第3讲 空间点、直线、平面之间的位置关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3讲空间点、直线、平面之间的位置关系
一、选择题
1.下列命题正确的个数为( ).
①经过三点确定一个平面;
②梯形可以确定一个平面;
③两两相交的三条直线最多可以确定三个平面;
④如果两个平面有三个公共点,则这两个平面重合.
A.0 B.1 C.2 D.3
解析①④错误,②③正确.
答案 C
2.若两条直线和一个平面相交成等角,则这两条直线的位置关系是().A.平行B.异面
C.相交D.平行、异面或相交
解析经验证,当平行、异面或相交时,均有两条直线和一个平面相交成等角的情况出现,故选D.
答案 D
3.若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分为( ) A.5部分 B.6部分
C.7部分 D.8部分
解析垂直于交线的截面如图,把空间分为7部分.
答案 C
4.在正方体ABCD-A1B1C1D1中,O是BD1的中点,直线A1C交平面AB1D1于点M,则下列结论错误的是().A.A1、M、O三点共线B.M、O、A1、A四点共面
C.A、O、C、M四点共面D.B、B1、O、M四点共面
解析因为O是BD1的中点.由正方体的性质知,点O在直线A1C上,O也是A1C的中点,又直线A1C交平面AB1D1于点M,则A1、M、O三点共线,A正确;又直线与直线外一点确定一个平面,所以B、C正确.
答案 D
5.一个正方体的展开图如图所示,A、B、C、D为原正方体的顶点,则在原来的正方体中().
A.AB∥CD
B.AB与CD相交
C.AB⊥CD
D.AB与CD所成的角为60°
解析如图,把展开图中的各正方形按图(a)所示的方式分别作为正方体的前、后、左、右、上、下面还原,得到图(b)所示的直观图,可见选项A、B、C不正确.∴正确选项为D.图(b)中,DE∥AB,∠CDE为AB与CD所成的角,△CDE为等边三角形,∴∠CDE=60°.
答案 D
6.如图,四棱锥SABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是( ).
A.AC⊥SB
B.AB∥平面SCD
C.SA与平面SBD所成的角等于SC与平面SBD所成的角
D.AB与SC所成的角等于DC与SA所成的角
解析选项A正确,因为SD垂直于平面ABCD,而AC在平面ABCD中,所以AC垂直于SD;再由ABCD为正方形,所以AC垂直于BD;而BD与SD相交,所以,AC垂直于平面SBD,进而垂直于SB.选项B正确,因为AB平行于CD,而CD在平面SCD内,AB不在平面SCD内,所以AB平行于平面SCD.选项C 正确,设AC与BD的交点为O,连接SO,则SA与平面SBD所成的角就是∠ASO,SC与平面SBD所成的角就是∠CSO,易知这两个角相等.选项D错误,AB与SC所成的角等于∠SCD,而DC与SA所成的角是∠SAB,这两个角不相等.答案 D
二、填空题
7.已知a,b为不垂直的异面直线,α是一个平面,则a,b在α上的射影有可能是:
①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其
外一点.
在上面结论中,正确结论的编号是________(写出所有正确结论的编号).解析只有当a∥b时,a,b在α上的射影才可能是同一条直线,故③错,其余都有可能.
答案①②④
8. 如图,在正方体ABCD-A1B1C1D1中,M、N分别为
棱C1D1、C1C的中点,有以下四个结论:
①直线AM与CC1是相交直线;
②直线AM与BN是平行直线;
③直线BN与MB1是异面直线;
④直线AM与DD1是异面直线.
其中正确的结论为________(注:把你认为正确的结论的序号都填上).
解析直线AM与CC1是异面直线,直线AM与BN也是异面直线,故①②错误.
答案③④
9.如图,矩形ABCD中,AB=2,BC=4,将△ABD沿对角线 BD
折起到△A′BD的位置,使点A′在平面BCD内的射影点O恰
好落在BC 边上,则异面直线A′B 与CD 所成角的大小为________. 解析 如题图所示, 由A′O⊥平面ABCD , 可得平面A′BC⊥平面ABCD ,
又由DC ⊥BC 可得DC ⊥平面A′BC,DC ⊥A′B, 即得异面直线A′B 与CD 所成角的大小为90°. 答案 90°
10.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为棱AA 1,CC 1的中点,则在空间中与三条直线A 1D 1,EF ,CD 都相交的直线有________条. 解析 法一 在EF 上任意取一点M ,直线A 1D 1与M 确定一个平面,这个平面与CD 有且仅有1个交点N ,当M 取不同的位置就确定不同的平面,从而与CD 有不同的交点N ,而直线MN 与这3条异面直线都有交点.如图所示.
法二 在A 1D 1上任取一点P ,过点P 与直线EF 作一个平面α,因CD 与平面α不平行,所以它们相交,设它们交于点Q ,连接PQ ,则PQ 与EF 必然相交,即PQ 为所求直线.由点P 的任意性,知有无数条直线与三条直线A 1D 1,EF ,CD 都相交. 答案 无数 三、解答题
11. 如图所示,四边形ABEF 和ABCD 都是直角梯形,∠BAD =∠F AB =90°,BC 綉12AD ,BE 綉1
2F A ,G 、H 分别为F A 、FD 的中点. (1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么?
(1)证明 由已知FG =GA ,FH =HD ,可得GH 綉1
2AD . 又BC 綉1
2AD ,∴GH 綉BC ,∴四边形BCHG 为平行四边形.