有限元分析方法优秀课件

合集下载

有限元分析及应用课件

有限元分析及应用课件
参数设置
设置材料属性、单元类型等参数。
求解过程
刚度矩阵组装
根据每个小单元的刚度,组装成全局的刚度矩阵。
载荷向量构建
根据每个节点的外载荷,构建全局的载荷向量。
求解线性方程组
使用求解器(如雅可比法、高斯消元法等)求解线性方程组,得到节点的位移。
后处理
01
结果输出
将计算结果以图形、表格等形式输 出,便于观察和分析。
有限元分析广泛应用于工程领域,如结构力学、流体动力学、电磁场等领域,用于预测和优化结构的 性能。
有限元分析的基本原理
离散化
将连续的求解域离散化为有限 个小的单元,每个单元具有特
定的形状和属性。
数学建模
根据物理问题的性质,建立每 个单元的数学模型,包括节点 力和位移的关系、能量平衡等。
求解方程
通过建立和求解线性或非线性 方程组,得到每个节点的位移 和应力分布。
PART 05
有限元分析的工程应用实 例
桥梁结构分析
总结词
桥梁结构分析是有限元分析的重要应用之一,通过模拟桥梁在不同载荷下的响应,评估 其安全性和稳定性。
详细描述
桥梁结构分析主要关注桥梁在不同载荷(如车辆、风、地震等)下的应力、应变和位移 分布。通过有限元模型,工程师可以预测桥梁在不同工况下的行为,从而优化设计或进
刚性问题
刚性问题是有限元分析中的一种 特殊问题,主要表现在模型中某 些部分刚度过大,导致分析结果 失真
刚性问题通常出现在大变形或冲 击等动态分析中,由于模型中某 些部分刚度过高,导致变形量被 忽略或被放大。这可能导致分析 结果与实际情况严重不符。
解决方案:为避免刚性问题,可 以采用多种方法进行优化,如采 用更合适的材料模型、调整模型 中的参数设置、采用更精细的网 格等。同时,可以采用多种方法 对分析结果进行验证和校核,以 确保其准确性。

有限元分析 ppt课件

有限元分析 ppt课件
有限元分析 Finite Element Analysis
课程目标
1) 了解什么是有限单元法、有限单元法的基本 思想。
2) 学习有限单元法的原理,主要结合弹性力学 问题来介绍有限单元法的基本方法,包括单 元分析、整体分析、载荷与约束处理、等参 单元等概念。
3) 初步学会使用商用有限元软件分析简单工程 问题。
4. O.C. Zienkiewicz, R.L. Taylor. The finite element method( 5th ed). Oxford ; Boston : Butterworth-Heinemann, 2000
5. 郭和德编. 有限单元法概论,清华大学, 1998
1 有限单元法简介
自重作用下等截面直杆的材料力学解答
N(x)q(Lx)
d(L x)N(x)d xq(Lx)dx EA EA
u(x)xN(x)d xq(L xx2)
0 EA EA 2
x
du q (Lx) dx EA
x
Ex
q(Lx) A
自重作用下等截面直杆的有限单元法 解答
1)离散化 如图所示,将直杆划分 成n个有限段,有限段之 间通过一个铰接点连接。 称两段之间的连接点为 结点,称每个有限段为 单元。 第 i 个 单 元 的 长 度 为 Li , 包含第i,i+1个结点。
1.3.1网格划分
对弹性体进行必要的简化,再将弹性体 划分为有限个单元组成的离散体。 单元之间通过单元节点相连接。 由单元、结点、结点连线构成的集合称 为网格。
1.3.1网格划分
通常把三维实体划分成四面体(Tetrahedron) 或六面体(Hexahedron)单元的网格
四面体4结点单元
六面体8结点单元

有限元分析经典课件

有限元分析经典课件

有限元分析经典课件1. 简介有限元分析(Finite Element Analysis, FEA)是一种以数值模拟方法为基础,通过离散化处理求解结构力学问题的工程方法。

本课件将介绍有限元分析的基本原理和常用的应用领域。

2. 有限元分析的基本原理2.1 有限元方法概述有限元方法(Finite Element Method, FEM)是有限元分析的基础理论和计算方法。

本部分将介绍有限元方法的基本概念、基本步骤、离散化处理等内容。

2.2 有限元网格划分有限元网格划分是有限元分析的关键步骤,它将结构离散化为有限个小单元。

本部分将介绍有限元网格划分的方法、常用网格类型以及网格质量评价的方法。

2.3 有限元方程与加载有限元方程是描述结构力学问题的关键方程。

本部分将介绍有限元方程的推导过程,以及加载条件的处理方法。

2.4 有限元解与后处理有限元解是通过有限元分析得到的结构响应结果。

本部分将介绍有限元解的计算方法以及后处理方法,包括位移、应力、应变等结果的计算和可视化展示。

3. 有限元分析的应用案例3.1 结构力学分析结构力学分析是有限元分析的主要应用之一。

本部分将通过实例演示有限元分析在结构力学分析中的具体应用,包括静力学分析、动力学分析等。

3.2 热力学分析热力学分析是有限元分析的另一个重要应用领域。

本部分将通过实例演示有限元分析在热力学分析中的具体应用,包括热传导、热稳定性等问题的分析。

3.3 流体力学分析流体力学分析是有限元分析的扩展应用领域之一。

本部分将通过实例演示有限元分析在流体力学分析中的具体应用,包括流体流动、压力分布等问题的分析。

4. 有限元分析软件的介绍有限元分析软件是进行有限元分析的工具,市场上有多种成熟的有限元分析软件可供选择。

本部分将介绍一些常用的有限元分析软件,包括Ansys、Abacus等。

5. 总结有限元分析作为一种重要的数值模拟方法,已广泛应用于不同领域的工程问题。

本课件从理论原理到实际应用都进行了全面的介绍,相信对有限元分析的学习和应用都有很大帮助。

有限单元法ppt课件

有限单元法ppt课件

06
有限单元法的发展趋势和展 望
发展趋势
工程应用领域拓展
随着科技的发展,有限单元法在解决 复杂工程问题上的应用越来越广泛, 不仅局限于结构分析,还涉及到流体 动力学、热传导等领域。
与其他方法的结合
有限单元法正与其他数值方法(如有 限差分法、边界元法等)进行交叉融 合,形成更为强大的数值分析工具。
05
有限单元法的优缺点
优点
灵活性
有限单元法允许对复杂的几何形状进 行离散化,适用于解决各种形状和大 小的问题。
高效性
有限单元法能够处理大规模问题,通 过使用计算机技术,可以快速求解。
广泛的应用领域
有限单元法被广泛应用于工程、物理 、生物等领域,是一种通用的数值分 析方法。
易于理解和实现
有限单元法的基本概念直观易懂,且 实现起来相对简单。
01
利用线性代数方法,将 各个单元的数学模型和 节点信息组合成整体方
程组。
03
将节点的未知量返回到 原问题中,得到问题的
解。
05
根据问题的物理性质和 边界条件,建立单元的 数学模型和节点信息。
02
解整体方程组,得到节 点的未知量。
04
有限单元法的特点
适用范围广
可以用于解决各种类型的问题,如弹性力学 、流体力学、传热学等。
高精度与高效率
研究者们致力于开发更高效、精确的 算法,以解决大规模、非线性、动态 等复杂问题。
并行化与云计算应用
随着计算资源的丰富,有限单元法的 计算过程正逐步实现并行化,利用云 计算平台进行大规模计算已成为趋势 。
展望
理论完善与创新
随着工程实践的深入,有限单元法的理论体系将进一步完善,同时会 有更多创新性的算法和模型出现。

有限元法PPT课件

有限元法PPT课件
和时间。
如何克服局限性
改进模型
通过更精确地描述实际 结构,减少模型简化带
来的误差。
优化网格生成
采用先进的网格生成技 术,提高网格质量,降
低计算误差。
采用高效算法
采用并行计算、稀疏矩 阵技术等高效算法,提
高计算效率。
误差分析和验证
对有限元法的结果进行误 差分析和验证,确保结果
的准确性和可靠性。
05 有限元法的应用实例
有限元法ppt课件
目 录
• 引言 • 有限元法的基本原理 • 有限元法的实现过程 • 有限元法的优势与局限性 • 有限元法的应用实例 • 有限元法的前沿技术与发展趋势 • 结论
01 引言
有限元法的定义
01
有限元法是一种数值分析方法, 通过将复杂的结构或系统离散化 为有限个简单元(或称为元素) 的组合,来模拟和分析其行为。
有限元法在流体动力学分析中能够处理复杂的流体流动和 压力分布。
详细描述
通过将流体域离散化为有限个小的单元,有限元法能够模 拟流体的流动、压力、速度等状态,广泛应用于航空、航 天、船舶等领域。
实例
分析飞机机翼在不同飞行状态下的气动性能,优化机翼设 计。
热传导分析
总结词
有限元法在热传导分析中能够处理复杂的热传递过程。
实例
分析复杂电磁设备的电磁干扰问题,优化设备性能。
06 有限元法的前沿技术与发 展趋势
多物理场耦合的有限元法
总结词
多物理场耦合的有限元法是当前有限元法的重要发展方向, 它能够模拟多个物理场之间的相互作用,为复杂工程问题提 供更精确的解决方案。
详细描述
多物理场耦合的有限元法涉及到流体力学、热力学、电磁学 等多个物理场的耦合,通过建立统一的数学模型,能够更准 确地模拟多物理场之间的相互作用。这种方法在航空航天、 能源、环境等领域具有广泛的应用前景。

有限元课件ppt

有限元课件ppt
整体刚度矩阵
将所有单元的刚度矩阵依照一定的方式组合起来,形成整体的刚度 矩阵。
载荷向量与束缚条件
载荷向量
表示作用在结构上的外力,包括集中力和散布力。
束缚条件
表示结构在某些结点上的位移受到限制,常见的束缚有固定束缚、 弹性束缚等。
载荷向量和束缚条件的引入
在建立整体刚度矩阵后,需要将载荷向量和束缚条件引入到整体刚 度矩阵中,形成完全的线性方程组。
并行计算
采取并行计算技术,提高计算效率。
算法改进
优化算法,提高计算精度和效率。
06 有限元分析软件 介绍
ANSYS
01
功能特点
ANSYS是一款功能强大的有限元分析软件,广泛应用于结构、流体、
电磁等多种工程领域。它提供了丰富的建模工具和求解器,能够处理复
杂的工程问题。
02
优点
ANSYS具有友好的用户界面和强大的前后处理功能,使得建模和网格
有限元法的应用领域
结构分析
有限元法在结构分析中应用最 为广泛,可以用于分析各种类 型的结构,如桥梁、建筑、机
械零件等。
热传导
有限元法可以用于求解温度场 的问题,如热传导、热对流和 热辐射等问题。
流体动力学
有限元法在流体动力学领域也 有广泛应用,可以用于求解流 体流动和流体传热等问题。
其他领域
除了上述领域外,有限元法还 广泛应用于电磁场、声场、化
学反应等领域。
02 有限元的数学基 础
线性代数基础
向量与矩阵
01
介绍向量的基本概念、向量的运算、矩阵的表示和运算规则等

线性方程组
02
论述线性方程组的解法,包括高斯消元法、LU分解等。
特征值与特征向量

有限元分析 (FEA) 方法(PPT 13)

有限元分析 (FEA) 方法(PPT 13)

有限元模型
.
A-4
自由度(DOFs)
自由度(DOFs) 用于描述一个物理场的响应特性。
UY ROTY
ROTZ UZ
UX ROTX
结构 DOFs
方向
结构 热 电
流体 磁
自由度
位移 温度 电位 压力 磁位
September 30, 1998
.
A-5
节点和单元
载荷
节点: 空间中的坐标位置,具有一定自由度和 存在相互物理作用。
September 30, 1998
.
A-12
单元形函数(续)
遵循原则:
• 当选择了某种单元类型时,也就十分确定地选择并接受该种单元 类型所假定的单元形函数。
• 在选定单元类型并随之确定了形函数的情况下,必须确保分析时 有足够数量的单元和节点来精确描述所要求解的问题。
September 30, 1998
September 30, 1998
.
A-7
节点和单元 (续)
信息是通过单元之间的公共节点传递的。
. . 2 nodes ...
A
B
.. .
分离但节点重叠的单元 A和B之间没有信息传递 (需进行节点合并处理)
September 30, 1998
.
1 node
...
A
B
...
具有公共节点的单元 之间存在信息传递
September 30, 1998
.
A-10
单元形函数(续)
DOF值二次分布
.
.
1
节点
单元
二次曲线的线性近 (不理想结果)
真实的二次曲线
.
.
2

4-有限元分析PPT模板

4-有限元分析PPT模板
先进制造技术
有限元分析
1.1 有限元法的基本概念和特点
1.有限元法基本概念
有限元法(Finite Element Method,FEM) 也称为有限单元法或有限元素法,其基本思想是 将物体(即连续求解域)离散成有限个且按一定 方式相互连接在一起的单元组合,来模拟或逼近 原来的物体,从而将一个连续的无限自由度问题 简化为离散的有限自由度问题进行求解。物体被 离散以后,通过对其中的各个单元进行单元分析, 最终得到对整个物体的分析。网络划分中每个小 的块体称为单元。确定单元形状、单元之间相互 连接的点称为节点。单元上节点处的结构内力为 节点力,外力为节点载荷。
提高自动化的
展到求解非线性问题
网格处理能力
现代设计技术
— 7—
先进制造技术
选择位移模式
分析单元的力学性质
计算等效节点力
根据单元的材料性质、形状、尺寸、节点数目、位置及其含义等,
找出单元节点力和节点位移的关系式,根据弹性力学的几何方程和物理
方程确定单元的刚度矩阵,形成如下所示的线性方程:
F=Kδ

式中:F——节点力向量;
K——单元刚度矩阵;
δ ——节点位移向量。
现代设计技术
04
这是有限元分析的后处理部分,在该步骤中,对
05
计算出来的结果进行加工处理,并以各种形式将计算结 果显示出来。
现代设计技术
— 6—
有限元分析
1.3 有限元分析的发展趋势
由单一场计算向多 物理耦合场问题的求解 方向发展
与CAD/CAM 等软件的集成
软件面向专业 用户的开放性
1
2
3
4
5
由求解线性问题发
现代设计技术

有限元法PPT课件

有限元法PPT课件
重工业
Motorola– Drop Test Fujitsu-Computers Intel –Chip Integrity
电子
Baxter - Equipment J&J – Stents Medtronic - Pacemakers
医疗
Principia-spain Arup-U.K. T.Y. Lin - Bridge
有限元法
左图所示,为分析齿轮上一个齿内的应力分布,可分析图中所示的一个平面截面内位移分布.作为近似解,可以先求出图中各三角形顶点的位移.这里的 三角形就是单元,其顶点就是节点。
从物理角度理解, 可把一个连续的齿形截面单元之间在节点处以铰链相链接,由单元组合而成的结构近似代替原连续结构,在一定的约束条件下,在给定的载荷作用下,就可以求出各节点的位移,进而求出应力.
一.Abaqus公司简介
公司
’00 ’01 ’02 ’03 ’04 ‘05 ’06 ‘07
18%
18%
20%
SIMULIA公司(原ABAQUS公司)成立于1978年,全球超过600名员工,100% 专注于有限元分析领域。 全球28个办事处和9个代表处 业务迅速稳定增长,是当前有限元软件行业中唯一保持两位数增长率的公司。 2005年5月ABAQUS加入DS集团,将共同成为全球PLM的领导者
Where :
Displacement interpolation functions (位移插值函数)
13.3 Approximating Functions for Two-Dimensional Linear Triangular Elements (二维线性三角形单元的近似函数)
node (节点)
element(单元)

《有限元分析及应用》PPT课件

《有限元分析及应用》PPT课件
5
有限元法的孕育过程及诞生和发展
牛顿(Newton)
莱布尼茨(Leibniz G. W.)
6
大约在300年前,牛顿和莱布尼茨发明了积 分法,证明了该运算具有整体对局部的可加 性。虽然,积分运算与有限元技术对定义域 的划分是不同的,前者进行无限划分而后者 进行有限划分,但积分运算为实现有限元技 术准备好了一个理论基础。
u y
dy
vB
v
v y
dy
66
在小变形的前提下,∠A’P’A1很小,可以认 为,线段PA位移后的绝对伸长,可以用线段两 端点沿x轴的位移之差来表示,即:。
PA PA
uA
uP
u
u x
dx u
u x
dx
从而线段PA的正应变
x为:。 x
PA PA PA
u dx x
dx
u x
v
dy
同理线段PB的正应变
y
dy
zy
1 2
zy
z
dz
0
略去微量项,得 yz zy
MY 0 zx xz
MZ 0
xy yx
剪切力互等定律
53
二维问题:平衡微分方程
x yx X 0
x y xy y Y 0 x y
剪切力互等定律
xy yx
54
应力边界条件
四面微分体Mabc
55
效的力系所代替,只能产生局部应力的改变,而在离
这一面积稍远处,其影响可以忽略不计。
60
61
62
均匀分布载荷作用 下的平板,应力分 布是均匀的。
材料力学中的拉伸 应力计算公式就是 圣维南原理应用的 结论。
63
一对集中力F/2作 用点区域仍然有比 较大的应力梯度变 化,但是比等效力

有限元分析实例ppt课件

有限元分析实例ppt课件

Stress distribution
Reaction
有限元分析典型流程
§3-5 有限元分析法存在的问题及发展方向
• 有限元模型的建立 有限元网格的自动划分与动态划分-自适应网格
• 求解过程的优化 减少计算量,降低分析成本。
• 有限元分析结果的判读和评定 采用等值线图、明暗色彩、动态图形、过程模拟
机进行分析计算的重要工具。
但是当时限于国内大中型计算机很少,大约只有杭州汽轮机厂的 Siemens7738和沈阳鼓风机厂的IBM4310安装有上述程序,所以用户 算题非常不方便,而且费用昂贵。PC机的出现及其性能奇迹般的提高, 为移植和发展PC版本的有限元程序提供了必要的运行平台。可以说国内 FEA软件的发展一直是围绕着PC平台做文章。在国内开发比较成功并拥 有较多用户(100家以上) 的有限元分析系统有大连理工大学工程力学 系的FIFEX95、北京大学力学与科学工程系的SAP84、中国农机科学研 究院的MAS5.0和杭州自动化技术研究院的MFEP4. 等。但正如上面所述, 国外很多著名的有限元分析公司已经从前些年对PC平台不屑一顾转变为 热衷发展,对国内FEA程序开发者来说发展PC版本不再具有优势。
单元类型选择
Element type:
3结点三角形平面应力单元
单元特性定义 Element properties:
材料特性:E, µ 单元厚度:t
网格划分
Mesh 1
Total number of elements:356 Total number of nodes:208
Mesh 2
Total number of elements:192 Total number of nodes:115
Rotor Dynamics(转子动力学分析) :转子动力学分析主要解决旋转机械
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SMX=689.589
Element Solution(SERR) SERR
SMN=0.365E-03
SMN=0.005173
SMX=0.600595
SMX=0.38503
Nodal solution(SEQV) SMN=725.21 SMNB=720.133 SMX=4579 SMXB=4623
SEQV SMN=773.769 SMNB=708.94 SMX=4421 SMXB=4999
s = 1300
savg = 1200
(节点的 ss 是积分点 的外插)
ANSYS网格误差估计
误差估计作用条件:
• 线性静力结构分析及线性稳态热分析 • 大多数 2-D 或 3-D 实体或壳单元 • PowerGraphics off
误差信息:
• 能量百分比误差 sepc • 单元应力偏差 sdsg • 单元能量偏差 serr • 应力上、下限 smnb smxb
应力上下限
应力上下限可以确定由于网格离散误 差对模型的应力最大值的影响.
显示或列出的应力上下限包括: • 估计的上限 - SMXB • 估计的下限 - SMNB
应力上下限限并不是估计实际的最 高或最小应力。它定义了一个确信 范围。 如果没有其他的确凿的验证 ,就不能认为实际的最大应力低于 SMXB.
( v ol
)
其中: ei 单元 i的能量误差 vol — 单元体积
D — 单元的应力 应变矩阵
s — 应力误差矢量
整个模型的能量误差:
nr
e ei Nr单元数 i 1
察看能量误差:Plot Results > Element Solu > Error Estimation > Energy error (ENER).
能量百分比误差
能量百分比误差是对所选择的单元 的位移、应力、温度或热流密度的 粗略估计. 它可以用于比较承受相 似载荷的相似结构的相似模型.
这个值的通常应该在10%以下. 如 果不选择其他单元,而只选择在节 点上施加点载荷或应力集中处的单 元,误差值有时会达到50%或以上.
PowerGraphic off
反作用力和节点力 (续)
在任意选取的单元字集中的节点力,应与作用在结构 此部分的已知载荷向平衡,除非节点的符号约定与自 由体图上所示的相反.
未选择的单元上的竖 直方向的节点总力...
…必须与被选择的 单元上施加的竖直 方向的载荷平衡
注意包含在约束方程中 自由度的反力,不包括 由这个约束方程传递的 力.
采用plane42单元网格局部细化与未细化
能量百分比误差
应力偏差 能量误差估计
应力上下限
局部细化
未细化
Displacement DMX=0.88E-03 SEPC=14.442
DMX=0.803E-03
Element Solution(SDSG) SDSG
SMN=63.453
SMN=64.528
SMX=426.86
应力偏差:
所关心位置上的应力偏差值~450 psi
s s s n i n an i
(30,000 psi 应力的1.5%)
节点n的应力矢量:
N
n e
s
i n
s
a n
i1
N
n e
察看应力偏差:Plot Results > Element Solu > Error Estimation
> Stress deviation (SDSG)
P方法及p单元的应用
P 单元的位移形函数
ANSYS网格划分精度估算
▪ 网格误差估算 ▪ 局部细化 ▪ P方法&举例
ANSYS网格误差估计
ANSYS通用后处理包含网格离散误差估计. 误差估计是依据沿单元内边界的应力或热流的不连续性,是平均 与未平均节点应力间的差值.
savg = 1100
s = 102
理学或数学可以解释.
4.反作用力或节点力
模型所有的反作用力应该与施加的点力、压力和惯性力 平衡.
在所有约束节点的竖 直方向的反作用力...
…必须与施加的竖直方 向的载荷平衡
在所有约束节点水平方向的反 作用力必须与水平方向的载荷 平衡.
所有约束节点的反作用力矩必 须与施加的载荷平衡.
注意包含在约束方程中自由度 的反力,不包括由这个约束方 程传递的力.
2.计算出的几何项:
在输出窗口中输出的质量特性,可能会揭示在几何 模型、材料属性(密度)或实常数方面存在的错误.
3.检验求解的自由度及应力:
• 确认施加在模型上的载荷环境是合理的. • 确认模型的运动行为与预期的相符 - 无刚体平动、
无刚体转动、无裂缝等. • 确认位移和应力的分布与期望的相符,或者利用物
有限元分析方法
1.分析的对象的一些基本的行为:
• 重力方向总是竖直向下的 • 离心力总是沿径向向外的 • 没有一种材料能抵抗 1,000,000 psi 的应力 • 轴对称的物体几乎没有为零的 环向应力 • 弯曲载荷造成的应力使一侧受压,另一侧受拉
如果只有一个载荷施加在结构上,检验结果比较容易. 如果有多个载荷,可单独施加一个或几个载荷分别 检验,然后施加所有载荷检验分析结果.
SEPC ~ 2 %
Main menu > general postproc > plot results > deformed shape 选 :Def+undefedge
应力偏差
要检验某个位置的网格离散应 力误差,可以列出或绘制应力 偏差.
某一个单元的应力偏差是此单 元上全部节点的六个应力分量 值与此节点的平均应力值之差 的最大值.
smj nbmins(ajmsn) smj xbmaxs(ajmsn)
例如:SMX=32750是节点解的实际值 SMXB=33200是估计的上限
X stress SMAX ~ 32,750 psi SMXB ~ 33,200 psi
(difference ~ 450 psi ~ 1.5 %)
局部的细化
举例
平均应力为4421 (nodal solution) 应力偏差为689.598 误差=689.598/4421=15.53%(局部细化)
能量误差
每个单元的另一种误差值是能量误差. 它与单元上节点应力差值 有关的, 用于计算选择的单元的能量百分比误差.
ei
1 2
s
vol
T
D 1 s
d
相关文档
最新文档