,我们可以利用这一关系进行燃烧调整。它们具体关系如下:
R90为筛孔宽度90微米的筛子筛选的煤粉。
Ay――应用基下的灰分。
Vr――可燃基下的挥发分。
Qdwr――煤粉的低位发热量。
按上式算出的煤粉细度再作修正后即为最经济煤粉细度。
吕四港电厂#1、2、3、4炉设计煤种神府东胜煤,由于其挥发分为36.44%,故煤粉细度采用了较大值为14~18%。实际煤种比设计煤种差,通过计算,提高旋转分离器转速,调整煤粉细度为10~14%。调整前后试验结果比较如下:
2、飞灰含碳量主要影响因素
根据燃烧理论和实际运行经验得出,引起飞灰含碳量偏高的主要因素有以下几个方面:燃烧时炉内氧量不足;煤粉细度不合适;配风方式不合理;燃煤品质;燃烧时间。这几个因素相互影响互相制约。为了找出一个合适的工况来指导运行,我们对这几个因素一一加以分析。
2.1烟气氧量
正宝塔配风就是将下几层二次风挡板开度大于上几层二次风挡板开度。倒宝塔配风反而行之。束腰配风就是将上、下二次风挡板开度大于中间的二次风挡板开度。
2.4燃煤品质
锅炉燃烧的好坏,很大程度上取决于燃煤品质,我们这里只讨论几个重要指标,从中可以看出对燃烧的影响,即
燃料着火特性判别指数和燃料燃烬判别指数。
T=V/M
V=3600×273×Qd×m×ε×P
M=273×Q÷V×VY×T
V――炉膛容积 m3
M――烟气量 m3 /s
P――炉内绝对压力 Pa
Qd――燃料低位发热量 KJ/Kg
M――煤粉和火焰之间相对速度的系数。向上流动时取0.96,向下流动时取1.04
1、前言
吕四港电厂#1、2、3、4炉是哈尔滨锅炉厂有限责任公司生产制造,由三菱重工业株式会社提供技术支持的超超临界参数变压运行直流锅炉。锅炉是单炉膛、结构,炉膛尺寸(宽,深,高)19.268/19.230/19.453。设计煤种神府东胜煤,燃烧器采用摆动式上下浓淡分离直流燃烧器,分六层布置,四墙切圆燃烧。制粉系统采用中速磨正压直吹式。
燃料着火特性判别指数可以用应用基挥发分来判别:
Vy――应用基挥发分。
Vr――可燃基挥发分。
Ay――应用基灰分
Wy――应用基水分。
பைடு நூலகம்
通过上式可以反映出灰份、水分对着火稳定性的影响,具体值如下:
分类 极难稳定区 难稳定区 中等稳定区 易稳定区 褐煤区
吕四港电厂#1、2、3、4炉设计烟气氧量为3~5,但由于实际燃用煤种和设计煤种有差别,因此为了保证安全,氧量一般被取下限。为了摸清具体情况,不同工况下我们作了变氧量试验,试验结果如下:
不同负荷不同氧量下的飞灰指标
氧量 400MW 500MW 600MW
4% 7.0 6.7 8
燃料燃烬判别指数用下式来判别:
Vf――分析基下的挥发分。
Wf――分析基一的水分。
Cf――分析基下的含碳量。
具体值如下:
分类 极难燃煤 难燃煤 中等难燃煤 易燃煤 极易燃煤
根据上式,我们可以在煤进厂后对煤进行大概估计,并针对各个煤种进行相应的燃烧调整。吕四港电厂加强了煤质监督之后,燃烧情况大有好转。
ε――火焰在炉内的充满度,一般取0.7~1.0
VY――烟气容积 N m3/Kg
T――炉内温度 K
Q/V――炉膛容积热负荷 KJ/m3h
3、结束语
通过对影响飞灰含碳量的因素分析 及采取相应措施,1号炉飞灰碳量由试验前的5~8%下降为1.7~3%,下降幅度为55%。由于飞灰含碳量的降低,供电煤耗也下降了3~5克左右。由于飞灰含碳量的降低,粉煤灰综合利用前途也光明起来,当含碳量低于5%时,可以收取一级灰。由此看来,降低飞灰含碳量具有巨大的经济利益,而这些还不包括锅炉热效率的提高带来的效益。
5% 5.0 5.5 6.2
6% 4.8 5.8 4.1
通过试验,我们找出了每台炉的最佳氧量。并在实际运行中按照负荷曲线进行调整。
2.2煤粉细度
在锅炉煤粉燃烧中,对流热交换强度和氧气向粉粒表面的扩散强工与颗粒直径大小成反比,所以尽管细煤粉颗粒使紊流交换强度降低,可是,分子扩散交换及对流交换强度增强,煤粉单位重量的表面积大大增加,有利于煤粉的着火、混合与燃烬。有试验表明,煤粉燃烬时间与颗粒初始直径的1~2次方成正比。即T=K×δ1~2其中K为常数值。但是,随着煤粉细度的提高,制粉单耗也是呈指数级上升,而且煤粉细度的提高还会引起炉膛出口温度升高。因此如何在两者之间找到最小值是试验的目的。通过对各煤种试验以及在1号炉上的实践,可以得出最经济煤粉细度经验公式如下:R90 =5+0.6(100-Ayz)÷100×Vr;Ayz=100×Ay÷Qdwr。
吕四港电厂刚投运时,由于忽视了辅助风挡板的作用,结果挡板开度处于混乱状态,炉内燃烧切圆无法形成。飞灰含碳量大得惊人,最高达到11%。后来在公司领导的重视下规定了挡板的调整范围。在此基础上,我们运行中进行了各种配风试验,试验包括挡板全开、正宝塔、束腰、倒宝塔等方式。从试验结果中得到了各种煤质的最佳配风方式。飞灰含碳量也下降到5%以下,下降幅度达到55%。
煤粉随着热一次风进入炉膛后,一方面由于卷吸高温烟气的对流加热作用以及高温火焰和炉壁的辐射作用,使煤粉很快着火燃烧,初始时由于氧气充足,燃烧速度由化学反应控制,到燃烧后期,由于氧气不充足,燃烧速度由氧气的混合速度控制。在缺氧状态下,碳粒发生不完全氧化反应和还原反应,造成碳粒不完全燃烧,加大了不完全燃烧热损失。因此,保证一定的过量空气系数是必需的。根据经验,此系数应在1.15~1.3之间,折算成烟气氧量是2.6~5。
煤粉细度 6% 12% 18%
飞灰Cfh 1.7% 3.5% 10%
2.3配风方式
吕四港电厂#1、2、3、4号炉都采用四墙切圆燃烧技术,每只角风口布置相同,具体如下:
在实际运行中,如果没有油枪运行,油枪层即随二次风逻辑开关挡板。燃烧器层随燃料风逻辑开关挡板。煤粉在炉内燃烧过程大致分为着火、燃烧、燃烬三个阶段,在着火阶段即是加热一次风和煤粉;燃烧阶段即是二次风混入,煤粉和氧气剧烈反应阶段;燃烬阶段即是碳粒燃烧阶段,配风即是二次风如何混合的方式,二次风混入早了,即增加了着火所需热量,延迟了着火时间,混入迟了,造成缺氧燃烧,减少了燃烬时间,同时二次风的混入时间问题还会对NOx的大小产生直接影响。
相关文档
最新文档