圆柱和圆锥的体积ppt课件

合集下载

最新圆柱和圆锥-圆柱的体积-课件(1)课件ppt

最新圆柱和圆锥-圆柱的体积-课件(1)课件ppt

谢谢
联合用药大纲 胆囊炎、肝病类
湖南益丰大药房医药连锁有限公司
通 用 名:复方胆通 类 别:胆囊炎用药 作 用:清热利胆,解痉止痛。用于急、慢性胆囊炎,胆管炎, 胆囊、胆道结石合并感染,胆囊术后综合征,胆道功能性疾患等。 不良反应:有致过敏性休克者 联合用药:复方胆通胶囊+曲匹布通+抗生素+胆舒胶囊 注意事项:无
V=Sh
圆柱形包装盒的体积是多少立方厘米?
底面积=3.14×(12÷2)²=113.04(cm²) 体 积=113.04×20=2260.8(cm³) 答:圆柱形包装盒的体积是2260.8立方厘米。3.14×3²×10源自3.14×(4÷2)²×10
=3.14×9×10
=282.6(cm³) 3.14×(8÷2)²×8 =3.14×4×10
采购分类 自代
品名 利胆排石片
规格 0.43*96s
厂家 山东绿因
卖点
1)消炎、排石,双管齐下,疗效一流 2)品牌厂家,质量有保证 3)纯中药,安全无副作用
通 用 名:肝速康 类 别:治疗肝病中成药 作 用:本品具有降酶,降浊,调整机体免疫功能,改善代谢障 碍,肝病症状及加速肝功能恢复等作用。用于急、慢性肝炎。 不良反应:偶有胃区不适,停药后即可消失。 联合用药: 1.急性肝炎: 肝速康+干扰素+护肝片+维生素c+降酶灵 2.慢性肝炎: 肝速康+阿德福韦酯+维生素c+慢肝养阴 注意事项: 1.合并消化道出血的病人禁用。 2.忌食辛辣食品
=3.14×16×8
=12.56×10
=50.24×8
=125.6(cm³)
=401.92(cm³)
第一根木料: 3.14×(0.4÷2)²×10
=3.14×0.04×10 =1.256(m³)

人教版六年级数学下册第三单元《圆柱与圆锥》课件共10个精品课件

人教版六年级数学下册第三单元《圆柱与圆锥》课件共10个精品课件

柱的底面直径与高的比。
πd=h d :h = 1 :π
课堂总结
通过这节课的学习, 你有什么收获?
义务教育人教版六年级下册
第3单元 圆柱与圆锥 1.圆 柱
第 5 课时 圆柱的体积
复习导入
填空。 圆柱的侧面积=( 底面周长×高 ) 圆柱的表面积=( 侧面积+底面积×2 ) 长方体的体积=( 长×宽×高 ) 正方体的体积=(棱长×棱长×棱长)
底面 侧面
圆柱的底面都 是圆,并且大 小一样。
底面 圆柱的侧面是曲面。
哪个圆柱比较高?为什么?
底面 O
侧面 高
底面 O 侧面 高
底面 O
底面
圆柱两个底面之间的距离叫做高, 圆柱有无数条高。
动手操作: 如果把一张长方形的硬纸贴在木棒上,快速转
动木棒,想一想,转出来的是什么形状?
转动起来像一个圆柱。
8cm
要解决这个问题,就
是要计算什么?
10cm
杯子的容积
10cm
杯子的底面积: 杯子的容积:
8cm
3.14×(8÷2)2
50.24×10
=3.14×42
=502.4 (cm3 )
=3.14×16
=502.4 (mL)
=50.24 (cm2 )
答:因为502.4大于498,所以杯子能 装下这袋牛奶。
(长方体)
(正方体 )
( 圆柱 )
课堂总结
通过这节课的学习, 你有什么收获?
义务教育人教版六年级下册
第3单元 圆柱与圆锥 1.圆 柱
第 2 课时 圆柱的认识(2)
复习导入
圆柱由哪几部分组成? 有什么特征?
上、下底面:圆 侧面:曲面
探究新知

圆柱和圆锥的体积

圆柱和圆锥的体积

长方体的底面积等于圆柱体的底面积 长方体的高等于圆柱体的高
长方体的体积=长×宽×高 圆柱的体积=底面积×高 V=Sh V=πr ² h
20厘米 25厘米
20)2=314(cm2) (1)水桶的底面积:3.14×( 2 3 (2)水桶的容积: 314×25=7850(cm )
4分米 10分米
把一个棱长是6厘米的正方体木 块,加工成一个最大的圆锥体, 圆锥的体积是多少立方厘米?
0.8米
求各圆柱的 体积。
0.5分米
求下面各圆柱的体积。
1、底面半径3cm,高5cm。 2、底面直径8m,高10m。 3、底面周长25.12dm,高2dm。
圆柱体积=底面积

圆柱体积=底面积

圆柱体积=底面积 圆锥体积=

圆柱体积=底面积 圆锥体积= 底面积


圆柱体积=底面积 圆锥体积= 底面积


1 3
圆柱与圆锥的体积之间有什么关系?
等底等高圆锥体积是圆柱体积的三分之一 等底底面周 长31.4米,高15米,这个玻璃罩的容积 是多少立方米?(玻璃厚度忽略不计)

圆柱体积=底面积 圆锥体积=

圆柱体积=底面积 圆锥体积=

圆柱体积=底面积 圆锥体积=

圆柱体积=底面积 圆锥体积=

圆柱体积=底面积 圆锥体积=

圆柱体积=底面积 圆锥体积=

圆柱体积=底面积 圆锥体积=

圆柱体积=底面积 圆锥体积=

圆柱体积=底面积 圆锥体积=

圆柱体积=底面积 圆锥体积=
一个圆柱的高是15厘米,底面半 径是5厘米,它的表面积是多少?

【课件】圆柱、圆锥、圆台的表面积与体积+课件高一下学期数学人教A版(2019)必修第二册

【课件】圆柱、圆锥、圆台的表面积与体积+课件高一下学期数学人教A版(2019)必修第二册

设圆台的上底面面积为S',下底面面积为S
r O
1
1
2
2
2
2
V圆台 (r r r r )h ( S S S S )h
3
3
1
这和V棱台 ( S S S S )h是一致的。
3
1
因而得 V台体 = ( S S S S )h
3
【练习】 如图,在直角梯形 ABCD 中,BC∥AD,∠ABC=90°,AB=5,
1
V锥体 Sh
3
1 2
r h
3
1
V台体 = ( S SS S )h
3
1
= h(r 2 rr r 2 )
3
2
感谢聆听
S圆柱 =πr +πr +2πrl 2πr (r l )
2
2
(1)圆柱的表面积、体积
圆柱的侧面展开图是什么?如何计算它的表面积?
r O
l
2 r
O
圆柱的侧面展开图是一个矩形,
S圆柱表面积 2r 2rl 2r (r l ).
2
V圆柱 = πr h
2
例1 将一个边长分别为4π,8π的矩形卷成一个圆柱的侧面,则
圆台的表面积为(
A.81π
)
B.100π
C.168π
D.169π
解 圆台的轴截面如图所示,
设上底面半径为 r,下底面半径为 R,则它的母线长为
l= h2+R-r2= 4r2+3r2=5r=10,
所以 r=2,R=8。
故 S 侧=π(R+r)l=π(8+2)×10=100π,
S 表=S 侧+πr2+πR2=100π+4π+64π=168π。故选 C。

苏教版六年级下册数学《圆柱的体积》圆柱和圆锥PPT(第3课时)

苏教版六年级下册数学《圆柱的体积》圆柱和圆锥PPT(第3课时)

教学新知
例二:计算圆柱的表面积。(单位:cm)(π取3.14)
S=2π×0.8+2π≈11.304 S=2π×0.5×3.5+2π×0.5²≈12.56
教学新知
例三:一个圆柱形油桶,底面直径是0.6米,高是1米。做这个油桶至少 需要铁皮多少平方米?(得数保留两位小数)
S=2π×0.3×1+2π×0.3²≈2.45(㎡)
能想到一些什么? (2)全部浸入,水面上升9厘米,你又能想到什么?怎样
计算出这个圆钢的体积? (3)这题还可以怎样思考?
教学新知
例一:一个圆柱形水桶的容积是80立方分米,里面装了2/5的水。 已知它的底面积是10平方分米,里面水的深度是多少?
【讲解】根据“水桶的容积是80立方分米”和“里 面装了 2/5的水”这两个条件,我们可以求出水桶 内水的体积,然后用水的体积除以水桶底面积得出 水桶内水的深度。 80× =32(立方分米)……水桶内水的体积 32÷10=3.2(分米)……水桶平均剖成两片,其中一片如图所示。(单位:厘米) (1)剖面面积是多少平方厘米? (2)这片木料的表面积和体积各是多少?
(1)S1=20×12=240(cm²) (2)S2=πrh+πr²+S1=3.14×6×20+3.14×6²+240=792.84(cm²)
V=1/2S3h=1/2×3.14×6²×20=1130.4(cm³)
课后习题
7.把一根长2.4米的圆柱形状的木料锯成4段,表面积增加了 0.18平方米。
这根木料原来的体积是多少立方米?
S=0.18÷6=0.03(m²)
V=sh=0.03×2.4=0.072(m³)
8.一个圆柱高4厘米,底面半径是2厘米。如果将它的底面平均分成若干份,

圆柱圆锥圆台体积和表面积.ppt

圆柱圆锥圆台体积和表面积.ppt

1
1
A.4
B.2
3 C. 6
3 D. 4
[答案] D
[解析]
三棱锥B1-ABC的高h=3,底面积S=S△ABC=
3 4
×12= 43,
则VB1-ABC=13Sh=13×
43×3=
3 4.
5.若一圆柱与圆锥的高相等,且轴截面面积也相等,那
么圆柱与圆锥的体积之比为( )
A.1
1 B.2
3
3
C. 2
D.4
例题解析
命题方向 多面体与旋转体的面积
【例1】圆台的上、下底面半径分别是10 cm和20 cm,它的侧 面展开图的扇环的圆心角是180°,那么圆台的表面积是多少?
命题方向 多面体的体积
[例 2] 长方体相邻三个面的面积分别为 2、3、6 求它的
体积.
[解析] 设长方体的长、宽、高分别为a、b、c则有
据条件得到
1 2
πl2=2π,解得母线长l=2,2πr=πl=2π,r=1所以
该圆锥的体积为:V圆锥=13Sh=13×
22-12π=
3 3 π.
[点评] 本题主要考查空间几何体的体积公式和侧面展开 图.审清题意,所求的为体积,不是其他的量,分清图形在 展开前后的变化;其次,对空间几何体的体积公式要记准记 牢,属于中低档题.
[解析]
三棱台ABC-A1B1C1的上、下底面积之比为4:9.连接 A1B、BC1和AC1,把棱台分为三个棱锥B-A1B1C1,C1- ABC,A1-ABC1.则这三个棱锥体积之比为________.
[答案] 4:9:6
[解析] 如图,设三棱锥B-A1B1C1,C1-ABC,A1- ABC1体积分别为V1、V2、V3,又设棱台的高为h,上、下底面 积分别为S1、S2.依题意,得

人教版《圆柱与圆锥》(完美版)PPT课件1

人教版《圆柱与圆锥》(完美版)PPT课件1

解答此类题的关键是明确长方形的长(宽)或 正方形的边长等于圆柱的底面周长,根据公式 C=2πr 或C=πd求出圆的周长,然后与长方形 的长(宽)或正方形的边长进行比较即可确定 答案。
规范解答:选择①和B、②和A或②和C都恰好 能做成圆柱形的盒子。
1.把圆柱的侧面沿高展开,得到一个(长方形),它 的长等于圆柱底面的(周长),宽等于圆柱的 ( 高 )。
思路分析:塔的顶端呈圆锥形,求塔的顶端的体积就
是求圆锥的体积。计算时先根据公式S底=π

出圆锥的底面积,再根据公式V
求出圆锥的体
积。
规范解答::圆锥的底面积: 3.14×(18.84÷3.14÷2)²
=3.14×9 =28.26(m²) 圆锥的体积:
×28.26×6 =2×28.26 =56.52(m³) 答:塔的顶端的体积是 56.52立方米。
20×2×3.14×60+202×3.14=8792(cm²) 答:做这个水桶至少需要8792平方厘米铁皮。
例3 一根钢管,长50厘米,外圆直径是10厘米, 钢管厚2cm(如下图)。铸造这样一根钢管需要 钢材多少立方厘米?
思路分析:求铸造这样一根钢管需要钢材的体积, 就是用大圆柱的体积减去中空的小圆柱的体积。
思路分析:瓶子正放和倒放时的容积与饮料的体积不
变,所以瓶子空余部分的容积相等。因此,饮料瓶的
容积就相当于一个高为(20+4)cm 的圆柱形容器的
容积,可推知饮料体积占瓶子容积的
,即
480mL的

确定瓶中饮料的体积占瓶子容积的几分之几是解答
此题的关键。
规范解答:20+4=24(cm) 480× =400(mL) 答:瓶内现有饮料400毫升。
3.一个内半径是10cm的饮料瓶里,饮料的高度为 4cm,把瓶盖拧紧倒置放平,无水部分是圆柱形, 高度为16cm,这个瓶子的容积是多少?

人教版数学必修第二册8.3.2圆柱、圆锥、圆台、球的表面积和体积课件

人教版数学必修第二册8.3.2圆柱、圆锥、圆台、球的表面积和体积课件

(2)半径和球心是球的关键要素,把握住这两点,计算球的表
面积或体积的相关题目也就易如反掌了.
跟踪训练
1. (1)两个球的半径相差1,表面积之差为28π,则它们的
364
体积和为________;
3
设大、小两球半径分别为R,r,则由题意可得
− =1
R=4
42 − 4 2 = 28
r=3
∵棱长为a,∴BE=
3
2
3
a× = a.
2
3
3
∴在Rt△ABE中,AE=
2

2
3

6
a.
3
设球心为O,半径为R,则(AE-R)2+BE2=R2,
∴R=
6
6 2
3
a,∴S球=4π×( a) = πa2.
4
4
2
2. 设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都在一个
球面上,则该球的表面积为( B )
∴R=2.
4
3
∴V= πR3=
32
.
3
5.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个
半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这
时容器中水的深度.
由题意知,圆锥的轴截面为正三角形,如图所示为圆锥的轴截面.
根据切线的性质知,当球在容器内时,水深CP为3r,水面的半径AC
3
2
12
总结提升
1.正方体的内切球
球与正方体的六个面都相切,称球为正方体的内切球,此时球的

2
半径为r1= ,过在一个平面上的四个切点作截面如图.
总结提升
2.长方体的外接球

第一课时圆柱、圆锥、圆台的表面积和体积课件-高一下学期数学人教A版(2019)必修第二册

第一课时圆柱、圆锥、圆台的表面积和体积课件-高一下学期数学人教A版(2019)必修第二册

19
课堂精炼
【训练 3】
π
如图所示,在梯形 ABCD 中,∠ABC= ,AD∥BC,BC=2AD
2
=2AB=2,将梯形 ABCD 绕 AD 所在的直线旋转一周而形成的曲面所围成的
几何体的体积为(
5
A. π
3
4
B. π
3
2
C. π
3
)
D.2π
解析
由题意,旋转而成的几何体是圆柱,挖去一个圆
锥(如图),
又 BD=A1D·tan 60°=3 3,∴R+r=3 3,
∴R=2 3,r= 3,又 h=3,
1
1
2
2
∴V 圆台= πh(R +Rr+r )= π×3×[(2 3)2+
3
3
2 3× 3+( 3)2]=21π.
∴圆台的体积为 21π.
答案
10
21π
关于旋转体面积、体积等计
算问题,一般重点考察几何
体的轴截面,将立体问题平
面积与两底面积之和
题型二
求圆柱、圆锥、圆台的体积
数 学
7
知识梳理
2.柱体、锥体、台体的体积公式
V 柱体= sh (S 为底面面积,h 为柱体高);
V 锥体=

sh

(S 为底面面积,h 为锥体高);
1
V 台体= (S′+ S′S+S)h(S′,S 分别为上、下底面面积,h 为台体高).
3
8
课堂精讲
8.3.2 第一课时 圆柱、圆
锥、圆台的表面积和体积
数 学
1
题型一
求圆柱、圆锥、圆台的表面积
数 学
2
知识梳理
1.圆柱、圆锥、圆台的表面积和体积

苏教版六年级下册数学《圆柱的体积》圆柱和圆锥PPT(第2课时)

苏教版六年级下册数学《圆柱的体积》圆柱和圆锥PPT(第2课时)
(打结处大约用彩带15厘米) (1)S=2πrh+2πr²=2×3.14×15×20+2×3.14×15²=3297(cm²)
(2)l=4h+4d+15=4(20+30)+15=215cm
教学新知
练一练:一个用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个半径 2米的半圆形。
(1)搭建这个大棚大约要用多少 平方米的塑料薄膜?
(1)V=sh=4²π×3.5=175.84(m³) 175.84m³=175.84t (2)S=2πrh+πr²=2×3.14×4×3.5+3.14×4²=138.16(m²)
教学新知
试一试:一个圆柱形蛋糕盒,底面半径是15厘米,高是20厘米。 (1)做这个蛋糕盒大约要用硬纸板多少平方厘米? (2)用彩带捆扎这个蛋糕盒(如下图),至少需要彩带多少厘米?
18.84dm
2m
282.6cm² 157cm³
244.92dm² 282.6dm³
37.68m² 15.7m³
教学新知
算一算:一个圆柱形油桶,从里面量,底面直径是40厘米,高是50厘米。 (1)它的容积是多少升? (2)如果1升柴油重0.85千克,这个油桶可装柴油多少千克? (3)做这样一个油桶,至少需要铁皮多少平方分米?(得数保留一位
教学新知
思考: (1)把圆钢竖着拉出水面8厘米,水面下降了 4厘米,你
能想到一些什么? (2)全部浸入,水面上升9厘米,你又能想到什么?怎样
计算出这个圆钢的体积? (3)这题还可以怎样思考?
教学新知
例一:一个圆柱形水桶的容积是80立方分米,里面装了2/5的水。 已知它的底面积是10平方分米,里面水的深度是多少?
教学新知

苏教版六年级下册数学《圆柱和圆锥的认识》圆柱和圆锥PPT电子课件

苏教版六年级下册数学《圆柱和圆锥的认识》圆柱和圆锥PPT电子课件
2.一根圆柱形木料,底面周长是62.8厘米,高是50厘米。这根木料的体 积是多少?
r=C÷2π=62.8÷6.28=10(cm) V=sh=10²π×50=15700(cm³)
教学新知
例一:完成下面的表格。
底面积/m2
高/m
圆 柱
0.6
1.2
0.25
3
体积/m3 0.72 0.75
例二:一个圆柱形零件,底面半径5厘米,高8厘米。这个零件
教学新知
例五:一个圆柱形状的奶粉盒,体积是5024立方厘米,底面 半径是 10厘米。它的高是多少厘米?
【讲解】 底面积×高=圆柱体积, 圆柱的高=圆柱体积÷底面积。圆柱 底面半径为10厘米,则底面积为 102×3.14=314(平方厘米),则圆 柱的高为5024÷314=16(厘米)。
课堂练习
1.填空题。 (1)圆柱体通过切拼,可以转化成近似__长__方___体。圆柱的底
想一想:如果把圆柱的底面平均分成32份、64份……切开后拼成的物 体会有什么变化?
教学新知
想一想:拼成的长方体与原来的圆柱有什么关系?
根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?
圆柱的体积=底面积×高
知识要点
如果用V表示圆柱的体积,S表示圆柱的底面积,
h表示圆柱的高,圆柱的体积公式可以写成:
V=sh=3²π×10=282.6(cm³) 282.6cm³=282.6ml
课后习题
7.—个圆柱形粮囤,从里面量,底面半径是2米,高是2.5米。如果每立 方米稻谷重550千克,这个粮囤大约可装多少吨稻谷?
V=sh=2²π×2.5=31.4(m³) z=31.4×550=17270(kg)=17.27(t)
8.学校有一个圆柱形喷水池,池内底面直径是8米,最多能盛水25.12立 方米。这个水池深是多少米?

圆柱与圆锥ppt模版课件

圆柱与圆锥ppt模版课件

圆锥的体积
圆锥的体积计算公式为:V = (1/3) * π * r^2 * h,其中r是 底面半径,h是圆锥的高。
圆锥的体积由底面圆的面积和 高度共同决定,与斜高无关。
圆锥的体积随底面半径和高的 增大而增大。
圆锥的斜高与底面半径关系
圆锥的斜高计算公式为:l = sqrt(r^2 + h^2),其中r是底面
饮料瓶、帽子和灯罩等。
02 圆柱的几何性质
圆柱的表面积
01
02
03
04
圆柱的表面积由两个底面和一 个侧面组成。
底面是一个圆形,其面积为π × r^2,其中r是底面半径。
侧面是一个矩形,其面积为2 × π × r × h,其中h是圆柱的
高。
因此,圆柱的表面积A = 2 × π × r^2 + 2 × π × r × h。
当圆锥的高固定时,母线随底面半径的增大而增大;当底面半径固定时,母线随高 的增大而增大。
04 圆柱与圆锥的相互关系
圆柱与圆锥的相似性
01
02
03
定义相似
如果一个圆柱和一个圆锥 的底面直径与高之比相等, 则它们是相似的。
面积相似
相似圆柱和圆锥的底面面 积之比等于它们的半径平 方之比,而侧面积之比等 于它们的半径之比。
度。
圆柱与圆锥的应用场景
建筑学
圆柱和圆锥在建筑设计中有广 泛的应用,如柱子、穹顶和拱
门。
工程学
在机械工程中,圆柱和圆锥用 于制造各种零件和结构,如轴 承、齿轮和螺母。
自然界
自然界中存在许多圆柱和圆锥 形状的物体,如树木、植物和 动物的身体结构。
日常生活
在日常生活中,我们经常接触 到圆柱和圆锥形状的物品,如

【课件】圆柱、圆锥、圆台、球表面积和体积课件高一下学期数学人教A版(2019)必修第二册

【课件】圆柱、圆锥、圆台、球表面积和体积课件高一下学期数学人教A版(2019)必修第二册

例析
例2 如右图,圆柱的底面直径和高都等于球的直径, 求球与圆
柱的体积之比.
解:(1)设球的半径为R,则圆柱的底面半径
为R,高为2R.
4 3
因为 V球
R ,V 圆柱
R2 2R 2 R3
3
所以 V球 : V圆柱
2
3
问题:球的表面积与圆柱的侧面积之比呢?
R O
练习
题型一:圆柱、圆锥、圆台的表面积
例1.(1)已知圆柱的上、下底面的中心分别为1 ,2 ,过直线1 2 的平面截该圆

2.若圆柱的底面圆的直径与圆柱的高相等,则圆柱的侧面展开图是正方形. (
答案:√,×.
辨析2:若圆柱的底面半径为1,母线长为2,则它的侧面积为(
A.2
答案:D.
B.3
C.
D.4
).

新知探索
割 圆 术
早在公元三世纪,我国数学家刘徽为推
导圆的面积公式而发明了“倍边法割圆术”.
他用加倍的方式不断增加圆内接正多边形的
∴ = 5,∴ = × (2 + 6) × 5 + × 22 + × 62 = 40 + 4 + 36 = 80.
练习
题型二:圆柱、圆锥、圆台的体积
例2.(1)若一个圆柱与圆锥的高相等,且轴截面面积也相等,则圆柱与圆锥的体积
之比是(
).
A.1
B.1:2
C. 3:2
D.3:4
的夹角为60°,轴截面中的一条对角线垂直于腰,则圆台的体
积为_____.
解:设上、下底面半径,母线长分别为,,.
作1 ⊥ 于点,则1 = 3,∠1 = 60°.
又∠1 = 90°,∴∠1 = 60°,∴ =

六年级数学下册《圆柱和圆锥的认识》课件

六年级数学下册《圆柱和圆锥的认识》课件
定积分法
使用定积分求出圆锥的体积公式,再代入底面半径和高度即可求得圆锥的体积。
圆台的定义和特征
定义
圆台是由一个上底面半径、下底面半径、高和侧面 组成的几何图形。
特征
圆台的侧面是一个梯形,底面圆的半径和高度可确 定圆台的大小。
实际应用
圆台广泛应用于生活中的各种容器和建筑结构中, 比如灯罩和教堂尖顶。
圆锥广泛应用于生活中的各种容器和建筑结构中,比如冰淇淋蛋筒和火车车头。
圆锥的表面积求解方法
公式法
使用圆锥的侧面积公式和底面积公式相加即可求得 圆锥的表面积。
展开图法
将圆锥展开成一个弓形,在弓形的开端加上一个扇 形即可得到圆锥的展开图,再利用展开图计算圆锥 的表面积。
圆锥的体积求解方法
底面积法
使用底面积公式和三角形面积公式计算圆锥的体积。
公式法
使用圆台的体积公式即可求得圆台的体积。
几何体分解法
可以将圆台分解为一个圆锥和一个圆柱,分别计算 它们的体积后相加即可得到圆台的体积。
圆柱与圆锥的差异和联系
相同点
• 都有底面和侧面 • 表面积和体积的计算方法类似 • 都广泛应用于实际生活和工程中
不同点
• 底面形状不同:圆柱底面为圆形,圆锥底面 为圆形或椭圆形
交通锥标志
交通锥一般用于道路施工和事故现场,图标通常设 计成圆锥形,用以提醒司机注意交通安全。
数学思维拓展:解决圆柱和圆锥问题的 策略
1
抽象转化法
将题目抽象成一些基本的几何图形,然后利用几何图形的相似、等量关系等解题。
2
代数运算法
当几何图形较为复杂时,可以将某些参 一个圆锥的底面半径为5cm,高为12cm,它 的表面积是多少?
圆柱和圆锥的学习方法和技巧
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆柱与圆锥的体积
长方体的体积=底面积 × 高 底面积
长方体的体积=底面积 ×高 底面积
长方体的体积=底面积 ×高 底面积
长方体的体积=底面积 ×高 底面积
长方体的体积=底面积 x 高 底面积
长方体的体积=底面积 x 高 底面积
长方体的体积=底面积 ×高 圆柱体的体积= 底面积 积=底面积 高
圆柱体积=底面积 高
圆柱体积=底面积 高 圆锥体积=
圆柱体积=底面积 高 圆锥体积=
圆柱体积=底面积 高 圆锥体积=
圆柱体积=底面积 高 圆锥体积=
圆柱体积=底面积 高 圆锥体积=
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
圆柱体积=底面积 高 圆锥体积=
圆柱体积=底面积 高 圆锥体积=
圆柱体积=底面积 高 圆锥体积=
圆柱体积=底面积 高 圆锥体积=
圆柱体积=底面积 高 圆锥体积=
圆柱体积=底面积 高 圆锥体积=
圆柱体积=底面积 高 圆锥体积=底面积 高
圆柱体积=底面积 高
圆锥体积=底面积

1 3
圆柱体积=底面积 高
圆锥体积=底面积

1 3
圆锥的体积= 1 ×底面积×高 3
3.14×3²×10 =3.14×9×10 =282.6(cm²)
3.14×(8÷2)²×8 =3.14×16×8 =50.24×8 =401.92(cm²)
3.14×(4÷2)²×10
=3.14×4×10 =12.56×10 =125.6(cm²)
相关文档
最新文档