工程数学基础教程课后习题答案

合集下载

工程数学基础2019级答案

工程数学基础2019级答案

2019–2020学年第二学期《工程数学基础》试卷标准答案及评分标准考试时间:2020-9-12一、判断题1.×2.×3.×4.5.×6.7.8.×9.×10. 11.×12. 13.×14. 15.×16. 17. 18.×19.×20.×二、填空题1.A c ∩B c 2.−3 3.Y 4.0 5.b−a 6.07.λ−18.09.110.2+√211.0cos x3−x2sin x3e x2x1e x2012.213.−2/5<α<014.16/4515.h2[f(a)+2∑n−1i=1f(x i)+f(b)]16.f(4)(ξ)4!x2(x−2)2,ξ∈(0,2)17.618.2126x+21319.15(b5−a5)20.(0,0.278]三、解:¯A=22−1141−10−14−2−1−8−→4−2−1−81−10−122−114(1分)−→4−2−1−80−1214103−1218−→4−2−1−803−12180−12141−→4−2−1−803−121800164(3分)回代解得x3=24,x2=10,x1=9,即x=(9,10,24)T.(4分)Jacobi迭代格式为x(k+1)1=14·(−2x(k)2−2x(k)3+1),x(k+1)2=12·(−x(k)1−x(k)3+3),x(k+1)3=12·(−x(k)1−x(k)2+7),k=0,1,···.(6分)Jacobi迭代矩阵为M=D−1(L+U)=141212·0−2−2−10−1−1−10=0−12−12−120−12−12−12,由|λE−M|=λ3−34+14=(λ+1)(λ−12)2=0解得M的特征值为λ1,2=12,λ3=−1,所以ρ(M)=1,从而Jocobi迭代发散.(8分)四、解:构造差商表如下(3分)表1:差商表x y 一阶差商二阶差商三阶差商012−3−23−4−1135234315三次Newton 插值多项式N 3(x )=1−2(x −0)+13(x −0)(x −2)+15(x −0)(x −2)(x −3)=15x 3−23x 2−2215x +1,(4分)Newton 插值公式的余项R 3(x )=f [0,2,3,5,x ]x (x −2)(x −3)(x −5).(6分)五、解:(1)λE −A =λ020λ−10−10λ−3−→ −10λ−30λ−10λ02 −→ −10λ−30λ−10002+(λ−3)·λ−→ 10λ−30λ−1000λ2−3λ+2,(4分)所以A 的最小多项式m (λ)=λ2−3λ+2=(λ−1)(λ−2),且J =200010001,C = 10000−2013.(7分)(2)由A 的最小多项式为φ(λ)=(λ−1)(λ−2),设e tA =a 0(t )+a 1(t )A =T (tA ),(2分)因为T (tA )与e tA 在σ(A )={1,2}上的值相同,故有a 0(t )+a 1(t )=e t ,a 0(t )+2a 1(t )=e 2t ,(4分)解得a 1(t )=e 2t −e t ,a 0(t )=2e t −e 2t ,所以e tA =(2e t −e 2t )E +(e 2t −e t )A=2e t −e 2t 02e t −2e 2t 0e t 0e 2t −e t2e 2t −e t(6分)所以初值问题的解e tA= 2e t −e 2t 02e t −2e 2t 0e t 0e 2t −e t 02e 2t −e t · 101= 4e t −3e 2t 03e 2t −2e t.(8分)六、解:做变换x =12(1+t ),t ∈[−1,1],故t =2x −1.代入得f (x )=14(1+t )2 φ(t ).(2分)对φ(t )在[−1,1]上用Legendre 多项式做最佳平方逼近,设其为¯S ∗1(t )=a 0P 0(t )+a 1P 1(t )则a 0=12∫1−114(t +1)2dt =13,a 1=32∫1−114(t +1)2·tdt =12,(4分)因此有¯S ∗1(t )=13+12t,S ∗1(x )=13+12(2x −1)=x −16.(6分)平方误差为δ2=12∥φ(t )−¯S ∗1(t )∥22=12∫11142(t +1)4dt −121∑k =022k +1a 2k =12(25−2·132−23·122)=1180≈5.56×10−3.(8分)七、解:S 22=4T 23−T 224−1,从而有1=T 23=(3S 22+T 22)/4≈0.401812.其它的有2=S 21=4T 22−T 214−1≈0.400432,3=C 21=42S 22−S 2142−1≈0.400053.八、解:令z =y ′,初值问题化为y ′=z,z ′=(1+x 2)y +1,(0<x ≤1),y (0)=1,z (0)=3.(2分)解此问题的标准Runge-Kutta 格式为y n +1=y n +h 6(k 1+2k 2+2k 3+k 4),z n +1=z n +h 6(l 1+2l 2+2l 3+l 4),k 1=z n ,l 1=(1+x 2n )y n +1,k 2=z n +h 2l 1,l 2=[1+(x n +h 2)2](y n +h2k 1)+1,k 3=z n +h 2l 2,l 2=[1+(x n +h 2)2](y n +h 2k 2)+1,k 4=z n +hl 3,l 4=[1+(x n +h )2](y n +hk 3)+1,y 0=1,z 0=3,(n =0,1,···,N −1)(6分)九、证明:(1)由于(x n )和(y n )都是X 中的Cauchy 序列,则对∀ε>0,∃N 1,N 2∈N ,使得当m,n >N 1时,∥x m −x n ∥<ε;当m,n >N 2时,∥y m −y n ∥<ε.令N =max {N 1,N 2},则当m,n >N 时,有|∥x m −y m ∥−∥x n −y n ∥|≤∥(x m −y m )−(x n −y n )∥≤∥x m −y m ∥+∥x n −y n ∥<ε2+ε2=ε这表明(∥x n −y n ∥)是R 中Cauchy 的序列,由R 的完备性知,数列(∥x n −y n ∥)收敛.(5分)(2)由A 为Hermite 正定矩阵知,存在n 阶酉矩阵U 使得U H AU =diag (λ1,···,λn ).由于A为正定矩阵,因此λi>0,i=1,···,n.令P1=U·diag(1/√λ1, (1)√λn),则P1非奇异,且P H1AP1=E.(3分)同时,显然P H1BP1是Hermite矩阵,因此存在n阶酉矩阵P2,使得P H 2(P H1BP1)P2=diag(µ1,µ2,···,µn),这里µ1,µ2,···,µn为Hermite矩阵P H1BP1的特征值,故为实数.(4分)令P=P1P2,则P非奇异,且P H AP=P H2(P H1AP1)P2=E,P H BP=P H2(P H1BP1)P2=diag(µ1,µ2,···,µn).(5分)。

工程数学基础(新版教材)习题解答

工程数学基础(新版教材)习题解答

, 即
E11
a
0c
0 T,
E12
a c
b 0 d 0
1 0
0 0
a
c
0E11
aE12
0E21
cE22
, 即
E12
0
a
0 c T,
E21
a c
b 0 d 1
0 0
b d
0
0
bE11
0E12
dE21
0E22
, 即
E21
b
0d
0 T,
3
E22
a c
b 0 d 0
0 1
d1() d2 () d3 () 1 , d 4 ( ) ( 1)4 .
00 1
2. 解 (1)∵ det A() ( 2)4 ,∴ D4 () ( 2)4 ,又∵ 0 1
1 2
2 1 0 , 0
∴ D3 () 1 ,从而 D1() D2 () 1 .于是不变因子为 d1() d 2 () d3 () 1 ,
3.满; 4. sup E 2 , inf E 3; 5. 0 ; 6.0; 7. n ; 8.Y .
B
1. 证 y f (A B) , x A B 使 得 y f (x) . 由 x A B , 得 x A , 且 x B 故 y f (x) f (A) 且 y f (B) ,即 y f (A) f (B) ,因此 f (A B) f (A) f (B) .
1
∴ A~ J i .
i
3 1 0 0 1 3 0 0
(3)∵ E A
4 7
1 0
0
1
1 2 1 1,2 1
4 7
0

工程数学-积分变换(第四版)-高等教育出版社-课后答案(1)

工程数学-积分变换(第四版)-高等教育出版社-课后答案(1)

再由 Fourier 变换公式得
f (t ) =
1 +∞ 1 +∞ 1 +∞ ω 2 + 2 jω t F ω e d ω = F ω cos ω t d ω = cos ω t dω ( ) ( ) 2 π ∫ −∞ π∫0 π ∫ 0 ω4 + 4 +∞ ω 2 + 2 π −t ∫ 0 ω 4 + 4 cos ω tdω = 2 e cos t
f (t) =
2 +∞ ⎡ +∞ f (τ ) sin ωτ dτ ⎤ sin ω tdω ⎢ ∫0 ⎥ ⎦ π ∫0 ⎣
=
2 +∞ ⎡ +∞ − β t sin ω tdω e sin ωτ dτ ⎤ ∫ ∫ ⎢ ⎥ 0 0 ⎣ ⎦ π
− βτ 2 +∞ ⎡ e ( β sin ωτ − ω cos ω t ) +∞ ⎤ = ∫ ⎢ ⎥ sin ω tdω π 0 ⎣ β 2 + ω2 0 ⎦
=
=
由于 a ( ω ) = a ( −ω ) , b ( ω ) = − b ( −ω ) , 所以
f (t) =
1 +∞ 1 +∞ a ( ω ) cos ω t dω + ∫ b ( ω ) sin ω tdω ∫ 2 −∞ 2 −∞
+∞ +∞ 0 0
= ∫ a ( ω ) cos ω t dω + ∫ b ( ω ) sin ω t dω 2.求下列函数的 Fourier 积分:
2 2 ⎧ ⎪1 − t , t ≤ 1 1)函数 f ( t ) = ⎨ 解: 解:1 为连续的偶函数,其 Fourier 变换为 2 0, 1 t > ⎪ ⎩

天津大学工程数学基础新版习题答案.pdf

天津大学工程数学基础新版习题答案.pdf

4.

设 Y D
是线性空间
X的一族子空间ຫໍສະໝຸດ 要证DY也是X的线性子空间
.显然
D
Y
,z
只需证明
D
Y
对X的线性运算是封闭的.
事实上,x,
y
D
Y

, ,从而对每一个 D ,

x,
y
Y
,故
x
y
Y
,
x
Y
.于是,
x
y
D
Y
,
x
D
Y
.因此,
D
Y

X
的线性子空间.
5. 证 显然W包含零多项式,故非空;又f , g W,及 ,有
(2)y1, y2 Y及1, 2 , x1, x2 X ,s.t.y1 Tx1, y2 Tx2 ,即x1 T 1( y1), x2 T 1( y2 ).于是有
T 1(1 y1 +2 y2 ) T 1[1T (x1) 2T (x2 )] T 1[T (1x1 2 x2 )] 1x1 2 x2 1T 1( y1) 2T 1( y2 ),
故T 1 : Y X是线性的. 7. 解 首先验证: 22 22是线性的,然后求其在即B下的矩阵A.
X1, X2 22 ,k1, k2 ,由的定义,有
( B
1 0
0 0 1 0 0 0 , 0 0 , 1 0 , 0
(k1 X1 +k2 X2 ) A0 (k1 X1 +k2 X2 ) k1 A0 X1 +k2 A0 X2 k1 (X1)+k2 (X2 ),
故: 22 22是线性的.
)0 0
1
关键是求基元E1

工程数学线性代数(同济大学第六版)课后习题答案(全)

工程数学线性代数(同济大学第六版)课后习题答案(全)

第一章行列式1.利用对角线法则计算下列三阶行列式:(1);解=2⨯( 4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8-0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1)=-24+8+16 4=-4.(2);解=acb+bac+cba bbb-aaa-ccc=3abc a3 b3 c3。

(3);解=bc2+ca2+ab2 ac2-ba2-cb2=(a-b)(b-c)(c a).(4).解=x(x+y)y+yx(x+y)+(x+y)yx-y3 (x+y)3 x3=3xy(x+y)-y3 3x2y-x3-y3 x3=-2(x3+y3).2.按自然数从小到大为标准次序,求下列各排列的逆序数:(1)1 2 3 4;解逆序数为0(2)4 1 3 2;解逆序数为4:41, 43, 42, 32.(3)3 4 2 1;解逆序数为5: 3 2,3 1,4 2, 4 1,2 1.(4)2 4 1 3;解逆序数为3: 2 1, 4 1,4 3.(5)1 3 ⋅⋅⋅ (2n-1)2 4 ⋅⋅⋅ (2n);解逆序数为:3 2 (1个)5 2,5 4(2个)7 2,7 4, 7 6(3个)⋅⋅⋅⋅⋅⋅(2n-1)2,(2n 1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2)(n 1个)(6)1 3 ⋅⋅⋅(2n-1)(2n)(2n 2)⋅⋅⋅ 2.解逆序数为n(n 1):3 2(1个)5 2,5 4 (2个)⋅⋅⋅⋅⋅⋅(2n 1)2,(2n 1)4, (2n 1)6,⋅⋅⋅,(2n-1)(2n-2)(n 1个)4 2(1个)6 2,6 4(2个)⋅⋅⋅⋅⋅⋅(2n)2,(2n)4,(2n)6,⋅⋅⋅,(2n)(2n 2) (n-1个) 3。

写出四阶行列式中含有因子a11a23的项。

解含因子a11a23的项的一般形式为(-1)t a11a23a3r a4s,其中rs是2和4构成的排列,这种排列共有两个,即24和42.所以含因子a11a23的项分别是(-1)t a11a23a32a44=(-1)1a11a23a32a44=-a11a23a32a44,(-1)t a11a23a34a42=(-1)2a11a23a34a42=a11a23a34a42.4。

工程数学线性代数(同济大学第六版)课后习题答案(全)

工程数学线性代数(同济大学第六版)课后习题答案(全)

第一章 行列式 1利用对角线法则计算下列三阶行列式(1)381141102---解 381141102---2(4)30(1)(1)118132(1)81(4)(1)2481644(2)ba c ac b cb a解 ba c a cb cb aacb bac cba bbb aaa ccc3abca 3b 3c 3(3)222111c b a cb a解 222111c b a c b abc 2ca 2ab 2ac 2ba 2cb 2(ab )(bc )(ca )(4)yx y x xy x y yx y x +++解 y x y x x y x y yx y x +++x (x y )y yx (x y )(x y )yx y 3(x y )3x 33xy (x y )y 33x 2 yx 3y 3x 32(x 3y 3)2按自然数从小到大为标准次序求下列各排列的逆序数(1)1 2 3 4解逆序数为0(2)4 1 3 2解逆序数为441 43 42 32(3)3 4 2 1解逆序数为5 3 2 3 1 4 2 4 1, 2 1(4)2 4 1 3解逆序数为3 2 1 4 1 4 3(5)1 3 (2n1) 2 4 (2n)解逆序数为2)1(nn3 2 (1个)5 2 5 4(2个)7 2 7 4 7 6(3个)(2n1)2(2n1)4(2n1)6(2n1)(2n2) (n1个)(6)1 3 (2n1) (2n) (2n2) 2解逆序数为n(n1)3 2(1个)5 2 5 4 (2个)(2n1)2 (2n1)4 (2n1)6(2n1)(2n2) (n1个) 4 2(1个) 6 2 6 4(2个)(2n )2(2n )4(2n )6(2n )(2n2)(n1个) 3写出四阶行列式中含有因子a 11a 23的项解 含因子a 11a 23的项的一般形式为 (1)t a 11a 23a 3r a 4s其中rs 是2和4构成的排列这种排列共有两个即24和42所以含因子a 11a 23的项分别是 (1)t a 11a 23a 32a 44(1)1a 11a 23a 32a 44a 11a 23a 32a 44(1)t a 11a 23a 34a 42(1)2a 11a 23a 34a 42a 11a 23a 34a 424计算下列各行列式(1)71100251020214214解71100251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---= 143102211014--=01417172001099323211=-++======c c c c(2)2605232112131412-解 2605232112131412-260503212213041224--=====c c 041203212213041224--=====r r 000003212213041214=--=====r r(3)efcf bf decd bd aeac ab ---解 ef cf bf de cd bd ae ac ab ---e c b e c b ec b adf ---=abcdefadfbce 4111111111=---=(4)dc b a 100110011001---解 d c b a 100110011001---dc b aab ar r 10011001101021---++===== dc a ab 101101)1)(1(12--+--=+01011123-+-++=====cd c ada ab dc ccdad ab +-+--=+111)1)(1(23abcd ab cd ad 15 证明:(1)1112222bb a a b ab a +(a b )3;证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--=(a b )3(2)y x z x z y z y x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=yx z x z y zy x b y x z x z y z y x a 33+=y x z xz y zy x b a )(33+=(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ; 证明 2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4c 3 c 3c 2c 2c 1得)5232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4c 3 c 3c 2得)022122212*********222=++++=d d c c b b a a(4)444422221111d c b a d c b a d c b a (a b )(a c )(a d )(b c )(b d )(c d )(a b c d );证明444422221111d c b a d c b a d c b a )()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b ad a c a b ---------=)()()(111))()((222a d d a c c a b b d c b a d a c a b +++---=))(())((00111))()((a b d b d d a b c b c c b d b c a d a c a b ++-++------=)()(11))()()()((a b d d a b c c b d b c a d a c a b ++++-----==(ab )(ac )(ad )(bc )(bd )(cd )(a b c d )(5)1221 1 000 00 1000 01a x a a a a x x x n n n +⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--- x na 1x n1a n 1x a n证明 用数学归纳法证明当n2时2121221a x a x a x a x D ++=+-= 命题成立假设对于(n 1)阶行列式命题成立 即 D n1x n1a 1 x n 2a n 2x a n1则D n 按第一列展开有1 1100 100 01)1(11-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--+=+-xx a xD D n n n n xD n1a n x na 1x n1a n 1x a n因此 对于n 阶行列式命题成立6 设n 阶行列式D det(a ij ), 把D 上下翻转、或逆时针旋转90、或依副对角线翻转依次得n nnn a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= 11112 n nnn a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11113 a a a a D n nnn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=证明DD D n n 2)1(21)1(--== D 3D 证明 因为D det(a ij ) 所以nnn n n n nnnn a a a a a a a a a a D 2211111111111 )1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=- ⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=-- )1()1(331122111121nnn n nn n n a a a a a a a a D D n n n n 2)1()1()2( 21)1()1(--+-+⋅⋅⋅++-=-=同理可证 nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=- )1(11112)1(2D D n n T n n 2)1(2)1()1()1(---=-=D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7 计算下列各行列式(D k 为k 阶行列式)(1)aa D n 1 1⋅⋅⋅=, 其中对角线上元素都是a未写出的元素都是0解aa a a a D n 010 000 00 000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开) )1()1(10 0000 000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a ann n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1 )1()1(a n a n2a n 2(a 21)(2)xa a a x a a a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(1)分别加到其余各行得ax x a ax x a a x x a a a a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0再将各列都加到第一列上 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 000 00 )1([x (n 1)a ](x a )n1(3)1 11 1 )( )1()( )1(1111⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅--⋅⋅⋅-=---+n a a a n a a a n a a a D n n n nn n n ; 解 根据第6题结果有n nn n n n n n n n a a a n a a a n a a aD )( )1()( )1( 11 11)1(1112)1(1-⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=---++ 此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏≥>≥++---=112)1()]([)1(j i n n n j i∏≥>≥++⋅⋅⋅+-++-⋅-⋅-=1121)1(2)1()()1()1(j i n n n n n j i∏≥>≥+-=11)(j i n j i(4)nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112; 解nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开) nn n n n nd d c d c b a b a a 00011111111----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=0)1(1111111112c d c d c b a b a b nn n n n nn ----+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-+ 再按最后一行展开得递推公式 D 2na n d n D 2n2b nc n D 2n2即D 2n(a n d nb nc n )D 2n2于是 ∏=-=ni i i i i n D c b d a D 222)( 而 111111112c b d a d c b a D -==所以 ∏=-=n i i i i i n c b d a D 12)( (5) D det(a ij ) 其中a ij |ij |; 解 a ij|ij |4321 4 01233 10122 21011 3210)det(⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅==n n n n n n n n a D ij n 0 4321 1 11111 11111 11111 1111 2132⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅--⋅⋅⋅-=====n n n n r r r r 152423210 22210 02210 00210 0001 1213-⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅-+⋅⋅⋅+=====n n n n n c c c c (1)n 1(n 1)2n 2(6)nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121, 其中a 1a 2a n 0解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121 nn n n a a a a a a a a a c c c c +-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=====--10 0001 000 100 0100 0100 0011332212132 1111312112111011 000 00 11000 01100 001 ------+-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅=nn n a a a a a a a a∑=------+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i n n a a a a a a a a 1111131******** 00010 000 00 10000 01000 001)11)((121∑=+=ni in a a a a8用克莱姆法则解下列方程组(1)⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x解 因为14211213513241211111-=----=D142112105132412211151-=------=D28411235122412111512-=-----=D426110135232422115113-=----=D14202132132212151114=-----=D所以 111==DD x 222==DD x 333==DD x144-==DD x(2)⎪⎪⎩⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x解 因为 665510006510006510065100065==D15075100165100065100650000611==D11455101065100065000601000152-==D 7035110065000060100051001653==D 3955100060100005100651010654-==D212110005100065100651100655==D所以66515071=x 66511452-=x 6657033=x 6653954-=x6652124=x9 问 取何值时 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解? 解 系数行列式为μλμμμλ-==1211111D令D 0 得 0或1于是 当0或1时该齐次线性方程组有非零解10问取何值时齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解? 解 系数行列式为λλλλλλλ--+--=----=101112431111132421D(1)3(3)4(1)2(1)(3)(1)32(1)23令D 0 得 0 2或3 于是 当02或3时该齐次线性方程组有非零解第二章 矩阵及其运算1已知线性变换⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x求从变量x 1x 2 x 3到变量y 1y 2 y 3的线性变换解 由已知⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y2已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y求从z 1z 2z 3到x 1x 2x 3的线性变换解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x3 设⎪⎪⎭⎫ ⎝⎛--=111111111A ⎪⎪⎭⎫⎝⎛--=150421321B 求3AB 2A及A T B解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T4计算下列乘积(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134 解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫⎝⎛=49635(2)⎪⎪⎭⎫⎝⎛123)321(解 ⎪⎪⎭⎫⎝⎛123)321((132231)(10)(3))21(312-⎪⎪⎭⎫⎝⎛解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142(4)⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫⎝⎛---=6520876(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x(a 11x 1a 12x 2a 13x 3a 12x 1a 22x 2a 23x 3a 13x 1a 23x 2a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=5设⎪⎭⎫ ⎝⎛=3121A ⎪⎭⎫ ⎝⎛=2101B 问(1)AB BA 吗?解 ABBA因为⎪⎭⎫ ⎝⎛=6443AB ⎪⎭⎫ ⎝⎛=8321BA 所以AB BA(2)(A B )2A 22ABB 2吗? 解 (AB )2A 22AB B 2 因为⎪⎭⎫ ⎝⎛=+5222B A⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫⎝⎛=2914148但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫⎝⎛=27151610所以(AB )2A 22AB B 2 (3)(A B )(A B )A 2B 2吗?解 (AB )(AB )A 2B 2因为⎪⎭⎫ ⎝⎛=+5222B A ⎪⎭⎫⎝⎛=-1020B A⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A故(A B )(A B )A 2B 26举反列说明下列命题是错误的(1)若A 20 则A解 取⎪⎭⎫ ⎝⎛=0010A 则A 20但A 0 (2)若A 2A则A 0或AE解 取⎪⎭⎫ ⎝⎛=0011A 则A 2A 但A0且AE(3)若AX AY 且A0 则X Y解 取⎪⎭⎫ ⎝⎛=0001A ⎪⎭⎫ ⎝⎛-=1111X ⎪⎭⎫ ⎝⎛=1011Y则AXAY且A0 但XY7设⎪⎭⎫ ⎝⎛=101λA 求A 2 A 3A k解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A⎪⎭⎫ ⎝⎛=101λk A k8设⎪⎪⎭⎫ ⎝⎛=λλλ001001A 求A k解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫⎝⎛=222002012λλλλλ⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A⎝⎛=kA kk kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫用数学归纳法证明当k2时显然成立假设k 时成立,则k1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ由数学归纳法原理知⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(1219设A B 为n 阶矩阵,且A 为对称矩阵,证明B T AB也是对称矩阵证明 因为A T A 所以(B T AB )TB T (B T A )TB T A T BB T AB从而B T AB 是对称矩阵10 设A B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是ABBA证明 充分性 因为A TA B T B且AB BA所以(AB )T (BA )TA TB T AB 即AB 是对称矩阵必要性 因为A TAB TB 且(AB )T AB 所以 AB (AB )TB T A TBA11求下列矩阵的逆矩阵(1)⎪⎭⎫ ⎝⎛5221解 ⎪⎭⎫ ⎝⎛=5221A |A |1故A1存在 因为⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A 故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos解 ⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A |A |1故A1存在因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A所以 *||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos(3)⎪⎪⎭⎫⎝⎛---145243121解 ⎪⎪⎭⎫⎝⎛---=145243121A |A |20 故A1存在 因为⎪⎪⎭⎫⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A所以 *||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2a n 0)解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A0021 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 1001121112 解下列矩阵方程(1)⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛12643152X解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232(2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311111012112X解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131⎪⎪⎭⎫⎝⎛---=32538122 (3)⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X 解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111(4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X解 11010100001021102341100001010--⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫⎝⎛---=20143101213利用逆矩阵解下列线性方程组(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x故 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x从而有 ⎪⎩⎪⎨⎧===01321x x x(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x故 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x故有 ⎪⎩⎪⎨⎧===35321x x x 14 设A kO (k 为正整数)证明(EA )1E A A 2A k 1证明 因为A k O 所以EA kE 又因为 E A k(EA )(E AA 2 A k 1)所以 (E A )(E A A 2 A k 1)E由定理2推论知(EA )可逆 且(E A )1E A A 2A k 1证明 一方面 有E(E A )1(E A )另一方面 由A k O 有 E (E A )(A A 2)A 2A k1(A k 1A k ) (EA A 2A k 1)(EA )故(EA )1(E A )(EA A 2A k 1)(EA )两端同时右乘(EA )1就有(E A )1(E A )E A A 2 A k115 设方阵A 满足A 2A 2EO证明A 及A2E都可逆并求A 1及(A 2E )1证明 由A 2A 2E O 得A 2A2E即A (AE )2E或 EE A A =-⋅)(21由定理2推论知A 可逆 且)(211E A A -=-由A 2A 2E O 得A 2A 6E 4E即(A 2E )(A3E )4E或 E A E E A =-⋅+)3(41)2(由定理2推论知(A 2E )可逆且)3(41)2(1A E E A -=+-证明 由A 2A 2E O 得A 2A 2E两端同时取行列式得|A 2A |2 即 |A ||AE |2 故 |A |0 所以A 可逆 而A2EA 2 |A 2E ||A 2||A |20故A2E 也可逆由 A 2A 2E O A (A E )2EA 1A (A E )2A 1E)(211E A A -=- 又由 A 2A 2E O(A 2E )A 3(A 2E )4E(A2E )(A3E )4 E所以 (A2E )1(A 2E )(A3E )4(A2 E )1)3(41)2(1A E E A -=+-16设A 为3阶矩阵21||=A 求|(2A )15A *|解 因为*||11A A A =- 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A|2A 1|(2)3|A 1|8|A |1821617设矩阵A 可逆 证明其伴随阵A *也可逆且(A *)1(A 1)*证明 由*||11A A A =- 得A *|A |A1所以当A 可逆时有 |A *||A |n |A 1||A |n1从而A *也可逆 因为A *|A |A1所以(A *)1|A |1A又*)(||)*(||1111---==A A A A A 所以(A *)1|A |1A |A |1|A |(A 1)*(A 1)* 18 设n 阶矩阵A 的伴随矩阵为A *证明(1)若|A |0 则|A *|0 (2)|A *||A |n1证明(1)用反证法证明 假设|A *|0 则有A *(A *)1E 由此得 AA A *(A *)1|A |E (A *)1O所以A *O这与|A *|0矛盾,故当|A |0时有|A *|(2)由于*||11A A A =- 则AA *|A |E 取行列式得到|A ||A *||A |n若|A |0 则|A *||A |n 1若|A |0 由(1)知|A *|0 此时命题也成立因此|A *||A |n119设⎪⎪⎭⎫⎝⎛-=321011330A AB A 2B 求B 解 由AB A2E 可得(A 2E )BA 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫⎝⎛-=01132133020设⎪⎪⎭⎫⎝⎛=101020101A 且AB E A 2B 求B解 由AB E A 2B 得(A E )B A 2E即 (AE )B(A E )(A E )因为01001010100||≠-==-E A 所以(AE )可逆从而⎪⎪⎭⎫⎝⎛=+=201030102E A B 21 设A diag(1 21)A *BA2BA8E 求B解 由A *BA 2BA 8E 得(A *2E )BA 8EB 8(A *2E )1A 1 8[A (A *2E )]1 8(AA *2A )1 8(|A |E 2A )1 8(2E 2A )14(EA )14[diag(2 12)]1)21 ,1 ,21(diag 4-=2diag(12 1)22 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A且ABA1BA13E 求B解 由|A *||A |38 得|A |2由ABA 1BA 13E 得 AB B 3AB3(AE )1A 3[A (E A 1)]1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-103006060060000660300101001000016123 设P 1AP其中⎪⎭⎫ ⎝⎛--=1141P⎪⎭⎫ ⎝⎛-=Λ2001 求A 11解 由P 1AP 得A P P1所以A 11A =P11P 1.|P |3 ⎪⎭⎫ ⎝⎛-=1141*P ⎪⎭⎫ ⎝⎛--=-1141311P而 ⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=6846832732273124 设AP P其中⎪⎪⎭⎫⎝⎛--=111201111P⎪⎪⎭⎫ ⎝⎛-=Λ511 求(A )A 8(5E 6AA 2) 解 ()8(5E62) diag(1158)[diag(555)diag(6630)diag(1125)] diag(1158)diag(1200)12diag(100)(A )P()P 1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=111111111425 设矩阵A 、B 及A B 都可逆证明A1B1也可逆并求其逆阵证明 因为 A 1(A B )B1B 1A1A 1B1而A 1(A B )B1是三个可逆矩阵的乘积所以A 1(AB )B1可逆 即A 1B1可逆(A 1B 1)1[A 1(A B )B 1]1B (A B )1A26 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121解 设⎪⎭⎫ ⎝⎛=10211A ⎪⎭⎫ ⎝⎛=30122A ⎪⎭⎫ ⎝⎛-=12131B⎪⎭⎫ ⎝⎛--=30322B则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫⎝⎛+=222111B A O B B A A而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫⎝⎛---=900034004210252127取⎪⎭⎫ ⎝⎛==-==1001D C B A 验证||||||||D C B A D C B A ≠解 4100120021010*********0021010010110100101==--=--=D C B A而 01111|||||||| ==D C B A 故 ||||||||D C B A D C B A ≠28设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A 求|A 8|及A 4解 令⎪⎭⎫ ⎝⎛-=34431A ⎪⎭⎫ ⎝⎛=22022A则 ⎪⎭⎫⎝⎛=21A O O A A故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A1682818281810||||||||||===A A A A A ⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A29 设n 阶矩阵A 及s 阶矩阵B 都可逆求(1)1-⎪⎭⎫ ⎝⎛O B A O解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143由此得 ⎪⎩⎪⎨⎧====sn E BC O BC OAC E AC 2143⎪⎩⎪⎨⎧====--121413B C O C O C A C所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111(2)1-⎪⎭⎫ ⎝⎛B C O A解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321由此得 ⎪⎩⎪⎨⎧=+=+==sn E BD CD O BD CD OAD E AD 423121⎪⎩⎪⎨⎧=-===----14113211B D CA B D OD A D所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A30 求下列矩阵的逆阵(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025解 设⎪⎭⎫⎝⎛=1225A ⎪⎭⎫ ⎝⎛=2538B 则⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B于是⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛----850032000052002125003800001200251111B A B A(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001解 设⎪⎭⎫ ⎝⎛=2101A ⎪⎭⎫ ⎝⎛=4103B ⎪⎭⎫ ⎝⎛=2112C 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A B C O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001第三章 矩阵的初等变换与线性方程组1把下列矩阵化为行最简形矩阵(1)⎪⎪⎭⎫⎝⎛--340313021201解 ⎪⎪⎭⎫⎝⎛--340313021201(下一步r 2(2)r 1 r 3(3)r 1 )~⎪⎪⎭⎫⎝⎛---020*********(下一步r 2(1)r 3(2) )~⎪⎪⎭⎫⎝⎛--010*********(下一步r 3r 2 )~⎪⎪⎭⎫⎝⎛--300031001201(下一步r 33 )~⎪⎪⎭⎫⎝⎛--100031001201(下一步r 23r 3 )~⎪⎪⎭⎫⎝⎛-100001001201(下一步r 1(2)r 2 r 1r 3 )~⎪⎪⎭⎫⎝⎛100001000001(2)⎪⎪⎭⎫⎝⎛----174034301320解 ⎪⎪⎭⎫⎝⎛----174034301320(下一步r 22(3)r 1 r 3(2)r 1 )~⎪⎪⎭⎫⎝⎛---310031001320(下一步r 3r 2 r 13r 2 )~⎪⎪⎭⎫⎝⎛0000310010020(下一步r 12 )~⎪⎪⎭⎫⎝⎛000031005010(3)⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311解 ⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311(下一步 r 23r 1 r 32r 1 r 43r 1 )~⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311(下一步r 2(4) r 3(3)r 4(5) )~⎪⎪⎪⎭⎫ ⎝⎛-----22100221002210034311(下一步 r 13r 2r 3r 2 r 4r 2 )~⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4)⎪⎪⎪⎭⎫⎝⎛------34732038234202173132解 ⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132(下一步r 12r 2 r 33r 2 r 42r 2 )~⎪⎪⎪⎭⎫⎝⎛-----1187701298804202111110(下一步 r 22r 1 r 38r 1 r 47r 1 )~⎪⎪⎪⎭⎫⎝⎛--4100410*******11110(下一步 r 1r 2 r 2(1)r 4r 3 )~⎪⎪⎪⎭⎫⎝⎛----00000410001111020201(下一步 r 2r 3 )~⎪⎪⎪⎭⎫⎝⎛--000410*******202012设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A 求A解 ⎪⎪⎭⎫⎝⎛100001010是初等矩阵E (12)其逆矩阵就是其本身⎪⎪⎭⎫⎝⎛100010101是初等矩阵E (12(1)) 其逆矩阵是E (12(1)) ⎪⎪⎭⎫⎝⎛-=100010101⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=100010101987654321100001010A⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=2872212541000101019873216543 试利用矩阵的初等变换 求下列方阵的逆矩阵(1)⎪⎪⎭⎫⎝⎛323513123解 ⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫⎝⎛---101011001200410123~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫⎝⎛----2/102/11002110102/33/26/7001故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267(2)⎪⎪⎪⎭⎫⎝⎛-----1210232112201023解 ⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023~⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321~⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321 ~⎪⎪⎪⎭⎫⎝⎛----------10612631110`1022111000010000100021 ~⎪⎪⎪⎭⎫⎝⎛-------106126311101042111000010000100001故逆矩阵为⎪⎪⎪⎭⎫⎝⎛-------106126311101042114 (1)设⎪⎪⎭⎫⎝⎛--=113122214A ⎪⎪⎭⎫⎝⎛--=132231B 求X 使AXB解 因为⎪⎪⎭⎫ ⎝⎛----=132231 113122214) ,(B A ⎪⎪⎭⎫⎝⎛--412315210 100010001 ~r所以 ⎪⎪⎭⎫⎝⎛--==-4123152101B A X(2)设⎪⎪⎭⎫⎝⎛---=433312120A ⎪⎭⎫ ⎝⎛-=132321B 求X 使XAB解 考虑A T X TB T 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(TTB A ⎪⎪⎭⎫⎝⎛---411007101042001 ~r所以 ⎪⎪⎭⎫⎝⎛---==-417142)(1TT TB A X 从而 ⎪⎭⎫ ⎝⎛---==-4741121BA X 5设⎪⎪⎭⎫⎝⎛---=101110011A AX2XA求X解 原方程化为(A 2E )X A 因为⎪⎪⎭⎫⎝⎛---------=-101101110110011011) ,2(A E A⎪⎪⎭⎫⎝⎛---011100101010110001~所以 ⎪⎪⎭⎫⎝⎛---=-=-011101110)2(1A E A X6 在秩是r 的矩阵中,有没有等于0的r 1阶子式?有没有等于0的r 阶子式?解 在秩是r 的矩阵中 可能存在等于0的r1阶子式也可能存在等于0的r 阶子式 例如⎪⎪⎭⎫ ⎝⎛=010*********A R (A )30000是等于0的2阶子式10001000是等于0的3阶子式7从矩阵A 中划去一行得到矩阵B问A B 的秩的关系怎样?解 R (A )R (B )这是因为B 的非零子式必是A 的非零子式故A 的秩不会小于B 的秩8求作一个秩是4的方阵 它的两个行向量是(10 10 0)(11 00)解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵⎪⎪⎪⎪⎭⎫ ⎝⎛-0000001000001010001100001此矩阵的秩为4 其第2行和第3行是已知向量9求下列矩阵的秩 并求一个最高阶非零子式(1)⎪⎪⎭⎫⎝⎛---443112112013;解 ⎪⎪⎭⎫⎝⎛---443112112013(下一步r 1r 2 )~⎪⎪⎭⎫⎝⎛---443120131211(下一步r 23r 1 r 3r 1 )~⎪⎪⎭⎫⎝⎛----564056401211(下一步r 3r 2 )~⎪⎭⎫ ⎝⎛---000056401211矩阵的2秩为 41113-=-是一个最高阶非零子式(2)⎪⎪⎭⎫⎝⎛-------815073*********解 ⎪⎪⎭⎫⎝⎛-------815073*********(下一步r 1r 2 r 22r 1 r 37r 1 )~⎪⎭⎫ ⎝⎛------15273321059117014431(下一步 r 33r 2 )。

工程数学线性代数(同济大学第六版)课后习题答案(全)

工程数学线性代数(同济大学第六版)课后习题答案(全)

第一章行列式1.利用对角线法则计算下列三阶行列式:(1);解=2⨯(-4)⨯3+0⨯(-1)⨯( 1)+1⨯1⨯80⨯1⨯3-2⨯(-1)⨯8 1⨯( 4)⨯( 1)=24+8+16 4=4.(2);解=acb+bac+cba bbb-aaa ccc=3abc a3 b3 c3。

(3);解=bc2+ca2+ab2-ac2 ba2-cb2=(a-b)(b c)(c a).(4)。

解=x(x+y)y+yx(x+y)+(x+y)yx y3-(x+y)3 x3=3xy(x+y) y3 3x2y-x3-y3 x3=2(x3+y3)。

2.按自然数从小到大为标准次序,求下列各排列的逆序数:(1)1 2 3 4;解逆序数为0(2)4 1 3 2;解逆序数为4:41,43, 42,32。

(3)3 4 2 1;解逆序数为5: 3 2,3 1, 4 2, 4 1, 2 1。

(4)2 4 1 3;解逆序数为3: 2 1, 4 1,4 3.(5)1 3 ⋅⋅⋅ (2n-1)2 4 ⋅⋅⋅(2n);解逆序数为:3 2 (1个)5 2, 5 4(2个)7 2,7 4, 7 6(3个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n 1)4,(2n 1)6,⋅⋅⋅,(2n 1)(2n 2)(n 1个)(6)1 3 ⋅⋅⋅(2n 1)(2n) (2n-2)⋅⋅⋅ 2.解逆序数为n(n 1):3 2(1个)5 2,5 4 (2个)⋅⋅⋅⋅⋅⋅(2n-1)2,(2n 1)4,(2n-1)6,⋅⋅⋅,(2n 1)(2n-2)(n-1个)4 2(1个)6 2,6 4(2个)⋅⋅⋅⋅⋅⋅(2n)2,(2n)4,(2n)6,⋅⋅⋅,(2n)(2n 2)(n-1个)3.写出四阶行列式中含有因子a11a23的项.解含因子a11a23的项的一般形式为(-1)t a11a23a3r a4s,其中rs是2和4构成的排列,这种排列共有两个,即24和42.所以含因子a11a23的项分别是(-1)t a11a23a32a44=(-1)1a11a23a32a44=-a11a23a32a44,(-1)t a11a23a34a42=(-1)2a11a23a34a42=a11a23a34a42.4.计算下列各行列式:(1);解。

工程数学习题答案

工程数学习题答案

f ( x ) = ∑ a k cos kx
k =0

由正交性得
a0 =
1 2π
∫ π f ( x )dx = π ∫

π
1
π
0
(π − x )dx =
2
π
0
π 1 π [−(π − x ) 2 ] 0 = 2π 2
ak =
f ( x ) cos kxdx = ∫ π ∫π π

1
π
(π − x ) cos kxdx
u( x , t ) = [cos
πa
l
t+
πa π l sin t ] sin x πa l l
⎧ utt = a 2 u xx , (0 < x < l , t > 0) ⎪ ⎪ u x = 0 = u x x = l = 0, 4.求波动方程解 ⎨ ⎪ u t = 0 = 3 sin 3πx / 2l + 6 sin 5πx / 2l , ⎪u ⎩ t t =0 = 0
方程组有非零解的条件为系数矩阵行列式为零,即
[cos 2π λ − 1]2 + sin 2 2π λ = 0
整理得
cos 2π λ = 1
由余弦函数的最大值点得
2π λ = 2nπ
所以特征值和特征函数分别为 (A 和 B 不全为零) λ n = n 2 , X n = A cos nx + B sin nx ,
《工程数学》习题一
y ⎧ dy ⎪ = ry (1 − ), x > 0 1.用分离变量法解常微分方程初值问题 ⎨ dx K ⎪ y ( 0) = y 0 ⎩
解:用常微分方程分离变量法

工程数学第五章习题解答

工程数学第五章习题解答

第四章习题解答1.1某大学生即将毕业就业,在选择单位时他主要考虑如下因素A.单位的工资待遇;B. 单位的社会地位;C.单位的地域条件;D. 本人的兴趣爱好。

它比较上述各种因素得到成对比较阵(表中数字表示行因素相对于列因素的重要性):(1。

(2)现在他准备在甲和乙两份工作中选一份。

他给两份工作各因素满意度打分解: (1)利用和法近似求权向量:先按列归一化得2/13 3/17 1/4 2/174/13 6/17 3/8 6/171/13 2/17 1/8 3/176/13 6/17 1/4 6/17再求各行和得到[0.6980, 1.3886, 0.4960, 1.4174]’再归一化得到权向量[0.1745,0.3471,0.1240,0.3544]’.(2)甲=0.8×0.1745+0.5× 0.3471+0.5×0.1240+0.2×0.3544=0.4460乙=0.5×0.1745+0.6× 0.3471+0.4×0.1240+0.5×0.3544=0.5223应选乙.2.1学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍. 学生们要组织一个10人的委员会,分别用最大剩余法和Q值法计算名额分配。

如果委员会从10个人增至15人呢?(2)Q 值法:2,3,5 (4,5,6)按人数比例的整数部分已将13席分配完毕 A: p 1=235, n 1=3 B :p 2=333, n 2=4 C :p 3=432, n 3=6计算Q 值:3,2,1,)1(2=+=i n n p Q i i i i ,得:第14席444376432,554454333,460243235232221=⨯==⨯==⨯=Q Q Q 给B (3,5,6) 第15席31,Q Q 不变,36966533322=⨯=Q ,给A (4,5,6)bxx=[0 0.2 0.4 0.6 0.8 1];y=[4.0 4.5 5.0 6.0 6.8 7.7]; fun=@(c,x)3+c(1)*x+exp(-c(2)*x); [c,Q]=lsqcurvefit(fun,[1,0.1],x,y) 结果a=4.6769. b=3.4962。

工程数学基础教程课后习题答案

工程数学基础教程课后习题答案

.工程数学基础习题解答习 题 一A一、判断题1.√;,2.√;3.×;4.×;5.×;6.×;7.×;8.√;9.√;10.×.二、填空题1.;C C A B2.111(){1,2,3,4},(){,,},(){,,},(){1,4},(){2,3};f f a b e f A a b e f B f b --=====D R3.满;4.2sup =E ,3inf -=E ; 5.0; 6.0; 7. n ; 8.Y .B1.证 ()y f A B ∀∈⋂,x A B ∃∈⋂使得)(x f y =.由x A B ∈⋂,得x A ∈,且x B ∈故()()y f x f A =∈且()y f B ∈,即()()y f A f B ∈⋂,因此()()()f A B f A f B ⋂⊂⋂.当f 是单射时,只需证明()()()f A f B f A B ⋂⊂⋂即可: ()()(),y f A f B f ∀∈⋂⊂R f 由是单射知,().(),(),1X y f x y f A y f B x ∃=∈∈∈使得且,,()(),x A x B x A B y f x f A B ∴∈∈∈⋂=∈⋂且即从而故()()()f A f B f A B ⋂⊂⋂.是可能的,例如,2:,[2, 0],[1, 3],[1, 0].f xx A B A B =-=-⋂=-取则()([1,0])[0, 1], f A B f ⋂=-=于是而[][]()()0, 4[0, 9]0, 4.f A f B ⋂=⋂=从而有 .2. 证(1)n ∀∈,有)2 ,2(12 ,12][-⊂-+-n n ,故 ∞=-⊂-+-1)2 ,2(12 12][n n ,n .另一方面,)2 ,2(-∈∀x ,k ∃∈,使][12 ,12k k x -+-∈,故 ∞=-+-∈1][12 12n n ,n x ,于是⊂-)2 ,2( ∞=-+-1][12 12n n,n .因此, ∞=-+-=-1][12 ,12)2 ,2(n nn .(2)n ∀∈,有)12 ,12(]2 ,2[n n +--⊂-,故 ∞=+--⊂-1)12 ,12(]2 ,2[n n n .另一方面,对任意]2 ,2[-∉x ,即2>x ,k ∃∈,使得212>+>kx ,即)12 ,12(k k x +--∉,从而 ∞=+--∉1)12 ,12(n n n x ,故 ∞=-⊂+--1]2,2[)12 ,12(n n n .因此,∞=+--=-1)12,12(]2,2[n nn . 3. sup ,sup ,sup ,.A A A μμμμ''===证设且要证唯一只需证明即可sup ,,,sup ,,;.inf .A A A A A μμμμμμμμμμ'''=≤=''≤= 因为是最小上界而是的上界故又因为是最小上界而是的上界故因此 类似地可以证明是唯一的 4. 证 设{}D Y αα∈是线性空间X 的一族子空间,要证D Y X αα∈⋂也是的线性子空间.显然D Y αα∈⋂≠∅,z 只需证明.D Y X αα∈⋂对的线性运算是封闭的事实上,,Dx y Y αα∈∀∈⋂及,λ∀∈,从而对每一个D ∈α,有,x y Y α∈,故x y Y α+∈,x Y αλ∈.于是,D x y Y αα∈+∈⋂,D x Y ααλ∈∈⋂.因此,DY αα∈⋂是X 的线性子空间. 5. ,,,W f g W λ∀∈∀∈证显然包含零多项式故非空;又及,有()(0)()(0)(0)(0)(0)(0)[(0)(0)][(0)(0)]000,f g f g f g f g f f g g '''''+++=+++=+++=+=即;()(0)()(0)(0)(0)[(0)(0)]00,.f g W f f f f f f f W λλλλλλλ'''+∈+=+=+==∈即[0, 1].n W P 所以,是的线性子空间1111021121001121 [0, 1],(),()2.(0)(0)0,0,,()(1).n n n n n n n n n n n f W P f x a x a x a x a f x na x a x a f f a a a a f x a x a x a x a x -----'∀∈⊂=++++=+++'+=+==-=++++-设则由得即故23(1,,,,),dim .n x x x x W W n -=由上可知,是的一个基故6. 1(1),(0)0.()0,0.T T T x T T x -⇒===“”:因为是线性的故有于是,若则由存在知是单射,从而有 1T T -⇐“”:要证存在,只需证明是单射:121212121212,,((),()()()0,0,,.x x X T x T x T x x T x T x x x x x T ∀∈=-=-=-==当)即时由条件得即故是单射 1112121211221122(2),,,,,s.t.,,(),().y y Y x x X y Tx y Tx x T y x T y λλ--∀∈∀∈∃∈====及即于是有1111111221122112211221122(+)[()()][()]()(),T y y T T x T x T T x x x x T y T y λλλλλλλλλλ-----=+=+=+=+1:.T Y X -→故是线性的7. 2222:,.B A σ⨯⨯→解首先验证是线性的然后求其在即下的矩阵221212,,,,X X k k σ⨯∀∈∀∈由的定义,有 10010000,,,0001001()B ⎡⎤⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦1122011221012021122(+)(+)+()+(),k X k X A k X k X k A X k A X k X k X σσσ===2222:.σ⨯⨯→故是线性的1112212210010000,,,00001001E E E E B ⎡⎤⎡⎤⎡⎤⎡⎤====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦关键是求基元的像在基下的坐标:()()()11111221221110000000,00,Tab acd cE aE E cE E E a c σσ⎡⎤⎡⎤⎡⎤===+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即()()()12111221221201000000,00,Tab a cd c E E aE E cE E a c σσ⎡⎤⎡⎤⎡⎤===+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即()()()21111221222100010000,00,T ab bcd d E bE E dE E E b d σσ⎡⎤⎡⎤⎡⎤===+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即()()()2211122122200001000,00,Tab b cd d E E bE E dE E b d σσ⎡⎤⎡⎤⎡⎤===+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即 0000.0000aba b A c d c d ⎡⎤⎢⎥⎢⎥∴=⎢⎥⎢⎥⎣⎦习 题 二A一、判断题1.√;2.×;3.√;4.√;5.×;6.√;7.×;8.×;9.√;10.√;11.×;12.×.二、填空题1.x ;2.n ;3.2,(1),i,i λλλλ-+-;4. 1,1λλ-+;5.200004014⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦;6.200020012⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;7.O ; 8.O ;9.1λ-;10.6.三、单项选择题1.(d);2. (b);3. (b);4. (d);5. (a).B1.解(1)E A λ-()[]−−−→−⎥⎥⎦⎤⎢⎢⎣⎡-----−−→−⎥⎥⎦⎤⎢⎢⎣⎡-----=-+212]3,2[]2,1[020012201200120012λλλλλλλ ()[]()[]()[]()[]222311322132232)2(00)2(10001020)2(10201-⋅+-⋅-⋅--⋅+−−→−⎥⎥⎦⎤⎢⎢⎣⎡----−−−→−⎥⎥⎦⎤⎢⎢⎣⎡-----λλλλλλλλ ()[]⎥⎥⎦⎤⎢⎢⎣⎡-−−→−⎥⎥⎦⎤⎢⎢⎣⎡---⋅3123)2(11)2(00010001λλ, 3123()()1, ()(2).d d d λλλλ∴===-(2)E A λ-[][]()[]−−→−⎥⎥⎦⎤⎢⎢⎣⎡------−−→−⎥⎥⎦⎤⎢⎢⎣⎡------=+-λλλλλλλ13123,1111111111111()[][]3211222311111011010011012λλλλλλλλλλ+⋅-⎡⎤⎣⎦+----⎡⎤⎡⎤⎢⎥⎢⎥+--−−−→+−−−→⎢⎥⎢⎥⎢⎥⎢⎥-------⎣⎦⎣⎦[]()[]⎥⎥⎦⎤⎢⎢⎣⎡-++−−−→−⎥⎥⎦⎤⎢⎢⎣⎡-++---⋅-+)2)(1(11)2)(1(0001011117312λλλλλλλλ, 1()1d λ∴=,1)(2+=λλd ,)2)(1()(3-+=λλλd .(3)E A λ-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---=52340100010012345100010001λλλλλλλλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++---→542300100100012λλλλλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++--→543200100010001232λλλλλλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++→5432111234λλλλ, 12()()()1d d d λλλ∴===,5432)(2344++++=λλλλλd .(4)[]1,2310013004100140071211721761671E A λλλλλλλλλ----⎡⎤⎡⎤⎢⎥⎢⎥++⎢⎥⎢⎥-=−−→⎢⎥⎢⎥--------⎢⎥⎢⎥⎣⎦⎣⎦ ()[]()()()21122314162131113001000021000(1)0004210(4)210611106111λλλλλλλλλλλλλλ+-+⎡⎤⎣⎦-+-⎡⎤⎣⎦+⋅-⎡⎤⎣⎦⋅-⎡⎤⎣⎦--⎡⎤⎡⎤⎢⎥⎢⎥-+-⎢⎥⎢⎥−−−−→−−−−→⎢⎥⎢⎥-----+--⎢⎥⎢⎥--⎣⎦⎣⎦[]()2243232100010000(1)000(1)000621062106101010(1)0λλλλλλλλ+⋅⎡⎤⎣⎦+⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥−−−→−−−−→⎢⎥⎢⎥------⎢⎥⎢⎥---⎣⎦⎣⎦()()()2421[4()][24(1)]10[246][41][342]2210001000(1)0(1)0000010********(1)(1)0100101010λλλλλλ-⋅-⋅-+⋅-⋅-+⋅-⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥⎢⎥−−−→−−−−→⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥-⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦[][]242,4(2)3,4[32]1041000100(1)010001110(1)λλλ-+⋅⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥−−−−→−−−→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦, 123()()()1d d d λλλ∴===,44)1()(-=λλd .2. 解 (1)∵4det ()(2)A λλ=-+,∴44)2()(+=λλD ,又∵01021210100≠-=++λλ,∴1)(3=λD ,从而1)()(21==λλD D .于是不变因子为1)()()(321===λλλd d d ,44)2()(+=λλd ;初等因子组为4)2(+λ. (2)2210010010010()00000()000()B λαλαλαλαλλαλαλαλα++⎡⎤⎡⎤⎢⎥⎢⎥++⎢⎥⎢⎥≅≅⎢⎥⎢⎥+-+⎢⎥⎢⎥+-+⎣⎦⎣⎦⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++≅22)()(11αλαλ, 故不变因子为 1)()(21==λλd d ,23)()(αλλ+=d ,24)()(αλλ+=d ; 初等因子组为 22)(,)(αλαλ++.(3)显然313()1,det ()(1)()D C D λλλλ==+=,而2(1)(5)08(1)adj ()3(1)(1)6(1)2(1)0(1)(3)C λλλλλλλλλλ+++⎡⎤⎢⎥=+++⎢⎥⎢⎥-++-⎣⎦, ∴1)(2+=λλD .因此2321)1()(,1)(,1)(+=+==λλλλλd d d ; 初等因子组:2)1(,1++λλ.(4)由第1题(4)知1)()()(321===λλλd d d ,44)1()(+=λλd .也可这样解:由行列式的Laplace 展开定理得43121det ()(1)411D λλλλλλ----=⋅=-+,故44)1()(-=λλD ;又)(λD 的左下角的三阶子式372471672170142+-=---+λλλλ与)(4λD 是互质的,所以1)(3=λD ,从而1)()(12==λλD D .因此44321)1()(,1)()(,1)(-====λλλλλd d d d ;初等因子组:4)1(-λ.3.解(1)∵12020(1)(1)(2)211E A λλλλλλλ---=-=+--+,∴1~12A J ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦.(2)∵E A λ-611123034371230343104252373-+-+-=-++-+-=--+--=λλλλλλλλλλλλ 611123036411022-+-+++----=λλλλλλλ)i )(i )(1(123+--=-+-=λλλλλλ,∴~A J ⎥⎥⎦⎤⎢⎢⎣⎡-=i i 1. (3)∵[]1,231001300410014007121172117616171E A λλλλλλλλλ----⎡⎤⎡⎤⎢⎥⎢⎥++⎢⎥⎢⎥-=→⎢⎥⎢⎥--------⎢⎥⎢⎥⎣⎦⎣⎦[][][])1(12)1(13)6(14+⋅+-⋅+⋅+−−−→−λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------λλλλλλλλλλ2222)1()1(0100000)1(000011160124000)1(00031⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→22)1()1(11λλ, ∴初等因子组为2)1(-λ,2)1(-λ,于是⎥⎦⎤⎢⎣⎡=11011J ,⎥⎦⎤⎢⎣⎡=11012J ,故12111111JJ J ⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦. (4)0001001E A λλλλ⎡⎤⎢⎥-⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥-⎣⎦,()det()n nD E A λλλ=-=,又有一个1-n 阶子式0)1(1111≠-=----n λλλ,∴1)()(11===-λλD D n ,故1)()()(121====-λλλn d d d ,n n d λλ=)(;初等因子组为n λ,所以010~110A J ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦. (事实上,A 本身就是一个Jordan 块)4.解(1)由第1题(2)知1)(1+=λλϕ,2)2)(1()(22--=-+=λλλλλϕ,所以12100~002011CA C C -⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦. (2)由第1题(3)知5432)(234++++=λλλλλϕ,故B 的有理标准是0005100401030012C -⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦.5.解 由J 立即可知A 的初等因子组为2)1(-λ,2-λ,2)2(-λ,于是不变因子为1)()()(321===λλλd d d ,()24-=λλd ,225)2()1()(--=λλλd .即2)(1-=λλϕ,412136)(2342+-+-=λλλλλϕ,故200000000401001200101300016C ⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥-⎢⎥⎢⎥⎣⎦.6.解 (1)744744()481099418418f E A λλλλλλλλλ----=-=-+=++++2)9)(9(71490847+-=++--=λλλλλ.因为2441644(9)(9)4171 4114117411A E A E O ---⎡⎤⎡⎤⎢⎥⎢⎥-+=---=⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦,所以最小多项式为)9)(9()(+-=λλλm .(2)32310()det()0132(2)(1)23D E B λλλλλλλλλ-=-=-=--=-+--,∵有一个二阶子式01101≠=--λ,∴1)()(21==λλD D .因此,23)1)(2()()(+-==λλλλd m . (3)对E C λ-施行初等变换得其Smith 标准形23()diag(1, 1, 1,(3),(3))S λλλ=--,∴35)3()()(-==λλλd m .7.证 若A 可对角化,则A 的最小多项式)(λm 无重零点,必要性得证. 若A 有一个无重零点的零化多项式)(λϕ,则因为)(deg )(deg λϕλ≤m ,故)(λm 也无重零点,由定理2.16知A 可对角化.8. 证 (1) 22A A E +=,22A A E O +-=,∴)1)(2(2)(2+-=-+=λλλλλϕ是A 的一个无重零点的零化多项式,故A 可对角化. (2)mA E =,∴1-mλ是A 的零化多项式,其零点2i ek mk πλ=(0,1,,1)k m =-是互不相同的,故A 可对角化.习 题 三A一、判断题1.√;2.√;3.√;4.√;5.√;6.√;7.√;8.×;9.√;10.×;11.√;12.√;13.×; 14.× 15.√;16.√;17.√;18.√;19.√;20.×;21.√;22√;.23.×;24.√;25.√.二、填空题1.0;2.0y ;3.()T111,,,2n;4. 12;5.Banach ;6.1;7.3;8.15,2FA A A∞==+=;9.3.三、单项选择题1.(c);2. (c);3. (b);4. (a);5. (b);6.(c).B1. 证 仅验证三角不等式,其余是显然的.设Tn ),,(1ξξ =x ,T n ),,(1ηη =y 是n中的任意两个元素.∑∑∑∑====+=+=+≤+=+n i ni ni i ni i i i i i 1111111)(y x y x ηξηξηξ;i ni i ni i i ni i ni ηξηξηξ≤≤≤≤≤≤≤≤∞+≤+≤+=+11111max max }{max max y x∞∞+=y x .2. 证 因为[],, x y C a b ∀∈及∈∀α,有(N 1) t t x x bad )( 1⎰=0≥,显然若0=x ,即0)(≡t x ,则01=x ;反之,若01=x ,即0d )( =⎰t t x ba,则由)(t x 的连续性,知0)(≡t x ,即0=x ;(N 2) 11d )(d )(x t t x t t x xba b aαααα===⎰⎰;(N 3) t t y t t x t t y t x yx bab ab ad )(d )(d )()(1⎰⎰⎰+≤+=+11y x +=;所以1 ⋅是[], C a b 上的范数.3.解121i 1i 22,max{1,i ,1i}x x x ∞=+-++===-+= 4.解1max{101,210,i 11i }max{2,3,22max{12i ,011,101i }max{4,2,1 4.A A ∞=++-++-+-+-===++-++--++-==5.证 (1)lim ,lim ,.n n n n x x X x y Y x y →∞→∞=∈=∈=设又只需证明即可 {}0lim lim lim lim lim 000,0,0,.n n n n n n n n n n n x y x y x x x y x x x y x x x y x y x y x y →∞→∞→∞→∞→∞≤-=-=-+-≤-+-=-+-=+=∴-=-==故即122lim ,1,,1,1, 1. max{,,,,1},,().n n n n n n N n n x x X N n N x x x x x x x x M x x x x n x M x ε→∞=∈=∃∈>-≤-≤-≤≤+=+∀∈≤ ()设则对使得当时,恒有从而有即取则,有故有界6.证 设x 是,()n X x X x 中任意一点是中收敛于的任一序列.()():,lim ()();:,lim ()().lim()()()(),:.n n n n n n n f X Y Y f x f x g Y Z Z g f x g f x g f x g f x g f X Z x →∞→∞→∞→=→==∴→ 由连续知在中有又由连续知在中有即在点处连续,:.x X g f X Z ∈→由的任意性知是连续映射7. 证 由于()n x 和()n y 都是X 中的Cauchy 序列,则0>∀ε,12,N N ∃∈,使得当1,N m n >时,2ε<-m n x x ; 当2,N m n >时,2ε<-m n y y .令},m ax {21N N N =,则当N n m >,时,有)()( m m n n m m n n y x y x y x y x ---≤---εεε=+<-+≤22m n m n y y x x ,这表明()n n x y -是中Cauchy 的序列,由的完备性知,数列()n n x y -收敛.100001110101010121 (1)[0, 1],0,[0, 1],()0,max ()()0,(N ).d(())d(())[0, 1],,max ()maxmax ()max ,d d (N ). ,[0,dx d ddx x x x d f C f x f x f f x f x f x f x f C f f x f x fx x f g C λλλλλλλ≤≤≤≤≤≤≤≤≤≤∀∈≠∃∈>≥≥>⋅∀∈∀∈=+=+=⋅∀∈8.证且即使得故即满足即满足01010101010d(()())1],max ()()maxd d ()dg() max ()()max d d max ()max dx x x x x f x g x f gf xg x xf x x f xg x x x f x ≤≤≤≤≤≤≤≤≤≤++=++⎡⎤≤⎡+⎤++⎢⎥⎣⎦⎣⎦≤+101010101010131d ()dg()()max maxd d d ()dg()max ()maxmax ()max ,d d (N ).,[0, 1].x x x dd x x x x d d f x x g x x x f x x f x g x f g x x C ≤≤≤≤≤≤≤≤≤≤≤≤≤≤++⎡⎤⎡⎤=+++=+⎢⎥⎢⎥⎣⎦⎣⎦⋅⋅即满足 所以是上的范数(2):D ]1 ,0[1C ]1 ,0[C →显然是线性的.因为1[0, 1]f C ∀∈,有110101d ()d ()maxmax ()max ,d d dx x t f x f x Df f x f x x≤≤≤≤≤≤=≤+=故D 是有界的. 9. 证 由于 ⋅是n n⨯上的方阵范数,故,n nA B ⨯∀∈及α∀∈,有(1)1*0AS AS -=≥,并且11*0A S AS S AS O A O --==⇔=⇔=;(2)11**A S AS O S AS A αααα--====;(3)()11111*A B S A B S S AS S BS S AS S BS -----+=+=+≤+**A B =+;(4)111*()()AB S ABS S AS S BS ---==11**S AS S BS AB --≤=;因此,* ⋅是n n⨯上的方阵范数.10. 2;F A 解 21i()det(),()0;i1f E A A λλλλρλ--=-==∴=-+H HH 21i 1i 22i 22i,(4),()4,i 1i 12i 22i 22.A A E A A A A A λλλλρλ---⎡⎤⎡⎤⎡⎤==-==-=⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦∴=11. 证 显然A λ≤.∵λ是可逆阵A 的特征值,则λ1是1A -特征值,故11A λ-≤,即11Aλ-≥. ∴11A A λ-≤≤.12.证 要证0(),x T ∈N 只需证明00.Tx =()0()(),0.lim ,,n n nn x T Tx n xx T →∞⊂=∀∈=由知于是当且是有界线性算子时有N0(lim )lim ()lim00,n n n n n Tx T x T x →∞→∞→∞====故0().x T ∈N习 题 四A一、判断题1.×;2.√;3.√;4.×;5.√;6.√;7.×;8.×.二、填空题1.2213e e 001cos x x x x ⎡⎤⎢⎥⎣⎦;2.222(1)tE t -+;3.1;4. 3e t ;5.22222222e e e e e e tt t t tt t t t ------⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; 6.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-t t t 2cos 2cos cos ;7.1; 8.3e -. B1. sin cos d (),d cos sin tt A t t tt -⎡⎤=⎢⎥--⎣⎦解 []22d d det ()cos sin 0d d A t t t t t =+=⎡⎤⎣⎦,22sin cos d ()det()sin cos 1.d cos sin t t A t t t t t t-==+=-- 2. 2213e e 0 ().01cos x x x f x ⎡⎤'=⎢⎥⎣⎦解x3. 1 1 0 0 11 10 0 0 110 0e d e d e 11 ()d d2d 11.sin d cos d 1cos1sin1t tt t t A t t t t t t t t t ⎡⎤-⎡⎤⎰⎰⎢⎥⎢⎥==⎰⎰⎰⎢⎥⎢⎥⎢⎥⎢⎥-⎰⎰⎣⎦⎣⎦解 4. 证明(1)d d d d d d ()()()()d d d d d d T T T T T f x x x x Ax Ax x Ax Ax x A t t t t t t==+=+d d d d d ()2;d d d d d T T T T T T T T x x x x x x A x A x A x A x A t t t t t=+=+=.(2)d d d d d d ()()2.d d d d d d T T T T T T T x x x x x x x x x x x x t t t t t t=+=+=5. 证(1)若lim k k A A →∞=,则2lim 0k k A A →∞-=. ∵222()T TTk k k A AA A A A -=-=-(可以证明[1]2222H T A A A A ===),∴2lim 0T Tk k A A →∞-=,即lim T Tk k A A →∞=. 同理可证lim k k A A →∞=,由上已证的结果立即可得lim H H k k A A →∞=.(2)000()lim ()lim ()NNTkT kk Tk k k N N k k k c A c A c A ∞→∞→∞=====∑∑∑0lim()Nk Tk N k c A →∞==∑ 0(lim )N k T k N k c A →∞==∑0()k Tk k c A ∞==∑ 6. 证 令()3200det()11120113E A λλλλλ--=---=-=--得A 的全部特征值均为 2. 于是13B A =的所有特征值都是32,故()213B ρ=<,因此lim k k B O →∞=.7. 证 方法一: 当0=t 时,显然成立,故设0≠t .记010100t t A t ⎡⎤⎡⎤==⎢⎥⎢⎥--⎣⎦⎣⎦. 22det()(i )(i )E A t t t λλλλ-=+=-+,t i 1=λ,t i 2-=λ.对t i 1=λ,解方程(i )0tE A x -=可得11i x ⎡⎤=⎢⎥⎣⎦;对t i 2-=λ解方程(i )0tE A x --=得21i x ⎡⎤=⎢⎥-⎣⎦.令11i i P ⎡⎤=⎢⎥-⎣⎦,则P 可逆且11/2i /21/2i /2P --⎡⎤=⎢⎥⎣⎦.所以01i 10i i 1i 111/2i /2e 0ee diag(e ,e )i i 1/2i /20e tt Attt P P ⎡⎤⎢⎥---⎣⎦--⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎥⎦⎤⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡+---+=----t t t t t t t t t t t t cos sin sin cos )e e (21)e e (i 21)e e (i 21)e e (21i i i i i i i i .方法二:记0110B ⎡⎤=⎢⎥-⎣⎦,21det()11E B λλλλ--==+,{}()i,i B σ=-.B 的最小多项式1)(2+=λλϕ,2)(deg =λϕ. 故设01e ()()tB a t E a t B =+.∵λt e 与λ)()(10t a t a +在()B σ上的值相等,即⎩⎨⎧=-=+-tt t a t a t a t a i 10i 10e )(i )(e )(i )(, ∴t t a t t cos 2e e )(i i 0=+=-,t t a tt sin i2e e )(i i 1=-=-.因此0110cos sin ecos sin sin cos t t t tE tB t t ⎡⎤⎢⎥-⎣⎦⎡⎤=+=⎢⎥-⎣⎦.8. 2eJordan ,e e e .e e e 2ttAtt t tt A t t t ------⎡⎤⎢⎥⎢⎥∴=⎢⎥⎢⎥⎢⎥⎣⎦解是块 9. 解 2214det()02(2)(1)031E A λλλλλλ----=-=----.∵(2)()A E A E O --≠,∴A 的最小多项式)1()2()(2--=λλλϕ.3)(deg =λϕ,故设2012()()()()()f At a t E a t A a t A T At =++=. 由()f t λ与()T t λ在{}()1,2A σ=上的值相等,于是(1)对()e Atf At =有⎪⎩⎪⎨⎧=+=++=++tttt t a t a t a t a t a t a t a t a 2212210210e )(4)(e )(4)(2)(e )()()(,解得⎪⎩⎪⎨⎧+-=-+-=+-=t t t t t t t t t t t a t t a t t a 222221220e e e )(e 3e 4e 4)(e 2e 3e 4)(所以22100e (4e 3e 2e )010001tA t t t t ⎡⎤⎢⎥=-+⎢⎥⎢⎥⎣⎦⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+130020412)e 3e 4e 4(22t t t t⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+19004012164)e e e (22t t t t ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+-+-=ttt t t t t t t tt e e 3e 300e 0e 4e 4e 13e 12e 12e 222222(2)对()sin()f At At =有01201212()()()sin ()2()4()sin 2()4()cos 2a t a t a t t a t a t a t t a t a t t t ++=⎧⎪++=⎨⎪+=⎩,解得⎪⎩⎪⎨⎧+-=-+-=+-=tt t t t a t t t t t a t t t t t a 2cos 2sin sin )(2cos 32sin 4sin 4)(2cos 22sin 3sin 4)(210. ∴2012sin()()()()At a t E a t A a t A =++sin 212sin 12sin 213cos 24sin 4sin 20sin 2003sin 3sin 2sin t t t t t t t t t t t -+-+⎡⎤⎢⎥=⎢⎥⎢⎥-+⎣⎦(注)可利用(1)的结果求(2)(或cos()At ):在(1)中分别以t i 和t i -替代t 得i e tA 和i etA-,再由公式i i i i e e e e sin()(cos())2i 2tA tA tA tAAt At ---+==或即得. 10. 解 210det()01(+1)01+2E A λλλλλλ-==-()A A E O -≠且,故A 的最小多项式2()(1)φλλλ=+,3)(deg =λϕ,故设2012()()()()()f At a t E a t A a t A T At =++=,即012100010001()()010()001()012001012023f At a t a t a t -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+-+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦012021212012()()()0()()()2()0()2()()2()3()a t a t a t a t a t a t a t a t a t a t a t a t -⎡⎤⎢⎥=--+⎢⎥⎢⎥--+⎣⎦. 由()f t λ与()T t λ在A 上的谱值相等,于是(1)对()e Atf At =有001212()1()()()e ()2()e tta t a t a t a t a t a t t --=⎧⎪-+=⎨⎪-=⎩,解得012()1()22e e ()1e e t t t t a t a t t a t t ----=⎧⎪=--⎨⎪=--⎩012021212012()()()e 0()()()2()0()2()()2()3()122e e 1e e 0e e e 0e e e At t t t t t t tt t ta t a t a t a t a t a t a t a t a t a t a t a t t t t t t t -----------⎡⎤⎢⎥∴=--+⎢⎥⎢⎥--+⎣⎦-++-+⎡⎤⎢⎥=+-⎢⎥⎢⎥-⎣⎦. (2)对()sin()f At At =有001212()0()()()sin ()2()cos a t a t a t a t t a t a t t t =⎧⎪-+=-⎨⎪-=⎩,解得012()0()2sin cos ()sin cos a t a t t t t a t t t t =⎧⎪=-⎨⎪=-⎩.012021212012()()()sin()0()()()2()0()2()()2()3()a t a t a t At a t a t a t a t a t a t a t a t a t -⎡⎤⎢⎥∴=--+⎢⎥⎢⎥--+⎣⎦02sin cos sin cos 0sin cos cos 0cos sin cos t t t t t t t t t t t t t t t t -+-⎡⎤⎢⎥=-+-⎢⎥⎢⎥--⎣⎦11.tr 2i 332i det(e )e e e .A A +-===解12. 解 此处775885050A --⎡⎤⎢⎥=---⎢⎥⎢⎥-⎣⎦,122()()()()x t x t x t x t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,321C ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦.因为775det()885(5)(5)(15),deg ()3,05E A λλλλλλϕλλ+--=+=-++=故设2012e ()()()()At a t E a t A a t A T At =++=.由tλe 与)(t T λ在(){5,5,15}A σ=--上的值相同,得方程组⎪⎩⎪⎨⎧=+-=+-=++--ttt t a t a t a t a t a t a t a t a t a 1521052105210e )(225)(15)( e )(25)(5)( e )(25 )(5 )(,解得 ⎪⎩⎪⎨⎧+-=-=-+=-----)e e 2(e )( )e (e )( )e 6e (3e )(1555200125510111555810t t t t t t t tt a t a t a ;于是 0121775105800e ()1()885()12014501050404025At a t a t a t --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+---+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++--+-+-+-+---+--++=---------------t t tt t t t t t t t t t tt t t t t t t t t t 551555155555155515555515551555e 5e 5e 2e e 3e 24e e 2e 5e 5e 6e e 3e64e 2e e 5e 5e 4e e 3e 44e e 2101. 所以,解为 55155515551517e 9e 4e 1()e 17e 9e 6e 1017e 9e 2e t t t At t t t t t tx t C ------++⎡⎤⎢⎥==--+⎢⎥⎢⎥-+⎣⎦,即⎪⎪⎩⎪⎪⎨⎧+-=+--=++=------)e 2e 9e 17(101)()e 6e 9e 17(101)()e 49e e 17(101)(155531555215551tt t t t t t t t t x t x t x .习 题 五A一、判断题1.√;2.×;3.√;4.√;5.√;6.×;7.√;8.√;9.×;10.√;11.√;12.×;13.√;14.√ 15.√.二、填空题1.0;2.{}0;3.span A ;4.1;5.3;6.O ;7.123()1,()1,()(1)(2)d d d λλλλλλ==-=--;8.实;9.0; 10.1;11.1,a b c ===.三、单项选择题1.(d);2. (c);3. (c).B1.证 121212(1)(,,,),(,,,),(,,,),,T T T nn n n x y z ξξξηηηςςςλμ∀===∈∀∈及,有1111(I ),(),,;nnnk k k k k k k k k k k k k x y z k k k x z y z λμλξμηςλξςμηςλμ===<+>=+=+=<>+<>∑∑∑211(I ),,;n nk k k k k k k k x y k k y x ξηηξ==<>===<>∑∑231221(I ),0, ,=01,2,,,=01,2,,,00;nk k k nk kk k k x x k x x k k n k n x ξξξξ==<>=≥<>=⇔∀=⇔∀==⇔=∑∑且有有,.nk <⋅⋅>故是上的一种内积(2),,,,n nij ij ij A a B b C c λμ⨯⎡⎤⎡⎤⎡⎤∀===∈∀∈⎣⎦⎣⎦⎣⎦及,有1111111(I ),(),,;nnnnnnij ij ij ij ij ij ij i j i j i j A B C a b c a c b c A C B C λμλμλμλμ======<+>=+=+=<>+<>∑∑∑∑∑∑2111111(I ),,;nnnnnnij ij ij ij ij ij i j i j i j A B a b a b a b B A ======<>====<>∑∑∑∑∑∑2311112211(I ),0, ,0,1,2,,,00;n n n nij ij ij i j i j nnijijij i j A A a a a A A a i j n a a A O ======<>==≥<>==⇔∀===⇔=∑∑∑∑∑∑且有即,.n n⨯<⋅⋅>故是上的一种内积12211.nnij F i j A a A ==⎛⎫>== ⎪⎝⎭∑∑2. 证 右端) , ,(41>--<->++<=y x y x y x y x><+><+><+><=y y x y y x x x ,,,,(41),,,,><-><+><+><-y y x y y x x x 1(4,)4x y =<>=左端.3.证 (1)若⊥∈B x ,则B y ∈∀皆有y x ⊥,由假设B A ⊂,于是对每一个A y ∈皆有y x ⊥,即⊥∈A x ,故⊥⊥⊂A B .(2)若A x ∈,则⊥∈∀A y 皆有y x ⊥,故⊥⊥∈)(A x ,于是⊥⊥⊂)(A A .4.解 显然123.det 20,det 110,det 380,.A A A A A =>=>=>∴是实对称矩阵正定其余略.5. 证 “⇒”: 若n nA ⨯∈正定,则det det 0n A A =>,故A 非奇异.“⇐”: 若A 非奇异,则1det 0ni i A λ==≠∏,从而),,2,1(0n i i =≠λ. 又因为A 半正定,故有0≥i λ,于是),,2,1(0n i i =>λ,所以A 是正定的.6.证 先验证2A 是Hermite 矩阵.22222()()(),Hermite .H H H H H H H H H H H A A AA AA A A AA A AA A AA AA AAA A A A A ======∴是矩阵再证2A 是正定的.12222 ,,Hermite 0(1,2,,).0(1,2,,),.n i i i A n A i n A i n A λλλλλλ∈≠=>=设是的个特征值,由是矩阵且可逆知,且从而的所有特征值故是正定矩阵7. 解 (1)令3i 1i 02010E A λλλλλλ---==-=-得01=λ,22=λ,23-=λ,由此判定A不是正定的.对01=λ解方程组0Ax -=,即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---000i 0100i 1i 0321ξξξ,亦即⎩⎨⎧==+ 00i 132ξξξ,得⎩⎨⎧==321i 0ξξξ. 若取13=ξ,则有10i 1x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=. 对22=λ解)0A x -=可得2i 1x ⎢⎥⎢⎥⎣⎦=-.对23-=λ解()0A x -=可得⎥⎥⎦⎤⎢⎢⎣⎡--=1i 23x .由于1x ,2x ,3x 分别对应于A 的不同特征值,故彼此正交.将它们单位化,得10i 1/α⎡⎤⎢⎢⎢⎣=,2i /21/2α⎡⎢⎢⎥⎢⎥⎣⎦=-,3i /21/2α⎡⎢⎢⎥⎢⎥⎣⎦-=-.令[]12301/,,i i /2i /21/21/2U ααα⎡-⎢==--⎢⎥⎢⎥⎢⎥⎣⎦,01/i /21/2i /21/2H U ⎡-⎢=⎢⎥⎢⎥-⎢⎥⎣⎦,则0H U AU ⎡⎤⎢⎥=⎢⎥⎢⎣.习 题 六A一、判断题1.×;2.√;3.×;4.×;5.×;6.×;7.×;8.√;9.×.二、填空题1.1122112201010-⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦;2. (1)()12(1)(1)()213(1)(1)321( 3 24)41(3 30)(0,1,2,)41( 24)4k k k k k k k x x x x x k x x +++++⎧=-+⎪⎪=-++=⎨⎪⎪=-⎩;3.1()D L U --;4.Seidel,Jacobi .B1. 解(1)110000100005000.55000A-⎡⎤⎢⎥⎣⎦-=-, 3.0001A ∞=,120000A-∞=,∴cond 60002A ∞=.(2)1 1.38 2.1810.2106 2.79 4.56B -⎡⎤⎢⎥⎣⎦-=-,17.35B =,1132.00B -=,∴1cond 235.2B =.(3)12212max{,}1009910099,cond (6-3).min{,}99989998C C λλλλλλ--⎡⎤==⎢⎥--⎣⎦是实对称矩阵故见令12122019810,9999cond 39206.C λλλλλλ=--===∴==≈得 2. 解(1)对增广矩阵施行行的初等变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡330002121041123232300212104112522162134112得到等价的上三角方程组⎪⎩⎪⎨⎧==+-=++330212142332321x x x x x x .进行回代,得方程组的解为:12/)4( ,1)21/(21 ,13/3321323=--==--===x x x x x x .故解为(1,1,1).T x =(2)对增广矩阵施行初等行变换11034110341103421111011590115931123041715003132112314033280001319⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥----------⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥-------⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦得到等价的上三角方程组1242343443459313211319x x x x x x x x x ++=⎧⎪---=-⎪⎨+=⎪⎪-=-⎩.进行回代,得方程组的解:43419219/(13), (2113)/3,133x x x =--==-=2341244055(95), 433939x x x x x x =--++==--=-,故解为()5540192,,,.3939313Tx -=3. 解 首先用顺序Gauss 消去法.对增广矩阵施行初等行变换:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1.982.4120032001.1291.58334.016781.0167.001.0012.0 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯-⨯-⨯-⨯-⨯-⨯→-65424101798.0104453.0101467.00104441.0108007.0106667.006781.0167.001.0012.0⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯-⨯-⨯-⨯-⨯→-9924109774.0101762.000104441.0108007.0106667.006781.0167.001.0012.0,经回代得547.53=x ,43.722=x ,05.811-=x . 此时,620.174310Ax b -=⨯. 下面用列主元素Gauss 消去法.对增广矩阵施行初等行变换(下画横线者为主元素)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡9812.4120032001.1291.58334.016781.0167.001.0012.0 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯⨯⨯→-6744.01670.0105500.00101179.0105909.04584.009812.41200320022⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯⨯⨯→-5329.0109610.000101179.0105909.04584.009812.41200320012, 经回代得46.17,76.45,545.5123=-==x x x . 此时,289.22=-b Ax .列主元素Gauss 消去法比顺序Gauss 消去法的精度高.4. 解 Jacobi 迭代格式为()()()⎪⎪⎩⎪⎪⎨⎧++-=+--=+--=+++30] 32[151]12[ 81 ]2432 [201)(2)(113)(3)(112)(3)(211k k k k k k k k k x x x x x x x x x ( ,2,1,0=k ). 计算结果如下表:解为767354.01=x ,138410.12=x ,125368.23=x .Seidel 迭代格式与计算结果如下:()()()⎪⎪⎪⎪⎨⎧++-=+--=+--=++++++30] 32[151]12 [ 81 ]2432 [201)1(2)1(113)(3)1(112)(3)(211k k k k k k k k k x x x x x x x x x ( ,2,1,0=k );5. 解 Jacobi 迭代格式为()()()⎪⎪⎩⎪⎪⎨⎧++-=+--=+--=+++30] 32[151]12[ 81 ]2432 [201)(2)(113)(3)(112)(3)(211k k k k k k k k k x x x x x x x x x ( ,2,1,0=k ), 因为()()21113300044335110,det(),1,444481100044M E M M λλλλλρλ⎡⎤-⎢⎥⎢⎥=--=-=-=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦所以Jacobi 迭代格式收敛.Seidel 迭代格式为()()()⎪⎪⎩⎪⎪⎨⎧++-=+--=+--=++++++30] 32[151]12 [ 81 ]2432 [201)1(2)1(113)(3)1(112)(3)(211k k k k k k k k k x x x x x x x x x ( ,2,1,0=k ).因为系数矩阵A 对称,且123det 40,det 70,det 240,,A A A A =>=>=>从而正定故Seidel 迭代格式收敛.6. 解(1)Jacobi 迭代矩阵1111022()10111022M D L U -⎡⎤-⎢⎥⎢⎥=+=--⎢⎥⎢⎥⎣⎦;215det()()4E M λλλ-=+,1()1M ρ=>.因此,Jacobi 迭代格式发散.Seidel 迭代矩阵12111000222011111()100010222000111000222M D L U -⎡⎤⎡⎤-⎢⎥⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥=-=--=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥--⎣⎦⎣⎦; 221det()()2E M λλλ-=+,21()2M ρ=.因此Seidel 迭代格式收敛.(2)Jacobi 迭代矩阵1100022022010101101001220220M --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦;31det()E M λλ-=,1()0M ρ=.因此, Jacobi 迭代格式收敛.Seidel 迭代矩阵2100022022110001023021000002M --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦;()22det()2E M λλλ-=-,2()21M ρ=>.因此, Seidel 迭代格式发散.*7.用追赶法解线性方程组12123233 1, 247, 259.x x x x x x x +=-⎧⎪++=⎨⎪+=⎩解 系数矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=520142013A .31=u ,3/2/212==u l ,3/101422=⋅-=l u ,5/3/223==u l ,5/221533=⋅-=l u ;11-=y ,3/237122=-=y l y ,5/229233=-=y l y ;1/333==∴u y x ,2/)1(2322=⋅-=u x y x ,1/)1(1211-=⋅-=u x y x .即解为(1,2,1).Tx =- 8. 解 把方程组调整为⎪⎩⎪⎨⎧=+=+=++22846231312123x x x x x x x , 此时系数矩阵为312041102A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦.Seidel 迭代矩阵111200033301211()000010044000111106263M D L U -⎡⎤⎡⎤--⎢⎥⎢⎥--⎡⎤⎢⎥⎢⎥⎢⎥=-=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦, 11det()(66E M λλλλ-=---+,()1M ρ=<.因此,此时Seidel 迭代格式()()()()()()()⎪⎪⎩⎪⎪⎨⎧-=-=--=++++ )2(21)8(41)26(3113111121213k k k k k k k x x x x x x x 收敛.习 题 七A一、判断题1.×;2.√;3.×;4.×.二、填空题1.1,1n +;2. 11:455;:;:33-一阶差商,,二阶差商1,三阶差商;3.16.640,0.096,16.736.B1. 解 因为0120.15,0.00,0.10,0.20.x x x x ====故取则2(0.150.10)(0.150.20)(0.15)(0.15)0.000(0.000.10)(0.000.20)(0.150.00)(0.150.20)0.0998(0.100.00)(0.100.20)(0.150.00)(0.15 f L --≈=⨯----+⨯----+0.10)0.1987(0.200.00)(0.200.10)00.074850.074510.1494.⨯--=++= 521(0.15)(0.150.00)(0.150.10)(0.150.20) 6.2510.3!R -≤---=⨯2.解 对于点76.35x =,取076x =,177x =,278x =,379x =. 作差商表于是有2(1)(76.35)(76.35)2.832670.0689(76.3576)0.00306(76.3576)(76.3577) 2.832670.024120.00070 2.85609.f N ≈=+-+--=+-=32(2)(76.35)(76.35)(76.35)0.00017(76.3576)(76.3577)(76.3578) 2.856090.00006 2.85615.f N N ≈=+---=+=3. 解 选01220.20,0.40,0.60,0.80x x x x ====.作差商表:。

工程数学线性代数(同济大学第六版)课后习题答案(全)

工程数学线性代数(同济大学第六版)课后习题答案(全)

第一章 行列式1. 利用对角线法则计算下列三阶行列式: (1)381141102---;解 381141102---=2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4.(2)b a c a c b cb a ;解 ba c a cb cb a=acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3.(3)222111c b a c b a ;解 222111c b a c b a=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).(4)y x y x x y x y yx y x +++.解 yx y x x y x y yx y x +++=x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3).2. 按自然数从小到大为标准次序, 求下列各排列的逆序数:(1)1 2 3 4;解逆序数为0(2)4 1 3 2;解逆序数为4:41, 43, 42, 32. (3)3 4 2 1;解逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1.(4)2 4 1 3;解逆序数为3: 2 1, 4 1, 4 3.(5)1 3 ⋅⋅⋅ (2n-1) 2 4 ⋅⋅⋅ (2n);解逆序数为2)1(-nn:3 2 (1个)5 2, 5 4(2个)7 2, 7 4, 7 6(3个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个) (6)1 3 ⋅⋅⋅(2n-1) (2n) (2n-2) ⋅⋅⋅ 2.解逆序数为n(n-1) :3 2(1个)5 2, 5 4 (2个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个)4 2(1个) 6 2, 6 4(2个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n )2, (2n )4, (2n )6, ⋅ ⋅ ⋅, (2n )(2n -2) (n -1个) 3. 写出四阶行列式中含有因子a 11a 23的项. 解 含因子a 11a 23的项的一般形式为(-1)t a 11a 23a 3r a 4s ,其中rs 是2和4构成的排列, 这种排列共有两个, 即24和42. 所以含因子a 11a 23的项分别是(-1)t a 11a 23a 32a 44=(-1)1a 11a 23a 32a 44=-a 11a 23a 32a 44, (-1)t a 11a 23a 34a 42=(-1)2a 11a 23a 34a 42=a 11a 23a 34a 42. 4. 计算下列各行列式:(1)71100251020214214; 解 71100251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---= 143102211014--=01417172001099323211=-++======c c c c .(2)2605232112131412-;解 2605232112131412-260503212213041224--=====c c 041203212213041224--=====r r 000003212213041214=--=====r r . (3)efcf bf de cd bd aeac ab ---;解 ef cf bf de cd bd ae ac ab ---e c b e c b ec b adf ---=abcdef adfbce 4111111111=---=.(4)dc b a 100110011001---. 解d c b a 100110011001---dc b aab ar r 10011001101021---++===== dc a ab 101101)1)(1(12--+--=+01011123-+-++=====cd c ada ab dc ccdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1. 5. 证明:(1)1112222b b a a b ab a +=(a -b )3;证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b )3 . (2)y x z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=y x z x z y zy x b a )(33+=.(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ; 证明 2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2, c 2-c 1得) 5232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2得) 022122212221222122222=++++=d d c c b b a a . (4)444422221111d c b a d c b a d c b a =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ); 证明 444422221111d c b a d c b a d c b a )()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b ad a c a b ---------=)()()(111))()((222a d d a c c a b b dc b ad a c a b +++---= ))(())((00111))()((a b d b d d a b c b c c b d b c a d a c a b ++-++------=)()(11))()()()((a b d d a b c c b d b c a d a c a b ++++-----==(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ).(5)1221 1 000 00 1000 01a x a a a a x x xn n n +⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--- =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n .证明 用数学归纳法证明.当n =2时, 2121221a x a x a x a x D ++=+-=, 命题成立. 假设对于(n -1)阶行列式命题成立, 即 D n -1=x n -1+a 1 x n -2+ ⋅ ⋅ ⋅ +a n -2x +a n -1, 则D n 按第一列展开, 有11100 100 01)1(11-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--+=+-x x a xD D n n n n =xD n -1+a n =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n . 因此, 对于n 阶行列式命题成立.6. 设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90︒、或依副对角线翻转, 依次得n nn n a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=, 11112 n nn n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= , 11113 a a a a D n nnn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,证明D D D n n 2)1(21)1(--==, D 3=D .证明 因为D =det(a ij ), 所以 nnn n n n nnnn a a a a a a a a a a D 2211111111111 )1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=- ⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=-- )1()1(331122111121nnn n nn n n a a a a a a a a D D n n n n 2)1()1()2( 21)1()1(--+-+⋅⋅⋅++-=-=.同理可证nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=- )1(11112)1(2D D n n T n n 2)1(2)1()1()1(---=-=. D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(.7. 计算下列各行列式(D k 为k 阶行列式): (1)aa D n 1 1⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0; 解 aa a a a D n 010 000 00 000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开) )1()1(10 000 00 000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a an n n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1)1()1(=a n -a n -2=a n -2(a 2-1).(2)xa a a x a a a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(-1)分别加到其余各行, 得 ax x a ax x a a x x a a a a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0, 再将各列都加到第一列上, 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 0000 )1(=[x +(n -1)a ](x -a )n -1.(3)111 1 )( )1()( )1(1111⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅--⋅⋅⋅-=---+n a a a n a a a n a a a D n n n nn n n ; 解 根据第6题结果, 有nn n n n n n n n n a a a n a a a n a a aD )( )1()( )1( 11 11)1(1112)1(1-⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=---++此行列式为范德蒙德行列式. ∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏≥>≥++---=112)1()]([)1(j i n n n j i∏≥>≥++⋅⋅⋅+-++-⋅-⋅-=1121)1(2)1()()1()1(j i n n n n n j i∏≥>≥+-=11)(j i n j i .(4)nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112; 解nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开) nn n n n nd d c d c b a b a a 00011111111----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=0)1(1111111112c d c d c b a b a b nn n n n nn ----+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-+. 再按最后一行展开得递推公式D 2n =a n d n D 2n -2-b n c n D 2n -2, 即D 2n =(a n d n -b n c n )D 2n -2. 于是 ∏=-=ni i i i i n D c b d a D 222)(.而 111111112c b d a d c b a D -==, 所以 ∏=-=n i i i i i n c b d a D 12)(. (5) D =det(a ij ), 其中a ij =|i -j |; 解 a ij =|i -j |,4321 4 01233 10122 21011 3210)det(⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅==n n n n n n n n a D ij n 0 4321 1 11111 11111 11111 1111 2132⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅--⋅⋅⋅-=====n n n n r r r r 15242321 0 22210 02210 00210 0001 1213-⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅-+⋅⋅⋅+=====n n n n n c c c c =(-1)n -1(n -1)2n -2.(6)nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121, 其中a 1a 2 ⋅ ⋅ ⋅ a n≠0.解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121 nn n n a a a a a a a a a c c c c +-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=====--100001 000 100 0100 0100 00113322121321111312112111000011 000 00 11000 01100 001 ------+-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅=nn n a a a a a a a a∑=------+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i n n a a a a a a a a 1111131******** 00010 000 00 10000 01000 001)11)((121∑=+=ni i n a a a a .8. 用克莱姆法则解下列方程组:(1)⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;解 因为14211213513241211111-=----=D , 142112105132412211151-=------=D , 284112035122412111512-=-----=D ,426110135232422115113-=----=D , 14202132132212151114=-----=D , 所以 111==DD x , 222==D D x , 333==D D x , 144-==D D x .(2)⎪⎪⎩⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x .解 因为 665510006510006510065100065==D , 150751001651000651000650000611==D , 114551010651000650000601000152-==D , 703511650000601000051001653==D , 39551601000051000651010654-==D , 2121100005100065100651100655==D , 所以66515071=x , 66511452-=x , 6657033=x , 6653954-=x , 6652124=x .9. 问λ, μ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 系数行列式为μλμμμλ-==1211111D .令D =0, 得 μ=0或λ=1.于是, 当μ=0或λ=1时该齐次线性方程组有非零解.10. 问λ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解?解 系数行列式为λλλλλλλ--+--=----=101112431111132421D=(1-λ)3+(λ-3)-4(1-λ)-2(1-λ)(-3-λ) =(1-λ)3+2(1-λ)2+λ-3. 令D =0, 得λ=0, λ=2或λ=3.于是, 当λ=0, λ=2或λ=3时, 该齐次线性方程组有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T . 4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫⎝⎛=49635.(2)⎪⎪⎭⎫⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA . (2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B )(A -B )≠A 2-B 2. 6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ; 解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取 ⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫ ⎝⎛=λλλ001001A , 求A k . 解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以AB =(AB )T =B T A T =BA .11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解 ⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A |=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A , 所以 *||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫ ⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012. (4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) . 解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ; 解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x . (2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x . 解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x . 14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E ,由定理2推论知(E -A )可逆, 且(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ).另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ),故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ),两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得A 2-A =2E , 即A (A -E )=2E ,或 E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E ,或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2,即 |A ||A -E |=2,故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-, 又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1,)3(41)2(1A E E A -=+-. 16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|. 解 因为*||11A A A =-, 所以 |||521||*5)2(|111----=-A A A A A |2521|11---=A A =|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*.证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有 |A *|=|A |n |A -1|=|A |n -1≠0,从而A *也可逆.因为A *=|A |A -1, 所以(A *)-1=|A |-1A . 又*)(||)*(||1111---==A A A A A , 所以 (A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A *, 证明:(1)若|A |=0, 则|A *|=0;(2)|A *|=|A |n -1.证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0.(2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到 |A ||A *|=|A |n .若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立.因此|A *|=|A |n -1.19. 设⎪⎪⎭⎫ ⎝⎛-=321011330A , AB =A +2B , 求B . 解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A , 所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B . 解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731.24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121.解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫⎝⎛+=222111B A O B B A A ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解 4100120021010*********0021010010110100101==--=--=D C B A , 而 01111|||||||| ==D C B A ,故 |||||||| D C B A D C B A ≠.28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4.解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A ,则 ⎪⎭⎫⎝⎛=21A O O A A ,故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A , 1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求 (1)1-⎪⎭⎫ ⎝⎛O B A O ; 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC OBC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413BC O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s nEBD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A B C O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫⎝⎛--340313021201;解 ⎪⎪⎭⎫⎝⎛--340313021201(下一步: r 2+(-2)r 1, r 3+(-3)r 1. )~⎪⎪⎭⎫⎝⎛---020*********(下一步: r 2÷(-1), r 3÷(-2). )~⎪⎪⎭⎫⎝⎛--010*********(下一步: r 3-r 2. )~⎪⎪⎭⎫⎝⎛--300031001201(下一步: r 3÷3. )~⎪⎪⎭⎫⎝⎛--100031001201(下一步: r 2+3r 3. )~⎪⎪⎭⎫⎝⎛-100001001201(下一步: r 1+(-2)r 2, r 1+r 3. )~⎪⎪⎭⎫⎝⎛100001000001.(2)⎪⎪⎭⎫⎝⎛----174034301320;解 ⎪⎪⎭⎫⎝⎛----174034301320(下一步: r 2⨯2+(-3)r 1, r 3+(-2)r 1. )~⎪⎪⎭⎫⎝⎛---310031001320(下一步: r 3+r 2, r 1+3r 2. )~⎪⎪⎭⎫⎝⎛0000310010020(下一步: r 1÷2. )~⎪⎪⎭⎫⎝⎛000031005010.(3)⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311;解 ⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. )~⎪⎪⎪⎭⎫⎝⎛--------1010500663008840034311(下一步: r 2÷(-4), r 3÷(-3) , r 4÷(-5). )~⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. )~⎪⎪⎪⎭⎫⎝⎛---00000000002210032011. (4)⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 ⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132(下一步: r 1-2r 2, r 3-3r 2, r 4-2r 2. )~⎪⎪⎪⎭⎫⎝⎛-----1187701298804202111110(下一步: r 2+2r 1, r 3-8r 1, r 4-7r 1. )~⎪⎪⎪⎭⎫⎝⎛--41000410002020111110(下一步: r 1↔r 2, r 2⨯(-1), r 4-r 3. )~⎪⎪⎪⎭⎫⎝⎛----00000410001111020201(下一步: r 2+r 3. )~⎪⎪⎪⎭⎫⎝⎛--000410*******20201.2. 设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A , 求A .解 ⎪⎪⎭⎫⎝⎛100001010是初等矩阵E (1, 2), 其逆矩阵就是其本身.⎪⎪⎭⎫⎝⎛100010101是初等矩阵E (1, 2(1)), 其逆矩阵是E (1, 2(-1)) ⎪⎪⎭⎫⎝⎛-=100010101.⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=100010101987654321100001010A⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=287221254100010101987321654.3. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫⎝⎛323513123;解 ⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫⎝⎛---101011001200410123~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫⎝⎛----2/102/11002110102/33/26/7001故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267.(2)⎪⎪⎪⎭⎫⎝⎛-----1210232112201023.解 ⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023~⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321~⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321 ~⎪⎪⎪⎭⎫⎝⎛----------10612631110`1022111000010000100021~⎪⎪⎪⎭⎫⎝⎛-------106126311101042111000010000100001 故逆矩阵为⎪⎪⎪⎭⎫⎝⎛-------10612631110104211. 4. (1)设⎪⎪⎭⎫ ⎝⎛--=113122214A , ⎪⎪⎭⎫⎝⎛--=132231B , 求X 使AX =B ;解 因为⎪⎪⎭⎫ ⎝⎛----=132231 113122214) ,(B A ⎪⎪⎭⎫⎝⎛--412315210 100010001 ~r ,所以 ⎪⎪⎭⎫⎝⎛--==-4123152101B A X .(2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫ ⎝⎛-=132321B , 求X 使XA =B . 解 考虑A T X T =B T . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(T T B A ⎪⎪⎭⎫⎝⎛---411007101042001 ~r ,所以 ⎪⎪⎭⎫⎝⎛---==-417142)(1T T T B A X ,从而 ⎪⎭⎫ ⎝⎛---==-4741121BA X .5. 设⎪⎪⎭⎫⎝⎛---=101110011A , AX =2X +A , 求X .解 原方程化为(A -2E )X =A . 因为⎪⎪⎭⎫⎝⎛---------=-101101110110011011) ,2(A E A⎪⎪⎭⎫⎝⎛---011100101010110001~,所以 ⎪⎪⎭⎫⎝⎛---=-=-011101110)2(1A E A X .6. 在秩是r 的矩阵中,有没有等于0的r -1阶子式? 有没有等于0的r 阶子式?解 在秩是r 的矩阵中, 可能存在等于0的r -1阶子式, 也可能存在等于0的r 阶子式.例如, ⎪⎪⎭⎫⎝⎛=010*********A , R (A )=3.0000是等于0的2阶子式, 010001000是等于0的3阶子式. 7. 从矩阵A 中划去一行得到矩阵B , 问A , B 的秩的关系怎样?解 R (A )≥R (B ).这是因为B 的非零子式必是A 的非零子式, 故A 的秩不会小于B 的秩.8. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫ ⎝⎛-0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.9. 求下列矩阵的秩, 并求一个最高阶非零子式:(1)⎪⎪⎭⎫⎝⎛---443112112013;解 ⎪⎪⎭⎫⎝⎛---443112112013(下一步: r 1↔r 2. )~⎪⎪⎭⎫⎝⎛---443120131211(下一步: r 2-3r 1, r 3-r 1. )~⎪⎪⎭⎫⎝⎛----564056401211(下一步: r 3-r 2. )~⎪⎭⎫ ⎝⎛---000056401211, 矩阵的2秩为, 41113-=-是一个最高阶非零子式.(2)⎪⎪⎭⎫⎝⎛-------815073*********;解 ⎪⎪⎭⎫⎝⎛-------815073*********(下一步: r 1-r 2, r 2-2r 1, r 3-7r 1. )~⎪⎭⎫ ⎝⎛------15273321059117014431(下一步: r 3-3r 2. ) ~⎪⎭⎫ ⎝⎛----0000059117014431, 矩阵的秩是2, 71223-=-是一个最高阶非零子式.(3)⎪⎪⎪⎭⎫⎝⎛---02301085235703273812. 解 ⎪⎪⎪⎭⎫⎝⎛---02301085235703273812(下一步: r 1-2r 4, r 2-2r 4, r 3-3r 4. )~⎪⎪⎪⎭⎫⎝⎛------023*********63071210(下一步: r 2+3r 1, r 3+2r 1. )~⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210(下一步: r 2÷16r 4, r 3-16r 2. )~⎪⎪⎪⎭⎫⎝⎛-023010*********71210 ~⎪⎪⎪⎭⎫⎝⎛-00000100007121002301, 矩阵的秩为3, 070023085570≠=-是一个最高阶非零子式.10. 设A 、B 都是m ⨯n 矩阵, 证明A ~B 的充分必要条件是R (A )=R (B ).证明 根据定理3, 必要性是成立的.充分性. 设R (A )=R (B ), 则A 与B 的标准形是相同的. 设A 与B 的标准形为D , 则有A ~D , D ~B .由等价关系的传递性, 有A ~B .11. 设⎪⎪⎭⎫⎝⎛----=32321321k k k A , 问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3.解 ⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫⎝⎛+-----)2)(1(0011011 ~k k k k k r . (1)当k =1时, R (A )=1; (2)当k =-2且k ≠1时, R (A )=2; (3)当k ≠1且k ≠-2时, R (A )=3.12. 求解下列齐次线性方程组: (1)⎪⎩⎪⎨⎧=+++=-++=-++02220202432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛--212211121211~⎪⎪⎭⎫ ⎝⎛---3/410013100101,于是 ⎪⎪⎩⎪⎪⎨⎧==-==4443424134334x x x x x x x x ,故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x (k 为任意常数).(2)⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛----5110531631121~⎪⎪⎭⎫⎝⎛-000001001021,于是 ⎪⎩⎪⎨⎧===+-=4432242102x x x xx x x x ,故方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10010********1k k x x x x (k 1, k 2为任意常数).(3)⎪⎩⎪⎨⎧=-+-=+-+=-++=+-+07420634072305324321432143214321x x x x x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎪⎭⎫⎝⎛-----7421631472135132~⎪⎪⎪⎭⎫ ⎝⎛1000010000100001,于是 ⎪⎩⎪⎨⎧====0004321x x x x ,故方程组的解为⎪⎩⎪⎨⎧====00004321x x x x .(4)⎪⎩⎪⎨⎧=++-=+-+=-+-=+-+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x .解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎪⎭⎫⎝⎛-----3127161311423327543~⎪⎪⎪⎪⎪⎭⎫⎝⎛--000000001720171910171317301,于是 ⎪⎪⎩⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x xx x ,故方程组的解为⎪⎪⎪⎪⎪⎭⎫⎝⎛--+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛1017201713011719173214321k k x x x x (k 1, k 2为任意常数).13. 求解下列非齐次线性方程组:。

工程数学基础教程天津大学课后答案

工程数学基础教程天津大学课后答案

工程数学基础教程天津大学课后答案
第二章
2-1
某建筑物场地地表以下土层依次为:(1)中砂,厚2.0m,潜水面在地表下1m处,(2)粘土隔离层,厚2.0m,重度(3)粗砂饱和重度含承压水,承压水位高出地表2.0m(取无隆起的危险?若基础埋深)。

问地基开挖深达1m 时,坑底有水,施工时除将中砂层内地下水位降到坑底外,还须设法将粗砂层中的承压水位降几米才行?
【解】
(1)地基开挖深1m时持力层为中砂层承压含水层顶面以上土的总覆盖压力:20×1+19×2=58kPa承压含水层顶部净水压力:10×(2+2+2)=60kPa 因为58承压含水层顶面以上土的总覆盖压力:20×0.5+19×2=48kPa≥承压含水层顶部净水压力=10×≤4.8m;故,还应将承压水位降低6-4.8=1.2m。

仅作参考。

工程数学练习册数值计算答案 曾德胜

工程数学练习册数值计算答案 曾德胜

第二章 插值与逼近1、2,1,0210===x x x ,1212142)1()2(22)2)(1()()()()(22211002++=⨯-+----=++=x x x x x x x x y x l y x l y x l x L 2、对于线性插值 6.0,5.010==x x6464.5)5.0(7943.4)6.0()()()(11001⨯-+⨯--=+=x x y x l y x l x L 54667.0)57891.0(1=L对于二次插值 7.0,6.0,5.0210===x x x 2211002)()()()(y x l y x l y x l x L ++=54714.0053605929.0539525484.006121813.0)57891.0(2=-+=L 41107.4|)6.057891.0)(5.057891.0(|26.0sin |)57891.0(|-⨯=--≤R 52103|)7.057891.0)(6.057891.0)(5.057891.0(|!35.0cos |)57891.0(|-⨯=---≤R 3、差商表为:)08.1)(06.1)(02.1)(1(0587.29)06.1)(02.1)(1(1510.3)02.1)(1)(70625.099.01()(4--------+---⨯-=x x x x x x x x x x x N04838.0000013076.0000045765.0001059.00495.0)05.1()05.1ln(4=---=≈N4、设所求的多项式为: ))(2)(1()()(24b ax x x x x N x H +--+=))(2)(1(23212b ax x x x x x +--++-= 由 43,41a 1)1(0)0(''-====b f f 得及故 224)3(41)(-=x x x H设 由题意知,),()()(44x H x f x R -=1,0==x x 是 )(4x R 的二重根,2=x 是单根。

工程数学-线性代数第五版课后习题答案

工程数学-线性代数第五版课后习题答案

第二章 矩阵及其运算13. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x ,求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y . 3. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换. 解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .2.设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫ ⎝⎛--=150421321B ,求3AB -2A 及A T B .解⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T.1. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635.(2)⎪⎪⎭⎫ ⎝⎛123)321(;解⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解)21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142.(4)⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ;解⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解 ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x =(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.4. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫⎝⎛=+5222B A ,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148, 但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B )(A -B )≠A 2-B 2.5. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E .(3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .6. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k.解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k .7.设⎪⎪⎭⎫⎝⎛=λλλ001001A ,求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ,⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA kk kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫.用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ,由数学归纳法原理知:⎪⎪⎪⎪⎭⎫⎝⎛-=---k k kk k k k k k k k A λλλλλλ0002)1(121.8. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵.9. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB , 即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以 AB =(AB )T =B T A T =BA . 10. 求下列矩阵的逆矩阵:(1)⎪⎭⎫⎝⎛5221;解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为⎪⎭⎫⎝⎛--=⎪⎭⎫⎝⎛=1225*22122111A A A A A ,故 *||11A A A =-⎪⎭⎫⎝⎛--=1225.(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ;解 ⎪⎭⎫ ⎝⎛-=θθθθc o s s i ns i n c o s A . |A |=1≠0, 故A -1存在. 因为 ⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛=θθθθc o s s i n s i n c o s *22122111A A A A A , 所以 *||11A A A =-⎪⎭⎫⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎭⎫⎝⎛---145243121;解⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以*||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解⎪⎪⎪⎭⎫ ⎝⎛=n a a a A0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n a a a A 10011211.11. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232.(2)⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛--234311*********X ;解1111012112234311-⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111.(4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012.12. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x ,故有⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ). 另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或 E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E , 或 E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2, 即 |A ||A -E |=2, 故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E ⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1, )3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*.证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有|A *|=|A |n |A -1|=|A |n -1≠0, 从而A *也可逆.因为A *=|A |A -1, 所以 (A *)-1=|A |-1A . 又*)(||)*(||1111---==A A A A A , 所以(A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*. 18. 设n 阶矩阵A 的伴随矩阵为A *, 证明: (1)若|A |=0, 则|A *|=0; (2)|A *|=|A |n -1. 证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0. (2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到|A ||A *|=|A |n . 若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立. 因此|A *|=|A |n -1. 19.设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B ,求B .解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330.20.设⎪⎪⎭⎫⎝⎛=101020101A ,且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A ,所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1=-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(d i a g 4-= =2diag(1, -2, 1). 22.已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A ,且ABA -1=BA -1+3E , 求B .解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A 11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-103006060060006603001010010000161.23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P , 而⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)]=diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫ ⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A . 26.计算⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121.解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B , 则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫⎝⎛+=222111B A O B B A A , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A ,所以⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521,即⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫⎝⎛---=9000340042102521. 27. 取⎪⎭⎫⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠. 解4100120021010*********0021010010110100101==--=--=D C B A ,而 01111||||||||==D C B A , 故 |||||||| D C B A DC B A ≠.28. 设⎪⎪⎪⎭⎫⎝⎛-=22023443O O A , 求|A 8|及A 4.解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫⎝⎛=22022A ,则 ⎪⎭⎫ ⎝⎛=21A O OA A ,故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A .29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫⎝⎛O B A O ;解 设⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====snE BC OBC OAC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111.(2)1-⎪⎭⎫⎝⎛B C O A .解 设⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A .30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025;解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=411212458103161210021210001.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.工程数学基础习题解答习 题 一A一、判断题1.√;,2.√;3.×;4.×;5.×;6.×;7.×;8.√;9.√;10.×.二、填空题1.;C C A B2.111(){1,2,3,4},(){,,},(){,,},(){1,4},(){2,3};f f a b e f A a b e f B f b --=====D R3.满;4.2sup =E ,3inf -=E ; 5.0; 6.0; 7. n ; 8.Y .B1.证 ()y f A B ∀∈⋂,x A B ∃∈⋂使得)(x f y =.由x A B ∈⋂,得x A ∈,且x B ∈故()()y f x f A =∈且()y f B ∈,即()()y f A f B ∈⋂,因此()()()f A B f A f B ⋂⊂⋂.当f 是单射时,只需证明()()()f A f B f A B ⋂⊂⋂即可: ()()(),y f A f B f ∀∈⋂⊂R f 由是单射知,().(),(),1X y f x y f A y f B x ∃=∈∈∈使得且,,()(),x A x B x A B y f x f A B ∴∈∈∈⋂=∈⋂且即从而故()()()f A f B f A B ⋂⊂⋂.是可能的,例如,2:,[2, 0],[1, 3],[1, 0].f xx A B A B =-=-⋂=-取则()([1,0])[0, 1], f A B f ⋂=-=于是而[][]()()0, 4[0, 9]0, 4.f A f B ⋂=⋂=从而有 .2. 证(1)n ∀∈,有)2 ,2(12 ,12][-⊂-+-n n ,故 ∞=-⊂-+-1)2 ,2(12 12][n n ,n .另一方面,)2 ,2(-∈∀x ,k ∃∈,使][12 ,12k k x -+-∈,故 ∞=-+-∈1][12 12n n ,n x ,于是⊂-)2 ,2( ∞=-+-1][12 12n n,n .因此, ∞=-+-=-1][12 ,12)2 ,2(n nn .(2)n ∀∈,有)12 ,12(]2 ,2[n n +--⊂-,故 ∞=+--⊂-1)12 ,12(]2 ,2[n n n .另一方面,对任意]2 ,2[-∉x ,即2>x ,k ∃∈,使得212>+>kx ,即)12 ,12(k k x +--∉,从而 ∞=+--∉1)12 ,12(n n n x ,故 ∞=-⊂+--1]2,2[)12 ,12(n n n .因此,∞=+--=-1)12,12(]2,2[n nn . 3. sup ,sup ,sup ,.A A A μμμμ''===证设且要证唯一只需证明即可sup ,,,sup ,,;.inf .A A A A A μμμμμμμμμμ'''=≤=''≤= 因为是最小上界而是的上界故又因为是最小上界而是的上界故因此 类似地可以证明是唯一的 4. 证 设{}D Y αα∈是线性空间X 的一族子空间,要证D Y X αα∈⋂也是的线性子空间.显然D Y αα∈⋂≠∅,z 只需证明.D Y X αα∈⋂对的线性运算是封闭的事实上,,Dx y Y αα∈∀∈⋂及,λ∀∈,从而对每一个D ∈α,有,x y Y α∈,故x y Y α+∈,x Y αλ∈.于是,D x y Y αα∈+∈⋂,D x Y ααλ∈∈⋂.因此,DY αα∈⋂是X 的线性子空间. 5. ,,,W f g W λ∀∈∀∈证显然包含零多项式故非空;又及,有()(0)()(0)(0)(0)(0)(0)[(0)(0)][(0)(0)]000,f g f g f g f g f f g g '''''+++=+++=+++=+=即;()(0)()(0)(0)(0)[(0)(0)]00,.f g W f f f f f f f W λλλλλλλ'''+∈+=+=+==∈即[0, 1].n W P 所以,是的线性子空间1111021121001121 [0, 1],(),()2.(0)(0)0,0,,()(1).n n n n n n n n n n n f W P f x a x a x a x a f x na x a x a f f a a a a f x a x a x a x a x -----'∀∈⊂=++++=+++'+=+==-=++++-设则由得即故23(1,,,,),dim .n x x x x W W n -=由上可知,是的一个基故6. 1(1),(0)0.()0,0.T T T x T T x -⇒===“”:因为是线性的故有于是,若则由存在知是单射,从而有 1T T -⇐“”:要证存在,只需证明是单射:121212121212,,((),()()()0,0,,.x x X T x T x T x x T x T x x x x x T ∀∈=-=-=-==当)即时由条件得即故是单射 1112121211221122(2),,,,,s.t.,,(),().y y Y x x X y Tx y Tx x T y x T y λλ--∀∈∀∈∃∈====及即于是有1111111221122112211221122(+)[()()][()]()(),T y y T T x T x T T x x x x T y T y λλλλλλλλλλ-----=+=+=+=+1:.T Y X -→故是线性的7. 2222:,.B A σ⨯⨯→解首先验证是线性的然后求其在即下的矩阵221212,,,,X X k k σ⨯∀∈∀∈由的定义,有 10010000,,,0001001()B ⎡⎤⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦1122011221012021122(+)(+)+()+(),k X k X A k X k X k A X k A X k X k X σσσ===2222:.σ⨯⨯→故是线性的1112212210010000,,,00001001E E E E B ⎡⎤⎡⎤⎡⎤⎡⎤====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦关键是求基元的像在基下的坐标:()()()11111221221110000000,00,Tab acd cE aE E cE E E a c σσ⎡⎤⎡⎤⎡⎤===+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即()()()12111221221201000000,00,Tab a cd c E E aE E cE E a c σσ⎡⎤⎡⎤⎡⎤===+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即()()()21111221222100010000,00,T ab bcd d E bE E dE E E b d σσ⎡⎤⎡⎤⎡⎤===+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即()()()2211122122200001000,00,Tab b cd d E E bE E dE E b d σσ⎡⎤⎡⎤⎡⎤===+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即 0000.0000aba b A c d c d ⎡⎤⎢⎥⎢⎥∴=⎢⎥⎢⎥⎣⎦习 题 二A一、判断题1.√;2.×;3.√;4.√;5.×;6.√;7.×;8.×;9.√;10.√;11.×;12.×.二、填空题1.x ;2.n ;3.2,(1),i,i λλλλ-+-;4. 1,1λλ-+;5.200004014⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦;6.200020012⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;7.O ; 8.O ;9.1λ-;10.6.三、单项选择题1.(d);2. (b);3. (b);4. (d);5. (a).B1.解(1)E A λ-()[]−−−→−⎥⎥⎦⎤⎢⎢⎣⎡-----−−→−⎥⎥⎦⎤⎢⎢⎣⎡-----=-+212]3,2[]2,1[020012201200120012λλλλλλλ ()[]()[]()[]()[]222311322132232)2(00)2(10001020)2(10201-⋅+-⋅-⋅--⋅+−−→−⎥⎥⎦⎤⎢⎢⎣⎡----−−−→−⎥⎥⎦⎤⎢⎢⎣⎡-----λλλλλλλλ ()[]⎥⎥⎦⎤⎢⎢⎣⎡-−−→−⎥⎥⎦⎤⎢⎢⎣⎡---⋅3123)2(11)2(00010001λλ, 3123()()1, ()(2).d d d λλλλ∴===-(2)E A λ-[][]()[]−−→−⎥⎥⎦⎤⎢⎢⎣⎡------−−→−⎥⎥⎦⎤⎢⎢⎣⎡------=+-λλλλλλλ13123,1111111111111()[][]3211222311111011010011012λλλλλλλλλλ+⋅-⎡⎤⎣⎦+----⎡⎤⎡⎤⎢⎥⎢⎥+--−−−→+−−−→⎢⎥⎢⎥⎢⎥⎢⎥-------⎣⎦⎣⎦[]()[]⎥⎥⎦⎤⎢⎢⎣⎡-++−−−→−⎥⎥⎦⎤⎢⎢⎣⎡-++---⋅-+)2)(1(11)2)(1(0001011117312λλλλλλλλ, 1()1d λ∴=,1)(2+=λλd ,)2)(1()(3-+=λλλd .(3)E A λ-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---=52340100010012345100010001λλλλλλλλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++---→542300100100012λλλλλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++--→543200100010001232λλλλλλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++→5432111234λλλλ, 12()()()1d d d λλλ∴===,5432)(2344++++=λλλλλd .(4)[]1,2310013004100140071211721761671E A λλλλλλλλλ----⎡⎤⎡⎤⎢⎥⎢⎥++⎢⎥⎢⎥-=−−→⎢⎥⎢⎥--------⎢⎥⎢⎥⎣⎦⎣⎦ ()[]()()()21122314162131113001000021000(1)0004210(4)210611106111λλλλλλλλλλλλλλ+-+⎡⎤⎣⎦-+-⎡⎤⎣⎦+⋅-⎡⎤⎣⎦⋅-⎡⎤⎣⎦--⎡⎤⎡⎤⎢⎥⎢⎥-+-⎢⎥⎢⎥−−−−→−−−−→⎢⎥⎢⎥-----+--⎢⎥⎢⎥--⎣⎦⎣⎦[]()2243232100010000(1)000(1)000621062106101010(1)0λλλλλλλλ+⋅⎡⎤⎣⎦+⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥−−−→−−−−→⎢⎥⎢⎥------⎢⎥⎢⎥---⎣⎦⎣⎦()()()2421[4()][24(1)]10[246][41][342]2210001000(1)0(1)0000010********(1)(1)0100101010λλλλλλ-⋅-⋅-+⋅-⋅-+⋅-⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥⎢⎥−−−→−−−−→⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥-⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦[][]242,4(2)3,4[32]1041000100(1)010001110(1)λλλ-+⋅⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥−−−−→−−−→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦, 123()()()1d d d λλλ∴===,44)1()(-=λλd .2. 解 (1)∵4det ()(2)A λλ=-+,∴44)2()(+=λλD ,又∵01021210100≠-=++λλ,∴1)(3=λD ,从而1)()(21==λλD D .于是不变因子为1)()()(321===λλλd d d ,44)2()(+=λλd ;初等因子组为4)2(+λ. (2)2210010010010()00000()000()B λαλαλαλαλλαλαλαλα++⎡⎤⎡⎤⎢⎥⎢⎥++⎢⎥⎢⎥≅≅⎢⎥⎢⎥+-+⎢⎥⎢⎥+-+⎣⎦⎣⎦⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++≅22)()(11αλαλ, 故不变因子为 1)()(21==λλd d ,23)()(αλλ+=d ,24)()(αλλ+=d ; 初等因子组为 22)(,)(αλαλ++.(3)显然313()1,det ()(1)()D C D λλλλ==+=,而2(1)(5)08(1)adj ()3(1)(1)6(1)2(1)0(1)(3)C λλλλλλλλλλ+++⎡⎤⎢⎥=+++⎢⎥⎢⎥-++-⎣⎦, ∴1)(2+=λλD .因此2321)1()(,1)(,1)(+=+==λλλλλd d d ; 初等因子组:2)1(,1++λλ.(4)由第1题(4)知1)()()(321===λλλd d d ,44)1()(+=λλd .也可这样解:由行列式的Laplace 展开定理得43121det ()(1)411D λλλλλλ----=⋅=-+,故44)1()(-=λλD ;又)(λD 的左下角的三阶子式372471672170142+-=---+λλλλ与)(4λD 是互质的,所以1)(3=λD ,从而1)()(12==λλD D .因此44321)1()(,1)()(,1)(-====λλλλλd d d d ;初等因子组:4)1(-λ.3.解(1)∵12020(1)(1)(2)211E A λλλλλλλ---=-=+--+,∴1~12A J ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦.(2)∵E A λ-611123034371230343104252373-+-+-=-++-+-=--+--=λλλλλλλλλλλλ 611123036411022-+-+++----=λλλλλλλ)i )(i )(1(123+--=-+-=λλλλλλ,∴~A J ⎥⎥⎦⎤⎢⎢⎣⎡-=i i 1. (3)∵[]1,231001300410014007121172117616171E A λλλλλλλλλ----⎡⎤⎡⎤⎢⎥⎢⎥++⎢⎥⎢⎥-=→⎢⎥⎢⎥--------⎢⎥⎢⎥⎣⎦⎣⎦[][][])1(12)1(13)6(14+⋅+-⋅+⋅+−−−→−λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------λλλλλλλλλλ2222)1()1(0100000)1(000011160124000)1(00031⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→22)1()1(11λλ, ∴初等因子组为2)1(-λ,2)1(-λ,于是⎥⎦⎤⎢⎣⎡=11011J ,⎥⎦⎤⎢⎣⎡=11012J ,故12111111JJ J ⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦. (4)0001001E A λλλλ⎡⎤⎢⎥-⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥-⎣⎦,()det()n nD E A λλλ=-=,又有一个1-n 阶子式0)1(1111≠-=----n λλλ,∴1)()(11===-λλD D n ,故1)()()(121====-λλλn d d d ,n n d λλ=)(;初等因子组为n λ,所以010~110A J ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦. (事实上,A 本身就是一个Jordan 块)4.解(1)由第1题(2)知1)(1+=λλϕ,2)2)(1()(22--=-+=λλλλλϕ,所以12100~002011CA C C -⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦. (2)由第1题(3)知5432)(234++++=λλλλλϕ,故B 的有理标准是0005100401030012C -⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦.5.解 由J 立即可知A 的初等因子组为2)1(-λ,2-λ,2)2(-λ,于是不变因子为1)()()(321===λλλd d d ,()24-=λλd ,225)2()1()(--=λλλd .即2)(1-=λλϕ,412136)(2342+-+-=λλλλλϕ,故200000000401001200101300016C ⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥-⎢⎥⎢⎥⎣⎦.6.解 (1)744744()481099418418f E A λλλλλλλλλ----=-=-+=++++2)9)(9(71490847+-=++--=λλλλλ.因为2441644(9)(9)4171 4114117411A E A E O ---⎡⎤⎡⎤⎢⎥⎢⎥-+=---=⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦,所以最小多项式为)9)(9()(+-=λλλm .(2)32310()det()0132(2)(1)23D E B λλλλλλλλλ-=-=-=--=-+--,∵有一个二阶子式01101≠=--λ,∴1)()(21==λλD D .因此,23)1)(2()()(+-==λλλλd m . (3)对E C λ-施行初等变换得其Smith 标准形23()diag(1, 1, 1,(3),(3))S λλλ=--,∴35)3()()(-==λλλd m .7.证 若A 可对角化,则A 的最小多项式)(λm 无重零点,必要性得证. 若A 有一个无重零点的零化多项式)(λϕ,则因为)(deg )(deg λϕλ≤m ,故)(λm 也无重零点,由定理2.16知A 可对角化.8. 证 (1) 22A A E +=,22A A E O +-=,∴)1)(2(2)(2+-=-+=λλλλλϕ是A 的一个无重零点的零化多项式,故A 可对角化. (2)mA E =,∴1-mλ是A 的零化多项式,其零点2i ek mk πλ=(0,1,,1)k m =-是互不相同的,故A 可对角化.习 题 三A一、判断题1.√;2.√;3.√;4.√;5.√;6.√;7.√;8.×;9.√;10.×;11.√;12.√;13.×; 14.× 15.√;16.√;17.√;18.√;19.√;20.×;21.√;22√;.23.×;24.√;25.√.二、填空题1.0;2.0y ;3.()T111,,,2n;4. 12;5.Banach ;6.1;7.3;8.15,2FA A A∞==+=;9.3.三、单项选择题1.(c);2. (c);3. (b);4. (a);5. (b);6.(c).B1. 证 仅验证三角不等式,其余是显然的.设Tn ),,(1ξξ =x ,T n ),,(1ηη =y 是n中的任意两个元素.∑∑∑∑====+=+=+≤+=+n i ni ni i ni i i i i i 1111111)(y x y x ηξηξηξ;i ni i ni i i ni i ni ηξηξηξ≤≤≤≤≤≤≤≤∞+≤+≤+=+11111max max }{max max y x∞∞+=y x .2. 证 因为[],, x y C a b ∀∈及∈∀α,有(N 1) t t x x bad )( 1⎰=0≥,显然若0=x ,即0)(≡t x ,则01=x ;反之,若01=x ,即0d )( =⎰t t x ba,则由)(t x 的连续性,知0)(≡t x ,即0=x ;(N 2) 11d )(d )(x t t x t t x xba b aαααα===⎰⎰;(N 3) t t y t t x t t y t x yx bab ab ad )(d )(d )()(1⎰⎰⎰+≤+=+11y x +=;所以1 ⋅是[], C a b 上的范数.3.解121i 1i 22,max{1,i ,1i}x x x ∞=+-++===-+= 4.解1max{101,210,i 11i }max{2,3,22max{12i ,011,101i }max{4,2,1 4.A A ∞=++-++-+-+-===++-++--++-==5.证 (1)lim ,lim ,.n n n n x x X x y Y x y →∞→∞=∈=∈=设又只需证明即可 {}0lim lim lim lim lim 000,0,0,.n n n n n n n n n n n x y x y x x x y x x x y x x x y x y x y x y →∞→∞→∞→∞→∞≤-=-=-+-≤-+-=-+-=+=∴-=-==故即122lim ,1,,1,1, 1. max{,,,,1},,().n n n n n n N n n x x X N n N x x x x x x x x M x x x x n x M x ε→∞=∈=∃∈>-≤-≤-≤≤+=+∀∈≤ ()设则对使得当时,恒有从而有即取则,有故有界6.证 设x 是,()n X x X x 中任意一点是中收敛于的任一序列.()():,lim ()();:,lim ()().lim()()()(),:.n n n n n n n f X Y Y f x f x g Y Z Z g f x g f x g f x g f x g f X Z x →∞→∞→∞→=→==∴→ 由连续知在中有又由连续知在中有即在点处连续,:.x X g f X Z ∈→由的任意性知是连续映射7. 证 由于()n x 和()n y 都是X 中的Cauchy 序列,则0>∀ε,12,N N ∃∈,使得当1,N m n >时,2ε<-m n x x ; 当2,N m n >时,2ε<-m n y y .令},m ax {21N N N =,则当N n m >,时,有)()( m m n n m m n n y x y x y x y x ---≤---εεε=+<-+≤22m n m n y y x x ,这表明()n n x y -是中Cauchy 的序列,由的完备性知,数列()n n x y -收敛.100001110101010121 (1)[0, 1],0,[0, 1],()0,max ()()0,(N ).d(())d(())[0, 1],,max ()maxmax ()max ,d d (N ). ,[0,dx d ddx x x x d f C f x f x f f x f x f x f x f C f f x f x fx x f g C λλλλλλλ≤≤≤≤≤≤≤≤≤≤∀∈≠∃∈>≥≥>⋅∀∈∀∈=+=+=⋅∀∈8.证且即使得故即满足即满足01010101010d(()())1],max ()()maxd d ()dg() max ()()max d d max ()max dx x x x x f x g x f gf xg x xf x x f xg x x x f x ≤≤≤≤≤≤≤≤≤≤++=++⎡⎤≤⎡+⎤++⎢⎥⎣⎦⎣⎦≤+101010101010131d ()dg()()max maxd d d ()dg()max ()maxmax ()max ,d d (N ).,[0, 1].x x x dd x x x x d d f x x g x x x f x x f x g x f g x x C ≤≤≤≤≤≤≤≤≤≤≤≤≤≤++⎡⎤⎡⎤=+++=+⎢⎥⎢⎥⎣⎦⎣⎦⋅⋅即满足 所以是上的范数(2):D ]1 ,0[1C ]1 ,0[C →显然是线性的.因为1[0, 1]f C ∀∈,有110101d ()d ()maxmax ()max ,d d dx x t f x f x Df f x f x x≤≤≤≤≤≤=≤+=故D 是有界的. 9. 证 由于 ⋅是n n⨯上的方阵范数,故,n nA B ⨯∀∈及α∀∈,有(1)1*0AS AS -=≥,并且11*0A S AS S AS O A O --==⇔=⇔=;(2)11**A S AS O S AS A αααα--====;(3)()11111*A B S A B S S AS S BS S AS S BS -----+=+=+≤+**A B =+;(4)111*()()AB S ABS S AS S BS ---==11**S AS S BS AB --≤=;因此,* ⋅是n n⨯上的方阵范数.10. 2;F A 解 21i()det(),()0;i1f E A A λλλλρλ--=-==∴=-+H HH 21i 1i 22i 22i,(4),()4,i 1i 12i 22i 22.A A E A A A A A λλλλρλ---⎡⎤⎡⎤⎡⎤==-==-=⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦∴=11. 证 显然A λ≤.∵λ是可逆阵A 的特征值,则λ1是1A -特征值,故11A λ-≤,即11Aλ-≥. ∴11A A λ-≤≤.12.证 要证0(),x T ∈N 只需证明00.Tx =()0()(),0.lim ,,n n nn x T Tx n xx T →∞⊂=∀∈=由知于是当且是有界线性算子时有N0(lim )lim ()lim00,n n n n n Tx T x T x →∞→∞→∞====故0().x T ∈N习 题 四A一、判断题1.×;2.√;3.√;4.×;5.√;6.√;7.×;8.×.二、填空题1.2213e e 001cos x x x x ⎡⎤⎢⎥⎣⎦;2.222(1)tE t -+;3.1;4. 3e t ;5.22222222e e e e e e tt t t tt t t t ------⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; 6.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-t t t 2cos 2cos cos ;7.1; 8.3e -. B1. sin cos d (),d cos sin tt A t t tt -⎡⎤=⎢⎥--⎣⎦解 []22d d det ()cos sin 0d d A t t t t t =+=⎡⎤⎣⎦,22sin cos d ()det()sin cos 1.d cos sin t t A t t t t t t-==+=-- 2. 2213e e 0 ().01cos x x x f x ⎡⎤'=⎢⎥⎣⎦解x3. 1 1 0 0 11 10 0 0 110 0e d e d e 11 ()d d2d 11.sin d cos d 1cos1sin1t tt t t A t t t t t t t t t ⎡⎤-⎡⎤⎰⎰⎢⎥⎢⎥==⎰⎰⎰⎢⎥⎢⎥⎢⎥⎢⎥-⎰⎰⎣⎦⎣⎦解 4. 证明(1)d d d d d d ()()()()d d d d d d T T T T T f x x x x Ax Ax x Ax Ax x A t t t t t t==+=+d d d d d ()2;d d d d d T T T T T T T T x x x x x x A x A x A x A x A t t t t t=+=+=.(2)d d d d d d ()()2.d d d d d d T T T T T T T x x x x x x x x x x x x t t t t t t=+=+=5. 证(1)若lim k k A A →∞=,则2lim 0k k A A →∞-=. ∵222()T TTk k k A AA A A A -=-=-(可以证明[1]2222H T A A A A ===),∴2lim 0T Tk k A A →∞-=,即lim T Tk k A A →∞=. 同理可证lim k k A A →∞=,由上已证的结果立即可得lim H H k k A A →∞=.(2)000()lim ()lim ()NNTkT kk Tk k k N N k k k c A c A c A ∞→∞→∞=====∑∑∑0lim()Nk Tk N k c A →∞==∑ 0(lim )N k T k N k c A →∞==∑0()k Tk k c A ∞==∑ 6. 证 令()3200det()11120113E A λλλλλ--=---=-=--得A 的全部特征值均为 2. 于是13B A =的所有特征值都是32,故()213B ρ=<,因此lim k k B O →∞=.7. 证 方法一: 当0=t 时,显然成立,故设0≠t .记010100t t A t ⎡⎤⎡⎤==⎢⎥⎢⎥--⎣⎦⎣⎦. 22det()(i )(i )E A t t t λλλλ-=+=-+,t i 1=λ,t i 2-=λ.对t i 1=λ,解方程(i )0tE A x -=可得11i x ⎡⎤=⎢⎥⎣⎦;对t i 2-=λ解方程(i )0tE A x --=得21i x ⎡⎤=⎢⎥-⎣⎦.令11i i P ⎡⎤=⎢⎥-⎣⎦,则P 可逆且11/2i /21/2i /2P --⎡⎤=⎢⎥⎣⎦.所以01i 10i i 1i 111/2i /2e 0ee diag(e ,e )i i 1/2i /20e tt Attt P P ⎡⎤⎢⎥---⎣⎦--⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎥⎦⎤⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡+---+=----t t t t t t t t t t t t cos sin sin cos )e e (21)e e (i 21)e e (i 21)e e (21i i i i i i i i .方法二:记0110B ⎡⎤=⎢⎥-⎣⎦,21det()11E B λλλλ--==+,{}()i,i B σ=-.B 的最小多项式1)(2+=λλϕ,2)(deg =λϕ. 故设01e ()()tB a t E a t B =+.∵λt e 与λ)()(10t a t a +在()B σ上的值相等,即⎩⎨⎧=-=+-tt t a t a t a t a i 10i 10e )(i )(e )(i )(, ∴t t a t t cos 2e e )(i i 0=+=-,t t a tt sin i2e e )(i i 1=-=-.因此0110cos sin ecos sin sin cos t t t tE tB t t ⎡⎤⎢⎥-⎣⎦⎡⎤=+=⎢⎥-⎣⎦.8. 2eJordan ,e e e .e e e 2ttAtt t tt A t t t ------⎡⎤⎢⎥⎢⎥∴=⎢⎥⎢⎥⎢⎥⎣⎦解是块 9. 解 2214det()02(2)(1)031E A λλλλλλ----=-=----.∵(2)()A E A E O --≠,∴A 的最小多项式)1()2()(2--=λλλϕ.3)(deg =λϕ,故设2012()()()()()f At a t E a t A a t A T At =++=. 由()f t λ与()T t λ在{}()1,2A σ=上的值相等,于是(1)对()e Atf At =有⎪⎩⎪⎨⎧=+=++=++tttt t a t a t a t a t a t a t a t a 2212210210e )(4)(e )(4)(2)(e )()()(,解得⎪⎩⎪⎨⎧+-=-+-=+-=t t t t t t t t t t t a t t a t t a 222221220e e e )(e 3e 4e 4)(e 2e 3e 4)(所以22100e (4e 3e 2e )010001tA t t t t ⎡⎤⎢⎥=-+⎢⎥⎢⎥⎣⎦⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+130020412)e 3e 4e 4(22t t t t⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+19004012164)e e e (22t t t t ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+-+-=ttt t t t t t t tt e e 3e 300e 0e 4e 4e 13e 12e 12e 222222(2)对()sin()f At At =有01201212()()()sin ()2()4()sin 2()4()cos 2a t a t a t t a t a t a t t a t a t t t ++=⎧⎪++=⎨⎪+=⎩,解得⎪⎩⎪⎨⎧+-=-+-=+-=tt t t t a t t t t t a t t t t t a 2cos 2sin sin )(2cos 32sin 4sin 4)(2cos 22sin 3sin 4)(210. ∴2012sin()()()()At a t E a t A a t A =++sin 212sin 12sin 213cos 24sin 4sin 20sin 2003sin 3sin 2sin t t t t t t t t t t t -+-+⎡⎤⎢⎥=⎢⎥⎢⎥-+⎣⎦(注)可利用(1)的结果求(2)(或cos()At ):在(1)中分别以t i 和t i -替代t 得i e tA 和i etA-,再由公式i i i i e e e e sin()(cos())2i 2tA tA tA tAAt At ---+==或即得. 10. 解 210det()01(+1)01+2E A λλλλλλ-==-()A A E O -≠且,故A 的最小多项式2()(1)φλλλ=+,3)(deg =λϕ,故设2012()()()()()f At a t E a t A a t A T At =++=,即012100010001()()010()001()012001012023f At a t a t a t -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+-+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦012021212012()()()0()()()2()0()2()()2()3()a t a t a t a t a t a t a t a t a t a t a t a t -⎡⎤⎢⎥=--+⎢⎥⎢⎥--+⎣⎦. 由()f t λ与()T t λ在A 上的谱值相等,于是(1)对()e Atf At =有001212()1()()()e ()2()e tta t a t a t a t a t a t t --=⎧⎪-+=⎨⎪-=⎩,解得012()1()22e e ()1e e t t t t a t a t t a t t ----=⎧⎪=--⎨⎪=--⎩012021212012()()()e 0()()()2()0()2()()2()3()122e e 1e e 0e e e 0e e e At t t t t t t tt t ta t a t a t a t a t a t a t a t a t a t a t a t t t t t t t -----------⎡⎤⎢⎥∴=--+⎢⎥⎢⎥--+⎣⎦-++-+⎡⎤⎢⎥=+-⎢⎥⎢⎥-⎣⎦. (2)对()sin()f At At =有001212()0()()()sin ()2()cos a t a t a t a t t a t a t t t =⎧⎪-+=-⎨⎪-=⎩,解得012()0()2sin cos ()sin cos a t a t t t t a t t t t =⎧⎪=-⎨⎪=-⎩.012021212012()()()sin()0()()()2()0()2()()2()3()a t a t a t At a t a t a t a t a t a t a t a t a t -⎡⎤⎢⎥∴=--+⎢⎥⎢⎥--+⎣⎦02sin cos sin cos 0sin cos cos 0cos sin cos t t t t t t t t t t t t t t t t -+-⎡⎤⎢⎥=-+-⎢⎥⎢⎥--⎣⎦11.tr 2i 332i det(e )e e e .A A +-===解12. 解 此处775885050A --⎡⎤⎢⎥=---⎢⎥⎢⎥-⎣⎦,122()()()()x t x t x t x t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,321C ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦.因为775det()885(5)(5)(15),deg ()3,05E A λλλλλλϕλλ+--=+=-++=故设2012e ()()()()At a t E a t A a t A T At =++=.由tλe 与)(t T λ在(){5,5,15}A σ=--上的值相同,得方程组⎪⎩⎪⎨⎧=+-=+-=++--ttt t a t a t a t a t a t a t a t a t a 1521052105210e )(225)(15)( e )(25)(5)( e )(25 )(5 )(,解得 ⎪⎩⎪⎨⎧+-=-=-+=-----)e e 2(e )( )e (e )( )e 6e (3e )(1555200125510111555810t t t t t t t tt a t a t a ;于是 0121775105800e ()1()885()12014501050404025At a t a t a t --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+---+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++--+-+-+-+---+--++=---------------t t tt t t t t t t t t t tt t t t t t t t t t 551555155555155515555515551555e 5e 5e 2e e 3e 24e e 2e 5e 5e 6e e 3e64e 2e e 5e 5e 4e e 3e 44e e 2101. 所以,解为 55155515551517e 9e 4e 1()e 17e 9e 6e 1017e 9e 2e t t t At t t t t t tx t C ------++⎡⎤⎢⎥==--+⎢⎥⎢⎥-+⎣⎦,即⎪⎪⎩⎪⎪⎨⎧+-=+--=++=------)e 2e 9e 17(101)()e 6e 9e 17(101)()e 49e e 17(101)(155531555215551tt t t t t t t t t x t x t x .习 题 五A一、判断题1.√;2.×;3.√;4.√;5.√;6.×;7.√;8.√;9.×;10.√;11.√;12.×;13.√;14.√ 15.√.二、填空题1.0;2.{}0;3.span A ;4.1;5.3;6.O ;7.123()1,()1,()(1)(2)d d d λλλλλλ==-=--;8.实;9.0; 10.1;11.1,a b c ===.三、单项选择题1.(d);2. (c);3. (c).B1.证 121212(1)(,,,),(,,,),(,,,),,T T T nn n n x y z ξξξηηηςςςλμ∀===∈∀∈及,有1111(I ),(),,;nnnk k k k k k k k k k k k k x y z k k k x z y z λμλξμηςλξςμηςλμ===<+>=+=+=<>+<>∑∑∑211(I ),,;n nk k k k k k k k x y k k y x ξηηξ==<>===<>∑∑231221(I ),0, ,=01,2,,,=01,2,,,00;nk k k nk kk k k x x k x x k k n k n x ξξξξ==<>=≥<>=⇔∀=⇔∀==⇔=∑∑且有有,.nk <⋅⋅>故是上的一种内积(2),,,,n nij ij ij A a B b C c λμ⨯⎡⎤⎡⎤⎡⎤∀===∈∀∈⎣⎦⎣⎦⎣⎦及,有1111111(I ),(),,;nnnnnnij ij ij ij ij ij ij i j i j i j A B C a b c a c b c A C B C λμλμλμλμ======<+>=+=+=<>+<>∑∑∑∑∑∑2111111(I ),,;nnnnnnij ij ij ij ij ij i j i j i j A B a b a b a b B A ======<>====<>∑∑∑∑∑∑2311112211(I ),0, ,0,1,2,,,00;n n n nij ij ij i j i j nnijijij i j A A a a a A A a i j n a a A O ======<>==≥<>==⇔∀===⇔=∑∑∑∑∑∑且有即,.n n⨯<⋅⋅>故是上的一种内积12211.nnij F i j A a A ==⎛⎫>== ⎪⎝⎭∑∑2. 证 右端) , ,(41>--<->++<=y x y x y x y x><+><+><+><=y y x y y x x x ,,,,(41),,,,><-><+><+><-y y x y y x x x 1(4,)4x y =<>=左端.3.证 (1)若⊥∈B x ,则B y ∈∀皆有y x ⊥,由假设B A ⊂,于是对每一个A y ∈皆有y x ⊥,即⊥∈A x ,故⊥⊥⊂A B .(2)若A x ∈,则⊥∈∀A y 皆有y x ⊥,故⊥⊥∈)(A x ,于是⊥⊥⊂)(A A .4.解 显然123.det 20,det 110,det 380,.A A A A A =>=>=>∴是实对称矩阵正定其余略.5. 证 “⇒”: 若n nA ⨯∈正定,则det det 0n A A =>,故A 非奇异.“⇐”: 若A 非奇异,则1det 0ni i A λ==≠∏,从而),,2,1(0n i i =≠λ. 又因为A 半正定,故有0≥i λ,于是),,2,1(0n i i =>λ,所以A 是正定的.6.证 先验证2A 是Hermite 矩阵.22222()()(),Hermite .H H H H H H H H H H H A A AA AA A A AA A AA A AA AA AAA A A A A ======∴是矩阵再证2A 是正定的.12222 ,,Hermite 0(1,2,,).0(1,2,,),.n i i i A n A i n A i n A λλλλλλ∈≠=>=设是的个特征值,由是矩阵且可逆知,且从而的所有特征值故是正定矩阵7. 解 (1)令3i 1i 02010E A λλλλλλ---==-=-得01=λ,22=λ,23-=λ,由此判定A不是正定的.对01=λ解方程组0Ax -=,即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---000i 0100i 1i 0321ξξξ,亦即⎩⎨⎧==+ 00i 132ξξξ,得⎩⎨⎧==321i 0ξξξ. 若取13=ξ,则有10i 1x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=. 对22=λ解)0A x -=可得2i 1x ⎢⎥⎢⎥⎣⎦=-.对23-=λ解()0A x -=可得⎥⎥⎦⎤⎢⎢⎣⎡--=1i 23x .由于1x ,2x ,3x 分别对应于A 的不同特征值,故彼此正交.将它们单位化,得10i 1/α⎡⎤⎢⎢⎢⎣=,2i /21/2α⎡⎢⎢⎥⎢⎥⎣⎦=-,3i /21/2α⎡⎢⎢⎥⎢⎥⎣⎦-=-.令[]12301/,,i i /2i /21/21/2U ααα⎡-⎢==--⎢⎥⎢⎥⎢⎥⎣⎦,01/i /21/2i /21/2H U ⎡-⎢=⎢⎥⎢⎥-⎢⎥⎣⎦,则0H U AU ⎡⎤⎢⎥=⎢⎥⎢⎣.习 题 六A一、判断题1.×;2.√;3.×;4.×;5.×;6.×;7.×;8.√;9.×.二、填空题1.1122112201010-⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦;2. (1)()12(1)(1)()213(1)(1)321( 3 24)41(3 30)(0,1,2,)41( 24)4k k k k k k k x x x x x k x x +++++⎧=-+⎪⎪=-++=⎨⎪⎪=-⎩;3.1()D L U --;4.Seidel,Jacobi .B1. 解(1)110000100005000.55000A-⎡⎤⎢⎥⎣⎦-=-, 3.0001A ∞=,120000A-∞=,∴cond 60002A ∞=.(2)1 1.38 2.1810.2106 2.79 4.56B -⎡⎤⎢⎥⎣⎦-=-,17.35B =,1132.00B -=,∴1cond 235.2B =.(3)12212max{,}1009910099,cond (6-3).min{,}99989998C C λλλλλλ--⎡⎤==⎢⎥--⎣⎦是实对称矩阵故见令12122019810,9999cond 39206.C λλλλλλ=--===∴==≈得 2. 解(1)对增广矩阵施行行的初等变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡330002121041123232300212104112522162134112得到等价的上三角方程组⎪⎩⎪⎨⎧==+-=++330212142332321x x x x x x .进行回代,得方程组的解为:12/)4( ,1)21/(21 ,13/3321323=--==--===x x x x x x .故解为(1,1,1).T x =(2)对增广矩阵施行初等行变换11034110341103421111011590115931123041715003132112314033280001319⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥----------⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥-------⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦得到等价的上三角方程组1242343443459313211319x x x x x x x x x ++=⎧⎪---=-⎪⎨+=⎪⎪-=-⎩.进行回代,得方程组的解:43419219/(13), (2113)/3,133x x x =--==-=2341244055(95), 433939x x x x x x =--++==--=-,故解为()5540192,,,.3939313Tx -=3. 解 首先用顺序Gauss 消去法.对增广矩阵施行初等行变换:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1.982.4120032001.1291.58334.016781.0167.001.0012.0 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯-⨯-⨯-⨯-⨯-⨯→-65424101798.0104453.0101467.00104441.0108007.0106667.006781.0167.001.0012.0⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯-⨯-⨯-⨯-⨯→-9924109774.0101762.000104441.0108007.0106667.006781.0167.001.0012.0,经回代得547.53=x ,43.722=x ,05.811-=x . 此时,620.174310Ax b -=⨯. 下面用列主元素Gauss 消去法.对增广矩阵施行初等行变换(下画横线者为主元素)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡9812.4120032001.1291.58334.016781.0167.001.0012.0 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯⨯⨯→-6744.01670.0105500.00101179.0105909.04584.009812.41200320022⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯⨯⨯→-5329.0109610.000101179.0105909.04584.009812.41200320012, 经回代得46.17,76.45,545.5123=-==x x x . 此时,289.22=-b Ax .列主元素Gauss 消去法比顺序Gauss 消去法的精度高.4. 解 Jacobi 迭代格式为()()()⎪⎪⎩⎪⎪⎨⎧++-=+--=+--=+++30] 32[151]12[ 81 ]2432 [201)(2)(113)(3)(112)(3)(211k k k k k k k k k x x x x x x x x x ( ,2,1,0=k ). 计算结果如下表:解为767354.01=x ,138410.12=x ,125368.23=x .Seidel 迭代格式与计算结果如下:()()()⎪⎪⎪⎪⎨⎧++-=+--=+--=++++++30] 32[151]12 [ 81 ]2432 [201)1(2)1(113)(3)1(112)(3)(211k k k k k k k k k x x x x x x x x x ( ,2,1,0=k );5. 解 Jacobi 迭代格式为()()()⎪⎪⎩⎪⎪⎨⎧++-=+--=+--=+++30] 32[151]12[ 81 ]2432 [201)(2)(113)(3)(112)(3)(211k k k k k k k k k x x x x x x x x x ( ,2,1,0=k ), 因为()()21113300044335110,det(),1,444481100044M E M M λλλλλρλ⎡⎤-⎢⎥⎢⎥=--=-=-=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦所以Jacobi 迭代格式收敛.Seidel 迭代格式为()()()⎪⎪⎩⎪⎪⎨⎧++-=+--=+--=++++++30] 32[151]12 [ 81 ]2432 [201)1(2)1(113)(3)1(112)(3)(211k k k k k k k k k x x x x x x x x x ( ,2,1,0=k ).因为系数矩阵A 对称,且123det 40,det 70,det 240,,A A A A =>=>=>从而正定故Seidel 迭代格式收敛.6. 解(1)Jacobi 迭代矩阵1111022()10111022M D L U -⎡⎤-⎢⎥⎢⎥=+=--⎢⎥⎢⎥⎣⎦;215det()()4E M λλλ-=+,1()1M ρ=>.因此,Jacobi 迭代格式发散.Seidel 迭代矩阵12111000222011111()100010222000111000222M D L U -⎡⎤⎡⎤-⎢⎥⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥=-=--=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥--⎣⎦⎣⎦; 221det()()2E M λλλ-=+,21()2M ρ=.因此Seidel 迭代格式收敛.(2)Jacobi 迭代矩阵1100022022010101101001220220M --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦;31det()E M λλ-=,1()0M ρ=.因此, Jacobi 迭代格式收敛.Seidel 迭代矩阵2100022022110001023021000002M --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦;()22det()2E M λλλ-=-,2()21M ρ=>.因此, Seidel 迭代格式发散.*7.用追赶法解线性方程组12123233 1, 247, 259.x x x x x x x +=-⎧⎪++=⎨⎪+=⎩解 系数矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=520142013A .31=u ,3/2/212==u l ,3/101422=⋅-=l u ,5/3/223==u l ,5/221533=⋅-=l u ;11-=y ,3/237122=-=y l y ,5/229233=-=y l y ;1/333==∴u y x ,2/)1(2322=⋅-=u x y x ,1/)1(1211-=⋅-=u x y x .即解为(1,2,1).Tx =- 8. 解 把方程组调整为⎪⎩⎪⎨⎧=+=+=++22846231312123x x x x x x x , 此时系数矩阵为312041102A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦.Seidel 迭代矩阵111200033301211()000010044000111106263M D L U -⎡⎤⎡⎤--⎢⎥⎢⎥--⎡⎤⎢⎥⎢⎥⎢⎥=-=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦, 11det()(66E M λλλλ-=---+,()1M ρ=<.因此,此时Seidel 迭代格式()()()()()()()⎪⎪⎩⎪⎪⎨⎧-=-=--=++++ )2(21)8(41)26(3113111121213k k k k k k k x x x x x x x 收敛.习 题 七A一、判断题1.×;2.√;3.×;4.×.二、填空题1.1,1n +;2. 11:455;:;:33-一阶差商,,二阶差商1,三阶差商;3.16.640,0.096,16.736.B1. 解 因为0120.15,0.00,0.10,0.20.x x x x ====故取则2(0.150.10)(0.150.20)(0.15)(0.15)0.000(0.000.10)(0.000.20)(0.150.00)(0.150.20)0.0998(0.100.00)(0.100.20)(0.150.00)(0.15 f L --≈=⨯----+⨯----+0.10)0.1987(0.200.00)(0.200.10)00.074850.074510.1494.⨯--=++= 521(0.15)(0.150.00)(0.150.10)(0.150.20) 6.2510.3!R -≤---=⨯2.解 对于点76.35x =,取076x =,177x =,278x =,379x =. 作差商表于是有2(1)(76.35)(76.35)2.832670.0689(76.3576)0.00306(76.3576)(76.3577) 2.832670.024120.00070 2.85609.f N ≈=+-+--=+-=32(2)(76.35)(76.35)(76.35)0.00017(76.3576)(76.3577)(76.3578) 2.856090.00006 2.85615.f N N ≈=+---=+=3. 解 选01220.20,0.40,0.60,0.80x x x x ====.作差商表:。

相关文档
最新文档