实数_1PPT教学课件
合集下载
人教版初一数学 6.3 实数的概念 第1课时PPT课件
学习难点:理解无理数的概念和实数与数轴上的点一
一对应的关系.
导入新课(创设情境)
1
3 7 3 1 2 7
把, - , , , - , , 化成小数,并观察其特点.
100 5 2 16 3 3 22
问题1:任意写一个分数,一定能写成有限小数或是无
限循环小数吗?
问题2:整数能写成小数形式吗?3可以看成是3.0吗?
解:
扩展应用
将下列各数分别填入下列相应的括号内:
1
4
3
3
, 7,π,- 16,- 5,- 8, 9, ,
4
9
0, 25,0.323 223 2223…
无理数:
3
9,
7,π, - 5,0.323 223 2223…
有理数: 1 , - 1 6 , - 3 8 ,
4
4
, 0,
9
25
探究新知
学生活动四【一起探究】
与有理数一样,在实数范围内:
(1)正数大于零,负数小于零,正数大于负数;
(2)两个正数,绝对值大的数较大;
(3是什么?
2.实数的概念是什么?
3.实数与数轴有什么关系?
当堂训练
1.判断对错:
(1)实数不是有理数就是无理数. ( √ )
(2)无理数都是无限不循环小数. ( √ )
定义去辨别,而不能从形式上去分辨.常见的无理数有
π或含π的数或式子;开不尽方的数,如 2, 3等;还有构
造型,如1.010 010 001 000 01…(每相邻两个1之间依
次多1个0),有理数和无理数统称为实数.
探究新知
学生活动二【一起探究】
思考:仿照有理数的分类,实数怎么分类?
一对应的关系.
导入新课(创设情境)
1
3 7 3 1 2 7
把, - , , , - , , 化成小数,并观察其特点.
100 5 2 16 3 3 22
问题1:任意写一个分数,一定能写成有限小数或是无
限循环小数吗?
问题2:整数能写成小数形式吗?3可以看成是3.0吗?
解:
扩展应用
将下列各数分别填入下列相应的括号内:
1
4
3
3
, 7,π,- 16,- 5,- 8, 9, ,
4
9
0, 25,0.323 223 2223…
无理数:
3
9,
7,π, - 5,0.323 223 2223…
有理数: 1 , - 1 6 , - 3 8 ,
4
4
, 0,
9
25
探究新知
学生活动四【一起探究】
与有理数一样,在实数范围内:
(1)正数大于零,负数小于零,正数大于负数;
(2)两个正数,绝对值大的数较大;
(3是什么?
2.实数的概念是什么?
3.实数与数轴有什么关系?
当堂训练
1.判断对错:
(1)实数不是有理数就是无理数. ( √ )
(2)无理数都是无限不循环小数. ( √ )
定义去辨别,而不能从形式上去分辨.常见的无理数有
π或含π的数或式子;开不尽方的数,如 2, 3等;还有构
造型,如1.010 010 001 000 01…(每相邻两个1之间依
次多1个0),有理数和无理数统称为实数.
探究新知
学生活动二【一起探究】
思考:仿照有理数的分类,实数怎么分类?
《实数的概念》课件
实数的除法运算可以通过乘法转换为乘法运算,即a/b=(a*1/数运算的基本性质
详细描述
实数的指数运算满足a^m*a^n=a^(m+n)和(a^m)^n=a^(mn)等基本性质。
03
实数与数轴
数轴的定义
实数轴
一条无限延伸的直线,每个点对应一个实数,实数轴上 的点是连续且稠密的。
在科学研究、工业生产和日常生活中,物理量的测量和计算都发挥着至关重要的作用。实数使 得这些测量和计算具有可靠性和准确性。
金融和统计数据的表示
金融和统计数据涉及到大量的数值计 算和表示,实数在其中扮演着重要的 角色。例如,股票价格、经济增长率 、人口数量等都是以实数表示的。
实数的精确性和可靠性使得金融和统 计数据的表示和分析更加准确,有助 于做出正确的决策和预测。
减法运算
总结词
减法运算的基本性质
详细描述
实数的减法运算可以通过加法转换为加法运算, 即a-b=a+(-b)。
乘法运算
总结词
乘法运算的基本性质
详细描述
实数的乘法运算满足交换律、结合律和分配律,即ab=ba,(ab)c=a(bc),a(b+c)=ab+ac。
除法运算
总结词
除法运算的基本性质
详细描述
定义方式
通常采用代数定义,即通过有理数和无理数来定义实数 。
数轴上的点与实数的关系
对应关系
每个实数都可以在数轴上找到一 个唯一的点与之对应,反之亦然 。
顺序关系
实数在数轴上按照大小关系排列 ,从小到大或从大到小。
数轴上的连续性和稠密性
连续性
实数轴上的点是连续不断的,没有间 断或空隙。
稠密性
在任意两个不同的实数之间,总可以 找到一个新的实数。
详细描述
实数的指数运算满足a^m*a^n=a^(m+n)和(a^m)^n=a^(mn)等基本性质。
03
实数与数轴
数轴的定义
实数轴
一条无限延伸的直线,每个点对应一个实数,实数轴上 的点是连续且稠密的。
在科学研究、工业生产和日常生活中,物理量的测量和计算都发挥着至关重要的作用。实数使 得这些测量和计算具有可靠性和准确性。
金融和统计数据的表示
金融和统计数据涉及到大量的数值计 算和表示,实数在其中扮演着重要的 角色。例如,股票价格、经济增长率 、人口数量等都是以实数表示的。
实数的精确性和可靠性使得金融和统 计数据的表示和分析更加准确,有助 于做出正确的决策和预测。
减法运算
总结词
减法运算的基本性质
详细描述
实数的减法运算可以通过加法转换为加法运算, 即a-b=a+(-b)。
乘法运算
总结词
乘法运算的基本性质
详细描述
实数的乘法运算满足交换律、结合律和分配律,即ab=ba,(ab)c=a(bc),a(b+c)=ab+ac。
除法运算
总结词
除法运算的基本性质
详细描述
定义方式
通常采用代数定义,即通过有理数和无理数来定义实数 。
数轴上的点与实数的关系
对应关系
每个实数都可以在数轴上找到一 个唯一的点与之对应,反之亦然 。
顺序关系
实数在数轴上按照大小关系排列 ,从小到大或从大到小。
数轴上的连续性和稠密性
连续性
实数轴上的点是连续不断的,没有间 断或空隙。
稠密性
在任意两个不同的实数之间,总可以 找到一个新的实数。
《实数》ppt课件
指数运算法则可以用于简化复杂的数 学表达式。
03
CATALOGUE
实数的分类
有理数和无理数
有理数
可以表示为两个整数之比的数, 包括整数、有限小数和无限循环 小数。
无理数
无法表示为两个整数之比的数, 常见于无限不循环小数,如π和 √2。
正数、负数和零
01
02
03
正数
大于零的实数,包括正整 数、正小数和正无理数。
其结果仍为实数。
详细描述
实数的加法运算与整数、有理 数类似,遵循交换律和结合律 ,即a+b=b+a, (a+b)+c=a+(b+c)。
总结词
正数与负数相加,结果的符号 取决于绝对值较大的数。
详细描述
如果a>0,b<0,则a+b=a-(b);如果a<0,b>0,则 a+b=b-(-a)。
减法运算
总结词
《实数》PPT课件
目 录
• 实数的基本概念 • 实数的运算 • 实数的分类 • 实数在生活实数的基本概念
实数的定义
实数的定义
实数是包括有理数和无理数在内的所有数的集合,即实数集。实数集可以用实数轴来表 示,实数轴上的每一个点都对应一个实数,每一个实数都可以在实数轴上找到一个点来
乘法运算
总结词
乘法运算在实数范围内具有封闭性, 即任何两个实数相乘,其结果仍为实 数。
详细描述
实数的乘法运算遵循交换律和结合律 ,即ab=ba,(ab)c=a(bc)。
总结词
正数与负数相乘得负数,负数与负数 相乘得正数。
详细描述
正数乘以正数得正数,如2*3=6;正 数乘以负数得负数,如2*(-3)=-6; 负数乘以负数得正数,如(-2)*(3)=6。
2020人教版七年级数学下册第六章6.3实数(1)实数的概念课件(共32张PPT)
6,
••
, 1. 2 3,
22 , 36
2
7
1.232232223 (两个3之间依次多一个 2)
有理数是:1.
•
2
•
3
22
,7
36
无理数是: 6
,,
2
1.232232223 ,(两个3之间依次多一个 2)
思考:无理数一般有哪些形式?
(1)像 7, 3, 12 的开不尽方的数是无理数。
020
002
000
02…是无
理数吗?
1.57079632679...
2
它们都是无限 不循环小数,
2.02002000200002…
是无理数
常见的一些无理数:
(1)含 π 的一些数;
(2)含开不尽方的数; (3)有规律但不循环的小数,如1.01001000100001…
例:判断下列数哪些是有理数?哪些是无理数?
人教版七年级数学 下册
6.3 实 数 第1课时 实数的概念
1.了解实数的意义,并能将实数按要求进 行准确的分类;
2.熟练掌握实数大小的比较方法;(重点) 3.了解实数和数轴上的点一一对应,能用 数轴上的点 表示无理数.(难点)
认真阅读课本中6.3 实数的 内容,完成下面练习并体验知 识点的形成过程。
• 这个矛盾说明, 2 不能写成分数的形式, 即 2 不是有理数。
• 实际上, 2 是无限不循环小数。
实数的概念:
在前面的学习中,我们知道,许多数的平方根和 立方根都是无限不循环小数,它们不能化成分数.我 们给无限不循环小数起个名字,叫“无理数”.有理 数和无理数统称为实数.
思考:
14.3 实数 - 第1课时课件(共20张PPT)
14.3 实数第1课时
第十四章 实数
学习目标
1.认识数的扩充的必要性.2.认识无理数的本质特征,知道无理数的不同形式.3.能将实数按要求进行分类.
学习重难点
理解无理数的本质特征.
难点
重点
能将实数按要求进行分类.
复习回顾
在七年级,我们学习了有理数,如何给有理数分类呢?
有理数
整数
分数
实数
有理数
无理数
实数
正实数
负实数
0
随堂练习
1.下面各正方形的边长不是有理数的是( ).(A)面积为25的正方形 (B)面积为36的正方形 (C)面积为27的正方形 (D)面积为1.44的正方形
2.下列各数中,是无理数的为( )A. 3.14 B. C. 0.305305530555… D.0.44444…
3
归纳小结
实数
有理数:整数和分数无理数:来自限不循环小数同学们再见!
授课老师:
时间:2024年9月15日
如图(1)所示,在半透明纸上画一个两条直角边都是2 cm的直角三角形ABC,然后剪下这个三角形,再沿斜边上的高CD剪开后,拼成如图(2)所示的正方形1.这个三角形的面积和拼成的正方形的面积是不是相等?面积是多少?2.如果设正方形的边长为x cm,那么x与这个正方形的面积有怎样的关系?
还有其他分类方法吗?
新知探究
思考
(1)整数是有理数,任意一个整数可以写成小数的形式吗?(2)分数是有理数,分数可以化成什么小数形式?
可以,如:-10=-10.0,-1=-1.0,0=0.0,50=50.0
分数总能化成有限小数或无限循环小数的形式.
有理数总可以写成有限小数或无限循环小数的形式.
第十四章 实数
学习目标
1.认识数的扩充的必要性.2.认识无理数的本质特征,知道无理数的不同形式.3.能将实数按要求进行分类.
学习重难点
理解无理数的本质特征.
难点
重点
能将实数按要求进行分类.
复习回顾
在七年级,我们学习了有理数,如何给有理数分类呢?
有理数
整数
分数
实数
有理数
无理数
实数
正实数
负实数
0
随堂练习
1.下面各正方形的边长不是有理数的是( ).(A)面积为25的正方形 (B)面积为36的正方形 (C)面积为27的正方形 (D)面积为1.44的正方形
2.下列各数中,是无理数的为( )A. 3.14 B. C. 0.305305530555… D.0.44444…
3
归纳小结
实数
有理数:整数和分数无理数:来自限不循环小数同学们再见!
授课老师:
时间:2024年9月15日
如图(1)所示,在半透明纸上画一个两条直角边都是2 cm的直角三角形ABC,然后剪下这个三角形,再沿斜边上的高CD剪开后,拼成如图(2)所示的正方形1.这个三角形的面积和拼成的正方形的面积是不是相等?面积是多少?2.如果设正方形的边长为x cm,那么x与这个正方形的面积有怎样的关系?
还有其他分类方法吗?
新知探究
思考
(1)整数是有理数,任意一个整数可以写成小数的形式吗?(2)分数是有理数,分数可以化成什么小数形式?
可以,如:-10=-10.0,-1=-1.0,0=0.0,50=50.0
分数总能化成有限小数或无限循环小数的形式.
有理数总可以写成有限小数或无限循环小数的形式.
《实数(1)》课件
探究二:实数与数轴上的点的一一对应
重点、难点知识★▲
活动1 一个萝卜一个坑?
通过对预习任务中任务2的思考,你能找到每一个“萝卜” 的“坑”吗?
如P54探究题所示,直径为1个单位长度的圆从原点沿数轴向右
滚动一周,圆上的一点由原点到达点O′,圆的周长是 ,此时点O′
对应的数是 。这样无理数 就可以用数轴上的点表示出来。
探究一:有理无理要分清
重点知识★
活动1 回顾旧知,分数小数互换
分数都可以转化为小数,小数都可以转化为分数吗?你 知道小数可以分为几类吗?
分数可以写成 或者 循环小数的形式,无限小数
可分为
和
两类.你能分别举例吗?
所以我们可以说
小数、
称为有理数,
叫做无理数.
小数、
统
知识回顾 问题探究 课堂小结 随堂检测
6.3 实 数
(第一课时)
知识回顾 问题探究 课堂小结 随堂检测
(1)识别无理数:分数可以写成 或者 循环小
数的形式,无限小数可分为 和
两类;我们可
以说 小数、 小数、
统称为有理数,
叫做无理数.
(2)一 一对应:实数和数轴上的点是一 一对应的,就
像生活中
一 一对应一样.
知识回顾 问题探究 课堂小结 随堂检测
知识回顾 问题探究 课堂小结 随堂检测
点击“互动训练” 选择“《实数(1)》随堂检测”
你能在数轴上找到 , 的位置吗?
2
交流 这里的“萝卜”和“坑”分别指代的是什么?
知识回顾 问题探究 课堂小结 随堂检测
知识梳理
基础知识思维导图
实数的概念 无理数和有理数的统称
实数
分类
北师大版八年级数学上册《实数》课件(共18张PPT)
此题中的有理数: 此题中的无理数:
3.14159(5)2 9265
π23 3351
3 . 1 0 1
(二)实数的相关性质及运算
例2 实数 a,b在数轴上(ba)2 (a b) b a a b b a 2a
例3 计算:
(1) 1 4 0 10
3 1 ,( 5 ) 2 ,3.1010010001…(相邻两 个1之间0的各数逐次加1)
有理数的判断方法: 整数和分数
例1 下列各数中,哪些是有理数,哪 些是无理数?
23 ,3 5 ,3.14159265, 9 , π ,
3 1 ,( 5 ) 2 ,3.1010010001…(相邻两 个1之间0的各数逐次加1)
解: a20,b30 又 a2b30
a20,b30
a2,b3
( a b ) 2 0 1 3 ( 2 3 ) 2 0 1 3 ( 1 ) 2 0 1 3 1
(2)已知 y2x4242x3,
求 x y 的值.
解: 2 x 4 0 ,4 2 x 0 2 x 4 4 2 x 0
x 2
CABC 8 17 SABC 51
四、课堂小结
请同学们认真思考下列问题: 1.通过本堂课的学习我收获了什么? 2.我还有哪些没有解决的困惑?
五、课后作业
完成课本 P 4 7 4 9 复习题知识技能1题、4题、
10题;数学理解14题;问题解决21题.
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月12日星期二2022/4/122022/4/122022/4/12 •书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/122022/4/122022/4/124/12/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/122022/4/12April 12, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。
北师大版八年级数学上册课件:2.6实数(1)(共18张PPT)
无理数集合
问题导学:
你能把下(列各2)数0分属别于填正入数相吗应的?集0属合于内吗负?数吗?
3
2,
4, 9
140实,,数(可703.,3以)73分实,77为数352正还7,7实可732数以,、怎(的20样307相、的,进邻个负两行数个实5逐分3,之次数类间加31呢)8,?
3
1
2, 4
,7,
,
2, 20 ,
合作探究:
请各小组研究如何在数轴上画出表示 5 的点, 并在练习本上画出。
巩固练习:
1、判断下列说法是否正确: (1)无限小数都是无理数; (2)无理数都是无限小数; (3)带根号的数都是无理数. 2、求下列各数的相反数、倒数和绝对值:
(1) 7(; 2)3 8;(3) 49
课堂小结:
谈谈你这节课的 收获吧!
2.6实数(1)
温故互查:(二人小组完成)
1.(1) 整数和分数 统称有理数; (2)有理数分为 有限小数
和 无限循环小数; (3)有理数包括 正有理数 ﹑
零﹑ 负有理数. (4)无___限__不__循__环__小___数___叫做无理数;
温故互查:(二人小组完成)
有理数的分类方法:
整数 1、有理数
3 4
3
的相反数是__4____.
0的相反数是__0___. 2) 5的绝对值是 5 , 43的绝对值是___43___.
0的绝对值是___0__.
3) 5的倒数是
1 5
,
3 4
的倒数是____34__.
0有倒数吗?
(B)在有理数中,有理数a的的相反数、绝
对值是什么?不为0的数a的倒数是什么?
a的相反数是 -a
第1课时实数的概念和分类PPT课件(沪科版)
负无理数
按大
小分
应用
正实数
零
负实数
有限小数
或无限循
环小数
无限不循
环小数
第1课时
实数的概念和分类
按定义分
分
类
实数
的概
念和
分类
正有理数
按大
小分
正实数
零
负实数
正无理数
负有理数
负无理数
应
用
实数的有关概念
逼近法求无理数的近似值
第1课时
实数的概念和分类
小结
知识点一 无理数的概念
无限不循环小数叫做 无理数 .
};
(2)有理数:{
, ,-., ,-., };
(3)负实数:{ -π,-0.1010010001,-3.14
}.
第1课时
实数的概念和分类
【归纳总结】实数分类的“两点注意”:
(1)弄清“标准”,清楚按什么分.
(2)“不重不漏”,即分类时不能漏掉一个数,也不能使某个数在两
是两个整数的比,而 是无理数,故 是无理数,不是分数.
谢 谢 观 看!
第6章
6.2 实数
实数
第6章 实数
第1课时
实数的概念和分类
目标突破
总结反思
第1课时
实数的概念和分类
目标突破
目标一 会辨认无理数
例 1 [教材补充例题] 在 3.14159,-2,
中,无理数有 ( A )
A.2 个
B.3 个
C.4 个
··
,0, ,0.20 , 这 7 个数
D.5 个
按大
小分
应用
正实数
零
负实数
有限小数
或无限循
环小数
无限不循
环小数
第1课时
实数的概念和分类
按定义分
分
类
实数
的概
念和
分类
正有理数
按大
小分
正实数
零
负实数
正无理数
负有理数
负无理数
应
用
实数的有关概念
逼近法求无理数的近似值
第1课时
实数的概念和分类
小结
知识点一 无理数的概念
无限不循环小数叫做 无理数 .
};
(2)有理数:{
, ,-., ,-., };
(3)负实数:{ -π,-0.1010010001,-3.14
}.
第1课时
实数的概念和分类
【归纳总结】实数分类的“两点注意”:
(1)弄清“标准”,清楚按什么分.
(2)“不重不漏”,即分类时不能漏掉一个数,也不能使某个数在两
是两个整数的比,而 是无理数,故 是无理数,不是分数.
谢 谢 观 看!
第6章
6.2 实数
实数
第6章 实数
第1课时
实数的概念和分类
目标突破
总结反思
第1课时
实数的概念和分类
目标突破
目标一 会辨认无理数
例 1 [教材补充例题] 在 3.14159,-2,
中,无理数有 ( A )
A.2 个
B.3 个
C.4 个
··
,0, ,0.20 , 这 7 个数
D.5 个
《实数的概念》课件
实数在生活中的应用
温度计上的实数
温度计上的数字表示实际温 度
温度计在生活中的应用:测 量体温、监测天气等
温度计的种类:水银温度计、 电子温度计等
温度计的准确性和使用注意 事项
身高体重指数(BMI)中的实数
身高体重指数(BMI)的定义 BMI中的实数计算 BMI指数在健康生活中的应用 如何根据BMI指数调整生活方式
课堂互动环节设计
案例分析:通过分析具体案例,让 学生更好地理解实数的概念和应用
添加标题
添加标题
添加标题
添加标题
分组讨论:将学生分成小组,让他 们讨论相关问题,提高合作能力
课堂测验:通过小测验或练习题, 检验学生对实数概念的理解和掌握 情况
练习题与答案解析
● 题目1:什么是实数? 答案1:实数包括有理数和无理数,有理数包括整数、分数、小数等,无理数包括无限不循 环小数等。
添加标题 添加标题 添加标题 添加标题
地图上的经纬度
经纬度定义:经度和纬度是地图上的两个基本坐标系统,用于确定地球上 任何位置的坐标。
实数与经纬度的关系:经度和纬度都是实数,可以用小数或度数表示。
经纬度在地图上的应用:通过经纬度可以确定地球上任何位置的精确位置, 从而进行导航、定位和地理信息系统的应用。
添加标题
添加标题
实数与其他数学概念的关系
总结与回顾
本节课的重点与难点总结
重点:实数的概 念、分类和性质
难点:实数的运 算规则和实际应 用
解决方法:通过 例题讲解和练习 巩固,加深对实 数概念的理解和 掌握
总结:回顾本节 课所学内容,强 调容
数
无理数与有理 数的区别:定 义、性质、运 算规则等方面
的差异
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
2
如 图 ,A、B两 点 的 坐 标 分 别 是 A(1,2)、B( 5,0), 求OAB的 面 积 ( 精 确 到0.1) 。
平面直角坐标系内的点与有序实数对是一一对应的。
随堂练习
1、 3 的相反数是 3 ,绝对值是 3 .
2、绝对值等于 5 的数是 5 , 7 的平方 是 7 .
3、比较大小:-7
青藏高原 内蒙古高原 黄土高原 云贵高原
地势平坦 地面崎岖 千沟万壑 雪山连绵
无理数集合
有 理实 数数 和 无 理 数 统 称实 实数 数
有理数
无理数 正实数
0 负实数
整数 分数
正有理数 正无理数 负有理数 负无理数
把下列各数填入相应的集合内:
9 3 5 64
(1)有理数集合: 9
(2)无理数集合: 3 5
•
0.6 •
64 0.6
3
4
3 4
0
3
3 9 3 0.13 0.13
把下列各数分别填入相应的集合内:
3
2,
1 4
,
4 , 0,
9
7, , 5 ,
2
2,
20 3
,
5, 3 8,
(相邻两个3之间
0.3737737773 的7的个数逐次加1)
1 , 5 , 42
4, 9
0,
3 8,
3 2, 7 , , 2, 20 , 3
5, 0.3737737773
有理数集合
3 9
(3)整数集合: (4)负数集合: (5)分数集合:
9
3 4
•
0.6
(6)实数集合: 9 3 5
64 3
3 9
3 0.13
4
64
•
0.6
3 4
3 9
Байду номын сангаас
3
0.13
直径为1个单位长度的圆从原点沿数轴向右
实滚数动与一数周轴,圆上上的的点一一点一由对原应点。到达即点每O一,,个实 数点都O可,的以坐用标数是轴多上少?的一个点来表示;反之 数轴上的每一点都表示一个实数。
4.带根号的数都是无理数。( ×) 5.无理数一定都带根号。( ×)
6.两个无理数之积不一定是无理数。( )
7.两个无理数之和一定是无理数。(× )
作业: 书本
课后思考题:
地形复杂多样
“神州”6号载人飞船成功飞行,顺利返 航。飞船的着陆必须具备下列条件:
1.飞船将从这个地区上空多圈次通过 2.场面开阔 3.地势平坦,地表要足够坚硬 4.天气状况良好 5.人口稀疏 “神6”的着陆点是我国的哪一个地形区?
47
,
••
0 . 81
9
,
8
11
反过来,任何有限小数或无限循环小数也都是
有理数无除还限了有不有什限 么循小其环数它的和类无型小限的数循小环数小吗数?,
----------叫做无理数
1.圆周率
2 34
2.开不尽的方根
0.1010010001
(每两个1之间依次增加一个0) 3.人为构造的数
例:求下列各式的值。 (1) ( 3 2) 2 (2)3 3 2 3
例:计算。 (1) 5 (精确 到0.01) (2) 3 • 2(结果 保留三个 有效数字 )
随堂练习
一、判断:
1.实数不是有理数就是无理数。( ) 2.无理数都是无限不循环小数。( )
3.无理数都是无限小数。( )
把下列各数写成小数的形式,你有什么发现?
3, 3 , 47 , 9 , 11 , 5 5 8 11 90 9
3 3.0, 3 0.6, 47 5.875,
5
8
9
0.
••
81,
11
0.1
•
2,
5
0.
•
5
11
90
9
事实上,任何一个有理数都可以写成有限小数或
无限循环小数。
5.875
4 3
4、 3 64 的绝对值是 4 。
正实数的绝对值是 它本身 ;
0的绝对值是
0
;
负实数的绝对值是它的相反数 。
在实数范围内,相反数、倒数、绝对 值的意义和有理数范围内的相反数、 倒数、绝对值的意义完全一样。
(1)a是一个实数,它的相反数为 a ,
绝对值为 a ;
1
(2)如果a 0,那么它的倒数为 a 。