第六章 实数集体备课教案
新人教版七年级下册第六章实数全章教案
6.1.1平方根(第一课时)】知识与技能:通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;过程与方法:通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。
情感态度与价值观:通过学习算术平方根,认识数与人类生活的密切联系,建立初步的数感和符号感,发展抽象思维,为学生以后学习无理数做好准备。
教学重点:算术平方根的概念和求法。
教学难点:算术平方根的求法。
一、情境引入:问题:学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为225dm 的正方形画布,画上自己得意的作品参加比赛,这块正方形画布的边长应取多少?二、探索归纳:1.探索:学生能根据已有的知识即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为dm 5。
接下来教师可以再深入地引导此问题:如果正方形的面积分别是1、9、16、36、254,那么正方形的边长分别是多少呢?学生会求出边长分别是1、3、4、6、52,接下来教师可以引导性地提问:上面的问题它们有共同点吗?它们的本质是什么呢?这个问题学生可能总结不出来,教师需加以引导。
上面的问题,实际上是已知一个正数的平方,求这个正数的问题。
2.归纳:⑴算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即x 2=a 那么这个正数x 叫做a 的算术平方根。
⑵算术平方根的表示方法:a 的算术平方根记为a ,读作“根号a ”或“二次很号a ”,a 叫做被开方数。
三、应用:例1、 求下列各数的算术平方根:⑴100 ⑵6449 ⑶971 ⑷0001.0 ⑸0 注:①根据算术平方根的定义解题,明确平方与开平方互为逆运算;②求带分数的算术平方根,需要先把带分数化成假分数,然后根据定义去求解;③0的算术平方根是0。
由此例题教师可以引导学生思考如下问题:你能求出-1,-36,-100的算术平方根吗?任意一个负数有算术平方根吗?归纳:一个正数的算术平方根有1个;0的算术平方根是0;负数没有算术平方根。
人教版七年级数学下册第6章实数优秀教学案例
2.设计具有针对性的练习题,让学生在实践中检验自己的学习成果。如出一道关于实数运算的综合题,让学生独立完成,检验他们对于实数的掌握程度。
3.对学生的学习情况进行评价和反馈,帮助他们发现自己的优点和不足,提高他们的学习效果。如对学生的练习题进行批改,及时给予评价和指导,让他们知道自己的学习成果和需要改进的地方。
在整个教学过程中,我注重启发式教学,引导学生主动思考、积极探讨,培养学生的问题解决能力和创新精神。同时,关注学生的个体差异,因材施教,使他们在原有基础上得到提高。通过本章节的教学,使学生掌握实数的相关知识,为后续学习打下坚实基础。
二、教学目标
(一)知识与技能
1.让学生掌握实数的定义、分类和性质,理解实数与数轴的关系,熟练运用实数进行运算。
四、教学内容与过程
(一)导入新课
1.利用生活实例导入新课,激发学生的学习兴趣。如通过一个购物场景,让学生思考如何用实数表示商品的价格和数量,引发学生对实数的关注。
2.利用数形结合的方法,导入新课。如通过一个数轴,引导学生思考实数与数轴的关系,激发学生对实数的探究欲望。
3.设计具有挑战性的问题,导入新课。如提出“实数有什么特点?实数与数轴有什么关系?”等问题,引发学生对实数的思考和好奇心。
(三)学生小组讨论
1.设计具有针对性的讨论题目,让学生进行小组讨论。如提出“如何用实数表示一个物体的长度?”等问题,让学生通过讨论,共同解决问题,提高他们的团队合作能力。
第六章实数教案
人教版七年级数学下册第六章《实数》教案执教七年级数学集体备课组2013.3. 8第六章实数6。
1平方根【第一课时】教学目标:【知识与技能】了解平方根与算术平方根的概念,理解负数没有平方根及非负数开平方的意义。
【过程与方法】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。
【情感、态度与价值观】体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。
【教学重点】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。
【教学难点】会用平方根的概念求某些数的平方根,并能用根号加以表示。
【教具准备】小黑板科学计算器【教学过程】一、导入1、通过七年级的学习,相信同学们都对数学这门课程有了更深入的认识,这个学期,我们将一起来学习八年级的数学知识,这个学期的知识将会更加有趣。
2、板书:实数 1.1 平方根二、新授(一)探求新知1、探讨:有面积为8平方厘米的正方形吗?如果有,那它的边长是多少?(少数学习超前的学生可能能答上来)这个边长是个怎样的数?你以前见过吗?2、引入“无理数”的概念:像(2.82842712……)这样无限不循环的小数就叫做无理数。
3、你还能举出哪些无理数?(,)、、1/3是无理数吗?4、有理数和无理数统称为实数。
(二)知识归纳:1、板书:1.1平方根2、李老师家装修厨房,铺地砖10.8平方米,用去正方形的地砖120块,你能算出所用地砖的边长是多少吗?(0.3米)3、怎么算?每块地砖的面积是:10.8120=0。
09平方米。
由于0。
32=0。
09,因此面积为0。
09平方米的正方形,它的边长为0。
3米. 4、练习:由于( )=400,因此面积为400平方厘米的正方形,它的边长为()厘米。
5、在实际问题中,我们常常遇到要找一个数,使它的平方等于给定的数,如已知一个数a,要求r,使r2=a,那么我们就把r叫做a的一个平方根。
人教版数学七年级下册第6章实数《实数数学活动》教学设计
-鼓励学生分享探究成果,培养表达能力和团队合作精神。
2.情境教学:结合生活实际,创设情境,让学生在实际问题中感受实数的作用。
-利用实际问题引入实数概念,如通过测量长度、温度等引入无理数。
-通过解决具体问题,让学生体验数学知识在实际生活中的应用。
-讲解要点:强调实数的定义及其包含的范围,重点讲解无理数的概念和特点。
2.实数运算及其性质:通过实例演示和讲解,让学生掌握实数的四则运算规则,以及实数的性质。
-讲解重点:实数运算的顺序、法则,以及实数的性质(如交换律、结合律等)。
(三)学生小组讨论
1.分组讨论:将学生分成小组,针对实数的相关问题进行讨论,如实数的分类、实数的性质等。
-效果跟踪:定期检查学生的学习进度,调整教学策略,确保每个学生都能跟上教学进度。
3.实践性教学:将实数知识与学生的生活实际相结合,设计具有实践性的数学活动,让学生在实际操作中运用实数知识。
-设想实践:组织学生进行户外测量活动,如测量树的高度、操场的长度等,将实数知识应用于实际问题。
-效果评价:通过学生完成实践作业的质量,评估学生对实数知识的实际应用能力。
-目标定位:培养学生的逻辑思维能力和问题解决能力,提高实数知识的运用水平。
3.实践应用题:结合生活实际,设计一些需要运用实数知识解决的实际问题,如测量、计算等。
-实践意义:让学生在实际情境中感受实数的作用,提高数学知识在实际生活中的应用能力。
4.小组讨论题:布置一道小组讨论题,要求学生在小组内共同探究、解决问题。
为了巩固学生对实数知识的掌握,培养其运用实数解决实际问题的能力,特布置以下作业:
1.基础巩固题:完成课本第6章实数部分的基础练习题,重点关注实数的概念、分类及简单运算。
人教版七年级数学下册第六章实数优秀教学案例
(二)讲授新知
1.教师引导学生探究实数的定义和性质,通过讲解、示例等方式,让学生理解实数的概念,掌握实数的分类。
2.运用数形结合的思想,讲解实数与数轴的关系,让学生能够将实数对应到数轴上的正确位置。
3.教授实数的运算方法,包括加、减、乘、除等基本运算,通过示例和练习,让学生熟练掌握实数的运算规则。
人教版七年级数学下册第六章实数优秀教学案例
一、案例背景
本案例背景以人教版七年级数学下册第六章“实数”为主题,本章主要内容包括实数的定义、分类及实数与数轴的关系。对于七年级的学生来说,实数是数学学习中一个非常重要的概念,它既包括有理数,也包括无理数,是对前面学习的数的扩充。在本章节的教学中,我以提高学生的数学思维能力、培养学生的抽象思维和逻辑推理能力为目标,充分运用教学策略,提高教学效果。
4.组织小组展示和分享,让学生在课堂上展示自己的研究成果,培养学生的表达能力和自信心的同时,增进学生之间的相互学习。
(四)总结归纳
1.教师引导学生对实数的相关知识进行总结归纳,帮助学生梳理实数的定义、分类、运算方法以及实数与数轴的关系等。
在教学过程中,我充分考虑学生的认知规律和学习特点,以生活实例引入实数的概念,让学生感受数学与生活的紧密联系。通过设置具有启发性的问题,引导学生主动探究、积极思考,从而加深对实数的理解。同时,注重运用数形结合的思想,让学生在动手操作、观察中发现实数与数轴之间的关系,提高学生的空间想象力。
在教学评价方面,我采用多元化的评价方式,既关注学生的知识掌握程度,也重视学生的能力发展。通过课堂提问、小组讨论、数学日记等形式,了解学生在实数学习过程中的困惑和问题,及时调整教学策略,为学生提供个性化的指导。此外,还结合课后作业和练习,对学生的学习效果进行检测,为下一步教学提供依据。
人教版七年级数学下册第6章实数(教案)
-平方根与立方根的求解:学生可能不熟悉平方根和立方根的求解方法,特别是对于复杂实数。
-突破方法:通过图形和数轴的辅助,直观展示平方根和立方根的概念,并提供多样的练习题。
-实数与数轴的应用:将实数与数轴结合解决实际问题时,学生可能不知道如何操作。
2.提升学生的逻辑思维与推理能力:在学习实数的性质与运算过程中,培养学生逻辑思维和推理能力,使他们能够运用所学知识解决问题。
3.增强学生的空间观念与数形结合思想:通。
4.培养学生的数据分析与实际问题解决能力:在学习实数在实际问题中的应用时,培养学生数据分析能力,使他们能够运用所学知识解决生活中的数学问题。
人教版七年级数学下册第6章实数(教案)
一、教学内容
人教版七年级数学下册第6章“实数”主要围绕以下内容展开:
1.实数的概念与分类:理解实数的定义,掌握实数的分类(有理数、无理数)。
2.实数的性质:探讨实数的性质,如符号、绝对值、相反数、倒数等。
3.实数的运算:掌握实数的加减乘除运算,以及混合运算的法则和技巧。
3.重点难点解析:在讲授过程中,我会特别强调实数的分类和运算这两个重点。对于难点部分,如无理数的理解,我会通过具体例子和数轴上的表示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与实数相关的实际问题,如计算圆的周长。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠纸片来估算无理数√2的值。
回顾整个教学过程,我认为以下几个方面需要改进:
1.对于无理数的讲解,我应该准备更多生动的例子和实际操作,以帮助学生更好地理解这一概念。
2.在实践活动和小组讨论中,要关注学生的个体差异,鼓励他们独立思考,提高解决问题的能力。
第六章 实数集体备课教案
第六章实数教学目标:1、认知目标:(1)了解平方运算与开平方,立方运算与开立方的互逆关系,会求一个非负数的平方根及算术平方根,以及一个数的立方根。
(2)了解无理数和实数的概念,能进行简单的实数大小比较,四则运算和近似计算。
2、过程目标:经历探求正方形地砖边长的过程,在现实情境中学习平方根的概念;通过实数与数轴上点的一一对应关系,体验数形结合思想;通过类比有理数的相关知识来学习实数,体验类比的数学思想方法;3、情感目标:通过与实数相关知识的学习,体会数学学习过程中探求知识的乐趣,树立学习的信心。
体验数学的实用价值,增强学数学、用数学的意识。
重点:平方根、立方根以及实数的概念和实数的四则运算。
难点:平方根立方根的求法,实数的大小比较。
教法学法以上学期学了有关幂的知识来引导平方根、立方根的概念,进而引出无理数以及实数的概念。
本章知识结构:主要知识:1、平方根(1) 如果一个数的平方等于 a ,那么这个数叫做a的平方根,记作 ,其中叫做算术平方根,求一个数的运算叫做开平方.(2)巩固练习: 求下列各数的平方根和算术平方根 :2.25 , 361 ,3649 ,104 , 0 2、立方根 (1)如果一个数的立方等于a ,那么这个数叫做a 的 ,记作 。
(2)巩固练习:求下列各数的立方根: 827 , 0.125 ,-1 ,103 3、实数(1) 叫无理数, 和 统称为实数。
(2)实数的分类:(3)巩固练习:把下列各数分别填入相应的集合内:32 ,43,9 , -5 ,-38 ,0 有理数集合: ;无理数集合: ;正数集合: ;负数集合: 。
一、 知识拓展:1、 填空:(1)一个数的平方等于它本身,这个数是 ;一个数的平方根等于它本身,这个数是 ;一个数的算术平方等于它本身,这个数是 ;(2)一个数的立方等于它本身,这个数是 ;一个数的立方根等于它本身,这个数是 。
2、计算:(1) 22-32 ; (2)│2-3│+22 。
(实用)最新人教版七年级 第六章《实数》整章教案(绝对精品)
6.1平方根(第1课时)邓伶亚赤壁市实验中学一、内容和内容解析1.内容《义务教育课程标准实验教科书——数学》(人教版)七年级下册第六章《实数》第一节第一课时的知识,主要介绍算术平方根的概念、表示方法和求法,以及用夹逼法估计2的大致范围.2.内容解析教材的地位和作用:第一,教科书先介绍算术平方根,让学生看到算术平方根与实际的联系,在学习算术平方根的基础上再学习平方根.算术平方根与之前学的平方运算存在互逆关系,也是下节课学习平方根的前提,具有承上启下的作用.第二,2是历史上人们发现的第一个无理数,引发了数学危机,也促使数系从有理数扩充到无理数。
教科书采用夹逼的方法,利用2的一系列不足近似值和过剩近似值来估计它的大小,进而给出2是无限不循环小数的结论,并指出53,等也是无限不循环小数,为后面学习无理数概念打下基础.第三,会用根号表示非负数的算术平方根,了解算术平方根的非负性,为以后学习二次根式做出了铺垫,提供知识积累.对本节课教学有利因素是:七年级学生会做加减乘除以及乘方运算了,但还是会发现一些生活中常见的数学问题(比如知道正方形面积求边长这一类的问题)没办法用这些计算方法解决,内心渴望新的计算方法出现,本节课的学习将实现他们内心的期盼.本节课教学不利因素是:第一、乘方运算是已知底数和指数,求幂,开方运算是已知幂和指数,求底数。
因为涉及到三个量的关系,与学过的互逆运算(加法和减法、乘法和除法)相比关系更为复杂,造成学生理解的困难.第二、对一个正数,开平方运算可以得到一正一负两个平方根,正的那个叫算术平方根.而教科书是从解决实际问题的需要出发,把算术平方根的学习放在平方根前面.对算术平方根是非负的理解,学生会有些困难.第三,对于可以表示成有理数的平方的数,由于它们的算术平方根都是有理数,所以学生容易把握这些算术平方根的大小.但是对于像2这样不能表示成一个有理数的平方的数,它的算术平方根到底有多大,对学生来说是一个新问题.基于以上分析,可以确定本节课的重点是:了解算术平方根的意义和性质.二、目标和目标解析1.目标(1)通过实际问题生成算术平方根的概念,了解平方与开平方互为逆运算,会用符号表示数的算术平方根.(2)通过互动游戏,巩固算术平方根的概念,并归纳出算术平方根的性质.(3)通过探究2的大小,了解2是无限不循环小数.2.目标解析目标(1)解析:学生经历由实际问题逐步抽象为数学问题的过程,建立初步的数感和符号感,发展抽象思维;在探索算术平方根概念的过程中,经历由具体到抽象、由特殊到一般的数学思想过程;通过对实际生活中问题的解决,体验数学来源于生活.目标(2)解析:学生在积极参与游戏的过程中,巩固算术平方根的概念;在师生问答互动的过程中,辨析概念,培养学生的推理、归纳能力.目标(3)解析:通过探究2的大小,培养估算意识,了解两个方向无限逼近的数学思想。
人教版七年级下册第六章实数教学设计
人教版七年级下册第六章实数教学设计
一、教学目标
1.知识目标:掌握实数的概念与性质,能够实现实数的加减乘除运算。
2.技能目标:能够应用实数进行简单实际问题的解决。
3.情感目标:培养学生的数学思维能力,提高数学学科的探索性与创造
性。
二、教学重点难点
1.教学重点:实数的概念与性质,实数的加减乘除运算。
2.教学难点:实数概念的理解与应用,实数加减乘除运算的实际应用。
三、教学步骤与方法
1. 激发兴趣,导入新课
通过一些有趣、生动的例子,引导学生认识实数的重要性与价值。
例如,通过一些实际应用情景的分析,让学生感受实数的实际应用之处。
2. 知识的教授
(1) 实数的概念与性质
通过教师讲解实数的定义与性质,以引导学生认识实数的本质特征:即包含所有有理数和无理数。
同时,带领学生感受实数与有理数、无理数之间的关系。
(2) 实数的加减运算
通过举例教学与练习,让学生掌握实数的加减运算,了解不同类型的实数加减操作的不同应用。
包括正数加正数、正数加负数、负数加正数、负数加负数的加减乘除运算。
1。
新人教版七年级下册第六章《实数》全章教案(共8份)
年级七年级课题 6.1平方根(1)课型新授教学目标知识技能1. 理解算术平方根的概念,会用根号表示正数的算术平方根,并理解算术平方根的非负性。
2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。
过程方法通过学习算术平方根,建立初步的数感和符号感,发展抽象思维。
情感态度1. 通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的。
2.通过探究活动培养锻炼克服困难的意志,建立自信心,提高学习热情。
教学重点算术平方根的概念及求法。
教学难点根据算术平方根的概念正确求出非负数的算术平方根。
教学方法启发、讨论、探究教学手段多媒体教 学 过 程 设 计6.1平方根(1)问题与情境设计二次备课情景引入同学们,2008年9月25号,“神州七号”飞船载人出舱飞行取得了圆满成功,实现了中华民族千年的梦想。
那么,卫星离开地球进入正常轨道,它运行的速度在什么范围?这时它的速度要大于第一宇宙速度(米/秒)而小于第二宇宙速度 (米/秒)。
、的大小满足=gR, =2gR。
其中,g是物理中的一个常量、R是地球半径。
怎样求出、呢?即使给出g、R的对应值,利用我们已学过的知识,也很难求出。
这就要用到平方根的概念,也就是本章的主要学习内容。
这节课我们先学习有关算术平方根的概念。
1.问题探究 学校要举行美术作品比赛,小欧很高兴。
他想裁出一块面积为25的正方形画布,画上他自己的得意之作参加比赛,这块正方形画布的边长应取多少?问题:1.你能算出画布的边长等于多少吗?2.说说你是怎样算出来的?3.如果这块正方形画布的面积为单位1,那么它的边长是多少?如果面积分别为9、16、36、呢?自主探究出示自学提纲:阅读教材40页,并回答下列问题:1. 算术平方根以及有关概念。
2. 为什么规定:0的算术平方根为0?3. 自学例1,先试做后对照。
4. 表示的意义是什么?它的值是多少?用等式怎样表示?5. 144的算术平方根是多少?怎样用符号表示?学生活动:独立思考1、2答案,提出疑难问题。
人教版数学七年级下册6.3《实数》优秀教学案例
3.采用小组合作学习法,让学生在讨论和交流中,共同完成实数性质的探究,培养学生的合作意识和团队精神。
4.设计丰富的教学活动,让学生在实践中感受实数的性质,提高学生的动手操作能力和实践能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣,使学生树立自信心,相信自己能够掌握实数的知识。
4.引导学生总结实数的性质,培养学生的归纳总结能力,例如“实数的性质有哪些?如何描述有理数和无理数?”
(三)小组合作
1.让学生分组讨论实数的性质,鼓励学生发表自己的观点,培养学生的合作意识和团队精神。
2.设计小组活动,让学生共同探究实数的运算规则,例如“以小组为单位,总结实数的加法、减法、乘法、除法规则。”
在教学设计上,我遵循了由浅入深、循序渐进的原则,将知识点进行合理划分,使得学生能够逐步理解和掌握实数的概念和性质。在教学方法上,我采用了启发式教学法和小组合作学习法,鼓励学生主动发现问题、解决问题,培养学生的合作意识和团队精神。
在教学评价上,我注重过程性评价与终结性评价相结合,全面了解学生的学习情况,及时调整教学策略,提高教学效果。通过本节课的教学,希望学生能够熟练掌握实数的相关知识,提高他们的数学素养。
三、教学策略
(一)情景创设
1.利用生活实例引入实数的概念,例如身高、体重、温度等,让学生感受到实数与生活的紧密联系。
2.通过设计有趣的数学问题,激发学生的学习兴趣,例如“小明身高1.6米,小红身高1.5米,请问小明比小红高多少?”
3.利用多媒体课件展示实数的应用场景,例如在平面直角坐标系中,展示实数表示的点的位置。
4.创设问题情境,引导学生思考实数的性质,例如“为什么实数可以分为有理数和无理数?”
人教版七年级下册集体备课教学案第六章6.3实数
。
(2)正
数大于负 数;两个正 数的绝对值大的值也较大;两个负
数的绝对值大的反而小。
以上规则在实数范围内仍然适用。
探究二 当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为 0)、乘方运算,而且正数及 0 可以进行开平方运算,任意一个实数可以进行开立方 运算,在进行实数的运算时,有理数的运算法则及运算性质等同样适用。 例 2.计算下列各式的值
1/3
1.-32 3 9 1 =9 3 3=9 3
2. (1- 2)2 =1- 2
3. 5- 6= 5- 6 二、计算: 1. 2- 5- 5+ 2( 精确到)
2.a 2 a 2 a ) (精确到0.01) 3. (3 3-3) 4. (2 2- 1 )
三、 已知a,b,c在数轴上如图,化简
a2 -a+b+ c-a 2 +b+c
b
a
0
c
2/3
人教版七年级下册集体备课教学案第六章 6.3 实数 3/3
(1)( 3 2) 2;
(2)3 3 2 3
3 2 3
(4)2 2 3 2;
(5) 2 32 2.
例 3.计算:(结果保留小数点后两位)
(1) 5
(2) 3 2. 3 2 2
注意:计算过程中要多保留一位!
课堂跟踪反馈
一、讨论下列各式错在哪里?
教学重难点:
实数的定义、实数的运算和性质法则的运用
教学过程:
一、 复习导入
数轴上的点与
一一对应。
即每个
都可以用数轴上的一个点来示;反过来,数轴上的每个点都可以
用一个
人教版七年级下册第六章实数课程设计
人教版七年级下册第六章实数课程设计一、课程目标1.认识实数概念及其性质;2.熟练掌握实数的加、减、乘、除运算;3.了解实数的大小关系及其应用。
二、教学重点和难点1.重点:实数的概念及运算;2.难点:实数间大小关系的比较及其应用。
三、教学内容及安排1. 实数的概念与性质(1课时)教学内容1.实数的概念;2.实数的分类;3.实数的性质:稠密性、有理数密度性等。
教学安排1.介绍实数的概念和定义;2.引导学生了解实数的分类;3.讲解实数的性质,提醒学生要注意其中的细节。
2. 实数的加减运算(2课时)教学内容1.实数的加减法定义;2.实数的加减法规则;3.实数加减法的性质。
教学安排1.给学生讲解实数的加减法定义和规则;2.引导学生练习实数的加减运算;3.强调实数加减法的性质,引导学生从运算中寻找规律。
3. 实数的乘除运算(2课时)教学内容1.实数的乘法定义;2.实数的除法定义;3.实数乘除法的性质。
教学安排1.讲解实数的乘除法定义;2.以例题为例,引导学生掌握实数的乘除法运算;3.强调实数乘除法的性质,让学生掌握实数运算的灵活运用。
4. 实数的大小关系与应用(2课时)教学内容1.实数大小关系的比较;2.已知某一实数时,如何求另一实数。
教学安排1.讲解实数的大小关系及其比较方法;2.引导学生从实际问题中找到应用实数知识的方法;3.以例题为例,让学生掌握已知某一实数时,如何求另一实数的方法。
四、教学方法1.合作探究法:通过情境模拟、角色扮演等方式激发学生的学习兴趣;2.课堂讲解法:重点内容采用讲解、演示等方式进行教学;3.练习提高法:加强练习和巩固,提高学生学科素养。
五、评价方法1.检测学生实数概念、运算方法、大小关系及应用的掌握情况;2.通过小组合作、课堂讨论、思考题等方式,检测学生的思维能力;3.常规检测和期末考试,全面评价学生的学业水平。
六、教学资源准备1.幻灯片及投影仪等课堂教学设备;2.针对不同知识点的练习题目、案例问题及习题解答;3.优秀教学视频及教材参考资料等。
人教版七年级下册数学第6章《实数》优秀教学案例(教案)
1.生活情境的引入:通过购物小票的实际例子,让学生感受实数在生活中的应用,激发学生的学习兴趣,提高学生的学习积极性。
2.问题导向的教学策略:设计一系列递进式的问题,引导学生逐步深入理解实数的相关知识,培养学生的批判性思维和问题意识。
3.小组合作的学习方式:通过小组讨论和合作任务,培养学生的团队合作精神,提高学生的沟通能力和协作能力。
2.理解实数与数轴的关系,能够利用数轴表示和解释实数。
3.掌握实数的运算方法,包括加法、减法、乘法、除法等,并能进行实数的混合运算。
4.能够运用实数的概念和运算方法解决实际问题,提高学生的应用能力。
(二)过程与方法
1.通过观察、思考、讨论等方式,引导学生主动探索实数的概念和性质。
2.利用数轴作为教学工具,帮助学生直观地理解实数与数轴的关系。
2.利用数轴作为教学工具,帮助学生直观地理解实数与数轴的关系。
3.通过实际例子,让学生体会实数在生活中的应用,提高学生解决实际问题的能力。
4.注重个体差异,给予每个学生充分的思考和表达机会,鼓励学生提出不同观点,培养学生的创新思维。
在教学过程中,我还将注重以下几点:
1.关注学生的学习兴趣,创设有趣的教学情境,激发学生的学习热情。
(四)反思与评价
1.个人反思:在教学过程中,鼓励学生进行个人反思,思考自己在学习实数知识过程中的理解、困惑和收获,如“你觉得自己在实数学习中有哪些收获?还有哪些需要改进的地方?”
2.同伴评价:引导学生相互评价,互相借鉴学习方法和解题思路,如“你觉得他的解题方法怎么样?有没有更好的解决办法?”
3.教师评价:教师对学生的学习情况进行评价,关注学生的知识掌握程度、思维过程和团队合作能力等方面的表现,如“你在这次小组合作中表现得很出色,不仅积极参与讨论,还能够提出有深度的观点。”
最新版人教版七年级数学下册第六章实数 教案教学设计
第六章实数6.1 平方根 (1)课时1 算术平方根 (1)课时2 用计算器求一个正数的算术平方根 (5)课时3 平方根 (8)6.2 立方根 (12)6.3 实数 (16)课时1 实数及其分类 (16)课时2 实数的运算 (19)6.1 平方根课时1 算术平方根【教学目标】1. 了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.2. 了解开方与乘方互为逆运算,会用平方运算或计算器求某些非负数的算术平方根.3. 通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和学习兴趣.【教学重点】理解算术平方根的概念.【教学难点】根据算术平方根的概念正确求出非负数的算术平方根.【新课导入】教师出示下列问题1,并引导学生分析.问题1由学生直接给出结果.问题1 求出下列各数的平方.1,0,(-1),-1/3,3,1/2.问题2下列各数分别是某实数的平方,请求出某实数.25,0,4,4/25,1/144,-1/4,1.69.对学生进行提问,针对学生可能会得出的一个值,由学生互相交流指正,再由教师指明正确的考虑方式.由于52=25,(-5)2=25,故平方为25的数为5或-5.02=0,故平方为0的数为0.22=4,(-2)=4,故平方为4的数为2或-2.问题3 学校要举行美术比赛,小壮想裁一块面积为25dm2的正方形画布画一幅画,这块画布的边长应取多少?分析:本题实质是要求一个平方后得25的数,由上面的讨论可知这个数为±5,但考虑正方形的边长不能为负数,所以正方形边长应取5dm.【教学过程】教师归纳出新定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记作a,读作“根号a”,a叫作被开方数.规定:0的算术平方根是0.例1求下列各数的算术平方根.分析:正数的算术平方根是正数,零的算术平方根是零,负数没有算术平方根.【教学说明】(1)算术平方根是非负数,要注意不要弄错算术平方根的符号.如:不要把23-)(=3写成23-)(=-3;(2)要审清题意,不要被表面现象迷惑.如求81的算术平方根,错误地理解为求81的算术平方根81.探究:当a 为负数时,a 2有没有算术平方根?其算术平方根与a 有什么关系?举例说明所得结论.【教学指导】当a 为负数时,a 2为正数,故a 2有算术平方根,如a=-5时,a 2=(-5)2=25,252 a =5,5是-5的相反数,故a<0时,a 2的算术平方根与a 互为相反数,表示为-a.当a 2为正数时,a 的算术平方根表示为2a ,其值为a,即2a =a.当a=0时,2a =0.【教学说明】应用上述结论解题时,可如例题的解答写出过程,熟练后再直接写出结果.对2a 结果的讨论,可以检验学生是否真正理解了算术平方根的含义.学生中出现的问题,可由学生间交流讨论.教师向学生介绍用计算器求算术平方根的方法,并由学生实际运用,体会方法.【例题展示】【教学说明】学生自主探究,教师巡视,了解学生对本节课知识的掌握情况,及时予以指导,帮助学生巩固新知.【答案】1.A 2.A 3.D【课堂小结】本节课应掌握:1.读一读本节课学习的主要内容,说出平方根与平方的关系.2.算术平方根的意义是什么样的?3.怎样求一个正数的算术平方根?【课后作业】从教材“习题6.1”中选取.课时2 用计算器求一个正数的算术平方根【教学目标】1. 了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.2. 了解开方与乘方互为逆运算,会用平方运算或计算器求某些非负数的算术平方根.3. 通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和学习兴趣.【教学重点】理解算术平方根的概念.【教学难点】根据算术平方根的概念正确求出非负数的算术平方根.【新课导入】教师出示下列问题1,并引导学生分析.问题1由学生直接给出结果.问题1 求出下列各数的平方.1,0,(-1),-1/3,3,1/2.问题2下列各数分别是某实数的平方,请求出某实数.25,0,4,4/25,1/144,-1/4,1.69.对学生进行提问,针对学生可能会得出的一个值,由学生互相交流指正,再由教师指明正确的考虑方式.由于52=25,(-5)2=25,故平方为25的数为5或-5.02=0,故平方为0的数为0.22=4,(-2)=4,故平方为4的数为2或-2.问题3 学校要举行美术比赛,小壮想裁一块面积为25dm 2的正方形画布画一幅画,这块画布的边长应取多少?分析:本题实质是要求一个平方后得25的数,由上面的讨论可知这个数为±5,但考虑正方形的边长不能为负数,所以正方形边长应取5dm.【教学过程】 教师归纳出新定义:一般地,如果一个正数x 的平方等于a,即x2=a,那么这个正数x 叫做a 的算术平方根,记作a ,读作“根号a”,a 叫作被开方数.规定:0的算术平方根是0. 例1求下列各数的算术平方根.分析:正数的算术平方根是正数,零的算术平方根是零,负数没有算术平方根.【教学说明】(1)算术平方根是非负数,要注意不要弄错算术平方根的符号.如:不要把23-)(=3写成23-)(=-3;(2)要审清题意,不要被表面现象迷惑.如求81的算术平方根,错误地理解为求81的算术平方根81.探究:当a 为负数时,a 2有没有算术平方根?其算术平方根与a 有什么关系?举例说明所得结论.【教学指导】当a 为负数时,a 2为正数,故a 2有算术平方根,如a=-5时,a 2=(-5)2=25,252 a =5,5是-5的相反数,故a<0时,a 2的算术平方根与a 互为相反数,表示为-a.当a 2为正数时,a 的算术平方根表示为2a ,其值为a,即2a =a.当a=0时,2a=0.【教学说明】应用上述结论解题时,可如例题的解答写出过程,熟练后再直接写出结果.对2a结果的讨论,可以检验学生是否真正理解了算术平方根的含义.学生中出现的问题,可由学生间交流讨论.教师向学生介绍用计算器求算术平方根的方法,并由学生实际运用,体会方法.【例题展示】【教学说明】学生自主探究,教师巡视,了解学生对本节课知识的掌握情况,及时予以指导,帮助学生巩固新知.【答案】1.A 2.A 3.D【课堂小结】本节课应掌握:1.读一读本节课学习的主要内容,说出平方根与平方的关系.2.算术平方根的意义是什么样的?3.怎样求一个正数的算术平方根?【课后作业】从教材“习题6.1”中选取.课时3 平方根【教学目标】1. 掌握平方根的概念,明确平方根与算术平方根之间的联系与区别.2. 能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互逆关系.3. 通过对平方根的学习,培养学生从多方面,多角度分析问题,解决问题的思想意识,养成全面分析问题的习惯.【教学重点】平方根的概念和求一个数的平方根.【教学难点】平方根和算术平方根的联系与区别.【新课导入】问题已知一个数的平方等于16,这个数是多少?如何表示这个数呢?【教学分析】由于42=16,(-4)2=16,故平方等于16的数有两个:4和-4,把4和-4叫做16的平方根,记为4=16,则-4=-16,把4和-4称为16的平方根.提出平方根定义:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根,即若x 2=a ,则x 为a 的平方根,记为x=±a .【教学过程】把求一个数a 的平方根的运算,叫做开平方,而平方运算与开平方运算互为逆运算,根据这种关系,可以求一个数的平方根.例1 求下列各数的平方根和算术平方根.分析:一个正数的平方根有两个,且互为相反数,其中正的平方根为算术平方根.可根据平方与开平方的互逆关系,通过平方运算求一个数的平方根.【教学说明】一个正数的平方根有两个,不要丢掉其中负的平方根,算术平方根是其中的一个正平方根,不要弄错了符号.求平方根时一定要把所求的数化成x 2的形式,同时注意正数有两个平方根.例2计算下列各题.分析:(1)484就是求484的算术平方根;(2)是求4112的平方根,可把带分数化成假分数;(4)应先求出被开方数的大小.【教学说明】提醒学生注意分清每个算式的符号(包括性质符号).例3 求下列各式的值.分析:先要弄清每个符号表示的意义,并注意运算顺序.【教学说明】(1)混合运算的运算顺序是先算开平方,再乘除,后加减,同一级运算按先后顺序进行.(2)初学时可根据平方根,算术平方根的意义和表示方2(a>0)来解.法来解,熟练后直接根据aa例4 求下列各式中的x.(1)x2-361=0;(2)(x+1)2=289;(3)9(3x+2)2-64=0.分析:表面上本题是求方程的解,但实质上可理解为求平方根,用开平方求出x值;(2)中(x+1)、(3)中(3x+2)看作一个整体,求出它们后,再求x.例5 某建筑工地,用一根钢筋围成一个面积是25m2的正方形后还剩下7m,你能求出这根钢筋的长度吗?分析:先求出面积是25m2的正方形需用的钢筋长度,然后再求出这根钢筋的总长度.解:正方形的边长为5m,钢筋的长度为27m.【教学说明】在实际问题中要注意正方形的面积与边长的关系即一个正数与它的算术平方根的关系.【例题展示】【教学说明】学生自主完成,教师巡视,然后集体订正.【课堂小结】根据下列问题梳理所学知识,学生交流.问题:1.什么叫一个数的平方根?2.正数,0,负数的平方根有什么规律?3.怎样求出一个数的平方根?数a的平方根怎样表示?【课后作业】从教材“习题6.1”中选取.6.2 立方根【教学目标】1. 了解立方根的概念,初步学会用根号表示一个数的立方根.2. 了解立方与开立方互为逆运算,会用立方运算或计算器求某数的立方根.3. 能用类比平方根的方法学习立方根及开立方运算.【教学重点】立方根的概念及求法.【教学难点】立方根与平方根的区别.【新课导入】问题填写,并探求交流立方值与平方值的不同.鼓励学生踊跃发言表述各自总结的结论.【教学说明】求立方运算时,当底数互为相反数,其立方值也互为相反数,这与平方运算不同,平方运算的底数为相反数时,平方值相等.故一个正数的平方根有两个值,但一个正数的立方根只有一个值.引出立方根定义:若x 3=a,则x 为a 的立方根,记为3a . 根据上述定义,请学生口述下列问题的结果,并推广到一般规律.【教学总结】由教师汇总得出下列结论:1.正数的立方根是正数,负数的立方根是负数,0的立方根是0.2.33a a -=-. 【教学过程】例1 求下列各数的立方根.分析:依据立方根的定义,先写出这四个数分别是由哪个数的立方得到的,从而求出立方根.【教学说明】被开方数是带分数时,先将其化成假分数. 例2 求下列各式的值.分析:先要分清符号的实际意义,如3512表示求-512的立方根,而-3512表示求512的立方根的相反数.解:(1)-8;(2)29;(3)-0.2;(4)6.【教学说明】以上两例中可总结得到:(1)任何数的立方根只有一个,而且被开方数的符号与立方根的符号相同;(2)被开方数是算式,可先算出结果.例3 求下列各式中的x.分析:可根据立方根的定义求得x 的大小.(2)(3)(4)中分别把(x+2),(x-1),(2x+3)看作一个整体.【教学说明】本题实质是解关于x 的三次方程,两边同时开立方是解题的基本思路.例 4 在做浮力实验时,小华用一根细线将一正方体铁块拴住,完全浸入盛满水的圆柱烧杯中,并用一量筒量得被铁块排开的水的体积为40.5cm 3,小华又将铁块从水中提起,量得水杯中的水位下降了0.62cm,请问烧杯内部的底面半径和铁块的棱长各是多少?(用计算器求结果,结果精确到0.1cm).分析:铁块排出的40.5cm 3的水的体积,是铁块的体积,也是高为0.62cm 烧杯的体积.【答案】烧杯内部的底面半径约是4.6cm,铁块的棱长约是3.4cm.【教学说明】引导学生完成上述问题后,指导学生用计算器求立方根,并用实际训练形成应用能力.【例题展示】例1.计算下列各题例2.某金属冶炼厂将27个大小相同的立方体钢铁在炉火中熔化后浇铸成一个长方体钢铁,此长方体的长,宽,高分别为160cm,80cm和40cm,求原来立方体钢铁的边长.例3.有一边长为6cm的正方体的容器中盛满水,将这些水倒入另一正方体容器时,还需再加水127cm3才满,求另一正方体容器的棱长.例4.若3x+16的立方根是4,求2x+4的平方根.【教学说明】通过上述几道题目的练习,可进一步巩固对本节知识的理解和领悟.【课堂小结】按下列问题顺序让学生表达,并补充完善.1.立方和开立方的意义.2.正数、0、负数的立方根的特征.3.立方根与平方根的异同.【课后作业】从教材“习题6.2”中选取.6.3 实数课时1 实数及其分类【教学目标】1. 了解无理数和实数的概念,会将实数按一定的标准进行分类.2. 知道实数与数轴上的点一一对应.3. 从分类、集合的思想中领悟数学的内涵,激发兴趣.【教学重点】正确理解实数的概念.【教学难点】对“实数与数轴上的点一一对应关系”的理解.【新课导入】问题请学生回忆有理数的分类,及与有理数相关的概念等.教师引导得出下列结论:任何一个有理数都可以写成有限小数或无限循环小数的形式,如等.引导学生反向探讨:任何一个有限小数或无限循环小数都能化成分数吗?【教学说明】任何一个有限小数和一个无限循环小数都可以化成分数,所以任何一个有限小数和一个无限循环小数都是有理数.【教学过程】例1 (1)试着写出几个无理数.(2)判断下列各数中,哪些是有理数?哪些是无理数?由学生共同完成上述问题后,要求学生思考:1.如何把实数分类?2.用根号形式表示的数一定是无理数吗?出示实数分类表:【教学说明】指导学生认识两种分类方式的异同,并特别强调“0”在表中的位置,考虑问题时不能忘记特殊数——0.例2 将例1(2)中各数填入相应括号内.整数集合{ ……}正数集合{ ……}有理数集合{ ……}负数集合{ ……}无理数集合{ ……}由学生完成填空后探究:每个有理数都可以用数轴上的点表示,无理数是否也可以用数轴上的点表示呢?例3 如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′表示的数是什么?由这个图示你能想到什么?解:由图可知,OO′的长是这个圆的周长π,所以O′点表示的数是π,由此可知,数轴上的点可以表示无理数.结合教材内容,让学生找到数轴上表示2,3,…等的点.【教学说明】每一个无理数都可以用数轴上的一个点表示出来,数轴上的点有些表示有理数,有些表示无理数.实数与数轴上的点是一一对应的.例4下列说法错误的是( ).A.16的平方根是±2B.2是无理数是有理数C.327D.22是分数 分析:16的平方根即4的平方根±2, 327-=-3是有理数,而22是无理数,不属于有理数范围,故其不可能是分数.故选D.【教学说明】判断一个数是不是无理数,不能只看最初形式,而要看化简后的最后结果.【例题展示】例1.下列说法中正确的是( ) A.4是一个无理数 B.在1-x 中x≥1 C.8的立方根是±2D.若点P (2,a )和点Q (b,-3)关于y 轴对称,则a+b 的值是5 例2.下列各数中,不是无理数的是( )例3.下列各数中:其中无理数有 . 有理数有 . 例4.判断正误.(1)有理数包括整数、分数和零. (2)不带根号的数是有理数. (3)带根号的数是无理数. (4)无理数都是无限小数. (5)无限小数都是无理数.【教学说明】学生自主完成,教师巡视,然后集体订正. 【答案】1.B 2.D【课堂小结】通过这节课的学习,你掌握了哪些新知识?你还有哪些问题,与同伴交流.【课后作业】从教材“习题6.3”中选取.课时2 实数的运算【教学目标】1. 了解实数范围内的相反数和绝对值的意义,会求一个实数的相反数和绝对值.2. 学会比较两个实数的大小.3. 了解在有理数范围内的运算及运算法则\,运算性质等在实数范围内仍然成立,能熟练地进行实数运算.【教学重点】有理数的大小比较和运算.【教学难点】带有绝对值的有理数的运算.【新课导入】同学们,我们在七年级的时候学习了有理数相反数,绝对值的概念,那么,这一法则能否推广到实数呢?答案是肯定的,数a的相反数是-a(a表示任意一个实数,一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0)教师讲解课本例1【教学说明】教师可让同学们先计算-6,5.8,2111 有理数的绝对值与相反数,从而导出实数相反数和绝对值的法则.【教学过程】【教学导语】在数拓展到实数后,有理数范围内的法则、规律、公式仍然适用于实数范围,请同学们共同回忆,归纳在实数范围内适用的公式,法则.1.在数轴上表示的数,右边的数总比左边的大.2.两个正实数,绝对值较大的值也大;两个负实数,绝对值大的值反而小;正数大于0,负数小于0,正数大于负数.3.运算律:(1)加法交换律:a+b=b+a. (2)加法结合律:(a+b)+c=a+(b+c). (3)乘法交换律:ab=ba. (4)乘法结合律:(ab)c=a(bc). (5)分配律:a(b+c)=ab+ac. 例1比较下列各实数的大小:【教学说明】实数比较大小常用以下方法:(1)两个负数比较,绝对值大的反而小;(2)被开方数大,它的算术平方根也大;(3)立方数大原数也大.例2计算下列各题:分析:先逐个化简后,再按照计算法则计算.【教学说明】实数的运算同有理数的运算律和运算性质、运算顺序一样.【教学说明】教师指导学生归纳得到下列结论:(1)非负数的和等于零的条件是当且仅当每个非负数的值都等于0.(2)任何实数的绝对值是一个非负数,任何一个非负数的算术平方根也是一个非负数.【例题展示】例1.(1)绝对值等于3的实数是 ,绝对值是22的实数是 . (2)257 的相反数是 ,绝对值是 . 例2.比较2010-1与1949+1的大小.例3.由于水资源缺乏,B,C 两地不得不从河上的抽水站A 处引水,这就需要在A,B,C 之间铺设地下管道.有人设计了三种方案:如图甲,图中实线表示管道铺设线路,在图乙中,AD ⊥BC 于D,在图丙中,OA=OB=OC,为减少渗漏\,节约水资源,并降低工程造价,铺设线路尽量缩短.已知△ABC 是一个边长为a 的等边三角形,请你通过计算.判断哪个铺设方案好.【教学说明】第1题较易,2、3题稍难,教师可引导学生完成.【课堂小结】让学生回顾本节知识,思考整个学习过程,看看知道了什么,还有什么疑惑? 【课后作业】从教材“习题6.3”中选取.。
七年级上数学集体备课教案实数
七年级上数学集体备课教案实数第一章:实数的概念与分类一、教学目标:1. 理解实数的概念,掌握实数的分类。
2. 能够正确运用实数进行简单的运算。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容:1. 实数的概念:有理数、无理数。
2. 实数的分类:整数、分数、正实数、负实数、正有理数、负有理数、正无理数、负无理数。
三、教学重点与难点:1. 实数的概念与分类。
2. 实数的运算规则。
四、教学方法:1. 采用讲授法,讲解实数的概念与分类。
2. 运用案例分析法,让学生通过实际例子理解实数的运算规则。
五、教学步骤:1. 引入实数的概念,讲解实数的定义和特点。
2. 讲解实数的分类,包括整数、分数、正实数、负实数、正有理数、负有理数、正无理数、负无理数。
3. 通过实例演示实数的运算规则,让学生进行练习。
4. 布置作业,巩固所学知识。
六、教学反思:在教学过程中,要注意让学生通过实际例子来理解实数的运算规则,加强学生的动手能力。
也要注重培养学生的逻辑思维能力,让学生能够灵活运用实数进行解决问题。
第二章:实数的运算一、教学目标:1. 掌握实数的运算规则,包括加法、减法、乘法、除法。
2. 能够正确进行实数的混合运算。
3. 培养学生的运算能力和解决问题的能力。
二、教学内容:1. 实数的加法与减法。
2. 实数的乘法与除法。
3. 实数的混合运算。
三、教学重点与难点:1. 实数的运算规则。
2. 实数的混合运算。
四、教学方法:1. 采用讲授法,讲解实数的运算规则。
2. 运用案例分析法,让学生通过实际例子理解实数的运算规则。
五、教学步骤:1. 讲解实数的加法与减法,让学生进行练习。
2. 讲解实数的乘法与除法,让学生进行练习。
3. 讲解实数的混合运算,让学生进行练习。
4. 布置作业,巩固所学知识。
六、教学反思:在教学过程中,要注意让学生通过实际例子来理解实数的运算规则,加强学生的动手能力。
也要注重培养学生的运算能力,让学生能够灵活运用实数进行解决问题。
人教版七年级下册第6章《实数》优秀教学案例
4.重难点突出且扎实的教学过程:教师对实数的性质和运算规则进行了详细的讲解和示例,通过对重难点的突出和扎实的教学过程,帮助学生深入理解实数的概念和性质。同时,教师通过问题引导、小组讨论等方式,引导学生主动参与学习,提高学生的学习效果。
(一)知识与技能
本节课的教学目标是让学生掌握实数的概念、分类和性质,能够正确运用实数进行相关的运算。具体包括:
1.理解实数的基本概念,掌握实数的分类,能够正确区分实数和整数、分数等其他数的概念。
2.掌握实数的性质,包括实数的加法、减法、乘法、除法等运算规则,能够熟练进行实数的运算。
3.理解实数的数轴表示方法,能够根据数轴表示实数,并解决与数轴相关的实际问题。
2.通过数轴的展示和实际问题解决,让学生直观地理解实数的概念和性质,增强学生对实数的认识和理解。
3.设计有趣的数学游戏和活动,让学生在轻松愉快的氛围中学习实数,激发学生对数学的兴趣和爱好。
(二)问题导向
本节课通过提出问题和引导学生思考,激发学生的思维活动和探索欲望。具体包括:
1.教师提出与实数相关的问题,引导学生思考和探讨,激发学生对实数的思考和探究欲望。
3.培养学生的团队合作意识,通过合作探讨、交流分享等方式,让学生体验到团队合作的重要性,培养良好的团队合作精神。
三、教学策略
(一)情景创设
本节课通过创设丰富的教学情景,激发学生的学习兴趣和主动性。具体包括:
1.利用生活实际问题,创设与实数相关的情景,让学生感受到实数的实际应用,引发学生对实数的关注和思考。
新人教版第六章-实数_全章教案
第六章实数一、课标要求1.了解平方根、算术平方根、立方根的概念,会用根号表示数的方根、算术平方根、立方根。
2.了解开方与乘方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求百以内整数(对应的负整数)的立方根,会用计数器求平方根、立方根。
3.了解无理数和实数的概念,知道实数和数轴上的点一一对应,能求实数的相反数与绝对值。
4.能用有理数估计一个无理数的大致范围。
5.了解近似数,在解决实际问题中,能用计算器进行近似计算,并会按问题的要求对结果取近似值。
6.了解二次根式、最简二次根式的概念,了解二次根式(根号下不仅限于数)加、减、乘、除运算法则,会用它们进行有关的简单四则运算。
二、课时划分6.1:平方根 3课时6.2:立方根 2课时6.3:实数 2课时三、课时教学设计平方根(1)教学目标:知识与技能:通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;过程与方法:通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。
情感态度与价值观:通过学习算术平方根,认识数与人类生活的密切联系,建立初步的数感和符号感,发展抽象思维,为学生以后学习无理数做好准备。
教学重点:1、了解数的算术平方根的概念。
2、会求一个非负数的算术平方根。
3、会用根号表示一个数的算术平方根。
教学难点:根据算术平方根的概念正确求出非负数的算术平方根。
教学过程一、创设情境导入新课请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为252dm的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少dm?这个问题实际上是已知一个正数的平方,求这个正数的问题?这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.二、合作交流解读探究1、提出问题:1)、学校要举行美术作品比赛,小欧很高兴。
人教版七年级下册数学教学设计(教案):第六章实数单元备课
坝陵中学教师单元备课单元内容第六章实数学情分析学生在七年级上学期学习了有理数,类比有理数,引入实数在数轴上的表示和实数的运算;并用这些知识解决一些实际问题.通过本章的学习,学生对数的认识就由有理数范围扩大到实数范围.本章之前的数学内容都是在有理数范围内讨论的,学习本章之后,将在实数范围内研究问题.虽然本章的内容不多,篇幅不大,但在中学数学中占有重要地位,本章内容不仅是后续学习二次根式、一元二次方程以及锐角三角函数等知识的基础,也是学习高中数学中函数、不等式以及解析几何等知识的基础.很多学生不能很快适应初中阶段的学习节奏,学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心学习的习惯,主动纠正错误的习惯,还需要加强,需要教师的督促才能做好。
为此本章教学要积极尝试自主、合作、探究学习,注意培养学生的学习兴趣和习惯品质,努力提高综合成绩,全面提升学生的数学素质。
教材分析本章主要包括算术平方根、平方根、立方根,以及实数的有关概念、运算以及实数在数轴上的表示等内容.本章的重点是算术平方根和平方根的概念和求法,难点是平方根和实数的概念.教科书的第一节是平方根,本节先研究算术平方根,再研究平方根.教科书首先创设一个问题情景,从中抽象出的数学问题为:已知正方形的面积求其边长.这是一个典型的求算术平方根的问题,它与学生熟悉的已知正方形的边长求其面积是一个互逆的过程.通过对这类问题的探讨,引出算术平方根的概念,给出其符号表示,这时教科书所涉及到的被开方数本质上都是完全平方数.接着,教科书设置一个“探究”栏目,让学生尝试能否将两个面积为1的小正方形拼成一个面积为2的大正方形,进而求出这个大正方形的边长.这也是一个已知正方形的面积求它的边长的问题,由于这个大正方形的面积为2,根据前面学过的算术平方根的概念和表示方法,可以求出这个大正方形的边长是,这样教科书就引进了用根号形式表示的无理数(但暂时不出现无理数的概念),这是教科书第一次出现这样的数.另外,通过学生将两个面积为1的小正方形拼成一个面积为2的大正方形的活动,也使学生感受到无理数是从现实世界中抽象出来的,是一种不同于有理数的数.出现后,一个很自然的问题是,到底多大.教科书采用用有理数夹逼的方法,利用不足近似值和过剩近似值来估计的大小,通过一步一步的估计,得到的越来越精确的近似值,进而指出是一个无限不循环小数的事实,并进一步指出,,等也是无限不循环小数,这就为后面认识无理数打下基础.会使用计算器求数的算术平方根是本章的一个教学要求,教科书通过一个例题,介绍了使用计算器求算术平方根的方法.用有理数估计无理数的大小,也是学习本章应该注意的一个问题,教科书结合一个实际例子(例3)介绍了用有理数估计无理数的常用方法.至此,教科书讨论了有关算术平方根的内容,包括算术平方根的概念、求法,无限不循环小数以及用有理数估计无理数等内容.接着,教科书设置一个“思考”栏目,对平方根展开讨论.在这个“思考”栏目中,要求学生算出平方等于9的数,通过对这个问题的探讨,找到解决问题的方法,利用这种方法进一步求出平方等于1,16,36…的数,由此抽象概括出平方根的概念和开平方运算.开平方运算与平方运算是互逆运算,教科书通过举例分析了这两种运算的互逆过程,并用图示进一步说明.最后,教科书结合具体例子,通过具体计算一些数的平方根,探讨数的平方根的特征,归纳出“正数的平方根有两个,它们互为相反数,0的平方根是0,负数没有平方根”.教科书的第二节是立方根.对于立方根,教科书采用了与讨论平方根类似的方法进行讨论.首先设置一个问题情景,从中抽象出的数学问题是:已知立方体的体积求它的边长,这是一个典型的求数的立方根的问题.教科书从这个典型问题出发,引出立方根的概念和开立方运算.接着,教科书指出,和平方运算与开平方运算互为逆运算一样,立方运算与开立方运算也互逆,并通过一个“探究”栏目,运用这种互逆关系求一些正数、负数和0的立方根.在此基础上归纳出数的立方根的特征:“正数的立方根是正数,负数的立方根是负数,0的立方根是0”.最后,教科书介绍了立方根的符号表示,并利用这种符号表示探讨了立方根的一条性质().学习了平方根、立方根以及开方运算后,教科书在第三节安排了实数.本节首先设置一个“探究”拦目,要求学生将一些有理数转化为小数的形式,并分析这些小数的共同特点,进而归纳出有理数都可以化成有限小数或无限循环小数的形式,然后直接指出反过来的结论也成立,即任何有限小数和无限循环小数都是有理数,这样教科书就将有理数与有限小数和无限循环小数统一起来.在此基础上指出,像,,等只能化成无限不循环小数的数就是无理数,从而引出无理数的概念.教科书采用这种与有理数对照的方法引出无理数,有利于揭示有理数和无理数的本质区别,也有助于学生理解“有理数和无理数统称实数”这个构造性定义.为了是学生全面了解实数的概念,教科书根据不同的标准对实数进行分类,揭示出实数的内部结构.随着无理数的引入,实数概念的出现,数的范围由有理数扩充到实数,在这个扩充过程中,既体现了概念、运算等的一致性,又体现了它们的发展变化.教科书通过几方面的例子说明了这种一致性和发展变化.首先,教科书通过探究在数轴上画出表示和的点,说明了无理数也可以用数轴上的点来表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章实数
教学目标:
1、认知目标:
(1)了解平方运算与开平方,立方运算与开立方的互逆关系,会求一个非负数的平方根及算术平方根,以及一个数的立方根。
(2)了解无理数和实数的概念,能进行简单的实数大小比较,四则运算和近似计算。
2、过程目标:
经历探求正方形地砖边长的过程,在现实情境中学习平方根的概念;通过实数与数轴上点的一一对应关系,体验数形结合思想;通过类比有理数的相关知识来学习实数,体验类比的数学思想方法;
3、情感目标:
通过与实数相关知识的学习,体会数学学习过程中探求知识的乐趣,树立学习的信心。
体验数学的实用价值,增强学数学、用数学的意识。
重点:平方根、立方根以及实数的概念和实数的四则运算。
难点:平方根立方根的求法,实数的大小比较。
教法学法
以上学期学了有关幂的知识来引导平方根、立方根的概念,进而引出无理数以及实数的概念。
本章知识结构:
主要知识:
1、平方根
(1) 如果一个数的平方等于 a ,那么这个数叫做a的平方根,记作 ,其中叫做算术平方根,求一个数的运算叫做开平方.
(2)巩固练习: 求下列各数的平方根和算术平方根 :
2.25 , 361 ,
36
49 ,104 , 0 2、立方根 (1)如果一个数的立方等于a ,那么这个数叫做a 的 ,记作 。
(2)巩固练习:求下列各数的立方根: 8
27 , 0.125 ,-1 ,103 3、实数
(1) 叫无理数, 和 统称为实数。
(2)实数的分类:
(3)巩固练习:
把下列各数分别填入相应的集合内:
32 ,4
3,9 , -5 ,-38 ,0 有理数集合: ;无理数集合: ;
正数集合: ;负数集合: 。
一、 知识拓展:
1、 填空:
(1)一个数的平方等于它本身,这个数是 ;一个数的平方根等于它本身,这个数是 ;一个数的算术平方等于它本身,这个数是 ;
(2)一个数的立方等于它本身,这个数是 ;一个数的立方根等于它本身,这个数是 。
2、计算:
(1) 22-32 ; (2)│2-3│+22 。
3、如果a= │- 3-5│, b= │- 3│-│-5 │,c=- 3-│-5 │,d=- │-3│+│-5│, 试比较a 、b 、c 、d 的大小。
总结
本章节通过对实数知识的学习,我们了解了实数知识的结构和系统,为将来的学习打下坚实的基础。