浙江省学军中学2019-2020学年高二上学期期末考试数学试题
2019-2020学年人教A版浙江省杭州市学军中学高二(上)期末数学试卷 含解析
2019-2020学年高二第一学期期末数学试卷一、选择题1.经过点A(1,3),斜率为2的直线方程是()A.2x﹣y﹣1=0 B.2x+y+1=0 C.2x+y﹣1=0 D.2x﹣y+1=0 2.椭圆的焦距是()A.B.C.1 D.23.已知直线m,n和平面α,β,γ,下列条件中能推出α∥β的是()A.m⊂α,n⊂β,m∥n B.m⊥α,m⊥βC.m⊂α,n⊂α,m∥β,n∥βD.α⊥γ,β⊥γ4.圆x2+y2﹣2x=0和x2+y2+4y=0的位置关系是()A.相离B.外切C.相交D.内切5.已知a、b是异面直线,P是a、b外的一点,则下列结论中正确的是()A.过P有且只有一条直线与a、b都垂直B.过P有且只有一条直线与a、b都平行C.过P有且只有一个平面与a、b都垂直D.过P有且只有一个平面与a、b都平行6.如图,△ABC中,AB=BC,∠ABC=120°,若以A,B为焦点的双曲线的渐近线经过点C,则该双曲线的离心率为()A.B.C.D.7.直线y=kx+3与圆(x﹣3)2+(y﹣2)2=4相交于M,N两点,若|MN|≥2,则k的取值范围是()A.[﹣,0] B.[﹣∞,﹣]∪[0,+∞]C.[﹣,] D.[﹣,0]8.正四面体ABCD,CD在平面α内,点E是线段AC的中点,在该四面体绕CD旋转的过程中,直线BE与平面α所成角不可能是()A.0 B.C.D.9.已知两点,到直线l的距离均等于a,且这样的直线可作4条,则a的取值范围是()A.a≥1 B.0<a<1 C.0<a≤1 D.0<a<210.如图,正四面体ABCD中,P、Q、R在棱AB、AD、AC上,且AQ=QD,==,分别记二面角A﹣PQ﹣R,A﹣PR﹣Q,A﹣QR﹣P的平面角为α、β、γ,则()A.β<γ<αB.γ<β<αC.α>γ>βD.α>β>γ二、填空题11.若圆x2+y2+2ax+y﹣1=0的圆心在直线y=x上,则a的值是,半径为.12.若直线l1:x+my+6=0与l2:(m﹣2)x+3y+2m=0互相平行,则m的值为,它们之间的距离为.13.某几何体的三视图如图所示,则该几何体的体积为,外接球的表面积为.14.已知双曲线与椭圆共焦点,则m的值为,设F为双曲线C的一个焦点,P是C上任意一点,则|PF|的取值范围是.15.异面直线a,b所成角为,过空间一点O的直线l与直线a,b所成角均为θ,若这样的直线l有且只有两条,则θ的取值范围为.16.在《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑.如图,在鳖臑P ﹣ABC中,PA⊥平面ABC,AB⊥BC,且AP=AC=1,过点A分别作AE⊥PB于点E,AF⊥PC 于点F,连结EF,当△AEF的面积最大时,tan∠BPC=.17.已知椭圆上的三点A,B,C,斜率为负数的直线BC与y轴交于M,若原点O是△ABC的重心,且△BMA与△CMO的面积之比为,则直线BC的斜率为.三、解答题18.已知x>0,y>0,且2x+5y=20.(1)求xy的最大值;(2)求的最小值.19.如图所示,在四棱锥P﹣ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD,若G为AD的中点,E为BC的中点.(1)求证:BG∥平面PDE;(2)求证:AD⊥PB;(3)在棱PC上是否存在一点F,使平面DEF⊥平面ABCD,若存在,确定点F的位置;若不存在,说明理由.20.如图,已知位于y轴左侧的圆C与y轴相切于点(0,2)且被x轴分成的两段圆弧长之比为1:2,直线l与圆C相交于M,N两点,且以MN为直径的圆恰好经过坐标原点O.(1)求圆C的方程;(2)求直线OM的斜率k的取值范围.21.如图,在四棱锥P﹣ABCD中,AB⊥PA,AB∥CD,且PB=BC=BD=,CD=2AB=2,∠PAD=120°.(Ⅰ)求证:平面PAD⊥平面PCD;(Ⅱ)求直线PD与平面PBC所成的角的正弦值.22.在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,且过点(,),点P在第四象限,A为左顶点,B为上顶点,PA交y轴于点C,PB交x轴于点D.(1)求椭圆C的标准方程;(2)求△PCD面积的最大值.参考答案一、选择题1.经过点A(1,3),斜率为2的直线方程是()A.2x﹣y﹣1=0 B.2x+y+1=0 C.2x+y﹣1=0 D.2x﹣y+1=0 【分析】直接代入点斜式方程即可.解:由点斜式直接带入:y﹣3=2(x﹣1),即2x﹣y+1=0,故选:D.2.椭圆的焦距是()A.B.C.1 D.2【分析】根据题意,由椭圆的标准方程可得a、b的值,计算可得c的值,进而由焦距定义计算可得答案.解:根据题意,椭圆的标准方程为:,则a2=5,b2=4,则c==1,则其焦距2c=2;故选:D.3.已知直线m,n和平面α,β,γ,下列条件中能推出α∥β的是()A.m⊂α,n⊂β,m∥n B.m⊥α,m⊥βC.m⊂α,n⊂α,m∥β,n∥βD.α⊥γ,β⊥γ【分析】利用平面平行的判定定理,对四个选项分别进行判断,能够得到正确答案.解:由直线m和n,若m⊂α,n⊂β,n∥m,则α与β相交或平行,故A不正确;若m⊥α,m⊥β,则垂直于同一条直线的两个平面互相平行,即α∥β,故B正确;若m⊂α,n⊂α,m∥β,n∥β,则α与β相交或平行,故C不正确;若α⊥γ,β⊥γ,则由平面与平面平行的判定知,故D不正确.故选:B.4.圆x2+y2﹣2x=0和x2+y2+4y=0的位置关系是()A.相离B.外切C.相交D.内切【分析】把两圆的方程化为标准方程,分别找出圆心坐标和半径,利用两点间的距离公式,求出两圆心的距离d,然后求出R﹣r和R+r的值,判断d与R﹣r及R+r的大小关系即可得到两圆的位置关系.解:把圆x2+y2﹣2x=0与圆x2+y2+4y=0分别化为标准方程得:(x﹣1)2+y2=1,x2+(y+2)2=4,故圆心坐标分别为(1,0)和(0,﹣2),半径分别为R=2和r=1,∵圆心之间的距离d=,R+r=3,R﹣r=1,∴R﹣r<d<R+r,则两圆的位置关系是相交.故选:C.5.已知a、b是异面直线,P是a、b外的一点,则下列结论中正确的是()A.过P有且只有一条直线与a、b都垂直B.过P有且只有一条直线与a、b都平行C.过P有且只有一个平面与a、b都垂直D.过P有且只有一个平面与a、b都平行【分析】对于A,取直线a上任意一点,作b的平行线c,则a,c确定平面,利用过一点作已知平面的垂线,有且只有一条,可得结论;对于B,若P与a或b确定的平面,与b或a平行,此时与a、b都平行的直线不存在;对于C,根据a、b是异面直线,可得过P不存在平面与a、b都垂直;对于D,若P与a或b确定的平面,与b或a平行,此时与a、b都平行的平面不存在.解:对于A,取直线a上任意一点,作b的平行线c,则a,c确定平面,过P作平面的垂线有且只有一条,所以过P有且只有一条直线与a、b都垂直,故A正确;对于B,若P与a或b确定的平面,与b或a平行,此时与a、b都平行的直线不存在,故B不正确;对于C,∵a、b是异面直线,∴过P不存在平面与a、b都垂直,故C不正确;对于D,若P与a或b确定的平面,与b或a平行,此时与a、b都平行的平面不存在,故D不正确;故选:A.6.如图,△ABC中,AB=BC,∠ABC=120°,若以A,B为焦点的双曲线的渐近线经过点C,则该双曲线的离心率为()A.B.C.D.【分析】设AB=BC=2,取AB的中点为O,由题意可得双曲线的一条渐近线为直线OC,由余弦定理可得OC,cos∠COB,求得tan∠COB,即为渐近线的斜率,由a,b,c的关系和离心率公式,即可得到.解:设AB=BC=2,取AB的中点为O,由题意可得双曲线的一条渐近线为直线OC,在三角形OBC中,cos B=﹣,∴OC2=OB2+BC2﹣2OB•BC•cos B=1+4﹣2×1×2×(﹣)=7,∴OC=,则cos∠COB==,可得sin∠COB==,tan∠COB==,可得双曲线的渐近线的斜率为,不妨设双曲线的方程为﹣=1(a,b>0),渐近线方程为y=±x,可得=,可得e=====.故选:D.7.直线y=kx+3与圆(x﹣3)2+(y﹣2)2=4相交于M,N两点,若|MN|≥2,则k的取值范围是()A.[﹣,0] B.[﹣∞,﹣]∪[0,+∞]C.[﹣,] D.[﹣,0]【分析】由弦长公式得,当圆心到直线的距离等于1时,弦长等于2,故当弦长大于或等于2时,圆心到直线的距离小于或等于1,解此不等式求出k的取值范围.解:设圆心(3,2)到直线y=kx+3的距离为d,由弦长公式得,MN=2≥2,故d≤1,即≤1,化简得 8k(k+)≤0,∴﹣≤k≤0,故k的取值范围是[﹣,0].故选:A.8.正四面体ABCD,CD在平面α内,点E是线段AC的中点,在该四面体绕CD旋转的过程中,直线BE与平面α所成角不可能是()A.0 B.C.D.【分析】由正四面体ABCD,可得所有棱长都相等.①点E是线段AC的中点,BE⊥AC.在该四面体绕CD旋转的过程中,直线BE与平面α所成角不可能是.利用反证法可以证明.②在该四面体绕CD旋转的过程中,当BE∥α时,可得直线BE与平面α所成角为0.③如图所示的正四面体B﹣ABC.作BO⊥平面ACD,垂足为O.设直线BE与平面ACD所成的角为θ,可得cosθ=.于是可得在该四面体绕CD旋转的过程中,可得直线BE 与平面α所成角为,.解:由正四面体ABCD,可得所有棱长都相等.①∵点E是线段AC的中点,∴BE⊥AC.在该四面体绕CD旋转的过程中,直线BE与平面α所成角不可能是.反证法:若直线BE与平面α所成角是,则BE⊥平面α.则在某一过程必有BE⊥CD.事实上,在该四面体绕CD旋转的过程中,BE与CD是不可能垂直的,因此假设错位,于是直线BE与平面α所成角不可能是90°.②在该四面体绕CD旋转的过程中,当BE∥α时,可得直线BE与平面α所成角为0.③如图所示的正四面体B﹣ABC.作BO⊥平面ACD,垂足为O.则E,O,D三点在同一条直线上.设直线BE与平面ACD所成的角为θ,可得cosθ=.∴θ>.于是可得在该四面体绕CD旋转的过程中,可得直线BE与平面α所成角为,.综上可得:直线BE与平面α所成角不可能是.故选:D.9.已知两点,到直线l的距离均等于a,且这样的直线可作4条,则a的取值范围是()A.a≥1 B.0<a<1 C.0<a≤1 D.0<a<2【分析】(1)由题意做出简图,分别讨论A,B在同一侧和两侧两种情况,只需a小于A,B两点距离的一半,再由两点间的距离公式即可求出a的取值范围.解:由题意如图所示:因为若A,B在直线的同一侧,可做两条直线,所以若有这样的直线又4条,则当A,B两点分别在直线的两侧时,还应该有两条,所以2a小于A,B的距离,因为|AB|==2,所以0<2a<2,所以:0<a<1,故选:B.10.如图,正四面体ABCD中,P、Q、R在棱AB、AD、AC上,且AQ=QD,==,分别记二面角A﹣PQ﹣R,A﹣PR﹣Q,A﹣QR﹣P的平面角为α、β、γ,则()A.β<γ<αB.γ<β<αC.α>γ>βD.α>β>γ【分析】由四面体为正四面体,结合AQ=QD,==,通过图形直观分析得答案.解:观察可知,α>β>γ,α为钝角,β,γ均为锐角,β平缓一点,γ陡急一点,∴,则α>β>γ,故选:D.二、填空题:单空题每题4分,多空题每题6分11.若圆x2+y2+2ax+y﹣1=0的圆心在直线y=x上,则a的值是,半径为.【分析】根据题意,将圆的方程变形为标准方程的形式,求出圆的圆心以及半径,又由圆的圆心在直线y=x上,即可得a的值,据此可得答案.解:根据题意,圆的一般方程为x2+y2+2ax+y﹣1=0,则其标准方程为(x+a)2+(y+)2=a2+:其圆心为(﹣a,﹣),半径r=,若其圆心在直线y=x上,则有﹣a=﹣,即a=,其半径r==;故答案为:,12.若直线l1:x+my+6=0与l2:(m﹣2)x+3y+2m=0互相平行,则m的值为﹣1 ,它们之间的距离为.【分析】由m(m﹣2)﹣3=0,解得m.经过验证可得m.利用平行线之间的距离公式即可得出它们之间的距离.解:由m(m﹣2)﹣3=0,解得m=3或﹣1.经过验证:m=3时两条直线平行舍去.∴m=﹣1.直线l1:x+my+6=0与l2:(m﹣2)x+3y+2m=0分别化为:x﹣y+6=0,x﹣y+=0.∴它们之间的距离==.故答案为:﹣1,.13.某几何体的三视图如图所示,则该几何体的体积为24 ,外接球的表面积为41π.【分析】画出几何体的直观图,利用三视图的数据,求解几何体的体积,求出外接球的半径,即可求解外接球的表面积.解:由题意可知几何体是三棱柱,如图:是长方体的一半,所以几何体的体积为:=24;几何体的外接球,就是长方体的外接球,外接球的半径为:=.外接球的表面积为:=41π.故答案为:24;41π.14.已知双曲线与椭圆共焦点,则m的值为 3 ,设F为双曲线C的一个焦点,P是C上任意一点,则|PF|的取值范围是[1,+∞).【分析】由椭圆方程求得焦点坐标,再由双曲线中的隐含条件列式求得m值;求出|PF|的最小值,可得|PF|的取值范围.解:由椭圆,得c=,则其焦点坐标为(0,±2),∴双曲线的焦点坐标为(0,±2),∴1+m=4,得m=3;不妨设F为双曲线的上焦点F(0,2),则当P为双曲线的上顶点时,|PF|最小为1.∴|PF|的取值范围是[1,+∞).故答案为:3;[1,+∞).15.异面直线a,b所成角为,过空间一点O的直线l与直线a,b所成角均为θ,若这样的直线l有且只有两条,则θ的取值范围为(,).【分析】由最小角定理可得:θ的取值范围为,得解.解:由最小角定理可得:异面直线a,b所成角为,过空间一点O的直线l与直线a,b所成角均为θ,若这样的直线l有且只有两条,则θ的取值范围为:<θ,故答案为:(,).16.在《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑.如图,在鳖臑P ﹣ABC中,PA⊥平面ABC,AB⊥BC,且AP=AC=1,过点A分别作AE⊥PB于点E,AF⊥PC 于点F,连结EF,当△AEF的面积最大时,tan∠BPC=.【分析】由已知可证AE⊥平面PBC,PC⊥平面AEF,可得△AEF、△PEF均为直角三角形,由已知得AF=,从而S△AEF=AE•EF≤(AE2+EF2)=(AF)2=,当且仅当AE =EF时,取“=”,解得当AE=EF=时,△AEF的面积最大,即可求得tan∠BPC的值解:显然BC⊥平面PAB,则BC⊥AE,又PB⊥AE,则AE⊥平面PBC,于是AE⊥EF,且AE⊥PC,结合条件AF⊥PC得PC⊥平面AEF,所以△AEF、△PEF均为直角三角形,由已知得AF=,而S△AEF=AE•EF≤(AE2+EF2)=(AF)2=,当且仅当AE=EF时,取“=”,所以,当AE=EF=时,△AEF的面积最大,此时tan∠BPC===,17.已知椭圆上的三点A,B,C,斜率为负数的直线BC与y轴交于M,若原点O是△ABC的重心,且△BMA与△CMO的面积之比为,则直线BC的斜率为.【分析】设B(x1,y1),C(x2,y2)A(x3,y3),M(0,m),直线BC的方程为y=kx+m.由原点O是△ABC的重心,得△BMA与△CMO的高之比为3,结合△BMA与△CMO的面积之比为,得2BM=MC.可得2x1+x2=0,联立直线与椭圆方程,利用根与系数的关系得到36k2m2=1﹣m2+4k2,利用重心坐标公式求得A的坐标,代入椭圆方程即可求解直线BC的斜率.解:设B(x1,y1),C(x2,y2)A(x3,y3),M(0,m),直线BC的方程为y=kx+m.∵原点O是△ABC的重心,∴△BMA与△CMO的高之比为3,又△BMA与△CMO的面积之比为,则2BM=MC.即2=,得2x1+x2=0,…①联立,得(4k2+1)x2+8mkx+4m2﹣4=0.则x1+x2=,x1x2=,…②由①②整理可得:36k2m2=1﹣m2+4k2,…③∵原点O是△ABC的重心,∴,y3=﹣(y2+y1)=﹣[k(x1+x2)+2m]=﹣.∵,∴()2+4()2=4,即1+4k2=4m2,…④.由③④可得k2=,∵k<0.∴k=﹣.故答案为:.三、解答题:5小题,共74分18.已知x>0,y>0,且2x+5y=20.(1)求xy的最大值;(2)求的最小值.【分析】(1)由x>0,y>0,且2x+5y=20.利用基本本不等式的性质即可得出xy的最大值;(2)由x>0,y>0,且2x+5y=20.可得=(2x+5y)•()=(7++),利用基本本不等式的性质即可得出.解:(1)∵x>0,y>0,且2x+5y=20.∴20≥2,化为:xy≤10,当且仅当2x=5y=10时取等号.∴xy的最大值为10.(2)∵x>0,y>0,且2x+5y=20.∴=(2x+5y)•()=(7++)≥(7+2)=(7+2),当且仅当y=x,2x+5y=20取等号.∴的最小值为:(7+2).19.如图所示,在四棱锥P﹣ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD,若G为AD的中点,E为BC的中点.(1)求证:BG∥平面PDE;(2)求证:AD⊥PB;(3)在棱PC上是否存在一点F,使平面DEF⊥平面ABCD,若存在,确定点F的位置;若不存在,说明理由.【分析】(1)连接DE、PE,证明四边形BEDG是平行四边形,得出BG∥ED,即可证明BG∥平面PDE;(2)连接PG,证明PG⊥AD,再证BG⊥AD,得出AD⊥平面PGB,即可证明AD⊥PB;(3)F为PC边的中点时,平面DEF⊥平面ABCD,再证明即可.【解答】(1)证明:连接DE、PE,则DG∥BE,且DG=BE,所以四边形BEDG是平行四边形,所以BG∥ED,又BG⊄平面PDE,DE⊂平面PDE,所以BG∥平面PDE;(2)证明:连接PG,因为△PAD为正三角形,G为AD边的中点,所以PG⊥AD;又AG=AB,∠BAD=60°,所以BG=AB,所以∠BGA=90°,即BG⊥AD;又PG⊂平面PGB,BG⊂平面PGB,PG∩BG=G,所以AD⊥平面PGB,又PB⊂平面PGB,所以AD⊥PB;(3)解:当F为PC边的中点时,满足平面DEF⊥平面ABCD,证明如下:取PC的中点F,连接DE、EF、DF,在△PBC中,FE∥PB,在菱形ABCD中,EF∩DE=E,所以平面DEF∥平面PGB,因为BG⊥平面PAD,所以BG⊥PG,又因为PG⊥AD,AD∩BG=G,所以PG⊥平面ABCD,而PG⊂平面PGB,所以平面PGB⊥平面ABCD,所以平面DEF⊥平面ABCD.20.如图,已知位于y轴左侧的圆C与y轴相切于点(0,2)且被x轴分成的两段圆弧长之比为1:2,直线l与圆C相交于M,N两点,且以MN为直径的圆恰好经过坐标原点O.(1)求圆C的方程;(2)求直线OM的斜率k的取值范围.【分析】(1)依题意,容易求得半径r=4,圆心坐标为(﹣4,2),由此得到方程;(2)依题意,只需求出点N(或M)在劣弧PQ上运动时的直线ON(或OM)斜率,结合图象得解.解:(1)因为位于y轴左侧的圆C与y轴相切于点(0,2),所以圆心在直线y=2上,设圆C与x轴交于P,Q点,又因为被x轴分成的两段圆弧长之比为1:2,所以可得∠PCQ=,所以r=4,圆心C的坐标:(﹣4,2),所以圆C的方程:(x+4)2+(y﹣2)2=16;(2)依题意,只需求出点N(或M)在劣弧PQ上运动时的直线ON(或OM)斜率,设其直线方程为y=tx(t>0),此时有,解得;若点M在劣弧PQ上,则直线OM的斜率k=t,于是;若点N在劣弧上,则直线OM的斜率,于是;又当k=0时,点N为(0,2)也满足条件;综上所述,所求直线OM的斜率k的取值范围为.21.如图,在四棱锥P﹣ABCD中,AB⊥PA,AB∥CD,且PB=BC=BD=,CD=2AB=2,∠PAD=120°.(Ⅰ)求证:平面PAD⊥平面PCD;(Ⅱ)求直线PD与平面PBC所成的角的正弦值.【分析】(I)取CD的中点E,连接BE.可证四边形ABED是矩形,故而AB⊥AD,结合AB⊥PD得出AB⊥平面PAD,又AB∥CD得出CD⊥平面PAD,于是平面PAD⊥平面PCD;(II)以A为原点建立坐标系,求出和平面PBC的法向量,则直线PD与平面PBC 所成的角的正弦值为|cos<,>|.【解答】证明:(I)取CD的中点E,连接BE.∵BC=BD,E为CD中点,∴BE⊥CD,又∵AB∥CD,AB=CD=DE,∴四边形ABED是矩形,∴AB⊥AD,又AB⊥PA,PA⊂平面PAD,AD⊂平面PAD,PA∩AD=A,∴AB⊥平面PAD.∵AB∥CD,∴CD⊥平面BEF,又CD⊂平面PCD,∴平面BEF⊥平面PCD.∴平面PAD⊥平面PCD.(II)以A为原点,AB为x轴,AD为y轴,以平面ABCD过点A的垂线为z轴建立空间直角坐标角系A﹣xyz,如图所示:∵PB=BD=,AB=,AB⊥PA,AB⊥AD,∴PA=AD=2.∴P(0,﹣1,),D(0,2,0),B(,0,0),C(2,2,0),∴=(0,3,﹣),=(﹣,﹣1,),=(,2,0).设平面PBC的法向量=(x,y,z),则,∴,取x=,得=(,﹣1,),∴cos<,>===﹣.∴直线PD与平面PBC所成的角的正弦值为.22.在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,且过点(,),点P在第四象限,A为左顶点,B为上顶点,PA交y轴于点C,PB交x轴于点D.(1)求椭圆C的标准方程;(2)求△PCD面积的最大值.【分析】(1)利用椭圆的离心率求得,将(,)代入椭圆方程,即可求得a 和b的值.(2)设P(m,n),m>0,n>0,且.可得S===﹣=.设P处的切线为:x﹣2y+t=0,t<0.由⇒8y2﹣4ty+t2﹣4=0,△=﹣16t2+128=0⇒t=﹣2时.S△PCD取得最大值,解:(1)由已知得,⇒,点(,)代入+=1可得.代入点(,)解得b2=1,∴椭圆C的标准方程:.(2)可得A(﹣2,0),B(0,1).设P(m,n),m>0,n>0,且.PA:,PB:,可得C(0,),D().由可得x=.S===﹣=.设P处的切线为:x﹣2y+t=0,t<0.⇒8y2﹣4ty+t2﹣4=0,△=﹣16t2+128=0⇒t=﹣2.此时,方程组的解即点P(,﹣)时,S△PCD取得最大值,最大值为﹣1.。
2019-2020学年浙江省杭州市学军中学高二(上)期末数学试卷
2019-2020学年浙江省杭州市学军中学高二(上)期末数学试卷试题数:22.满分:1501.(单选题.4分)经过点A(1.3).斜率为2的直线方程是()A.2x-y-1=0B.2x+y+1=0C.2x+y-1=0D.2x-y+1=02.(单选题.4分)椭圆x25+y24=1的焦距是()A. 2√3B. √3C.1D.23.(单选题.4分)已知直线m.n和平面α.β.γ.下列条件中能推出α || β的是()A.m⊂α.n⊂β.m || nB.m⊥α.m⊥βC.m⊂α.n⊂α.m || β.n || βD.α⊥γ.β⊥γ4.(单选题.4分)圆x2+y2-2x=0和x2+y2+4y=0的位置关系是()A.相离B.外切C.相交D.内切5.(单选题.4分)已知a、b是异面直线.P是a、b外的一点.则下列结论中正确的是()A.过P有且只有一条直线与a、b都垂直B.过P有且只有一条直线与a、b都平行C.过P有且只有一个平面与a、b都垂直D.过P有且只有一个平面与a、b都平行6.(单选题.4分)如图.△ABC中.AB=BC.∠ABC=120°.若以A.B为焦点的双曲线的渐近线经过点C.则该双曲线的离心率为()A.2√33B. √3C. √52 D. √727.(单选题.4分)直线y=kx+3与圆(x-3)2+(y-2)2=4相交于M.N 两点.若|MN|≥2 √3 .则k 的取值范围是( ) A.[- 34 .0]B.(-∞.- 34 ]∪[0.+∞)C.[- √33 . √33 ] D.[- 23 .0]8.(单选题.4分)正四面体ABCD.CD 在平面α内.点E 是线段AC 的中点.在该四面体绕CD 旋转的过程中.直线BE 与平面α所成角不可能是( )A.0B. π6 C. π3 D. π29.(单选题.4分)已知两点 A(1,6√3) . B(0,5√3) 到直线l 的距离均等于a.且这样的直线可作4条.则a 的取值范围是( ) A.a≥1 B.0<a <1 C.0<a≤1 D.0<a <210.(单选题.4分)如图.正四面体ABCD中.P、Q、R在棱AB、AD、AC上.且AQ=QD. APPB = CRRA= 12.分别记二面角A-PQ-R.A-PR-Q.A-QR-P的平面角为α、β、γ.则()A.β>γ>αB.γ>β>αC.α>γ>βD.α>β>γ11.(填空题.6分)若圆x2+y2+2ax+y-1=0的圆心在直线y=x上.则a的值是___ .半径为___ .12.(填空题.6分)若直线l1:x+my+6=0与l2:(m-2)x+3y+2m=0互相平行.则m的值为___ .它们之间的距离为___ .13.(填空题.6分)某几何体的三视图如图所示.则该几何体的体积为___ .外接球的表面积为___ .14.(填空题.6分)已知双曲线C:y2−x2m =1与椭圆y29+x25=1共焦点.则m的值为___ .设F为双曲线C的一个焦点.P是C上任意一点.则|PF|的取值范围是___ .15.(填空题.4分)异面直线a.b所成角为π3.过空间一点O的直线l与直线a.b所成角均为θ.若这样的直线l有且只有两条.则θ的取值范围为___ .16.(填空题.4分)在《九章算术》中.将四个面都为直角三角形的四面体称之为鳖臑.如图.在鳖臑P-ABC中.PA⊥平面ABC.AB⊥BC.且AP=AC=1.过点A分别作AE⊥PB于点E.AF⊥PC于点F.连结EF.当△AEF的面积最大时.tan∠BPC=___ .17.(填空题.4分)已知椭圆C:x24+y2=1上的三点A.B.C.斜率为负数的直线BC与y轴交于M.若原点O是△ABC的重心.且△BMA与△CMO的面积之比为32.则直线BC的斜率为___ .18.(问答题.14分)已知x>0.y>0.且2x+5y=20.(1)求xy的最大值;(2)求1x +1y的最小值.19.(问答题.15分)如图所示.在四棱锥P-ABCD中.底面ABCD是∠DAB=60°且边长为a的菱形.侧面PAD为正三角形.其所在平面垂直于底面ABCD.若G为AD的中点.E为BC的中点.(1)求证:BG || 平面PDE;(2)求证:AD⊥PB;(3)在棱PC上是否存在一点F.使平面DEF⊥平面ABCD.若存在.确定点F的位置;若不存在.说明理由.20.(问答题.15分)如图.已知位于y轴左侧的圆C与y轴相切于点(0.2)且被x轴分成的两段圆弧长之比为1:2.直线l与圆C相交于M.N两点.且以MN为直径的圆恰好经过坐标原点O.(1)求圆C的方程;(2)求直线OM的斜率k的取值范围.21.(问答题.15分)如图.在四棱锥P-ABCD中.AB⊥PA.AB || CD.且PB=BC=BD=√6 .CD=2AB=2 √2 .∠PAD=120°.(Ⅰ)求证:平面PAD⊥平面PCD;(Ⅱ)求直线PD与平面PBC所成的角的正弦值.22.(问答题.15分)在平面直角坐标系xOy 中.已知椭圆C : x 2a 2 + y 2b 2 =1(a >b >0)的离心率为 √32 .且过点( √3 . 12 ).点P 在第四象限.A 为左顶点.B 为上顶点.PA 交y 轴于点C.PB 交x 轴于点D .(1)求椭圆C 的标准方程; (2)求△PCD 面积的最大值.2019-2020学年浙江省杭州市学军中学高二(上)期末数学试卷参考答案与试题解析试题数:22.满分:1501.(单选题.4分)经过点A(1.3).斜率为2的直线方程是()A.2x-y-1=0B.2x+y+1=0C.2x+y-1=0D.2x-y+1=0【正确答案】:D【解析】:直接代入点斜式方程即可.【解答】:解:由点斜式直接带入:y-3=2(x-1).即2x-y+1=0.故选:D.【点评】:考查直线的点斜式方程.属于基础题.2.(单选题.4分)椭圆x25+y24=1的焦距是()A. 2√3B. √3C.1D.2【正确答案】:D【解析】:根据题意.由椭圆的标准方程可得a、b的值.计算可得c的值.进而由焦距定义计算可得答案.【解答】:解:根据题意.椭圆的标准方程为:x 25+y24=1 .则a2=5.b2=4.则c= √a2−b2 =1. 则其焦距2c=2;故选:D.【点评】:本题考查椭圆的几何性质.关键是掌握椭圆的标准方程的形式.3.(单选题.4分)已知直线m.n和平面α.β.γ.下列条件中能推出α || β的是()A.m⊂α.n⊂β.m || nB.m⊥α.m⊥βC.m⊂α.n⊂α.m || β.n || βD.α⊥γ.β⊥γ【正确答案】:B【解析】:利用平面平行的判定定理.对四个选项分别进行判断.能够得到正确答案.【解答】:解:由直线m和n.若m⊂α.n⊂β.n || m.则α与β相交或平行.故A不正确;若m⊥α.m⊥β.则垂直于同一条直线的两个平面互相平行.即α || β.故B正确;若m⊂α.n⊂α.m || β.n || β.则α与β相交或平行.故C不正确;若α⊥γ.β⊥γ.则由平面与平面平行的判定知.故D不正确.故选:B.【点评】:本题考查了空间线面位置关系的判断.属于中档题.4.(单选题.4分)圆x2+y2-2x=0和x2+y2+4y=0的位置关系是()A.相离B.外切C.相交D.内切【正确答案】:C【解析】:把两圆的方程化为标准方程.分别找出圆心坐标和半径.利用两点间的距离公式.求出两圆心的距离d.然后求出R-r和R+r的值.判断d与R-r及R+r的大小关系即可得到两圆的位置关系.【解答】:解:把圆x2+y2-2x=0与圆x2+y2+4y=0分别化为标准方程得:(x-1)2+y2=1.x2+(y+2)2=4.故圆心坐标分别为(1.0)和(0.-2).半径分别为R=2和r=1.∵圆心之间的距离d= √(1−0)2+(0+2)2=√5 .R+r=3.R-r=1.∴R-r<d<R+r.则两圆的位置关系是相交.故选:C.【点评】:圆与圆的位置关系有五种.分别是:当0≤d<R-r时.两圆内含;当d=R-r时.两圆内切;当R-r<d<R+r时.两圆相交;当d=R+r时.两圆外切;当d>R+r时.两圆外离(其中d表示两圆心间的距离.R.r分别表示两圆的半径).5.(单选题.4分)已知a、b是异面直线.P是a、b外的一点.则下列结论中正确的是()A.过P有且只有一条直线与a、b都垂直B.过P有且只有一条直线与a、b都平行C.过P有且只有一个平面与a、b都垂直D.过P有且只有一个平面与a、b都平行【正确答案】:A【解析】:对于A.取直线a上任意一点.作b的平行线c.则a.c确定平面.利用过一点作已知平面的垂线.有且只有一条.可得结论;对于B.若P与a或b确定的平面.与b或a平行.此时与a、b都平行的直线不存在;对于C.根据a、b是异面直线.可得过P不存在平面与a、b都垂直;对于D.若P与a或b确定的平面.与b或a平行.此时与a、b都平行的平面不存在.【解答】:解:对于A.取直线a上任意一点.作b的平行线c.则a.c确定平面.过P作平面的垂线有且只有一条.所以过P有且只有一条直线与a、b都垂直.故A正确;对于B.若P与a或b确定的平面.与b或a平行.此时与a、b都平行的直线不存在.故B不正确;对于C.∵a、b是异面直线.∴过P不存在平面与a、b都垂直.故C不正确;对于D.若P与a或b确定的平面.与b或a平行.此时与a、b都平行的平面不存在.故D不正确;故选:A.【点评】:本题考查线线、线面的位置关系.考查学生的推理能力.属于中档题.6.(单选题.4分)如图.△ABC中.AB=BC.∠ABC=120°.若以A.B为焦点的双曲线的渐近线经过点C.则该双曲线的离心率为()A.2√33B. √3C. √52 D. √72【正确答案】:D【解析】:设AB=BC=2.取AB 的中点为O.由题意可得双曲线的一条渐近线为直线OC.由余弦定理可得OC.cos∠COB .求得tan∠COB .即为渐近线的斜率.由a.b.c 的关系和离心率公式.即可得到.【解答】:解:设AB=BC=2. 取AB 的中点为O.由题意可得双曲线的一条渐近线为直线OC. 在三角形OBC 中. cosB=- 12 .∴OC 2=OB 2+BC 2-2OB•BC•cosB=1+4-2×1×2×(- 12)=7. ∴OC= √7 . 则cos∠COB=2√7 = √7. 可得sin∠COB= √1−47 = √3√7 . tan∠COB= sin∠COBcos∠COB = √32 .可得双曲线的渐近线的斜率为 √32 .不妨设双曲线的方程为 x 2a2 - y 2b2 =1(a.b >0). 渐近线方程为y=± b ax. 可得 ba = √32 . 可得e= c a = √a 2+b 2a 2 = √1+(b a )2 = √1+34 = √72 .故选:D .【点评】:本题考查双曲线的方程和性质.主要是渐近线和离心率.考查学生的计算能力.属于中档题.7.(单选题.4分)直线y=kx+3与圆(x-3)2+(y-2)2=4相交于M.N 两点.若|MN|≥2 √3 .则k 的取值范围是( ) A.[- 34.0]B.(-∞.- 34 ]∪[0.+∞)C.[- √33 . √33 ] D.[- 23 .0]【正确答案】:A【解析】:由弦长公式得.当圆心到直线的距离等于1时.弦长等于2 √3 .故当弦长大于或等于2 √3 时.圆心到直线的距离小于或等于1.解此不等式求出k 的取值范围.【解答】:解:设圆心(3.2)到直线y=kx+3的距离为d. 由弦长公式得.MN=2 √4−d 2 ≥2 √3 . 故d≤1. 即√k 2+1 ≤1.化简得 8k (k+ 34 )≤0.∴- 34 ≤k≤0.故k 的取值范围是[- 34.0]. 故选:A .【点评】:本题主要考查点到直线的距离公式.以及弦长公式的应用.属于中档题.8.(单选题.4分)正四面体ABCD.CD 在平面α内.点E 是线段AC 的中点.在该四面体绕CD 旋转的过程中.直线BE 与平面α所成角不可能是( )A.0B. π6C. π3D. π2【正确答案】:D【解析】:由正四面体ABCD.可得所有棱长都相等.① 点E是线段AC的中点.BE⊥AC.在该四面体绕CD旋转的过程中.直线BE与平面α所成角不可能是π2.利用反证法可以证明.② 在该四面体绕CD旋转的过程中.当BE || α时.可得直线BE与平面α所成角为0.③ 如图所示的正四面体B-ABC.作BO⊥平面ACD.垂足为O.设直线BE与平面ACD所成的角为θ.可得cosθ= 13<12.于是可得在该四面体绕CD旋转的过程中.可得直线BE与平面α所成角为π6. π3.【解答】:解:由正四面体ABCD.可得所有棱长都相等.① ∵点E是线段AC的中点.∴BE⊥AC.在该四面体绕CD旋转的过程中.直线BE与平面α所成角不可能是π2.反证法:若直线BE与平面α所成角是π2.则BE⊥平面α.则在某一过程必有BE⊥CD.事实上.在该四面体绕CD旋转的过程中.BE与CD是不可能垂直的.因此假设错位.于是直线BE 与平面α所成角不可能是90°.② 在该四面体绕CD旋转的过程中.当BE || α时.可得直线BE与平面α所成角为0.③ 如图所示的正四面体B-ABC.作BO⊥平面ACD.垂足为O.则E.O.D三点在同一条直线上.设直线BE与平面ACD所成的角为θ.可得cosθ= 13<12.∴θ>π3.于是可得在该四面体绕CD旋转的过程中.可得直线BE与平面α所成角为π6. π3.综上可得:直线BE与平面α所成角不可能是π2.故选:D.【点评】:本题考查了正四面体的性质、线面垂直性质定理、正三角形的性质、线面角.考查了数形结合方法、推理能力与计算能力.属于难题.9.(单选题.4分)已知两点A(1,6√3) . B(0,5√3)到直线l的距离均等于a.且这样的直线可作4条.则a的取值范围是()A.a≥1B.0<a<1C.0<a≤1D.0<a<2【正确答案】:B【解析】:(1)由题意做出简图.分别讨论A.B在同一侧和两侧两种情况.只需a小于A.B两点距离的一半.再由两点间的距离公式即可求出a的取值范围.【解答】:解:由题意如图所示:因为若A.B在直线的同一侧.可做两条直线.所以若有这样的直线有4条.则当A.B两点分别在直线的两侧时.还应该有两条.所以2a小于A.B的距离.因为|AB|= √(1−0)2+(6√3−5√3)2 =2.所以0<2a<2.所以:0<a<1.故选:B.【点评】:考查点到直线的距离公式.属于中档题.10.(单选题.4分)如图.正四面体ABCD中.P、Q、R在棱AB、AD、AC上.且AQ=QD. APPB = CRRA= 12.分别记二面角A-PQ-R.A-PR-Q.A-QR-P的平面角为α、β、γ.则()A.β>γ>αB.γ>β>αC.α>γ>βD.α>β>γ【正确答案】:D【解析】:由四面体为正四面体.结合AQ=QD. APPB = CRRA= 12.通过图形直观分析得答案.【解答】:解:观察可知.α>β>γ.α为钝角.β.γ均为锐角.β平缓一点.γ陡急一点. ∴ π2>β>γ .则α>β>γ.故选:D.【点评】:本题考查二面角的平面角及其求法.考查学生通过读图进行直观分析问题与解决问题的能力.是中档题.11.(填空题.6分)若圆x2+y2+2ax+y-1=0的圆心在直线y=x上.则a的值是___ .半径为___ .【正确答案】:[1] 12 ; [2] √62【解析】:根据题意.将圆的方程变形为标准方程的形式.求出圆的圆心以及半径.又由圆的圆心在直线y=x上.即可得a的值.据此可得答案.【解答】:解:根据题意.圆的一般方程为x2+y2+2ax+y-1=0.则其标准方程为(x+a)2+(y+1 2)2=a2+ 54:其圆心为(-a.- 12).半径r= √a2+54.若其圆心在直线y=x上.则有-a=- 12 .即a= 12.其半径r= √14+54= √62;故答案为:12 . √62【点评】:本题考查圆的一般方程.关键是掌握圆的一般方程的形式.属于基础题.12.(填空题.6分)若直线l1:x+my+6=0与l2:(m-2)x+3y+2m=0互相平行.则m的值为___ .它们之间的距离为___ .【正确答案】:[1]-1; [2] 8√23【解析】:由m(m-2)-3=0.解得m.经过验证可得m.利用平行线之间的距离公式即可得出它们之间的距离.【解答】:解:由m (m-2)-3=0.解得m=3或-1. 经过验证:m=3时两条直线平行舍去. ∴m=-1.直线l 1:x+my+6=0与l 2:(m-2)x+3y+2m=0分别化为:x-y+6=0.x-y+ 23 =0. ∴它们之间的距离= |6−23|√2=8√23. 故答案为:-1. 8√23.【点评】:本题考查了平行线与斜率之间的关系、平行线之间的距离公式.考查了推理能力与计算能力.属于基础题.13.(填空题.6分)某几何体的三视图如图所示.则该几何体的体积为___ .外接球的表面积为___ .【正确答案】:[1]24; [2]41π【解析】:画出几何体的直观图.利用三视图的数据.求解几何体的体积.求出外接球的半径.即可求解外接球的表面积.【解答】:解:由题意可知几何体是三棱柱.如图:是长方体的一半. 所以几何体的体积为: 12×4×3×4 =24;几何体的外接球.就是长方体的外接球.外接球的半径为: 12×√42+32+42 = √412. 外接球的表面积为: 4π×(√412)2=41π. 故答案为:24;41π.【点评】:本题考查三视图求解几何体的体积.外接球的表面积的求法.考查空间想象能力以及计算能力.是中档题.14.(填空题.6分)已知双曲线C:y2−x2m =1与椭圆y29+x25=1共焦点.则m的值为___ .设F为双曲线C的一个焦点.P是C上任意一点.则|PF|的取值范围是___ .【正确答案】:[1]3; [2][1.+∞)【解析】:由椭圆方程求得焦点坐标.再由双曲线中的隐含条件列式求得m值;求出|PF|的最小值.可得|PF|的取值范围.【解答】:解:由椭圆y 29+x25=1 .得c= √9−5=2 .则其焦点坐标为(0.±2).∴双曲线C:y2−x2m=1的焦点坐标为(0.±2).∴1+m=4.得m=3;不妨设F为双曲线的上焦点F(0.2).则当P为双曲线的上顶点时.|PF|最小为1.∴|PF|的取值范围是[1.+∞).故答案为:3;[1.+∞).【点评】:本题考查椭圆与双曲线的简单性质.是基础题.15.(填空题.4分)异面直线a.b所成角为π3.过空间一点O的直线l与直线a.b所成角均为θ.若这样的直线l有且只有两条.则θ的取值范围为___ .【正确答案】:[1](π6 . π3)【解析】:由最小角定理可得:θ的取值范围为π6<θ<π3.得解.【解答】:解:由最小角定理可得:异面直线a.b所成角为π3.过空间一点O的直线l与直线a.b所成角均为θ.若这样的直线l有且只有两条.则θ的取值范围为:π6<θ <π3.故答案为:( π6 . π3 ).【点评】:本题考查了最小角定理.属简单题.16.(填空题.4分)在《九章算术》中.将四个面都为直角三角形的四面体称之为鳖臑.如图.在鳖臑P-ABC 中.PA⊥平面ABC.AB⊥BC .且AP=AC=1.过点A 分别作AE⊥PB 于点E.AF⊥PC 于点F.连结EF.当△AEF 的面积最大时.tan∠BPC=___ .【正确答案】:[1] √22【解析】:由已知可证AE⊥平面PBC.PC⊥平面AEF.可得△AEF 、△PEF 均为直角三角形.由已知得AF= √22 .从而S △AEF = 12 AE•EF≤ 14 (AE 2+EF 2)= 14 (AF )2= 18 .当且仅当AE=EF 时.取“=”.解得当AE=EF= 12 时.△AEF 的面积最大.即可求得tan∠BPC 的值【解答】:解:显然BC⊥平面PAB.则BC⊥AE . 又PB⊥AE .则AE⊥平面PBC.于是AE⊥EF .且AE⊥PC .结合条件AF⊥PC 得PC⊥平面AEF. 所以△AEF 、△PEF 均为直角三角形.由已知得AF= √22 .而S △AEF = 12 AE•EF≤ 14 (AE 2+EF 2)= 14 (AF )2= 18 .当且仅当AE=EF 时.取“=”. 所以.当AE=EF= 12 时.△AEF 的面积最大.此时tan∠BPC= EF PF = 12√22= √22 .【点评】:本题主要考查了直线与平面垂直的判定.不等式的解法及应用.同时考查了空间想象能力、计算能力和逻辑推理能力.属于中档题 17.(填空题.4分)已知椭圆 C :x 24+y 2=1 上的三点A.B.C.斜率为负数的直线BC 与y 轴交于M.若原点O 是△ABC 的重心.且△BMA 与△CMO 的面积之比为 32 .则直线BC 的斜率为___ .【正确答案】:[1] −√36【解析】:设B (x 1.y 1).C (x 2.y 2)A (x 3.y 3).M (0.m ).直线BC 的方程为y=kx+m .由原点O 是△ABC 的重心.得△BMA 与△CMO 的高之比为3.结合△BMA 与△CMO 的面积之比为 32 .得2BM=MC .可得2x 1+x 2=0.联立直线与椭圆方程.利用根与系数的关系得到36k 2m 2=1-m 2+4k 2.利用重心坐标公式求得A 的坐标.代入椭圆方程即可求解直线BC 的斜率.【解答】:解:设B (x 1.y 1).C (x 2.y 2)A (x 3.y 3).M (0.m ).直线BC 的方程为y=kx+m . ∵原点O 是△ABC 的重心.∴△BMA 与△CMO 的高之比为3. 又△BMA 与△CMO 的面积之比为 32 .则2BM=MC . 即2 BM ⃗⃗⃗⃗⃗⃗ = MC ⃗⃗⃗⃗⃗⃗ .得2x 1+x 2=0.… ①联立 {y =kx +m x 2+4y 2=4 .得(4k 2+1)x 2+8mkx+4m 2-4=0. 则x 1+x 2= −8km 1+4k 2 .x 1x 2= 4m 2−41+4k 2 .… ②由 ① ② 整理可得:36k 2m 2=1-m 2+4k 2.… ③ ∵原点O 是△ABC 的重心.∴ x 3=−(x 1+x 2)=8km1+4k 2 . y 3=-(y 2+y 1)=-[k (x 1+x 2)+2m]=- 2m1+4k 2 .∵ x 32+4y 32=4 .∴( 8km1+4k 2 )2+4( −2m 1+4k 2 )2=4.即1+4k 2=4m 2.… ④ . 由 ③ ④ 可得k 2= 112 . ∵k <0.∴k=- √36. 故答案为: −√36 .【点评】:本题考查了椭圆的性质.考查了计算能力、转化思想.属于中档题.18.(问答题.14分)已知x>0.y>0.且2x+5y=20.(1)求xy的最大值;(2)求1x +1y的最小值.【正确答案】:【解析】:(1)由x>0.y>0.且2x+5y=20.利用基本不等式的性质即可得出xy的最大值;(2)由x>0.y>0.且2x+5y=20.可得1x +1y= 120(2x+5y)•(1x+1y)= 120(7+ 5yx+ 2xy).利用基本不等式的性质即可得出.【解答】:解:(1)∵x>0.y>0.且2x+5y=20.∴20≥2 √2x•5y .化为:xy≤10.当且仅当2x=5y=10时取等号.∴xy的最大值为10.(2)∵x>0.y>0.且2x+5y=20.∴ 1 x +1y= 120(2x+5y)•(1x+1y)= 120(7+ 5yx+ 2xy)≥ 120(7+2 √5yx•2xy)= 120(7+2√10).当且仅当√5 y= √2 x.2x+5y=20取等号.∴ 1 x +1y的最小值为:120(7+2 √10).【点评】:本题考查了基本不等式的性质、方程的解法、转化法.考查了推理能力与计算能力.属于基础题.19.(问答题.15分)如图所示.在四棱锥P-ABCD中.底面ABCD是∠DAB=60°且边长为a的菱形.侧面PAD为正三角形.其所在平面垂直于底面ABCD.若G为AD的中点.E为BC的中点.(1)求证:BG || 平面PDE;(2)求证:AD⊥PB;(3)在棱PC上是否存在一点F.使平面DEF⊥平面ABCD.若存在.确定点F的位置;若不存在.说明理由.【正确答案】:【解析】:(1)连接DE、PE.证明四边形BEDG是平行四边形.得出BG || ED.即可证明BG || 平面PDE;(2)连接PG.证明PG⊥AD.再证BG⊥AD.得出AD⊥平面PGB.即可证明AD⊥PB;(3)F为PC边的中点时.平面DEF⊥平面ABCD.再证明即可.【解答】:(1)证明:连接DE、PE.则DG || BE.且DG=BE.所以四边形BEDG是平行四边形. 所以BG || ED.又BG⊄平面PDE.DE⊂平面PDE.所以BG || 平面PDE;(2)证明:连接PG.因为△PAD为正三角形.G为AD边的中点.所以PG⊥AD;又AG= 12 AB.∠BAD=60°.所以BG= √32AB.所以∠BGA=90°.即BG⊥AD;又PG⊂平面PGB.BG⊂平面PGB.PG∩BG=G.所以AD⊥平面PGB.又PB⊂平面PGB.所以AD⊥PB;(3)解:当F为PC边的中点时.满足平面DEF⊥平面ABCD.证明如下:取PC 的中点F.连接DE、EF、DF.在△PBC中.FE || PB.在菱形ABCD中.EF∩DE=E.所以平面DEF || 平面PGB.因为BG⊥平面PAD.所以BG⊥PG.又因为PG⊥AD.AD∩BG=G.所以PG⊥平面ABCD.而PG⊂平面PGB.所以平面PGB⊥平面ABCD.所以平面DEF⊥平面ABCD.【点评】:本题考查了空间中的直线与直线、直线与平面、以及平面与平面的平行和垂直判断问题.也考查了空间想象能力与逻辑推理能力.20.(问答题.15分)如图.已知位于y轴左侧的圆C与y轴相切于点(0.2)且被x轴分成的两段圆弧长之比为1:2.直线l与圆C相交于M.N两点.且以MN为直径的圆恰好经过坐标原点O.(1)求圆C的方程;(2)求直线OM的斜率k的取值范围.【正确答案】:【解析】:(1)依题意.容易求得半径r=4.圆心坐标为(-4.2).由此得到方程;(2)依题意.只需求出点N(或M)在劣弧PQ上运动时的直线ON(或OM)斜率.结合图象得解.【解答】:解:(1)因为位于y 轴左侧的圆C 与y 轴相切于点(0.2).所以圆心在直线y=2上.设圆C 与x 轴交于P.Q 点.又因为被x 轴分成的两段圆弧长之比为1:2.所以可得∠PCQ= 2π3 .所以r=4.圆心C 的坐标:(-4.2).所以圆C 的方程:(x+4)2+(y-2)2=16;(2)依题意.只需求出点N (或M )在劣弧PQ 上运动时的直线ON (或OM )斜率.设其直线方程为y=tx (t >0).此时有 2<|−4t−2|√t 2+1≤4 .解得 0<t ≤34 ;若点M 在劣弧PQ 上.则直线OM 的斜率k=t.于是 0<k ≤34 ;若点N 在劣弧上.则直线OM 的斜率 k =−1t .于是 k ≤−43 ;又当k=0时.点N 为(0.2)也满足条件;综上所述.所求直线OM 的斜率k 的取值范围为 (−∞,−43]∪[0,34] . 【点评】:本题考查圆的标准方程的求法及直线与圆的关系.考查逻辑推理能力.属于中档题.21.(问答题.15分)如图.在四棱锥P-ABCD 中.AB⊥PA .AB || CD.且PB=BC=BD=√6 .CD=2AB=2 √2 .∠PAD=120°.(Ⅰ)求证:平面PAD⊥平面PCD ;(Ⅱ)求直线PD 与平面PBC 所成的角的正弦值.【正确答案】:【解析】:(I )取CD 的中点E.连接BE .可证四边形ABED 是矩形.故而AB⊥AD .结合AB⊥PD 得出AB⊥平面PAD.又AB || CD 得出CD⊥平面PAD.于是平面PAD⊥平面PCD ;(II )以A 为原点建立坐标系.求出 PD ⃗⃗⃗⃗⃗ 和平面PBC 的法向量 n ⃗ .则直线PD 与平面PBC 所成的角的正弦值为|cos < n ⃗ . PD⃗⃗⃗⃗⃗ >|.【解答】:证明:(I )取CD 的中点E.连接BE .∵BC=BD .E 为CD 中点.∴BE⊥CD .又∵AB || CD .AB= 12 CD=DE.∴四边形ABED 是矩形.∴AB⊥AD .又AB⊥PA .PA⊂平面PAD.AD⊂平面PAD.PA∩AD=A.∴AB⊥平面PAD .∵AB || CD .∴CD⊥平面BEF.又CD⊂平面PCD.∴平面BEF⊥平面PCD .∴平面PAD⊥平面PCD .(II )以A 为原点.AB 为x 轴.AD 为y 轴.以平面ABCD 过点A 的垂线为z 轴建立空间直角坐标角系A-xyz.如图所示:∵PB=BD= √6 .AB= √2 .AB⊥PA .AB⊥AD .∴PA=AD=2.∴P (0.-1. √3 ).D (0.2.0).B ( √2 .0.0).C (2 √2 .2.0).∴ PD ⃗⃗⃗⃗⃗ =(0.3.- √3 ). BP ⃗⃗⃗⃗⃗ =(- √2 .-1. √3 ). BC ⃗⃗⃗⃗⃗ =( √2 .2.0).设平面PBC 的法向量 n ⃗ =(x.y.z ).则 {n ⃗ •BC ⃗⃗⃗⃗⃗ =0n ⃗ •BP ⃗⃗⃗⃗⃗ =0. ∴ {√2x +2y =0−√2x −y +√3z =0 .取x= √2 .得 n ⃗ =( √2 .-1. √33 ). ∴cos < n ⃗ . PD ⃗⃗⃗⃗⃗ >= n ⃗ •PD ⃗⃗⃗⃗⃗⃗ |n ⃗ ||PD ⃗⃗⃗⃗⃗⃗ | = −4√103•2√3 =- √105. ∴直线PD 与平面PBC 所成的角的正弦值为√105 .【点评】:本题考查了面面垂直的性质.空间向量的应用与空间角的计算.属于中档题.22.(问答题.15分)在平面直角坐标系xOy 中.已知椭圆C : x 2a 2 + y 2b 2 =1(a >b >0)的离心率为 √32 .且过点( √3 . 12 ).点P 在第四象限.A 为左顶点.B 为上顶点.PA 交y 轴于点C.PB 交x 轴于点D .(1)求椭圆C 的标准方程;(2)求△PCD 面积的最大值.【正确答案】:【解析】:(1)利用椭圆的离心率求得 b a =12 .将( √3 . 12 )代入椭圆方程.即可求得a 和b 的值.(2)设P (m.n ).m >0.n >0.且. m 24+n 2=1 可得 S △PCD =12•m (2n−m−2)(n−1)(m+2)•(−n ) =nm 2+2mn−2mn 22(n−1)(m+2) = n(4−4n 2)+2mn (1−n )2(n−1)(m+2) =- n (2n+m+2)m+2 = 12(m −2n −2) . 设P 处的切线为:x-2y+t=0.t <0.由 {x =2y −t x 2+4y 2−4=0⇒8y 2-4ty+t 2-4=0.△=-16t 2+128=0⇒t=-2 √2 时.S △PCD 取得最大值.【解答】:解:(1)由已知得 c a =√32 .⇒ b a =12 . 点( √3 . 12 )代入 x 2a 2 + y 2b 2 =1可得 3a 2+14b 2=1 . 代入点( √3 . 12 )解得b 2=1.∴椭圆C 的标准方程: x 24+y 2=1 .(2)可得A (-2.0).B (0.1).设P (m.n ).m >0.n >0.且. m 24+n 2=1 PA : y =n m+2(x +2) .PB :n−1m x +1 . 可得C (0. 2n m+2 ).D ( m 1−n ,0 ).由 {y =n−1m x +1y =2n m+2可得x= m (2n−m−2)(n−1)(m+2) . S △PCD =12•m (2n−m−2)(n−1)(m+2)•(−n ) =nm 2+2mn−2mn 22(n−1)(m+2) = n(4−4n 2)+2mn (1−n )2(n−1)(m+2) =- n (2n+m+2)m+2 = 12(m −2n −2) .设P 处的切线为:x-2y+t=0.t <0.{x =2y −t x 2+4y 2−4=0⇒8y 2-4ty+t 2-4=0.△=-16t 2+128=0⇒t=-2 √2 . 此时.方程组的解 {x =√2y =−√22即点P ( √2 .- √22 )时.S △PCD 取得最大值.最大值为 √2 -1.【点评】:本题考查了椭圆的标准方程及其性质、三角形面积计算公式.考查了推理能力与计算能力.属于难题.。
浙江省杭州学军中学2022-2023学年高二上学期期末数学试题(含解析)
a
2, l:y
3a 1 a2
x
a
1
2
,所以
3a 1 a2
0
a
1
2
0
a
2
,
综上实数 a 的取值范围为 a 2 ,选 C.
【点睛】本题考查直线方程,考查空基本分析与求解能力,属于中档题.
5.C
【分析】根据异面直线的定义,结合线线平行、线面平行、线面垂直的性性质逐一判断即可.
【详解】A;设过 P 的直线为 l ,如果 l // a,l // b ,显然可得 a / /b ,这与 a,b 是异面直线相
2DF2
,则双曲线
C
的离心率 e
2
三、单空题 13.以 A(1,3),B(-5,1)为端点的线段的垂直平分线的方程是
四、填空题 14.若圆锥的侧面面积为 2 ,底面面积为 ,则该圆锥的母线长为 . 15.已知 P 是抛物线 y2 x 上的动点,记点 P 到直线 l : x y 4 0 的距离为d ,则d 的 最小值为 . 16.已知球 O 是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A-BCD 的外接球,BC=3,AB 2 3 ,点 E 在线段 BD 上,且 BD=3BE,过点 E 作圆 O 的截面, 则所得截面圆面积的取值范围是 .
试卷第 3 页,共 5 页
五、问答题
17.等差数列an 的前 n 项和为 Sn ,已知 a5 2 , S3 24 ,求 (1)数列 an 通项公式; (2)an 的前 n 项和 Sn 的最小值.
18.已知直三棱柱 ABC - A1B1C1 中,侧面 AA1B1B 为正方形. AB BC 2 ,E,F 分别为 AC 和 CC1 的中点, BF A1B1 .
2019-2020学年浙江省杭州市西湖区学军中学西溪校区高二(上)期中数学试卷试题及答案
2019-2020学年学军中学西溪校区高二(上)期中数学试卷一、选择题1.圆柱的轴截面是正方形,且轴截面面积是S,则它的侧面积是()A.B.πS C.2πS D.4πS2.若直线l与平面α相交,则()A.α内所有直线与l异面B.α内只存在有限条直线与l共面C.α内存在唯一的直线与l平行D.α内存在无数条直线与l垂直3.已知m,n是空间两条不同的直线,α,β是空间两个不同的平面,则下列命题正确的是()A.若α∥β,m⊂α,n⊂β,则m∥nB.若m,n异面,m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α⊥β,m∥n,m⊥α,则n∥βD.若α⊥β,α∩β=m,n⊥m,则n⊥β4.如图,三棱柱ABC﹣A′B′C′中,侧面B′B′CC′的面积是4,点A′到侧面B′BCC′的距离是3,则三棱柱ABC﹣A′B′C′的体积为()A.12 B.6 C.4 D.无法确定5.四面体ABCD中,AB=CD=2,其余棱长均为4,则该四面体外接球半径为()A.B.C.3D.6.某几何体的三视图如图所示,则该几何体的最长棱长为()A.B.C.5 D.27.在长方体ABCD﹣A1B1C1D1中,M,N分别是棱BB1,BC的中点,若M在以C1N为直径的圆上,则异面直线A1D与D1M所成的角为()A.45°B.60°C.900D.随长方体的形状变化而变化8.一封闭的正方体容器ABCD﹣A1B1C1D1,P,Q,R分别为AD,BB1,A1B1的中点,如图所示.由于某种原因,在P,Q,R处各有一个小洞,当此容器内存水最多时,容器中水的上表面的形状是()边形A.3 B.4 C.5 D.69.已知a=sin1.5+cos1.5,b=sin1.5•cos1.5,c=(cos1.5)sin1.5,d=(sin1.5)cos1.5,则a,b,c,d的大小关系为()A.b<c<d<a B.b<d<c<a C.d<b<c<a D.d<c<b<a 10.已知集合A={x|x2﹣x﹣6>0},B={x|x2﹣3ax+4≤0},若a>0,且A∩B中恰好有两个整数解,则a的取值范围是()A.[)B.()C.[)D.()二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.棱长为a的正四面体ABCD中,E,F分别为棱AD,BC的中点,则异面直线EF与AB所成的角大小是,线段EF的长度为.12.二面角α﹣l﹣β的大小是60°,线段AB⊂α,B∈l,AB与l所成的角为45°,则AB 与平面β所成的角的余弦值是.13.正三棱锥的高为1,底面边长为2,则它体积为;若有一个球与该正三棱锥的各个面都相切,则球的半径为.14.若f(x)=﹣3x为奇函数,则a=,此时,不等式f(1﹣x2)+f(3x+9)<0的解集为.15.在长方体ABCD﹣A1B1C1D1中,M是对角线AC1上一点,N是底面ABCD上一点.若AB=2,BC=AA1=,则MB1+MN的最小值为.16.在棱长为1的正方体ABCD﹣A1B1C1D1中,E为CC1的中点,P,Q是正方体表面上相异两点,满足BP⊥A1E,BQ⊥A1E.(1)若P,Q均在平面A1B1C1D1内,则PQ与BD的位置关系是;(2)|A1P|的最小值为.17.若不等式[2x(t﹣1)﹣1]•log a≥0对任意的正整数x恒成立(其中a∈R,且a >1),则t的取值范围是.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.在△ABC中,角A,B,C的对边分别为a,b,c.(1)若cos C=,且=,求△ABC的面积;(2)设向量=(2sin,),=(cos B,cos),且∥,b=2,求a+c的取值范围.19.如图,在四棱锥P﹣ABCD的底面ABCD中,BC∥AD,且AD=2BC,O,E分别为AD,PD 中点.(1)设平面PAB∩平面PCD=l,请作图确定l的位置并说明你的理由;(2)若Q为直线CE上任意一点,证明:OQ∥平面PAB.20.已知数列{a n}的前n项和S n满足2S n﹣na n=3n(n∈N*),且a2=5.(1)证明数列{a n}为等差数列,并求{a n}的通项公式;(2)设b n=,T n为数列{b n}的前n项和,求使T n成立的最小正整数n的值.21.对于函数f(x),若存在实数对(m,n),使得等式f(m+x)•f(m﹣x)=n对定义域中的每一个x都成立,则称函数f(x)是“(m,n)型函数”.(1)判断函数f(x)=是否为“(m,n)型函数”,并说明理由;(2)①若函数g(x)是“(1,4)型函数”,已知g(0)=1,求g(2);②若函数g(x)是“(1,4)型函数”,且当x∈[0,1]时,g(x)=x2﹣a(x﹣1)+1(a>0),若当x∈[0,2]时,都有1≤g(x)≤4成立,试求a的取值范围.22.如图,在等腰三角形ABC中,AB=AC,∠A═120°,M为线段BC的中点,D为线段BC 上一点,且BD=BA,沿直线AD将△ADC翻折至△ADC′,使AC′⊥BD,记二面角C′﹣AD﹣B的平面角为α.(1)证明:平面△AMC′⊥平面ABD;(2)比较∠C′DB与α的大小,并证明你的结论;(3)求cosα的值.参考答案一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.圆柱的轴截面是正方形,且轴截面面积是S,则它的侧面积是()A.B.πS C.2πS D.4πS解:∵圆柱的轴截面是正方形,且轴截面面积是S,∴圆柱的母线长为,底面圆的直径为,∴圆柱的侧面积S=π××=πS.故选:B.2.若直线l与平面α相交,则()A.α内所有直线与l异面B.α内只存在有限条直线与l共面C.α内存在唯一的直线与l平行D.α内存在无数条直线与l垂直解:对于A,α内过直线l与平面α交点的直线与直线l是共面直线,∴A错误;对于B,α内过直线l与平面α交点的直线有无数条,且这些直线与直线l都是共面直线,∴B错误;对于C,α内不存在与直线l平行的直线,∴C错误;对于D,如图所示,直线PA与平面α交于点A,PO⊥α,则OA是PA在α内的射影,在α内作直线l⊥OA,则l⊥PA,这样的直线l有无数条,∴D正确.故选:D.3.已知m,n是空间两条不同的直线,α,β是空间两个不同的平面,则下列命题正确的是()A.若α∥β,m⊂α,n⊂β,则m∥nB.若m,n异面,m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α⊥β,m∥n,m⊥α,则n∥βD.若α⊥β,α∩β=m,n⊥m,则n⊥β解:A.若α∥β,m⊂α,n⊂β,则m∥n或为异面直线,因此不正确;B.若m,n异面,m⊂α,n⊂β,m∥β,n∥α,则α∥β,正确;C.若α⊥β,m∥n,m⊥α,则n∥β或n⊂β,因此不正确;D.若α⊥β,α∩β=m,n⊥m,则n⊂β,或n∥β,或n与β相交,因此不正确.故选:B.4.如图,三棱柱ABC﹣A′B′C′中,侧面B′B′CC′的面积是4,点A′到侧面B′BCC′的距离是3,则三棱柱ABC﹣A′B′C′的体积为()A.12 B.6 C.4 D.无法确定解:∵侧面B′BCC′的面积是4,点A′到侧面B′BCC′的距离是3,∴V四棱锥A′﹣BCC′B′=.∵.∵V四棱锥A′﹣BCC′B′+V三棱锥A′﹣ABC=V三棱柱ABC﹣A′B′C′.∴.∴V三棱柱ABC﹣A′B′C′=6.故选:B.5.四面体ABCD中,AB=CD=2,其余棱长均为4,则该四面体外接球半径为()A.B.C.3D.解:四面体ABCD放到长方体中,AB=CD=2,其余AC=BC=AD=DB=4设长方体的边长分别为a,b,c.则,解得a2+b2+c2=18,四面体外接球半径:2R=3.R=.故选:D.6.某几何体的三视图如图所示,则该几何体的最长棱长为()A.B.C.5 D.2解:由题意可知几何体是正方体的一部分,是四棱锥P﹣ABCD,正方体的棱长为3,P是所在棱的3等分点,PB==,PA==,PC==,所以最长棱长为PB,.故选:B.7.在长方体ABCD﹣A1B1C1D1中,M,N分别是棱BB1,BC的中点,若M在以C1N为直径的圆上,则异面直线A1D与D1M所成的角为()A.45°B.60°C.900D.随长方体的形状变化而变化解:如图所示:∵M、N分别是棱BB1、BC的中点,∴MN∥CB1,∵M在以C1N为直径的圆上,∴∠C1MN=90°,∴C1M⊥MN,∴C1M⊥CB1,由长方体的几何特征,我们可得C1D1⊥B1C,∴B1C⊥平面C1D1M,∵A1D∥B1C,∴A1D⊥平面C1D1M,∴A1D⊥D1M,即异面直线A1D与D1M所成的角为90°,故选:C.8.一封闭的正方体容器ABCD﹣A1B1C1D1,P,Q,R分别为AD,BB1,A1B1的中点,如图所示.由于某种原因,在P,Q,R处各有一个小洞,当此容器内存水最多时,容器中水的上表面的形状是()边形A.3 B.4 C.5 D.6解:如图,连接QR并延长,分别交AA1,AB的延长线与E,F,连接PE交A1D1于G,连接PF交BC于H,连接PH,QH,GR,则五边形PGRQH即为此容器内存水最多时,容器中水的上表面的形状,故选:C.9.已知a=sin1.5+cos1.5,b=sin1.5•cos1.5,c=(cos1.5)sin1.5,d=(sin1.5)cos1.5,则a,b,c,d的大小关系为()A.b<c<d<a B.b<d<c<a C.d<b<c<a D.d<c<b<a解:因为<1.5<,所以<sin1.5<1;0<cos1.5<,∴a>,0<b<;∴b<a;找中间量sin1.5sin1.5,由y=sin1.5x是R上的减函数,sin1.5>cos1.5,可得sin1.5sin1.5<sin1.5cos1.5;由y=x sin1.5是(0,+∞)上的增函数,sin1.5>cos1.5,可得cos1.5sin1.5<sin1.5sin1.5;故c<d,只有A答案合适.故选:A.10.已知集合A={x|x2﹣x﹣6>0},B={x|x2﹣3ax+4≤0},若a>0,且A∩B中恰好有两个整数解,则a的取值范围是()A.[)B.()C.[)D.()解:A=(﹣∞,﹣2)∪(3,+∞),令f(x)=x2﹣3ax+4,由题意,△=9a2﹣16>0,且a>0,∴解得,,又,∴要使A∩B中恰好有两个整数解,则只能是4和5,∴,解得,∴a的取值范围是.故选:A.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.棱长为a的正四面体ABCD中,E,F分别为棱AD,BC的中点,则异面直线EF与AB所成的角大小是,线段EF的长度为a.解:棱长为a的正四面体ABCD中,E,F分别为棱AD,BC的中点,取BD中点G,连结BE,CE,EG,FG,则EG∥AB,且EG=FG==,∴∠EFG是异面直线EF与AB所成的角(或所成角的补角),BE=CE==,EF==,cos∠EFG===,∴∠EFG=,∴异面直线EF与AB所成的角大小是,线段EF的长度为.故答案为:,.12.二面角α﹣l﹣β的大小是60°,线段AB⊂α,B∈l,AB与l所成的角为45°,则AB与平面β所成的角的余弦值是.解:过点A作平面β的垂线,垂足为C,在β内过C作l的垂线,垂足为D.连结AD,根据三垂线定理可得AD⊥l,因此,∠ADC为二面角α﹣l﹣β的平面角,∠ADC=60°又∵AB与l所成角为45°,∴∠ABD=45°连结BC,可得BC为AB在平面β内的射影,∴∠ABC为AB与平面β所成的角.设AD=2x,则Rt△ACD中,AC=AD sin60°=x,Rt△ABD中,AB==2,BC==,∴Rt△ABC中,cos∠ABC===.故答案为:.13.正三棱锥的高为1,底面边长为2,则它体积为2;若有一个球与该正三棱锥的各个面都相切,则球的半径为﹣2 .解:底面等边三角形的面积S==,所以V=,设内切球的球心为O,半径为r,则在O与底面的中心M,BM=,OE=r,OA=1﹣r,侧面斜边的高AB=由△AOE ∽△ABM,得相似得,得,,所以.故答案为:﹣2.14.若f(x)=﹣3x为奇函数,则a= 1 ,此时,不等式f(1﹣x2)+f(3x+9)<0的解集为(﹣2,5).解:∵f(x)为奇函数,∴f(0)=0,,∴a=1.∴∵,∴f(x)为减函数,且为奇函数∵f(1﹣x2)+f(3x+9)<0,∴f(1﹣x2)<﹣f(3x+9)=f(﹣3x﹣9),∴1﹣x2>﹣3x﹣9,∴﹣2<x<5.故不等式的解集为(﹣2,5).故答案为:1,(﹣2,5).15.在长方体ABCD﹣A1B1C1D1中,M是对角线AC1上一点,N是底面ABCD上一点.若AB=2,BC=AA1=,则MB1+MN的最小值为.解:将△AB1C1绕边AC1旋转到APC1位置,使得平面APC1和平面ACC1在同一平面内,过点P作PN⊥平面ABCD,交AC1于M,垂足为N,则PN为MB1+MN的最小值.∵AB=2,BC=AA1=,∴AC1==2,AP=AB1==,∵sin∠C1AC===,∴∠C1AC=30°,∴∠PAN=2∠C1AC=60°,∴PN=AP•sin∠PAN==.∴MB1+MN的最小值为.故答案为:.16.在棱长为1的正方体ABCD﹣A1B1C1D1中,E为CC1的中点,P,Q是正方体表面上相异两点,满足BP⊥A1E,BQ⊥A1E.(1)若P,Q均在平面A1B1C1D1内,则PQ与BD的位置关系是平行;(2)|A1P|的最小值为.解:(1)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,则A1(1,0,1),E(0,1,),B(1,1,0),∵P,Q均在平面A1B1C1D1内,∴设P(a,b,1),Q(m,n,1),则=(﹣1,1,﹣),=(a﹣1,b﹣1,1),=(m﹣1,n﹣1,1),∵BP⊥A1E,BQ⊥A1E.∴,解得,∴PQ∥BD,即PQ与BD的位置关系是平行.故答案为:平行.(2)当|A1P|取最小值时,P在平面A1B1C1D1内,设P(a,b,1),由(1)得b=a+,∴|A1P|====,∴当a=,即P(,,1)时,|A1P|的最小值为.故答案为:.17.若不等式[2x(t﹣1)﹣1]•log a≥0对任意的正整数x恒成立(其中a∈R,且a>1),则t的取值范围是.解:原不等式等价于:或即①或②,注意到x=1时,②成立,此时≤t≤;当x∈Z,x≥2时,①成立,在①中,1+≤t≤x﹣,又g(x)=x﹣﹣为单调递增函数,所以,要使对x∈Z,x≥2成立,只需x=2时成立,又x=2时,≤t≤,所以要使不等式对任意的正整数x恒成立,则t的取值范围是:≤t≤,故答案为:≤t≤.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.在△ABC中,角A,B,C的对边分别为a,b,c.(1)若cos C=,且=,求△ABC的面积;(2)设向量=(2sin,),=(cos B,cos),且∥,b=2,求a+c的取值范围.【解答】解(1)由•=,得ab cos C=.又因为cos C=,所以ab==.又C为△ABC的内角,所以sin C=.所以△ABC的面积S=ab sin C=3.(2)因为∥,所以2sin cos=cos B,即sin B=cos B.因为cos B≠0,所以tan B=.因为B为三角形的内角,0<B<π,所以B=.由正弦定理=,所以a=,c=,所以a+c=,又A+C=,所以a+c==4(cos C+)=4sin(C+),又0,所以<C+,所以∈(2,4].19.如图,在四棱锥P﹣ABCD的底面ABCD中,BC∥AD,且AD=2BC,O,E分别为AD,PD 中点.(1)设平面PAB∩平面PCD=l,请作图确定l的位置并说明你的理由;(2)若Q为直线CE上任意一点,证明:OQ∥平面PAB.【解答】(1)解:分别延长AB和DC交于点R,连接PR,则直线PR就是l的位置;R∈AB⊂平面PAB,R∈CD⊂平面PCD,所以P、R是平面PAB和平面PCD的两个公共点,由公理1可知,过P、R的直线就是两个平面的交线l.(2)证明:连接OE、OC,因为BC∥AD,且BC=AD,又AO=AD,所以BC∥AO,且BC=AO,所以四边形ABCO为平行四边形,所以OC∥AB,则OC∥平面PAB;又OE为△PAD的中位线,则OE∥AP,所以OE∥平面PAB,又OE⊂平面OEC,OC⊂平面OEC,且OE∩OC=O,所以平面PAB∥平面OEC,又OQ⊂平面OEC,所以OQ∥平面PAB.20.已知数列{a n}的前n项和S n满足2S n﹣na n=3n(n∈N*),且a2=5.(1)证明数列{a n}为等差数列,并求{a n}的通项公式;(2)设b n=,T n为数列{b n}的前n项和,求使T n成立的最小正整数n的值.解:(1)当n≥2时,2S n﹣1﹣(n﹣1)a n﹣1=3(n﹣1),又2S n﹣na n=3n,相减可得(n﹣1)a n﹣1﹣(n﹣2)a n=3,当n≥3时,(n﹣2)a n﹣2﹣(n﹣3)a n﹣1=3,所以(n﹣1)a n﹣1﹣(n﹣2)a n=(n﹣2)a n﹣2﹣(n﹣3)a n﹣1,可得2a n﹣1=a n﹣2+a n,所以{a n}为等差数列.又2S1﹣a1=3,且a1=S1,得a1=3,又a2=5,所以{a n}为公差为2的等差数列,则a n=2n+1;(2)b n=====(﹣),T n=(﹣+﹣+﹣+﹣+…+﹣)=(﹣),要使T n成立,即(﹣)>,解得n>,所以最小正整数n的值为8.21.对于函数f(x),若存在实数对(m,n),使得等式f(m+x)•f(m﹣x)=n对定义域中的每一个x都成立,则称函数f(x)是“(m,n)型函数”.(1)判断函数f(x)=是否为“(m,n)型函数”,并说明理由;(2)①若函数g(x)是“(1,4)型函数”,已知g(0)=1,求g(2);②若函数g(x)是“(1,4)型函数”,且当x∈[0,1]时,g(x)=x2﹣a(x﹣1)+1(a>0),若当x∈[0,2]时,都有1≤g(x)≤4成立,试求a的取值范围.解:(1),则x2=m2﹣n2不可能恒成立,所以f(x)=x不是““(m,n)型函数”;(2)①由题意,g(x+1)g(1﹣x)=4,取x=1,则g(2)g(0)=4,又g(0)=1,所以g(2)=4.②方法一:∵(x+1)g(1﹣x)=4,所以g(x)g(2﹣x)=4.当x∈[0,1]时,2﹣x ∈[1,2]时,g(2﹣x)===.(a)当0<a<1时,0<,则g(x)在[0,1]内先减后增,且g(,即1+a﹣a2≤g(x)≤2,则当x∈[1,2]时,2≤g(x).所以当x∈[0,2]时,1+a﹣,由题意,,解得0≤a≤4,所以0<a<1.(b)当1≤a<2时,,则g(x)在][0,1]内先减后增,且g()≤g(x)≤g(0),即1+a﹣≤g(x)≤1+a,则当x∈[1,2]时,.要满足题意,则应满足,且解得0≤a≤33,所以1≤a<2.(c)当a≥2时,≥1,则g(x)在[0,1]内递减,且g(1)≤g(x)≤g(0),即2≤g(x)≤1+a,则当x∈[1,2]时,.此时,g(x)min=,g(x)min=1+a.要满足条件,则应,解得a≤3,所以2≤a≤3.综上所述,0<a≤3.方法二:当x∈[0,2]时,都有1≤g(x)≤4成立,所以当x∈[1,2]时,1≤g(x)≤4;当x∈[0,1]时,2﹣x∈[1,2]时,所以g(2﹣x)∈[1,4],而g(x)g(2﹣x)=4,所以1,即1≤g(x)≤4,所以问题转化为当x∈[0,1]时,1≤g(x)≤4即可.当x∈[0,1]时,g(x)=x2﹣a(x﹣1)+1(a>0),.(1)当0<<1,即0<a<2时,,解得0≤a≤3,所以0<a<2;(2)当,即a≥2时,只要解得a≤3,所以2<a≤3;综上所述,0<a≤3.22.如图,在等腰三角形ABC中,AB=AC,∠A═120°,M为线段BC的中点,D为线段BC 上一点,且BD=BA,沿直线AD将△ADC翻折至△ADC′,使AC′⊥BD,记二面角C′﹣AD﹣B的平面角为α.(1)证明:平面△AMC′⊥平面ABD;(2)比较∠C′DB与α的大小,并证明你的结论;(3)求cosα的值.解:(1)证明:∵AM⊥BD,BD⊥AC′,AM∩AC′=A,∴BD⊥平面AMC′,∵BD⊂平面ABD,∴平面△AMC′⊥平面ABD.(2)解:如图,在△C′AM所在平面内,过点C′作C′P⊥AM,垂足为P,则C′P⊥平面ABD,过P作PQ⊥AD,连接C′Q,则C′Q⊥AQ,∠C′QP=α.又QC′是由QC翻折得到,∴∠C′QP=α=2∠C′CQ,且∠C′CQ就是直线C′C与平面ABC所成的角.同理,又C′D是由DC翻折得到,∴∠C′DB=2∠C′CD.由线面角的最小性可知,∠C′CD>∠C′CQ,∴∠C′DB>α.(3)解:如图,在△C′AM中,过点C′作AM的垂线,垂足为P,过P作AD的垂线,垂足为Q.平面AMC′⊥平面BCD,交线为AM,C′P⊥平面ABD,又PQ⊥AD,∴CQ⊥AD.∴∠C′QP就是二面角C′﹣AD﹣B的平面角.设AB=AC=BD=4,则BM=MC=2,MD=4﹣2,CD=4﹣4=C′D,在直角△C′DM中,C′M2=C′D2﹣DM2=36﹣16.。
【20套试卷合集】杭州学军中学2019-2020学年数学高二上期中模拟试卷含答案
2019-2020学年高二上数学期中模拟试卷含答案 一、选择题(本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线的倾斜角的大小是( ) A .B .C .D .2. 圆的圆心坐标和半径分别是( )A .(0,2)2B .(2,0)4C .(-2,0)2D .(2,0)23.点(2,3,4)关于x 轴的对称点的坐标为( )A.(-2,3,4)B.(2,-3,-4)C.(-2,-3,4)D.(-2,-3,-4)4. 有下列四个命题:①“若0=+y x ,则y x ,互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1≤q ,则022=++q x x 有实根”的逆否命题;④“不等边三角形的三个内角相等”的逆命题;其中真命题为( ) A. ①② B. ②③ C. ①③ D. ③④5.圆x 2+y 2+2x=0和x 2+y 2﹣4y=0的公共弦所在直线方程为( )A .x ﹣2y=0B .x+2y=0C .2x ﹣y=0D .2x+y=06.圆与圆的位置关系为( ) A .内切 B .相交 C .外切 D .相离7.设平面与平面相交于直线,直线在平面内,直线在平面内,且,则是的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件8.对任意的实数,直线与圆的位置关系一定是( )A .相切B .相交且直线过圆心C .相交且直线不过圆心D .相离9.圆上的点到直线的距离最大值是( )A .2B .1+C .D .1+ 10.已知直线,圆,则直线和圆在同一坐标系中的图形可能是( )二填空题:(本题共6小题,每小题4分,共24分.把答案填在答题纸的相应位置.)11. 右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 ,体积是12. 在空间直角坐标系中,若点A (1,2,﹣1),B (﹣3,﹣1,4).则|AB|=13.已知命题,使成立,则: .14.经过点(3,-2),且在两坐标轴上的截距互为相反数的直线方程是15.直线130kx y k -+-=,当k 变化时,所有直线恒过定点16.如图,在正方体111ABCD A B C D -中,①异面直线1A D 与1D C 所成的角为60度;②直线1A D 与平面11AB C D 所成的角为30度;③1D C ⊥平面11AB C D ④平面1ADB 与平面11BB C C 所成角为60度⑤平面11//A D 平面1ADB 以上命题正确的是答题纸 二、填空题:(本题共6小题,每小题4分,共24分.把答案填在答题纸的相应位置.)11、 , ;12、 ;13、14、 ;15、 ;16、三解答题:(本题共4小题,共36分,解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的制定区域内.)17.(7分)求经过点M(2,-2),且与圆2260x y x+-=与224x y+=交点的圆的方程18.(9分)已知直线:,:,求当为何值时,与:(1)平行;(2)相交;(3)垂直19. (10分)已知圆及直线. 当直线被圆截得的弦长为时,求(1)的值;(2)求过点并与圆相切的切线方程.20.(10分)过原点O作圆x2+y2-8x=0的弦OA。
2019-2020学年浙江省杭州市西湖区杭州学军中学高二数学上学期期末考试数学试题含解析
故选B.
〖点 睛〗本小题主要考查两个圆 位置关系,考查两圆外离时公切线的条数,考查化归与转化的数学思想方法,考查两点间的距离公式,属于基础题.
3.已知直线 , 和平面 , , ,下列条件中能推出 是( )
A. , , B. ,
C. , , , D. ,
〖答 案〗B
〖解 析〗
〖分析〗
根据面面平行的判定定理和线面垂直的性质直接判断即可.
〖详 解〗A:两个平面相交时,两个平面存在互相平行的直线,故本选项不正确;
B:垂直于同一直线的两平面平行,故本选项正确;
解法1:
设 , ,利用三角形面积公式可以求出 的长,在利用 ,求出 的长,最后求出 的面积表达式,利用换元法和配方法求出 面积平方的最大值,最后求出 的值;
解法2:
设 ,求出 、 、 、 的大小,再求出 的大小,最后求出
表达式,利用同角三角函数的关系中商关系和基本不等式求出最大值,根据等号成立的条件求出 的值.
考虑四个选项,只有选D.
〖点 睛〗本题考查最小角定理的应用,线面角的最大值即为BE与CD所成的角.,属中档题.
9.已知 ,作直线 ,使得点 到直线 的距离均为 ,且这样的直线 恰有 条,则 的取值范围是( )
A. B. C. D.
〖答 案〗B
〖解 析〗
〖分析〗
分别以 为圆心,半径为 作圆,当两个圆外离时,可以作两个圆的四条公切线,根据圆心距和 的大小关系,求得 的取值范围.
在三角形OBC中,
cosB=﹣ ,
∴OC2=OB2+BC2﹣2OB=7,
浙江省杭州市学军中学19-20学年高一上学期期末数学试卷 (含答案解析)
浙江省杭州市学军中学19-20学年高一上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.设集合A={x|y=1√2−x},B={−1,0,1,2,3},则(∁R A)∩B=()A. {2}B. {−1,0,1,2}C. {2,3}D. {−1,0,1}2.已知函数f(x)的定义域为(−1,1),则函数g(x)=f(x2)+f(x−1)的定义域为()A. (−2,0)B. (−2,2)C. (0,2)D. (−12,0)3.已知角α的终边与单位圆交于点M(−√32,12),则sinα的值是()A. ±12B. 12C. −12D. −√324.函数f(x)=e x−e−xx2的图象大致为()A. B.C. D.5.已知a=log2e,b=ln2,c=log1213,则a,b,c的大小关系为()A. a>b>cB. b>a>cC. c>b>aD. c>a>b6.已知sinα+cosα=15,α∈(0,π),则tanα=()A. −34B. −43C. −34或−43D. 34或437.如图,在矩形ABCD中,AB=2AD,E,F分别为BC,CD的中点,G为EF的中点,则AG⃗⃗⃗⃗⃗ =()A. 23AB⃗⃗⃗⃗⃗ +13AD⃗⃗⃗⃗⃗⃗ B. 13AB⃗⃗⃗⃗⃗ +23AD⃗⃗⃗⃗⃗⃗ C. 34AB⃗⃗⃗⃗⃗ +34AD⃗⃗⃗⃗⃗⃗D. 23AB ⃗⃗⃗⃗⃗+23AD ⃗⃗⃗⃗⃗⃗ 8. 已知向量a ⃗ =(2,1),|a ⃗ +b ⃗ |=4,a ⃗ ⋅b ⃗ =1,则|b ⃗ |=( )A. 2B. 3C. 6D. 129. 将函数的图象向右平移π2个单位长度,所得图象对应的函数( )A. 在[π12,7π12]上单调递减 B. 在[π12,7π12]上单调递增 C. 在[−π6,π3]上单调递减D. 在[−π6,π3]上单调递增10. 函数y =√x 2+1的值域是( )A. [0,+∞)B. [1,+∞)C. (0,+∞)D. (1,+∞)二、填空题(本大题共7小题,共28.0分)11. 已知a ⃗ =(1,2),b ⃗ =(2,m ),若a ⃗ ⊥b ⃗ ,则m =_______. 12. 函数f(x)=√log 2(x −1)的定义域是________. 13. 已知cos (α−π6)+sinα=4√35,则sin (α+7π6)=__________.14. 已知△ABC 的外接圆的圆心为O ,AC =6,BC =7,AB =8,则AO ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =______. 15. 若函数f(x)=2sinωx(ω>0)在区间[−23π,23π]上单调递增,则ω的最大值为______ . 16. 定义在(0,π2)上的函数y =6cosx 的图象与y =5tanx 的图象的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与y =sinx 的图象交于点P 2,则线段P 1P 2的长为________.17. 若函数y =3x 2−ax +5在[−1,1]上是单调函数,则实数a 的取值范围是______. 三、解答题(本大题共5小题,共42.0分) 18. 计算下列各式:(1)10lg3−√10log 41+2log 26; (2)22+log 23+32−log 39.19. (Ⅰ)已知:sinθ=−45,求tanθ的值;(Ⅱ)已知:tanθ=2,求1−2cos 2θsinθ⋅cosθ的值.20. 在△ABC 中,AC =√2,AB =√3+1,∠BAC =45°,点P 满足:BP ⃗⃗⃗⃗⃗ =(1−λ)BA ⃗⃗⃗⃗⃗ +λBC ⃗⃗⃗⃗⃗ (λ>0),AP =√22.(1)求BA ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ 的值; (2)求实数λ的值.21. 已知函数f(x)=1+2√3sinxcosx −2sin 2x ,x ∈R .(1)求函数f(x)的单调区间;(2)若把f(x)向右平移π6个单位得到函数g(x),求g(x)在区间[−π2,0]上的最小值和最大值.22.设g(x)=x2−mx+1.(1)若恒成立,求实数m的取值范围;(2)若m>1,解关于x的不等式g(x)>x−m+1.-------- 答案与解析 --------1.答案:C解析:本题考查不等式的求解及集合的混合运算,属于基础题.根据题意解出集合A 、B ,再根据补集及交集的定义直接计算即可. 解:由题意得,A ={x|x <2},, ,故选C .2.答案:C解析:解:∵函数f(x)的定义域为(−1,1), ∴{−1<x2<1−1<x −1<1, 解得:0<x <2, 故选:C .根据函数的定义域得到关于x 的不等式组,解出即可.本题考查了求函数的定义域问题,考查不等式问题,是一道基础题.3.答案:B解析:本题主要考查任意角的三角函数的定义,属于基础题. 利用任意角的三角函数的定义,求得sinα的值. 解:角α的终边与单位圆交于点M(−√32,12),∴x =−√32,y =12,r =|OP|=1, 则,故选B .4.答案:B解析:本题考查函数的图象的识别和判断,考查函数的奇偶性,属于中档题. 判断函数的奇偶性,再用特殊值进行排除即可. 解:函数定义域为{x |x ≠0},关于原点对称, ∵f(−x)=e −x −e x (−x )2=−e x −e −xx 2=−f(x),则函数f(x)为奇函数,图象关于原点对称,排除A , 当x =1时,f(1)=e −1e >0,排除D , 当x →+∞时,f(x)→+∞,排除C , 故选B .5.答案:D解析:本题考查了指数函数及其性质和对数函数及其性质,属于基础题. 解:,,∴c >a >b , 故选D .6.答案:B解析:本题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键,属于基础题. 对所给关系式两边平方,结合同角三角函数的基本关系式求出sinαcosα的值,联立求出sinα和cosα的值,从而求出tanα的值.解:由sinα+cosα=15两边平方得:sin 2α+cos 2α+2sinαcosα=125, 即sinαcosα=−1225<0, 因为α∈(0,π),所以,由{sinα+cosα=15sinαcosα=−1225,解得{sinα=45cosα=−35,所以tanα=sinαcosα=−43, 故选B .7.答案:C解析:建立平面直角坐标系,利用平面向量的坐标表示,列出方程组,即可求出AG ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +y AD ⃗⃗⃗⃗⃗⃗ 中的x 与y 的值.本题考查了平面向量的线性表示与运算问题,也考查了数形结合的解题思想,是基础题目. 解:建立平面直角坐标系,如图所示;矩形ABCD 中,AB =2AD ,E ,F 分别为BC ,CD 的中点,G 为EF 中点, 设B(2,0),则D(0,1),E(2,12),F(1,1), ∴G(32,34); ∴AG ⃗⃗⃗⃗⃗ =(32,34),AB ⃗⃗⃗⃗⃗ =(2,0),AD ⃗⃗⃗⃗⃗⃗ =(0,1), 设AG⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +y AD ⃗⃗⃗⃗⃗⃗ , 则(32,34)=(2x,y), 即{2x =32y =34,解得x =34,y =34; ∴AG ⃗⃗⃗⃗⃗ =34AB ⃗⃗⃗⃗⃗ +34AD ⃗⃗⃗⃗⃗⃗ . 故选:C .解析:解:∵|a⃗+b⃗ |=4,∴a⃗2+b⃗ 2+2a⃗⋅b⃗ =16,∴5+|b⃗ |2+2=16,∴|b⃗ |=3故选:B.将|a⃗+b⃗ |=4两边平方可得.本题考查了平面向量数量积的性质及其运算,属基础题.9.答案:B解析:本题考查函数图象的平移及正弦函数的性质,属于一般题.直接由函数的图象平移得到平移后的图象所对应的函数解析式,即可求解单调区间.解:把函数y=3sin(2x+π3)的图象向右平移π2个单位长度,得到的图象所对应的函数解析式为:y=3sin[2(x−π2)+π3]=3sin(2x−2π3),当函数递增时,由−π2+2kπ≤2x−2π3≤π2+2kπ,,得,取k=0,得π12≤x≤7π12,∴平移后所得图象对应的函数在区间[π12,7π12]上单调递增.故选B.10.答案:B解析:解:函数y=√x2+1可知:√x2+1≥1,即y≥1.所以函数的值域为:[1,+∞).故选B.通过函数的解析式,直接得到函数的值域即可.本题考查函数的值域的求法,基本知识的考查.解析:本题考查平面向量垂直的坐标表示,属于基础题.由平面向量垂直,得到a⃗·b⃗ =0,进而得到m的方程,解得m的值.解:∵a⃗=(1,2),b⃗ =(2,m),a⃗⊥b⃗ ,则a⃗·b⃗ =0,∴1×2+2m=0,∴m=−1.故答案为−1.12.答案:[2,+∞)解析:根据对数函数的性质求出函数的定义域即可.本题考查了求函数的定义域问题,考查对数函数的性质,是一道基础题.解:要使函数由意义,则log2(x−1)≥0,x−1≥1,x≥2,故答案为[2,+∞).13.答案:−45解析:本题主要考查两角和与差的正余弦公式和诱导公式的应用,属于基础题.解:因为cos(α−π6)+sinα=√3(12cosα+√32sinα)=√3sin(π6+α)=4√35,所以sin(π6+α)=45,又sin(α+7π6)=−sin(π6+α)=−45,故答案为−45.解析:解:作OD ⊥AB 于D ,OE ⊥AC 于E , ∵⊙O 中,OD ⊥AB , ∴AD =12AB ,cos∠OAD =|AD⃗⃗⃗⃗⃗⃗ ||AO⃗⃗⃗⃗⃗⃗ | 因此,AO ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =|AO ⃗⃗⃗⃗⃗ |⋅|AB ⃗⃗⃗⃗⃗ |cos∠OAD =|AB ⃗⃗⃗⃗⃗ |⋅|AD ⃗⃗⃗⃗⃗⃗ |=12|AB ⃗⃗⃗⃗⃗ |2=32 同理可得AO ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =12|AC ⃗⃗⃗⃗⃗ |2=18 ∴AO⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =AO ⃗⃗⃗⃗⃗ ⋅(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=AO ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ −AO ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =18−32=−14 故答案为:−14作OD ⊥AB 于D ,OE ⊥AC 于E ,由垂径定理得D 、E 分别为AB 、AE 的中点,利用三角函数在直角三角形中的定义,可得cos∠OAD =|AD ⃗⃗⃗⃗⃗⃗ ||AO ⃗⃗⃗⃗⃗⃗ |,由向量数量积的定义得AO ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =12|AB ⃗⃗⃗⃗⃗ |2=32,同理可得AO ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =12|AC ⃗⃗⃗⃗⃗ |2=18,而AO ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =AO ⃗⃗⃗⃗⃗ ⋅(AC ⃗⃗⃗⃗⃗ −AD ⃗⃗⃗⃗⃗⃗ ),展开后代入前面的数据即可得到AO ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ 的值.本题给出三角形的外接圆的圆心为0,在已知三边长的情况下求AO ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ 的值,着重考查了圆中垂直于弦的直径性质、三角函数在直角三角形中的定义和向量数量积公式及其性质等知识,属于中档题.15.答案:34解析:本题考查正弦函数的单调增区间.由题意可得2πω≥2[2π3−(−2π3)],即2πω≥8π3,解得ω的范围,可得ω的最大值,属于基本知识的考查.解析:函数f(x)=2sinωx(ω>0)在区间[−23π,23π]上单调递增,2πω≥2[2π3−(−2π3)],即2πω≥8π3,解得ω≤34, 故ω的最大值等于34, 故答案为:34.16.答案:23解析:本题考查三角函数的图象、数形结合思想.先将求P1P2的长转化为求sin x的值,再由x满足6cosx=5tanx可求出sin x的值,从而得到答案.解:线段P1P2的长即为sin x的值,且其中的x满足6cosx=5tanx,即6cosx=5sinxcosx ,化为6sin2x+5sinx−6=0,解得sinx=23.线段P1P2的长为23故答案为23.17.答案:解析:本题考查二次函数及函数的单调性,是基础题.由二次函数的单调性,分类讨论求解即可.解:因为y=3x2−ax+5的对称轴为x=a6,若函数y=3x2−ax+5在[−1,1]上是单调递增,则a6≤−1,即a≤−6,若函数y=3x2−ax+5在[−1,1]上是单调递减,则a 6≥1,即a ≥6,综上所述,a 的取值范围为a ≥6或a ≤−6, 故答案为. 18.答案:解:(1)10lg3−√10log 41+2log 26=3−0+6=9..解析:本题考查对数的概念.属于基础题.根据对数和指数的运算法则即可得到结果.19.答案:解:(Ⅰ)∵sinθ=−45<0,∴θ为第三或第四象限角.当θ为第三象限角时,cosθ=−√1−sin 2θ=−35,∴tanθ=sinθcosθ=43.当θ为第四象限角时,cosθ=√1−sin 2θ=35,∴tanθ=sinθcosθ=−43.综上所述,tanθ=43或−43;(Ⅱ)∵tanθ=2,∴1−2cos 2θsinθ⋅cosθ=sin 2θ+cos 2θ−2cos 2θsinθcosθ=sin 2θ−cos 2θsinθcosθ=tan 2θ−1tanθ=22−12=32. 解析:(Ⅰ)由sinθ分类求出cosθ,再由商的关系求解;(Ⅱ)化弦为切,代入tanθ的值得答案.本题考查三角函数的化简求值,考查同角三角函数基本关系式的应用,是基础题.20.答案:解:(1)BA ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =|BA ⃗⃗⃗⃗⃗ ||AC ⃗⃗⃗⃗⃗ |cos135°=√2(√3+1)×(−√22)=√3+1, (2)∵BP ⃗⃗⃗⃗⃗ =(1−λ)BA ⃗⃗⃗⃗⃗ +λBC ⃗⃗⃗⃗⃗ ,∴BP ⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ =λ(BC ⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ ),即AP ⃗⃗⃗⃗⃗ =λAC⃗⃗⃗⃗⃗ ,∵λ>0,∴λ=|AP ⃗⃗⃗⃗⃗ ||AC |=12.解析:(1)根据向量的数量积的运算即可求出;(2)根据向量的加减的几何意义得到即AP ⃗⃗⃗⃗⃗ =λAC⃗⃗⃗⃗⃗ ,即可求出答案. 本题考查了向量的数量积的运算和向量的加减的几何意义,属于基础题.21.答案:解:(1)f(x)=1+2√3sinxcosx −2sin 2x ,=√3sin2x +cos2x =2sin(2x +π6),令2kπ−π2≤2x +π6≤2kπ+π2,k ∈Z ,得kπ−π3≤x ≤kπ+π6,k ∈Z ,可得函数f(x)的单调增区间为[kπ−π3,kπ+π6],k ∈Z ;令2kπ+π2≤2x +π6≤2kπ+3π2,k ∈Z , 得kπ+π6≤x ≤kπ+2π3,k ∈Z ,可得函数f(x)的单调减区间为[kπ+π6,kπ+2π3],k ∈Z ; (2)若把函数f(x)的图像向右平移π6个单位,得到函数g(x)=2sin[2(x −π6)+π6]=2sin(2x −π6)的图像,∵x ∈[−π2,0],∴2x −π6∈[−7π6,−π6],∴g(x)=2sin(2x −π6)∈[−2,1]. 故g(x)在区间[−π2,0]上的最小值为−2,最大值为1.解析:本题主要考查三角函数的化简及函数y =Asin(ωx +φ)的图象性质和最值,考查了学生的计算能力,培养了学生分析问题与解决问题的能力,属于中档题.(1)利用二倍角公式和辅助角公式,化简函数f(x)的解析式,再利用正弦函数的单调性,求得函数f(x)的单调区间;(2)利用函数y =Asin(ωx +φ)的图象变换规律求得g(x)的解析式,由x 的范围求出ωx +φ的范围,即可利用正弦函数的性质求出g(x)的范围.22.答案:解:(1)由题意,若g(x)≥0对任意x >0恒成立,即为x2−mx+1≥0对x>0恒成立,即m≤x+1x在x>0恒成立,转化为求x+1x在x>0时的最小值,因为x+1x≥2,当且仅当x=1时取“=”,所以m≤2.(2)不等式可化为x2−(m+1)x+m>0,分解因式可得(x−m)(x−1)>0,由m>1可得,x<1或x>m,所以不等式的解集为(−∞,1)∪(m,+∞).解析:本题考查一元二次不等式的解法和不等式恒成立问题,涉及基本不等式求最值,属于基础题.(1)问题可化为m≤x+1x 在x>0恒成立,由基本不等式求出x+1x在x>0时的最小值即可;(2)不等式可化为(x−m)(x−1)>0,由m>1可得不等式的解集.。
2019-2020学年浙江省杭州市学军中学高一上学期期末数学试题(解析版)
2019-2020学年浙江省杭州市学军中学高一上学期期末数学试题一、单选题1.设全集为R ,集合A ={x |0<x <2},B ={x |x ≥1},则A ∩B =( ) A .{x |1≤x <2} B .{x |0<x <2}C .{x |0<x ≤1}D .{x |0<x <1}【答案】A【解析】利用交集定义直接求解. 【详解】由集合{}|02A x x =<<,{}|1B x x =≥,所以{}|12A B x x =≤<I . 故选:A. 【点睛】本题考查交集的求法,交集定义等基础知识,考查运算求解能力,属于基础题. 2.已知函数f (x )的定义域为(﹣1,1),则函数()()22x g x f f x ⎛⎫=+- ⎪⎝⎭的定义域为( ) A .(0,2) B .(1,2)C .(2,3)D .(﹣1,1)【答案】B【解析】由题意可得112121x x ⎧-<<⎪⎨⎪-<-<⎩,由此求得x 的范围,即为所求. 【详解】由题意,函数()f x 的定义域为()1,1-,则对于函数()()22x g x f f x ⎛⎫=+- ⎪⎝⎭,应有112121x x ⎧-<<⎪⎨⎪-<-<⎩,解得12x <<,故()g x 的定义域为()1,2. 故选:B. 【点睛】本题主要考查函数的定义域的定义,求函数的定义域,属于基础题. 3.若角α的终边与单位圆交于点P (35-,45),则sin (2π+α)=( )A .35B .35-C .45-D .45【答案】B【解析】利用任意角的三角函数的定义求得cos α的值,再利用诱导公式,即可得到结论. 【详解】因为角α的终边与单位圆交于点34,55P ⎛⎫- ⎪⎝⎭,由三角函数的定义知3cos 5α=-, 所以3sin cos 25παα⎛⎫+==-⎪⎝⎭.故选:B. 【点睛】本题主要考查任意角的三角函数的定义,诱导公式,属于基础题.4.函数()2e e x xf x x--=的图像大致为 ( ) A . B .C .D .【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:20,()()()x xe e xf x f x f x x --≠-==-∴Q 为奇函数,舍去A,1(1)0f e e -=->∴Q 舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x---+---++=='∴>'>Q ,所以舍去C ;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.5.已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >>C .c b a >>D .c a b >>【答案】D【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:2log 1a e =>,()21ln 20,1log b e ==∈,12221log log 3log 3c e ==>, 据此可得:c a b >>. 本题选择D 选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 6.已知sinα+cosα12=,α∈(0,π),则11tan tan αα+=-( ) A.7 B.7-C.3D.3-【答案】B【解析】将等式两边平方,得32sin cos 4αα=-,再利用完全平方公式得sin cos 2αα-=. 【详解】由1sin cos 2αα+=,平方得()21sin cos 12sin cos 4αααα+=+=,即32sin cos 4αα=-,又()0,απ∈,则sin 0α>,cos 0α<,所以()237sin cos 12sin cos 144αααα-=-=+=,即7sin cos 2αα-=, 所以1tan sin cos 71tan cos sin αααααα++==---. 故选:B. 【点睛】本题考查了同角三角函数间基本关系的运用,熟练掌握基本关系是解本题的关键,属于基础题.7.在矩形ABCD 中,AB =2,AD =4,AB ⊥AD ,点P 满足AP xAB y AD =+u u u r u u u r u u u r,且x +2y=1,点M 在矩形ABCD 内(包含边)运动,且AM AP λ=u u u u r u u u r,则λ的最大值等于( ) A .1 B .2C .3D .4【答案】C【解析】利用矩形建立坐标系,把所给向量条件转化为坐标关系,结合点在矩形内,利用横纵坐标满足的条件列不等式,求得范围. 【详解】 建立如图坐标系:则()2,0AB =uu u r,()0,4AD =u u u r ,()()()2,00,42,4AP xAB yAD x y x y ∴=+=+=u u u r u u u r u u u r, ()2,4AM AP x y λλλ∴==u u u u r u u u r,因M 在矩形ABCD 内, 所以022044x y λλ≤≤⎧⎨≤≤⎩,即246x y λλ+≤,所以()23x y λ+≤,又21x y +=,所以3λ≤,即λ的最大值为3. 故选:C. 【点睛】本题考查了向量的坐标运算,不等式性质等基础知识,属于基础题.8.平面向量a r ,b r 满足,2()30a a b -⋅-=rr r ,2b =r ,则a b -r r 最大值是( )A .1B .2C .3D .4【答案】C【解析】根据题意设向量()0,2b =r ,(),a x y =r,将方程转化为圆的方程,再利用两点间的距离即可得到结论. 【详解】由题意,设向量()0,2b =r ,(),a x y =r ,则()222ax y =+r,2a b y ⋅=r r,因()230a a b -⋅-=r r r ,即,22230x y y +--=,所以:()2214x y +-=,即向量a r的轨迹是以()0,1为圆心,2r =的圆,又(),2a b x y -=-r r,所以a b -=r r (),x y 与点()0,2之间的距离,又点(),x y 满足()2214x y +-=,所以23a b -==r r.故选:C. 【点睛】本题主要考查向量的坐标运算,将向量的模转化为两点之间的距离是关键,属于中档题.9.将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数A .在区间35[,]44ππ上单调递增 B .在区间3[,]4ππ上单调递减 C .在区间53[,]42ππ上单调递增 D .在区间3[,2]2ππ上单调递减 【答案】A【解析】由题意首先求得平移之后的函数解析式,然后确定函数的单调区间即可. 【详解】由函数图象平移变换的性质可知:将sin 25y x π⎛⎫=+ ⎪⎝⎭的图象向右平移10π个单位长度之后的解析式为:sin 2sin 2105y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦.则函数的单调递增区间满足:()22222k x k k Z ππππ-≤≤+∈,即()44k x k k Z ππππ-≤≤+∈,令1k =可得一个单调递增区间为:35,44ππ⎡⎤⎢⎥⎣⎦. 函数的单调递减区间满足:()322222k x k k Z ππππ+≤≤+∈, 即()344k x k k Z ππππ+≤≤+∈, 令1k =可得一个单调递减区间为:57,44ππ⎡⎤⎢⎥⎣⎦,本题选择A 选项. 【点睛】本题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学生的转化能力和计算求解能力.10.函数y x = ).A .()1,+∞B .)+∞C .)+∞D .)1⎡+∞⎣【答案】A【解析】函数y x =,可得y x -=,两边平方,即可求解. 【详解】解:函数y x x =+R .当1x …时,可知函数y 是递增函数,可得1y +…当1x „时,可得0y x -=, 两边平方, 0y x -Q …,即1y >; 22()y x ∴-=,可得:222223x xy y x x -+=-+,(1)y ≠23122y x y -∴=-„.得y R ∈.由2232302(1)22y y y y x y y y --+-=-=--…, 1y >Q .2230y y ∴-+… 可得:y R ∈ 综上可得1y >.∴函数y x =(1)+∞.故选:A . 【点睛】本题考查了函数值域的求法.高中函数值域求法有:1、观察法,2、配方法,3、反函数法,4、判别式法;5、换元法,6、数形结合法,7、不等式法,8、分离常数法,9、单调性法,10、利用导数求函数的值域,11、最值法,12、构造法,13、比例法.要根据题意选择.二、填空题11.已知向量()12a =r ,,()3b x =-r ,,若满足a b r P r ,则x =_____,若满足a b⊥r r ,则x =_____. 【答案】32-6 【解析】根据平面向量共线与垂直的坐标表示,分别列方程求出x 的值. 【详解】因向量()1,2a =r,(),3b x =-r ,若//a b r r,则()1320x ⨯--=,解得32x =-, 若a b ⊥r r,则()230x +⨯-=,解得6x =.故答案为:32-,6. 【点睛】本题考查了平面向量的坐标表示与应用问题,属于基础题.12.函数()f x =________. 【答案】[2,+∞)【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域. 详解:要使函数()f x 有意义,则2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[2,)+∞.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题. 13.若5sin()=613πα-,则cos()3πα+=________________ 【答案】513【解析】根据题意cos cos 326πππαα⎡⎤⎛⎫⎛⎫+=--⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,然后根据诱导公式对上式进行变形即可得到cos sin 36ππαα⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,即可求得答案 【详解】5sin 613Q πα⎛⎫-= ⎪⎝⎭,则5cos cos sin 326613ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=--=-=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 故答案为513【点睛】本题是一道有关三角函数的题目,解答本题的关键是掌握诱导公式,属于基础题。
2019-2020学年浙江省杭州市西湖区学军中学西溪校区高二(上)期中数学试卷
2019-2020学年浙江省杭州市西湖区学军中学西溪校区高二(上)期中数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 圆柱的轴截面是正方形,且轴截面面积是S,则它的侧面积是()S B.πS C.2πS D.4πSA.1π【答案】B【考点】棱柱、棱锥、棱台的侧面积和表面积【解析】根据圆柱的轴截面是正方形,且轴截面面积是S求出圆柱的母线长与底面圆的直径,代入侧面积公式计算.【解答】∵圆柱的轴截面是正方形,且轴截面面积是S,∴圆柱的母线长为√S,底面圆的直径为√S,∴圆柱的侧面积S=π×√S×√S=πS.2. 若直线l与平面α相交,则()A.α内所有直线与l异面B.α内只存在有限条直线与l共面C.α内存在唯一的直线与l平行D.α内存在无数条直线与l垂直【答案】D【考点】空间中直线与平面之间的位置关系【解析】α内过直线l与平面α交点的直线与直线l共面,判断A错误;α内过直线l与平面α交点的直线有无数条,判断B错误;α内不存在与直线l平行的直线,判断C错误;画出图形,结合图形判断D正确.【解答】对于A,α内过直线l与平面α交点的直线与直线l是共面直线,∴A错误;对于B,α内过直线l与平面α交点的直线有无数条,且这些直线与直线l都是共面直线,∴B错误;对于C,α内不存在与直线l平行的直线,∴C错误;对于D,如图所示,直线PA与平面α交于点A,PO⊥α,则OA是PA在α内的射影,在α内作直线l⊥OA,则l⊥PA,这样的直线l有无数条,∴D正确.3. 已知m,n是空间两条不同的直线,α,β是空间两个不同的平面,则下列命题正确的是()A.若α // β,m⊂α,n⊂β,则m // nB.若m,n异面,m⊂α,n⊂β,m // β,n // α,则α // βC.若α⊥β,m // n,m⊥α,则n // βD.若α⊥β,α∩β=m,n⊥m,则n⊥β【答案】B【考点】命题的真假判断与应用【解析】A.由α // β,m⊂α,n⊂β,可知m与n无公共点,即可判断出正误;B.由m,n异面,m⊂α,n⊂β,m // β,n // α,即可得出α与β的位置关系;C.若α⊥β,m // n,m⊥α,则n // β或n⊂β,因此不正确;D.若α⊥β,α∩β=m,n⊥m,可得n与β的三种位置关系都有可能.【解答】A.若α // β,m⊂α,n⊂β,则m // n或为异面直线,因此不正确;B.若m,n异面,m⊂α,n⊂β,m // β,n // α,则α // β,正确;C.若α⊥β,m // n,m⊥α,则n // β或n⊂β,因此不正确;D.若α⊥β,α∩β=m,n⊥m,则n⊂β,或n // β,或n与β相交,因此不正确.4. 如图,三棱柱ABC−A′B′C′中,侧面B′B′CC′的面积是4,点A′到侧面B′BCC′的距离是3,则三棱柱ABC−A′B′C′的体积为()A.12B.6C.4D.无法确定【答案】B【考点】柱体、锥体、台体的体积计算【解析】由已知求得四棱锥A′−BCC′B′的体积,结合V A′−ABC=13V ABC−A′B′C′,可得V四棱锥A′−BCC′B′+V三棱锥A′−ABC=V三棱柱ABC−A′B′C′,从而求得三棱柱ABC−A′B′C′的体积.【解答】∵侧面B′BCC′的面积是4,点A′到侧面B′BCC′的距离是3,∴V四棱锥A′−BCC′B′=13×4×3=4.∵V A′−ABC=13V ABC−A′B′C′.∵ V 四棱锥A′−BCC′B′+V 三棱锥A′−ABC =V 三棱柱ABC−A′B′C′. ∴ 23V ABC−A ′B ′C ′=V A ′−BCC ′B ′=4. ∴ V 三棱柱ABC−A′B′C′=6.5. 四面体ABCD 中,AB =CD =2,其余棱长均为4,则该四面体外接球半径为( )A.√14B.√142C.3√2D.3√22【答案】D【考点】球的体积和表面积 【解析】把四面体ABCD 放到长方体中,不难发现AB =CD =2,其余棱长均为4正好是长方体的对角线.从而即可求解四面体外接球半径 【解答】四面体ABCD 放到长方体中,AB =CD =2,其余AC =BC =AD =DB =4 设长方体的边长分别为a ,b ,c .则{a 2+b 2=20b 2+c 2=20a 2+c 2=32 ,解得a 2+b 2+c 2=18, 四面体外接球半径:2R =3√2.R =3√22.6. 某几何体的三视图如图所示,则该几何体的最长棱长为( )A.√19B.√22C.5D.2√7【答案】 B【考点】由三视图求体积 【解析】画出几何体的直观图,利用三视图的数据,求解几何体的最长棱长. 【解答】由题意可知几何体是正方体的一部分,是四棱锥P −ABCD ,正方体的棱长为3,P 是所在棱的3等分点,PB =√32+32+22=√22,PA =√32+22=√13,PC =√32+32+12=√19, 所以最长棱长为PB ,√22.7. 在长方体ABCD −A 1B 1C 1D 1中,M ,N 分别是棱BB 1,BC 的中点,若M 在以C 1N 为直径的圆上,则异面直线A 1D 与D 1M 所成的角为( )A.45∘B.60∘C.900D.随长方体的形状变化而变化【答案】C【考点】异面直线及其所成的角【解析】推导出C1M⊥MN,C1M⊥CB1,C1D1⊥B1C,从而B1C⊥平面C1D1M,由A1D // B1C,得A1D⊥平面C1D1M,由此能求出异面直线A1D与D1M所成的角的大小.【解答】如图所示:∵M、N分别是棱BB1、BC的中点,∴MN // CB1,∵M在以C1N为直径的圆上,∴∠C1MN=90∘,∴C1M⊥MN,∴C1M⊥CB1,由长方体的几何特征,我们可得C1D1⊥B1C,∴B1C⊥平面C1D1M,∵A1D // B1C,∴A1D⊥平面C1D1M,∴A1D⊥D1M,即异面直线A1D与D1M所成的角为90∘,故选:C.8. 一封闭的正方体容器ABCD−A1B1C1D1,P,Q,R分别为AD,BB1,A1B1的中点,如图所示.由于某种原因,在P,Q,R处各有一个小洞,当此容器内存水最多时,容器中水的上表面的形状是()边形A.3B.4C.5D.6【答案】C【考点】平面的基本性质及推论【解析】画出过P,Q,R三点的平面与正方体容器ABCD−A1B1C1D1的截面得答案.【解答】如图,连接QR 并延长,分别交AA 1,AB 的延长线与E ,F , 连接PE 交A 1D 1于G ,连接PF 交BC 于H ,连接PH ,QH ,GR ,则五边形PGRQH 即为此容器内存水最多时,容器中水的上表面的形状,9. 已知a =sin1.5+cos1.5,b =sin1.5⋅cos1.5,c =(cos1.5)sin1.5,d =(sin1.5)cos1.5,则a ,b ,c ,d 的大小关系为( ) A.b <c <d <a B.b <d <c <a C.d <b <c <a D.d <c <b <a 【答案】 A【考点】三角函数的恒等变换及化简求值 【解析】因为π3<1.5<π2,所以√32<sin1.5<1;0<cos1.5<12,注意到四个答案里都是a 最大,主要比较c 与d 的大小关系即可;找中间量sin1.5sin1.5,由y =sin1.5x 是R 上的减函数,sin1.5>cos1.5,可得sin1.5sin1.5<sin1.5cos1.5;由y =x sin1.5是(0, +∞)上的增函数,sin1.5>cos1.5,可得cos1.5sin1.5<sin1.5sin1.5; 故c <d ,只有A 答案合适. 【解答】因为π3<1.5<π2,所以√32<sin1.5<1;0<cos1.5<12,∴ a >√32,0<b <12;∴ b <a ;找中间量sin1.5sin1.5,由y =sin1.5x 是R 上的减函数,sin1.5>cos1.5,可得sin1.5sin1.5<sin1.5cos1.5;由y =x sin1.5是(0, +∞)上的增函数,sin1.5>cos1.5,可得cos1.5sin1.5<sin1.5sin1.5; 故c <d ,只有A 答案合适.10. 已知集合A ={x|x 2−x −6>0},B ={x|x 2−3ax +4≤0},若a >0,且A ∩B 中恰好有两个整数解,则a 的取值范围是( ) A.[2915,209) B.(2915,209)C.[139,209)D.(53,209)【答案】 A【考点】交集及其运算 【解析】可以求出集合A =(−∞, −2)∪(3, +∞),可令f(x)=x 2−3ax +4,根据a >0及△>0即可得出a >43,并且求出B =[3a−√9a2−162,3a+√9a 2−162],可得出0<3a−√9a2−162<2,从而得出要使A ∩B 中恰好有两个整数解,只能是4和5,从而可得出{f(4)≤0f(5)≤0f(6)>0 ,解出a的范围即可. 【解答】A =(−∞, −2)∪(3, +∞),令f(x)=x 2−3ax +4,由题意,△=9a 2−16>0,且a >0,∴ 解得a >43,B =[3a−√9a2−162,3a+√9a 2−162],又0<3a−√9a 2−162=2<2,∴ 要使A ∩B 中恰好有两个整数解,则只能是4和5, ∴ {f(4)=16−12a +4≤0f(5)=25−15a +4≤0f(6)=36−18a +4>0 ,解得2915≤a <209,∴ a 的取值范围是[2915,209).二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.棱长为a 的正四面体ABCD 中,E ,F 分别为棱AD ,BC 的中点,则异面直线EF 与AB 所成的角大小是________,线段EF 的长度为________. 【答案】4,√2 【考点】异面直线及其所成的角 【解析】取BD 中点G ,连结BE ,CE ,EG ,FG ,则EG // AB ,且EG =FG =12AB =a2,∠EFG 是异面直线EF 与AB 所成的角(或所成角的补角),由此能求出异面直线EF 与AB 所成的角大小和线段EF 的长度. 【解答】棱长为a 的正四面体ABCD 中,E ,F 分别为棱AD ,BC 的中点, 取BD 中点G ,连结BE ,CE ,EG ,FG , 则EG // AB ,且EG =FG =12AB =a2,∴ ∠EFG 是异面直线EF 与AB 所成的角(或所成角的补角), BE =CE =√a 2−(a2)2=√3a2,EF =√(√3a 2)2−(a2)2=√2a 2, cos∠EFG =EF 2+GF 2−EG 22×EF×GF =a 22+a 24−a 242×√2a 2×a 2=√22, ∴ ∠EFG =π4,∴ 异面直线EF 与AB 所成的角大小是π4,线段EF 的长度为√22a .二面角α−l −β的大小是60∘,线段AB ⊂α,B ∈l ,AB 与l 所成的角为45∘,则AB 与平面β所成的角的余弦值是________. 【答案】 √104【考点】直线与平面所成的角【解析】根据二面角和直线和平面所成角的定义,先作出对应的平面角,结合三角形的边角关系进行求解即可.【解答】过点A作平面β的垂线,垂足为C,在β内过C作l的垂线,垂足为D.连结AD,根据三垂线定理可得AD⊥l,因此,∠ADC为二面角α−l−β的平面角,∠ADC=60∘又∵AB与l所成角为45∘,∴∠ABD=45∘连结BC,可得BC为AB在平面β内的射影,∴∠ABC为AB与平面β所成的角.设AD=2x,则Rt△ACD中,AC=ADsin60∘=√3x,Rt△ABD中,AB=ADsin45=2√2x,BC=√(2√2x)2−(√3x)2=√5x,∴Rt△ABC中,cos∠ABC=BCAB =√5x2√2x=√104.正三棱锥的高为1,底面边长为2√6,则它体积为________;若有一个球与该正三棱锥的各个面都相切,则球的半径为________.【答案】2√3,√6−2【考点】球的体积和表面积柱体、锥体、台体的体积计算【解析】求出底面的面积,利用体积公式带入即可,要求内切球半径,根据横截面图,利用三角形相似得出r.【解答】底面等边三角形的面积S=√34⋅(2√6)2=6√3,所以V=13⋅6√3⋅1=2√3,设内切球的球心为O,半径为r,则在O与底面的中心M,BM=2√6⋅√32⋅13=√2,OE=r,OA=1−r,侧面斜边的高AB=√1+OM2=√3由△AOE∽△ABM,得相似得rBM =1−rAB,得2=3,r(√3+√2)=√2,所以r=√6−2.若f(x)=a−4x2−3x为奇函数,则a=________,此时,不等式f(1−x2)+f(3x+ 9)<0的解集为________.【答案】1,(−2, 5)【考点】奇偶性与单调性的综合【解析】含有参数的函数奇偶性问题,要利用常见的结论,通过赋值法解决;第二问综合应用函数单调性和奇偶性的性质.【解答】∵f(x)为奇函数,∴f(0)=0,a−4020−3×0=0,∴a=1.∴f(x)=1−4x2x =12x−2x,∵12x,−2x,∴f(x)为减函数,且为奇函数∵f(1−x2)+f(3x+9)<0,∴f(1−x2)<−f(3x+9)=f(−3x−9),∴1−x2>−3x−9,∴−2<x<5.故不等式的解集为(−2, 5).在长方体ABCD−A1B1C1D1中,M是对角线AC1上一点,N是底面ABCD上一点.若AB=2,BC=AA1=√2,则MB1+MN的最小值为________3√22.【答案】3√22.【考点】点、线、面间的距离计算【解析】将△AB1C1绕边AC1旋转到APC1位置,使得平面APC1和平面ACC1在同一平面内,则P到平面ABCD的距离即为MB1+MN的最小值,利用勾股定理解出即可.【解答】将△AB1C1绕边AC1旋转到APC1位置,使得平面APC 1和平面ACC 1在同一平面内,过点P 作PN ⊥平面ABCD ,交AC 1于M ,垂足为N ,则PN 为MB 1+MN 的最小值. ∵ AB =2,BC =AA 1=√2,∴ AC 1=√4+2+2=2√2,AP =AB 1=√4+2=√6, ∵ sin∠C 1AC =CC1AC 1=√22√2=12,∴ ∠C 1AC =30∘,∴ ∠PAN =2∠C 1AC =60∘,∴ PN =AP ⋅sin∠PAN =√6⋅√32=3√22.∴ MB 1+MN 的最小值为3√22.在棱长为1的正方体ABCD −A 1B 1C 1D 1中,E 为CC 1的中点,P ,Q 是正方体表面上相异两点,满足BP ⊥A 1E ,BQ ⊥A 1E .(1)若P ,Q 均在平面A 1B 1C 1D 1内,则PQ 与BD 的位置关系是________;(2)|A 1P|的最小值为________. 【答案】 平行3√24【考点】点、线、面间的距离计算空间中直线与直线之间的位置关系 【解析】(1)以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能判断PQ 与BD 的位置关系.(2)当|A 1P|取最小值时,P 在平面A 1B 1C 1D 1内,设P(a, b, 1),推导出b =a +12,由此能求出|A 1P|的最小值. 【解答】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 则A 1(1, 0, 1),E(0, 1, 12),B(1, 1, 0),∵ P ,Q 均在平面A 1B 1C 1D 1内,∴ 设P(a, b, 1),Q(m, n, 1),则A 1E →=(−1, 1, −12),BP →=(a −1, b −1, 1),BQ →=(m −1, n −1, 1),∵ BP ⊥A 1E ,BQ ⊥A 1E .∴ {BP →⋅A 1E →=−(a −1)+(b −1)−12=0BQ →⋅A 1E →=−(m −1)+(n −1)−12=0, 解得{b −a =12n −m =12 ,∴ PQ // BD ,即PQ 与BD 的位置关系是平行.故答案为:平行.当|A 1P|取最小值时,P 在平面A 1B 1C 1D 1内,设P(a, b, 1),由(1)得b =a +12,∴ |A 1P|=√(a −1)2+b 2=√(a −1)2+(a +12)2=√2a 2−a +54=√2(a −14)2+98,∴ 当a =14,即P(14, 34, 1)时,|A 1P|的最小值为3√24.故答案为:3√24.若不等式[2x (t −1)−1]•log a4x−14t ≥0对任意的正整数x 恒成立(其中a ∈R ,且a >1),则t 的取值范围是________54≤t ≤32 . 【答案】 54≤t ≤32 【考点】 函数恒成立问题 【解析】原不等式等价于{2x (t −1)−1≥0log a 4x−14t≥0 或{2x (t −1)−1≤0log a 4x−14t≤0 即{t ≥1+12xt ≤x −14 ①或{t ≤1+12xt ≥x −14②,进而求解; 【解答】原不等式等价于: {2x (t −1)−1≥0log a4x−14t≥0或{2x (t −1)−1≤0log a4x−14t ≤0即{t ≥1+12x t ≤x −14 ①或{t ≤1+12xt ≥x −14②,注意到x =1时,②成立,此时34≤t ≤32;当x ∈Z ,x ≥2时,①成立,在①中,1+12x ≤t ≤x −14,又g(x)=x −12x −54为单调所以,要使{t ≥1+12xt ≤x −14 对x ∈Z ,x ≥2成立,只需x =2时成立,又x =2时,54≤t ≤74, 所以要使不等式对任意的正整数x 恒成立, 则t 的取值范围是:54≤t ≤32,三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若cosC =35,且CB →⋅CA →=92,求△ABC 的面积;(2)设向量x →=(2sin B2, √3),y →=(cosB, cos B2),且x → // y →,b =2,求a +c 的取值范围. 【答案】由CB →⋅CA →=92,得abcosC =92.又因为cosC =35,所以ab =92cosC =152.又C 为△ABC 的内角,所以sinC =45. 所以△ABC 的面积S =12absinC =3.因为x → // y →,所以2sin B2cos B 2=√3cosB ,即sinB =√3cosB .因为cosB ≠0,所以tanB =√3. 因为B 为三角形的内角,0<B <π,所以B =π3. 由正弦定理asinA =csinC =bsinB =√3,所以a =√3,c =√3,所以a +c =√3+sinC),又A +C =2π3,所以a +c =√3[sin(2π3−C)+sinC]=4(cosC +√32sinC)=4sin(C +π6),又0<C <2π3,所以π6<C +π6<5π6,所以∈(2, 4].【考点】平面向量数量积的性质及其运算 【解析】(1)由CB →⋅CA →=92,得ab =152.可得△ABC 的面积S =12absinC =3. (2)由x → // y →,可得B =π3.由正弦定理可得a =√3,c =√3,则a +c =√3[sin(2π3−C)+sinC]=4(cosC +√32sinC)=4sin(C +π6),即可求解.由CB →⋅CA →=92,得abcosC =92.又因为cosC =35,所以ab =92cosC =152.又C 为△ABC 的内角,所以sinC =45. 所以△ABC 的面积S =12absinC =3.因为x → // y →,所以2sin B2cos B 2=√3cosB ,即sinB =√3cosB .因为cosB ≠0,所以tanB =√3. 因为B 为三角形的内角,0<B <π,所以B =π3. 由正弦定理asinA =csinC =bsinB =√3,所以a =√3,c =√3,所以a +c =√3+sinC),又A +C =2π3,所以a +c =√3[sin(2π3−C)+sinC]=4(cosC +√32sinC)=4sin(C +π6),又0<C <2π3,所以π6<C +π6<5π6,所以∈(2, 4].如图,在四棱锥P −ABCD 的底面ABCD 中,BC // AD ,且AD =2BC ,O ,E 分别为AD ,PD 中点.(1)设平面PAB ∩平面PCD =l ,请作图确定l 的位置并说明你的理由;(2)若Q 为直线CE 上任意一点,证明:OQ // 平面PAB . 【答案】分别延长AB 和DC 交于点R ,连接PR ,则直线PR 就是l 的位置; R ∈AB ⊂平面PAB ,R ∈CD ⊂平面PCD ,所以P 、R 是平面PAB 和平面PCD 的两个公共点, 由公理1可知,过P 、R 的直线就是两个平面的交线l . 证明:连接OE 、OC ,因为BC // AD ,且BC =12AD , 又AO =12AD ,所以BC // AO ,且BC =AO ,所以四边形ABCO 为平行四边形, 所以OC // AB ,则OC // 平面PAB ; 又OE 为△PAD 的中位线,则OE // AP , 所以OE // 平面PAB ,又OE⊂平面OEC,OC⊂平面OEC,且OE∩OC=O,所以平面PAB // 平面OEC,又OQ⊂平面OEC,所以OQ // 平面PAB.【考点】直线与平面平行【解析】(1)分别延长AB和DC交于点R,连接PR,直线PR就是交线l的位置;根据平面公理即可得出结论;(2)连接OE、OC,证明OC // 平面PAB,OE // 平面PAB,得出平面PAB // 平面OEC,证得OQ // 平面PAB.【解答】分别延长AB和DC交于点R,连接PR,则直线PR就是l的位置;R∈AB⊂平面PAB,R∈CD⊂平面PCD,所以P、R是平面PAB和平面PCD的两个公共点,由公理1可知,过P、R的直线就是两个平面的交线l.AD,证明:连接OE、OC,因为BC // AD,且BC=12AD,所以BC // AO,又AO=12且BC=AO,所以四边形ABCO为平行四边形,所以OC // AB,则OC // 平面PAB;又OE为△PAD的中位线,则OE // AP,所以OE // 平面PAB,又OE⊂平面OEC,OC⊂平面OEC,且OE∩OC=O,所以平面PAB // 平面OEC,又OQ⊂平面OEC,所以OQ // 平面PAB.已知数列{a n}的前n项和S n满足2S n−na n=3n(n∈N∗),且a2=5.(1)证明数列{a n}为等差数列,并求{a n}的通项公式;(2)设b n=a a+a a,T n为数列{b n}的前n项和,求使T n>√3成立的最小正整10数n的值.【答案】当n≥2时,2S n−1−(n−1)a n−1=3(n−1),又2S n−na n=3n,相减可得(n−1)a n−1−(n−2)a n=3,当n≥3时,(n−2)a n−2−(n−3)a n−1=3,所以(n−1)a n−1−(n−2)a n=(n−2)a n−2−(n−3)a n−1,可得2a n−1=a n−2+a n,所以{a n}为等差数列.又2S1−a1=3,且a1=S1,得a1=3,又a2=5,所以{a n}为公差为2的等差数列,则a n=2n+1;b n=a a+a a =a⋅a(a+a)=√2n+1⋅√2n+3(√2n+1+√2n+3)=√2n+3−√2n+1 22n+1⋅2n+3=12(2n+12n+3),T n=12(√3√5√5−√7√7−13+13−√11+⋯√2n+1√2n+3)=12(√3√2n+3),要使T n>√310成立,即12(√3√2n+3)>√310,解得n>638,所以最小正整数n的值为8.【考点】数列递推式数列的求和【解析】(1)运用数列的递推式,两次将n换为n−1,相减,结合等差数列的定义和通项公式,即可得到所求;(2)求得b n=√a⋅√a(√a+√a)=√2n+1⋅√2n+3(√2n+1+√2n+3)=√2n+3−√2n+12√2n+1⋅√2n+3=1 2(2n+12n+3),再由数列的裂项相消求和,以及不等式的解法,可得所求最小值.【解答】当n≥2时,2S n−1−(n−1)a n−1=3(n−1),又2S n−na n=3n,相减可得(n−1)a n−1−(n−2)a n=3,当n≥3时,(n−2)a n−2−(n−3)a n−1=3,所以(n−1)a n−1−(n−2)a n=(n−2)a n−2−(n−3)a n−1,可得2a n−1=a n−2+a n,所以{a n}为等差数列.又2S1−a1=3,且a1=S1,得a1=3,又a2=5,所以{a n}为公差为2的等差数列,则a n=2n+1;b n=a a+a a =a⋅a(a+a)=√2n+1⋅√2n+3(√2n+1+√2n+3)=√2n+3−√2n+1 2√2n+1⋅√2n+3=12(√2n+1√2n+3),T n=12(355−77−13+13−11+⋯2n+12n+3)=12(32n+3),要使T n>√310成立,即12(√3√2n+3)>√310,解得n>638,所以最小正整数n的值为8.对于函数f(x),若存在实数对(m, n),使得等式f(m+x)⋅f(m−x)=n对定义域中的每一个x都成立,则称函数f(x)是“(m, n)型函数”.(1)判断函数f(x)=√x是否为“(m, n)型函数”,并说明理由;(2)①若函数g(x)是“(1, 4)型函数”,已知g(0)=1,求g(2);②若函数g(x)是“(1, 4)型函数”,且当x∈[0, 1]时,g(x)=x2−a(x−1)+1(a>0),若当x∈[0, 2]时,都有1≤g(x)≤4成立,试求a的取值范围.【答案】√m+x⋅√m−x=√m2−x2=n,则x2=m2−n2不可能恒成立,所以f(x)=x不是““(m, n)型函数”;①由题意,g(x+1)g(1−x)=4,取x=1,则g(2)g(0)=4,又g(0)=1,所以g(2)=4.②方法一:∵(x+1)g(1−x)=4,所以g(x)g(2−x)=4.当x∈[0, 1]时,2−x∈[1, 2]时,g(2−x)=4g(x)=4x2−a(x−1)+1=4x2−ax+a+1.(a)当0<a<1时,0<a2<12,则g(x)在[0, 1]内先减后增,且g(a2≤g(x)≤41+a−a24,即1+a−14a2≤g(x)≤2,则当x∈[1, 2]时,2≤g(x)≤41+a−14a2.所以当x∈[0, 2]时,1+a−14a2≤g(x)≤41+a−14a2,由题意,{1+a−14a2≥141+a−14a2≤4,解得0≤a≤4,所以0<a<1.(b)当1≤a<2时,12≤a2<1,则g(x)在][0, 1]内先减后增,且g(a2)≤g(x)≤g(0),即1+a−14a2≤g(x)≤1+a,则当x∈[1, 2]时,41+a ≤g(x)≤41+a−14a2.要满足题意,则应满足{41+a≥11+a−a24≥1,且{1+a≤441+a−a24≤4解得0≤a≤33,所以1≤a<2.(c)当a≥2时,a2≥1,则g(x)在[0, 1]内递减,且g(1)≤g(x)≤g(0),即2≤g(x)≤1+a,则当x∈[1, 2]时,41+a ≤g(x)≤2.此时,g(x)min=41+a,g(x)min=1+a.要满足条件,则应{41+a≥11+a≤4,解得a≤3,所以2≤a≤3.综上所述,0<a≤3.方法二:当x∈[0, 2]时,都有1≤g(x)≤4成立,所以当x∈[1, 2]时,1≤g(x)≤4;当x∈[0, 1]时,2−x∈[1, 2]时,所以g(2−x)∈[1, 4],而g(x)g(2−x)=4,所以1≤4g(x)≤4,即1≤g(x)≤4,所以问题转化为当x∈[0, 1]时,1≤g(x)≤4即可.当x∈[0, 1]时,g(x)=x2−a(x−1)+1(a>0),.(1)当0<a2<1,即0<a<2时,{g(a2)=1+a −a 24≥1g(0)=a +1≤4g(1)=2≤4,解得0≤a ≤3,所以0<a <2;(2)当a 2≥1,即a ≥2时,只要{g(0)=a +1≤4g(1)=2≥1解得a ≤3,所以2<a ≤3; 综上所述,0<a ≤3. 【考点】函数与方程的综合运用 【解析】(1)√m +x ⋅√m −x =√m 2−x 2=n ,则x 2=m 2−n 2不可能恒成立,即可判定; (2)①由g(x +1)g(1−x)=4,取x =1,则g(2)g(0)=4,即可求得g(2)=4. ②方法一:可得当x ∈[0, 1]时,2−x ∈[1, 2]时,g(2−x)=4g(x)=4x 2−a(x−1)+1=4x 2−ax+a+1.(a)当0<a <1时,(b)当1≤a <2时,(c)当a ≥2时讨论即可方法二:当x ∈[1, 2]时,1≤g(x)≤4;当x ∈[0, 1]时,2−x ∈[1, 2]时,所以g(2−x)∈[1, 4],而g(x)g(2−x)=4,所以1≤4g(x)≤4,即1≤g(x)≤4,问题转化为当x ∈[0, 1]时,1≤g(x)≤4即可. 【解答】√m +x ⋅√m −x =√m 2−x 2=n ,则x 2=m 2−n 2不可能恒成立,所以f(x)=x 不是““(m, n)型函数”;①由题意,g(x +1)g(1−x)=4,取x =1,则g(2)g(0)=4,又g(0)=1,所以g(2)=4.②方法一:∵ (x +1)g(1−x)=4,所以g(x)g(2−x)=4.当x ∈[0, 1]时,2−x ∈[1, 2]时,g(2−x)=4g(x)=4x 2−a(x−1)+1=4x 2−ax+a+1.(a)当0<a <1时,0<a 2<12,则g(x)在[0, 1]内先减后增,且g(a 2≤g(x)≤41+a−a 24,即1+a −14a 2≤g(x)≤2,则当x ∈[1, 2]时,2≤g(x)≤41+a−14a 2.所以当x ∈[0, 2]时,1+a −14a 2≤g(x)≤41+a−14a 2,由题意,{1+a −14a 2≥141+a−14a2≤4 ,解得0≤a ≤4,所以0<a <1.(b)当1≤a <2时,12≤a2<1,则g(x)在][0, 1]内先减后增,且g(a2)≤g(x)≤g(0),即1+a −14a 2≤g(x)≤1+a ,则当x ∈[1, 2]时,41+a ≤g(x)≤41+a−14a 2.要满足题意,则应满足{41+a ≥11+a −a 24≥1,且{1+a ≤441+a−a24≤4 解得0≤a ≤33,所以1≤a <2.(c)当a ≥2时,a2≥1,则g(x)在[0, 1]内递减,且g(1)≤g(x)≤g(0),即2≤g(x)≤1+a ,则当x ∈[1, 2]时,41+a ≤g(x)≤2.此时,g(x)min =41+a ,g(x)min =1+a .要满足条件,则应{41+a≥11+a ≤4,解得a ≤3,所以2≤a ≤3. 综上所述,0<a ≤3.方法二:当x ∈[0, 2]时,都有1≤g(x)≤4成立,所以当x ∈[1, 2]时,1≤g(x)≤4;当x ∈[0, 1]时,2−x ∈[1, 2]时,所以g(2−x)∈[1, 4], 而g(x)g(2−x)=4,所以1≤4g(x)≤4,即1≤g(x)≤4, 所以问题转化为当x ∈[0, 1]时,1≤g(x)≤4即可.当x ∈[0, 1]时,g(x)=x 2−a(x −1)+1(a >0),.(1)当0<a2<1,即0<a <2时,{g(a2)=1+a −a 24≥1g(0)=a +1≤4g(1)=2≤4,解得0≤a ≤3,所以0<a <2;(2)当a2≥1,即a ≥2时,只要{g(0)=a +1≤4g(1)=2≥1解得a ≤3,所以2<a ≤3; 综上所述,0<a ≤3.如图,在等腰三角形ABC 中,AB =AC ,∠A =120∘,M 为线段BC 的中点,D 为线段BC 上一点,且BD =BA ,沿直线AD 将△ADC 翻折至△ADC′,使AC′⊥BD ,记二面角C′−AD −B 的平面角为α.(1)证明:平面△AMC′⊥平面ABD ;(2)比较∠C′DB 与α的大小,并证明你的结论;(3)求cosα的值. 【答案】证明:∵ AM ⊥BD ,BD ⊥AC′,AM ∩AC′=A , ∴ BD ⊥平面AMC′,∵ BD ⊂平面ABD ,∴ 平面△AMC′⊥平面ABD .如图,在△C′AM 所在平面内,过点C′作C′P ⊥AM ,垂足为P , 则C′P ⊥平面ABD ,过P 作PQ ⊥AD ,连接C′Q , 则C′Q ⊥AQ ,∠C′QP =α.又QC′是由QC 翻折得到, ∴ ∠C′QP =α=2∠C′CQ ,且∠C′CQ 就是直线C′C 与平面ABC 所成的角.同理,又C′D是由DC翻折得到,∴∠C′DB=2∠C′CD.由线面角的最小性可知,∠C′CD>∠C′CQ,∴∠C′DB>α.如图,在△C′AM中,过点C′作AM的垂线,垂足为P,过P作AD的垂线,垂足为Q.平面AMC′⊥平面BCD,交线为AM,C′P⊥平面ABD,又PQ⊥AD,∴CQ⊥AD.∴∠C′QP就是二面角C′−AD−B的平面角.设AB=AC=BD=4,则BM=MC=2√3,MD=4−2√3,CD=4√3−4=C′D,在直角△C′DM中,C′M2=C′D2−DM2=36−16√3.【考点】二面角的平面角及求法平面与平面垂直【解析】(1)推导出AM⊥BD,BD⊥AC′,从而BD⊥平面AMC′,由此能证明平面△AMC′⊥平面ABD.(2)过点C′作C′P⊥AM,垂足为P,则C′P⊥平面ABD,过P作PQ⊥AD,连接C′Q,则C′Q⊥AQ,∠C′QP=α.QC′是由QC翻折得到,从而∠C′QP=α=2∠C′CQ,且∠C′CQ 就是直线C′C与平面ABC所成的角.同理,∠C′DB=2∠C′CD.由此能证明∠C′DB>α.(3)在△C′AM中,过点C′作AM的垂线,垂足为P,过P作AD的垂线,垂足为Q.推导出∠C′QP就是二面角C′−AD−B的平面角.由此能求出cosα的值.【解答】证明:∵AM⊥BD,BD⊥AC′,AM∩AC′=A,∴BD⊥平面AMC′,∵BD⊂平面ABD,∴平面△AMC′⊥平面ABD.如图,在△C′AM所在平面内,过点C′作C′P⊥AM,垂足为P,则C′P⊥平面ABD,过P作PQ⊥AD,连接C′Q,则C′Q⊥AQ,∠C′QP=α.又QC′是由QC翻折得到,∴∠C′QP=α=2∠C′CQ,且∠C′CQ就是直线C′C与平面ABC所成的角.同理,又C′D是由DC翻折得到,∴∠C′DB=2∠C′CD.由线面角的最小性可知,∠C′CD>∠C′CQ,∴∠C′DB>α.如图,在△C′AM中,过点C′作AM的垂线,垂足为P,过P作AD的垂线,垂足为Q.平面AMC′⊥平面BCD,交线为AM,C′P⊥平面ABD,又PQ⊥AD,∴CQ⊥AD.∴∠C′QP就是二面角C′−AD−B的平面角.设AB=AC=BD=4,则BM=MC=2√3,MD=4−2√3,CD=4√3−4=C′D,在直角△C′DM中,C′M2=C′D2−DM2=36−16√3.。
2019-2020学年浙江省杭州市学军中学高二上学期期中数学试题(解析版)
设 是棱 靠近 的三等分点,过 的截面图像为A选项对应的图像.
故C选项的图像不可能.
故选C.
【点睛】
本小题主要考查球与内接正方体的截面问题,考查空间想象能力,考查分析与思考问题的能力,属于基础题.
7.设实数 , 满足条件 且 ,则 的最小值为()
A. B. C. D.
.
(2)由于 平面 ,所以几何体的体积为 .
【点睛】
本小题主要考查三视图还原为原图,考查三棱锥的表面积和体积的计算,属于基础题.
19.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠ADC=60°,AD=AC=2,O为AC的中点,PO⊥平面ABCD且PO=4,M为PD的中点.
(1)证明:MO∥平面PAB;
本题考查根据直观图面积求解原图面积的问题,关键是能够熟练掌握直观图与原图的面积之比.
3.设m,n为两条直线,若直线m⊥平面α,直线n⊂平面β,下列说法正确的是()
①若α∥β,则m⊥n②若α⊥β,则m∥n③若m∥n,则α⊥β④若m⊥n,则α∥β
A.①④B.②③C.①③D.③④
【答案】C
【解析】根据线面平行和垂直以及面面平行和垂直的定义和性质分别进行判断,∴m⊥平面β,
∵n⊂平面β,∴则m⊥n成立,故①正确,;
②若α⊥β,∵m⊥平面α,∴m∥β或m⊂β,
∵n⊂平面β,∴m∥n不一定成立,故②错误;
③若m∥n,则n⊥平面α,则α⊥β成立,故③正确;
④若m⊥n,则α∥β不一定成立,故④错误.
故正确的是①③.
故选:C.
【答案】A
【解析】对 分成 三种情况进行分类讨论,利用基本不等式求得 的最小值.
【详解】
依题意 成立,故 .由于 ,所以 且 .
2019-2020学年浙江省杭州市西湖区学军中学西溪校区高二(上)期中数学试卷
2019-2020学年浙江省杭州市西湖区学军中学西溪校区高二(上)期中数学试卷试题数:22.满分:1501.(单选题.4分)圆柱的轴截面是正方形.且轴截面面积是S.则它的侧面积是()SA. 1πB.πSC.2πSD.4πS2.(单选题.4分)若直线l与平面α相交.则()A.α内所有直线与l异面B.α内只存在有限条直线与l共面C.α内存在唯一的直线与l平行D.α内存在无数条直线与l垂直3.(单选题.4分)已知m.n是空间两条不同的直线.α.β是空间两个不同的平面.则下列命题正确的是()A.若α || β.m⊂α.n⊂β.则m || nB.若m.n异面.m⊂α.n⊂β.m || β.n || α.则α || βC.若α⊥β.m || n.m⊥α.则n || βD.若α⊥β.α∩β=m.n⊥m.则n⊥β4.(单选题.4分)如图.三棱柱ABC-A′B′C′中.侧面B′B′CC′的面积是4.点A′到侧面B′BCC′的距离是3.则三棱柱ABC-A′B′C′的体积为()A.12B.6C.4D.无法确定5.(单选题.4分)四面体ABCD中.AB=CD=2.其余棱长均为4.则该四面体外接球半径为()A. √14B. √142C.3 √2D. 3√226.(单选题.4分)某几何体的三视图如图所示.则该几何体的最长棱长为()A. √19B. √22C.5D.2 √77.(单选题.4分)在长方体ABCD-A1B1C1D1中.M.N分别是棱BB1.BC的中点.若M在以C1N为直径的圆上.则异面直线A1D与D1M所成的角为()A.45°B.60°C.900D.随长方体的形状变化而变化8.(单选题.4分)一封闭的正方体容器ABCD-A1B1C1D1.P.Q.R分别为AD.BB1.A1B1的中点.如图所示.由于某种原因.在P.Q.R处各有一个小洞.当此容器内存水最多时.容器中水的上表面的形状是()边形A.3B.4C.5D.69.(单选题.4分)已知a=sin1.5+cos1.5.b=sin1.5•cos1.5.c=(cos1.5)sin1.5.d=(sin1.5)cos1.5.则a.b.c.d的大小关系为()A.b<c<d<aB.b<d<c<aC.d<b<c<aD.d<c<b<a10.(单选题.4分)已知集合A={x|x2-x-6>0}.B={x|x2-3ax+4≤0}.若a>0.且A∩B中恰好有两个整数解.则a的取值范围是()A.[ 2915,209)B.(2915,209)C.[ 139,209)D.(53,209)11.(填空题.6分)棱长为a的正四面体ABCD中.E.F分别为棱AD.BC的中点.则异面直线EF 与AB所成的角大小是 ___ .线段EF的长度为 ___ .12.(填空题.4分)二面角α-l-β的大小是60°.线段AB⊂α.B∈l.AB与l所成的角为45°.则AB与平面β所成的角的余弦值是___ .13.(填空题.6分)正三棱锥的高为1.底面边长为2 √6 .则它体积为___ ;若有一个球与该正三棱锥的各个面都相切.则球的半径为___ .14.(填空题.6分)若f(x)= a−4x2x-3x为奇函数.则a=___ .此时.不等式f(1-x2)+f(3x+9)<0的解集为___ .15.(填空题.4分)在长方体ABCD-A1B1C1D1中.M是对角线AC1上一点.N是底面ABCD上一点.若AB=2.BC=AA1= √2 .则MB1+MN的最小值为___ .16.(填空题.6分)在棱长为1的正方体ABCD-A1B1C1D1中.E为CC1的中点.P.Q是正方体表面上相异两点.满足BP⊥A1E.BQ⊥A1E.(1)若P.Q均在平面A1B1C1D1内.则PQ与BD的位置关系是___ ;(2)|A1P|的最小值为___ .17.(填空题.4分)若不等式[2x(t-1)-1]•log a4x−14t≥0对任意的正整数x恒成立(其中a∈R.且a>1).则t的取值范围是___ .18.(问答题.14分)在△ABC中.角A.B.C的对边分别为a.b.c.(1)若cosC= 35 .且CB⃗⃗⃗⃗⃗ •CA⃗⃗⃗⃗⃗ = 92.求△ABC的面积;(2)设向量x =(2sin B2 . √3). y =(cosB.cos B2).且x || y .b=2.求a+c的取值范围.19.(问答题.15分)如图.在四棱锥P-ABCD的底面ABCD中.BC || AD.且AD=2BC.O.E分别为AD.PD中点.(1)设平面PAB∩平面PCD=l.请作图确定l的位置并说明你的理由;(2)若Q为直线CE上任意一点.证明:OQ || 平面PAB.20.(问答题.15分)已知数列{a n}的前n项和S n满足2S n-na n=3n(n∈N*).且a2=5.(1)证明数列{a n}为等差数列.并求{a n}的通项公式;(2)设b n=a√a+a√a .T n为数列{b n}的前n项和.求使T n>√310成立的最小正整数n的值.21.(问答题.15分)对于函数f(x).若存在实数对(m.n).使得等式f(m+x)•f(m-x)=n 对定义域中的每一个x都成立.则称函数f(x)是“(m.n)型函数”.(1)判断函数f(x)= √x是否为“(m.n)型函数”.并说明理由;(2)① 若函数g(x)是“(1.4)型函数”.已知g(0)=1.求g(2);② 若函数g(x)是“(1.4)型函数”.且当x∈[0.1]时.g(x)=x2-a(x-1)+1(a>0).若当x∈[0.2]时.都有1≤g(x)≤4成立.试求a的取值范围.22.(问答题.15分)如图.在等腰三角形ABC中.AB=AC.∠A=120°.M为线段BC的中点.D为线段BC上一点.且BD=BA.沿直线AD将△ADC翻折至△ADC′.使AC′⊥BD.记二面角C′-AD-B的平面角为α.(1)证明:平面△AMC′⊥平面ABD;(2)比较∠C′DB与α的大小.并证明你的结论;(3)求cosα的值.2019-2020学年浙江省杭州市西湖区学军中学西溪校区高二(上)期中数学试卷参考答案与试题解析试题数:22.满分:1501.(单选题.4分)圆柱的轴截面是正方形.且轴截面面积是S.则它的侧面积是()SA. 1πB.πSC.2πSD.4πS【正确答案】:B【解析】:根据圆柱的轴截面是正方形.且轴截面面积是S求出圆柱的母线长与底面圆的直径.代入侧面积公式计算.【解答】:解:∵圆柱的轴截面是正方形.且轴截面面积是S.∴圆柱的母线长为√S .底面圆的直径为√S .∴圆柱的侧面积S=π× √S × √S=πS.故选:B.【点评】:本题考查了圆柱的侧面积及轴截面.属于基础题.2.(单选题.4分)若直线l与平面α相交.则()A.α内所有直线与l异面B.α内只存在有限条直线与l共面C.α内存在唯一的直线与l平行D.α内存在无数条直线与l垂直【正确答案】:D【解析】:α内过直线l与平面α交点的直线与直线l共面.判断A错误;α内过直线l与平面α交点的直线有无数条.判断B错误;α内不存在与直线l平行的直线.判断C错误;画出图形.结合图形判断D正确.【解答】:解:对于A.α内过直线l与平面α交点的直线与直线l是共面直线.∴A错误;对于B.α内过直线l与平面α交点的直线有无数条.且这些直线与直线l都是共面直线.∴B错误;对于C.α内不存在与直线l平行的直线.∴C错误;对于D.如图所示.直线PA与平面α交于点A.PO⊥α.则OA是PA在α内的射影.在α内作直线l⊥OA.则l⊥PA.这样的直线l有无数条.∴D正确.故选:D.【点评】:本题考查了直线与平面位置关系的应用问题.是基础题.3.(单选题.4分)已知m.n是空间两条不同的直线.α.β是空间两个不同的平面.则下列命题正确的是()A.若α || β.m⊂α.n⊂β.则m || nB.若m.n异面.m⊂α.n⊂β.m || β.n || α.则α || βC.若α⊥β.m || n.m⊥α.则n || βD.若α⊥β.α∩β=m.n⊥m.则n⊥β【正确答案】:B【解析】:A.由α || β.m⊂α.n⊂β.可知m与n无公共点.即可判断出正误;B.由m.n异面.m⊂α.n⊂β.m || β.n || α.即可得出α与β的位置关系;C.若α⊥β.m || n.m⊥α.则n || β或n⊂β.因此不正确;D.若α⊥β.α∩β=m.n⊥m.可得n与β的三种位置关系都有可能.【解答】:解:A.若α || β.m⊂α.n⊂β.则m || n或为异面直线.因此不正确;B.若m.n异面.m⊂α.n⊂β.m || β.n || α.则α || β.正确;C.若α⊥β.m || n.m⊥α.则n || β或n⊂β.因此不正确;D.若α⊥β.α∩β=m.n⊥m.则n⊂β.或n || β.或n与β相交.因此不正确.故选:B.【点评】:本题考查了空间位置关系的判定与性质定理、简易逻辑的判定方法.考查了推理能力与计算能力.属于中档题.4.(单选题.4分)如图.三棱柱ABC-A′B′C′中.侧面B′B′CC′的面积是4.点A′到侧面B′BCC′的距离是3.则三棱柱ABC-A′B′C′的体积为()A.12B.6C.4D.无法确定【正确答案】:B【解析】:由已知求得四棱锥A′-BCC′B′的体积.结合V三棱锥A′−ABC =13V三棱柱ABC−A′B′C′.可得V四棱锥A′-BCC′B′+V三棱锥A′-ABC=V三棱柱ABC-A′B′C′.从而求得三棱柱ABC-A′B′C′的体积.【解答】:解:∵侧面B′BCC′的面积是4.点A′到侧面B′BCC′的距离是3.∴V四棱锥A′-BCC′B′= 13×4×3=4.∵ V三棱锥A′−ABC =13V三棱柱ABC−A′B′C′.∵V四棱锥A′-BCC′B′+V三棱锥A′-ABC=V三棱柱ABC-A′B′C′.∴ 2 3V三棱柱ABC−A′B′C′=V四棱锥A′−BCC′B′=4.∴V三棱柱ABC-A′B′C′=6.故选:B.【点评】:本题考查了棱锥的体积计算公式.考查了推理能力与计算能力.属于中档题.5.(单选题.4分)四面体ABCD中.AB=CD=2.其余棱长均为4.则该四面体外接球半径为()B. √142C.3 √2D. 3√22【正确答案】:D【解析】:把四面体ABCD 放到长方体中.不难发现AB=CD=2.其余棱长均为4正好是长方体的对角线.从而即可求解四面体外接球半径【解答】:解:四面体ABCD 放到长方体中.AB=CD=2.其余AC=BC=AD=DB=4设长方体的边长分别为a.b.c .则 {a 2+b 2=4b 2+c 2=16a 2+c 2=16.解得a 2+b 2+c 2=18.四面体外接球半径:2R=3 √2 .R=3√22. 故选:D .【点评】:本题考查外接球的半径的求法.是中档题.解题时要认真审题.注意空间思维能力的培养.6.(单选题.4分)某几何体的三视图如图所示.则该几何体的最长棱长为( )A. √19B. √22C.5【正确答案】:B【解析】:画出几何体的直观图.利用三视图的数据.求解几何体的最长棱长.【解答】:解:由题意可知几何体是正方体的一部分.是四棱锥P-ABCD.正方体的棱长为3.P是所在棱的3等分点.PB= √32+32+22 = √22 .PA= √32+22 = √13 .PC= √32+32+12 = √19 .所以最长棱长为PB. √22.故选:B.【点评】:本题考查三视图求解几何体的棱长.考查转化思想以及空间想象能力.7.(单选题.4分)在长方体ABCD-A1B1C1D1中.M.N分别是棱BB1.BC的中点.若M在以C1N为直径的圆上.则异面直线A1D与D1M所成的角为()A.45°B.60°C.900D.随长方体的形状变化而变化【正确答案】:C【解析】:推导出C1M⊥MN.C1M⊥CB1.C1D1⊥B1C.从而B1C⊥平面C1D1M.由A1D || B1C.得A1D⊥平面C1D1M.由此能求出异面直线A1D与D1M所成的角的大小.【解答】:解:如图所示:∵M、N分别是棱BB1、BC的中点.∴MN || CB1.∵M在以C1N为直径的圆上.∴∠C1MN=90°.∴C1M⊥MN.∴C1M⊥CB1.由长方体的几何特征.我们可得C1D1⊥B1C.∴B1C⊥平面C1D1M.∵A1D || B1C.∴A1D⊥平面C1D1M.∴A1D⊥D1M.即异面直线A1D与D1M所成的角为90°.故选:C.【点评】:本题考查的知识点是异面直线及其所成的角.其中根据线面垂直的判定定理及性质定理.将问题转化为线线垂直的判定是解答本题的关键.8.(单选题.4分)一封闭的正方体容器ABCD-A1B1C1D1.P.Q.R分别为AD.BB1.A1B1的中点.如图所示.由于某种原因.在P.Q.R处各有一个小洞.当此容器内存水最多时.容器中水的上表面的形状是()边形A.3B.4C.5D.6【正确答案】:C【解析】:画出过P.Q.R三点的平面与正方体容器ABCD-A1B1C1D1的截面得答案.【解答】:解:如图.连接QR并延长.分别交AA1.AB的延长线与E.F.连接PE交A1D1于G.连接PF交BC于H.连接PH.QH.GR.则五边形PGRQH即为此容器内存水最多时.容器中水的上表面的形状.故选:C.【点评】:本题考查柱、锥、台的结构特征.考查了空间线面的位置关系.考查空间想象能力和思维能力.正确画出截面图是关键.是中档题.9.(单选题.4分)已知a=sin1.5+cos1.5.b=sin1.5•cos1.5.c=(cos1.5)sin1.5.d=(sin1.5)cos1.5.则a.b.c.d 的大小关系为( )A.b <c <d <aB.b <d <c <aC.d <b <c <aD.d <c <b <a【正确答案】:A【解析】:因为 π3 <1.5< π2 .所以 √32 <sin1.5<1;0<cos1.5< 12.注意到四个答案里都是a 最大.主要比较c 与d 的大小关系即可;找中间量sin1.5sin1.5.由y=sin1.5x 是R 上的减函数.sin1.5>cos1.5.可得sin1.5sin1.5<sin1.5cos1.5;由y=x sin1.5是(0.+∞)上的增函数.sin1.5>cos1.5.可得cos1.5sin1.5<sin1.5sin1.5;故c <d.只有A 答案合适.【解答】:解:因为 π3 <1.5< π2 .所以 √32 <sin1.5<1;0<cos1.5< 12 .∴a > √32 .0<b < 12 ;∴b <a ;找中间量sin1.5sin1.5.由y=sin1.5x 是R 上的减函数.sin1.5>cos1.5.可得sin1.5sin1.5<sin1.5cos1.5;由y=x sin1.5是(0.+∞)上的增函数.sin1.5>cos1.5.可得cos1.5sin1.5<sin1.5sin1.5;故c <d.只有A 答案合适.故选:A .【点评】:本题考查了大小关系比较.利用指数函数与幂函数的单调性.构造中间量a a 或b b .可比较a b 与b a 形式的数的大小关系.及排除法解决选择题.属于中档题.10.(单选题.4分)已知集合A={x|x 2-x-6>0}.B={x|x 2-3ax+4≤0}.若a >0.且A∩B 中恰好有两个整数解.则a 的取值范围是( )A.[ 2915,209 )B.( 2915,209 ) C.[ 139,209 ) D.( 53,209 ) 【正确答案】:A【解析】:可以求出集合A=(-∞.-2)∪(3.+∞).可令f (x )=x 2-3ax+4.根据a >0及△>0即可得出 a >43 .并且求出 B =[3a−√9a 2−162,3a+√9a 2−162] .可得出 0<3a−√9a 2−162<2 .从而得出要使A∩B 中恰好有两个整数解.只能是4和5.从而可得出 {f (4)≤0f (5)≤0f (6)>0.解出a 的范围即可.【解答】:解:A=(-∞.-2)∪(3.+∞).令f (x )=x 2-3ax+4.由题意.△=9a 2-16>0.且a >0.∴解得 a >43 . B =[3a−√9a 2−162,3a+√9a 2−162] . 又 0<3a−√9a 2−162=3a+√9a 2−162 .∴要使A∩B 中恰好有两个整数解.则只能是4和5.∴ {f (4)=16−12a +4≤0f (5)=25−15a +4≤0f (6)=36−18a +4>0 .解得 2915≤a <209 .∴a 的取值范围是 [2915,209) . 故选:A .【点评】:考查描述法、区间表示集合的定义.一元二次方程和一元二次不等式的解法.以及元素与集合的关系.减函数的定义.11.(填空题.6分)棱长为a 的正四面体ABCD 中.E.F 分别为棱AD.BC 的中点.则异面直线EF 与AB 所成的角大小是 ___ .线段EF 的长度为 ___ .【正确答案】:[1] π4 ; [2] √22 a【解析】:取BD中点G.连结BE.CE.EG.FG.则EG || AB.且EG=FG= 12AB = a2.∠EFG是异面直线EF与AB所成的角(或所成角的补角).由此能求出异面直线EF与AB所成的角大小和线段EF的长度.【解答】:解:棱长为a的正四面体ABCD中.E.F分别为棱AD.BC的中点.取BD中点G.连结BE.CE.EG.FG.则EG || AB.且EG=FG= 12AB = a2.∴∠EFG是异面直线EF与AB所成的角(或所成角的补角).BE=CE= √a2−(a2)2= √3a2.EF= √(√3a2)2−(a2)2= √2a2.cos∠EFG= EF2+GF2−EG22×EF×GF =a22+a24−a242×√2a2×a2= √22.∴∠EFG= π4.∴异面直线EF与AB所成的角大小是π4 .线段EF的长度为√22a.故答案为:π4 . √22a.【点评】:本题考查异面直线所成角的大小、线段长的求法.考查空间中线线、线面、面面间的位置关系等基础知识.考查运算求解能力.是基础题.12.(填空题.4分)二面角α-l-β的大小是60°.线段AB⊂α.B∈l.AB与l所成的角为45°.则AB与平面β所成的角的余弦值是___ .【正确答案】:[1] √104【解析】:根据二面角和直线和平面所成角的定义.先作出对应的平面角.结合三角形的边角关系进行求解即可.【解答】:解:过点A作平面β的垂线.垂足为C.在β内过C作l的垂线.垂足为D.连结AD.根据三垂线定理可得AD⊥l.因此.∠ADC为二面角α-l-β的平面角.∠ADC=60°又∵AB与l所成角为45°.∴∠ABD=45°连结BC.可得BC为AB在平面β内的射影.∴∠ABC为AB与平面β所成的角.设AD=2x.则Rt△ACD中.AC=ADsin60°= √3 x.Rt△ABD中.AB= ADsin45°=2 √2x .BC= √(2√2x)2−(√3x)2 = √5x .∴Rt△ABC中.cos∠ABC= BCAB = √5x2√2x= √104.故答案为:√104.【点评】:本题主要考查线面垂直的定义与性质、二面角的平面角的定义和直线与平面所成角的定义及求法等知识.13.(填空题.6分)正三棱锥的高为1.底面边长为2 √6 .则它体积为___ ;若有一个球与该正三棱锥的各个面都相切.则球的半径为___ .【正确答案】:[1]2 √3 ; [2] √6 -2【解析】:求出底面的面积.利用体积公式带入即可.要求内切球半径.根据横截面图.利用三角形相似得出r.【解答】:解:底面等边三角形的面积S= √34•(2√6)2 = 6√3 .所以V= 13•6√3•1=2√3 .设内切球的球心为O.半径为r.则在O与底面的中心M.BM= 2√6•√32•13=√2 .OE=r.OA=1-r.侧面斜边的高AB= √1+OM2=√3由△AOE∽△ABM.得相似得rBM =1−rAB.√2=√3. r(√3+√2)=√2 .所以r=√6−2.故答案为:√6 -2.【点评】:考察正三棱锥的体积.内切球的半径.中档题.14.(填空题.6分)若f(x)= a−4x2x-3x为奇函数.则a=___ .此时.不等式f(1-x2)+f(3x+9)<0的解集为___ .【正确答案】:[1]1; [2](-2.5)【解析】:含有参数的函数奇偶性问题.要利用常见的结论.通过赋值法解决;第二问综合应用函数单调性和奇偶性的性质.【解答】:解:∵f(x)为奇函数.∴f(0)=0.即a−4020−3×0=0 .∴a=1.∴ f(x)=1−4x2x =12x−2x,∵ 12x减函数,−2x也为减函数 .∴f(x)为减函数.且为奇函数∵f(1-x2)+f(3x+9)<0.∴f(1-x2)<-f(3x+9)=f(-3x-9).∴1-x2>-3x-9.∴-2<x<5.故不等式的解集为(-2.5).故答案为:1.(-2.5).【点评】:第一问是常规问题.注意函数定义域即可;第二问要利用函数是奇函数.把不等式的表达形式变形.15.(填空题.4分)在长方体ABCD-A1B1C1D1中.M是对角线AC1上一点.N是底面ABCD上一点.若AB=2.BC=AA1= √2 .则MB1+MN的最小值为___ .【正确答案】:[1] 3√22【解析】:将△AB1C1绕边AC1旋转到APC1位置.使得平面APC1和平面ACC1在同一平面内.则P到平面ABCD的距离即为MB1+MN的最小值.利用勾股定理解出即可.【解答】:解:将△AB1C1绕边AC1旋转到APC1位置.使得平面APC1和平面ACC1在同一平面内.过点P作PN⊥平面ABCD.交AC1于M.垂足为N.则PN为MB1+MN的最小值.∵AB=2.BC=AA1= √2 .∴AC1= √4+2+2 =2 √2 .AP=AB1= √4+2 = √6 .∵sin∠C1AC= CC1AC1 = √22√2= 12.∴∠C1AC=30°.∴∠PAN=2∠C1AC=60°.∴PN=AP•sin∠PAN= √6•√32 = 3√22.∴MB1+MN的最小值为3√22.故答案为:3√22.【点评】:本题考查了空间距离的计算.将两线段转化为同一平面上是解决最小值问题的一般思路.属于中档题.16.(填空题.6分)在棱长为1的正方体ABCD-A1B1C1D1中.E为CC1的中点.P.Q是正方体表面上相异两点.满足BP⊥A1E.BQ⊥A1E.(1)若P.Q均在平面A1B1C1D1内.则PQ与BD的位置关系是___ ;(2)|A1P|的最小值为___ .【正确答案】:[1]平行; [2] 3√24【解析】:(1)以D为原点.DA为x轴.DC为y轴.DD1为z轴.建立空间直角坐标系.利用向量法能判断PQ与BD的位置关系.(2)当|A1P|取最小值时.P在平面A1B1C1D1内.设P(a.b.1).推导出b=a+ 12.由此能求出|A1P|的最小值.【解答】:解:(1)以D 为原点.DA 为x 轴.DC 为y 轴.DD 1为z 轴.建立空间直角坐标系. 则A 1(1.0.1).E (0.1. 12 ).B (1.1.0). ∵P .Q 均在平面A 1B 1C 1D 1内.∴设P (a.b.1).Q (m.n.1).则 A 1E ⃗⃗⃗⃗⃗⃗⃗ =(-1.1.- 12 ). BP⃗⃗⃗⃗⃗ =(a-1.b-1.1). BQ ⃗⃗⃗⃗⃗ =(m-1.n-1.1). ∵BP⊥A 1E.BQ⊥A 1E .∴ {BP ⃗⃗⃗⃗⃗ •A 1E ⃗⃗⃗⃗⃗⃗⃗ =−(a −1)+(b −1)−12=0BQ ⃗⃗⃗⃗⃗ •A 1E ⃗⃗⃗⃗⃗⃗⃗ =−(m −1)+(n −1)−12=0 . 解得 {b −a =12n −m =12.∴PQ || BD .即PQ 与BD 的位置关系是平行. 故答案为:平行.(2)当|A 1P|取最小值时.P 在平面A 1B 1C 1D 1内.设P (a.b.1).由(1)得b=a+ 12 .∴|A 1P|= √(a −1)2+b 2 = √(a−1)2+(a +12)2 = √2a 2−a +54 = √2(a −14)2+98 .∴当a= 14 .即P ( 14 . 34 .1)时.|A 1P|的最小值为3√24. 故答案为:3√24 .【点评】:本题考查两直线位置关系的判断.考查两点间距离的最小值的求法.考查空间中线线、线面、面面间的位置关系等基础知识.考查运算求解能力.是中档题.17.(填空题.4分)若不等式[2x (t-1)-1]•log a 4x−14t≥0对任意的正整数x 恒成立(其中a∈R .且a >1).则t 的取值范围是___ .【正确答案】:[1] 54≤t ≤32【解析】:原不等式等价于 {2x (t −1)−1≥0log a 4x−14t ≥0 或{2x (t −1)−1≤0log a 4x−14t ≤0 即 {t ≥1+12x t ≤x −14 ① 或 {t ≤1+12x t ≥x −14② .进而求解;【解答】:解:原不等式等价于:{2x (t −1)−1≥0log a 4x−14t ≥0 或 {2x (t −1)−1≤0log a 4x−14t ≤0 即 {t ≥1+12x t ≤x −14 ① 或 {t ≤1+12x t ≥x −14② . 注意到x=1时. ② 成立.此时 34 ≤t≤ 32 ;当x∈Z .x≥2时. ① 成立.在 ① 中.1+ 12x ≤t≤x - 14 .又g (x )=x- 12x - 54 为单调递增函数.所以.要使 {t ≥1+12x t ≤x −14对x∈Z .x≥2成立.只需x=2时成立.又x=2时. 54 ≤t≤ 74 . 所以要使不等式对任意的正整数x 恒成立.则t 的取值范围是: 54 ≤t≤ 32 .故答案为: 54 ≤t≤ 32 .【点评】:考查不等式的性质.求解.函数单调性.转化思想;18.(问答题.14分)在△ABC 中.角A.B.C 的对边分别为a.b.c .(1)若cosC= 35 .且 CB ⃗⃗⃗⃗⃗ •CA ⃗⃗⃗⃗⃗ = 92.求△ABC 的面积; (2)设向量 x =(2sin B 2 . √3 ). y =(cosB.cos B 2 ).且 x || y .b=2.求a+c 的取值范围.【正确答案】:【解析】:(1)由 CB ⃗⃗⃗⃗⃗ • CA ⃗⃗⃗⃗⃗ = 92 .得ab= 152 .可得△ABC 的面积S= 12 absinC=3. (2)由 x || y .可得B= π3 .由正弦定理可得a=√3 .c= √3 .则a+c= √3(2π3−C)+sinC] =4(cosC+√32sinC )=4sin (C+ π6).即可求解. 【解答】:解(1)由 CB ⃗⃗⃗⃗⃗ • CA ⃗⃗⃗⃗⃗ = 92 .得abcosC= 92. 又因为cosC= 35 .所以ab= 92cosC = 152 .又C为△ABC的内角.所以sinC= 45.所以△ABC的面积S= 12absinC=3.(2)因为x || y .所以2sin B2 cos B2= √3 cosB.即sinB= √3 cosB.因为cosB≠0.所以tanB= √3.因为B为三角形的内角.0<B<π.所以B= π3.由正弦定理asinA =csinC=bsinB= 4√3.所以a= 4sinA√3.c= 4sinC√3.所以a+c= 4√3(sinA+sinC) .又A+C= 2π3.所以a+c= 4√3[sin(2π3−C)+sinC] =4(cosC+ √32sinC)=4sin(C+ π6).又0 <C<2π3 .所以π6<C+ π6<5π6.所以∈(2.4].【点评】:本题考查了正弦定理、三角恒等变形.属于中档题.19.(问答题.15分)如图.在四棱锥P-ABCD的底面ABCD中.BC || AD.且AD=2BC.O.E分别为AD.PD中点.(1)设平面PAB∩平面PCD=l.请作图确定l的位置并说明你的理由;(2)若Q为直线CE上任意一点.证明:OQ || 平面PAB.【正确答案】:【解析】:(1)分别延长AB和DC交于点R.连接PR.直线PR就是交线l的位置;根据平面公理即可得出结论;(2)连接OE、OC.证明OC || 平面PAB.OE || 平面PAB.得出平面PAB || 平面OEC.证得OQ || 平面PAB.【解答】:(1)解:分别延长AB和DC交于点R.连接PR.则直线PR就是l的位置;R∈AB⊂平面PAB.R∈CD⊂平面PCD.所以P 、R 是平面PAB 和平面PCD 的两个公共点. 由公理1可知.过P 、R 的直线就是两个平面的交线l . (2)证明:连接OE 、OC.因为BC || AD.且BC= 12AD. 又AO= 12 AD.所以BC || AO.且BC=AO.所以四边形ABCO 为平行四边形. 所以OC || AB.则OC || 平面PAB ; 又OE 为△PAD 的中位线.则OE || AP. 所以OE || 平面PAB.又OE⊂平面OEC.OC⊂平面OEC.且OE∩OC=O . 所以平面PAB || 平面OEC. 又OQ⊂平面OEC. 所以OQ || 平面PAB .【点评】:本题考查了空间中的平行关系证明与应用问题.是基础题.20.(问答题.15分)已知数列{a n }的前n 项和S n 满足2S n -na n =3n (n∈N*).且a 2=5. (1)证明数列{a n }为等差数列.并求{a n }的通项公式; (2)设b n = a√a +a √a .T n 为数列{b n }的前n 项和.求使T n >√310 成立的最小正整数n 的值.【正确答案】:【解析】:(1)运用数列的递推式.两次将n 换为n-1.相减.结合等差数列的定义和通项公式.即可得到所求; (2)求得b n =√a •√a (√a +√a )=√2n+1•√2n+3(√2n+1+√2n+3) = √2n+3−√2n+12√2n+1•√2n+3 = 12 ( √2n+1-√2n+3).再由数列的裂项相消求和.以及不等式的解法.可得所求最小值.【解答】:解:(1)当n≥2时.2S n-1-(n-1)a n-1=3(n-1).又2S n -na n =3n. 相减可得(n-1)a n-1-(n-2)a n =3.当n≥3时.(n-2)a n-2-(n-3)a n-1=3. 所以(n-1)a n-1-(n-2)a n =(n-2)a n-2-(n-3)a n-1.可得2a n-1=a n-2+a n .所以{a n }为等差数列.又2S 1-a 1=3.且a 1=S 1.得a 1=3.又a 2=5. 所以{a n }为公差为2的等差数列.则a n =2n+1; (2)b n = a√a +a √a = √a •√a (√a +√a ) = √2n+1•√2n+3(√2n+1+√2n+3) = √2n+3−√2n+12√2n+1•√2n+3 = 12 √2n+1 - √2n+3). T n = 12 ( √3 - √5 + √5 - √7 + √7 - 13 + 13 - √11 +…+ √2n+1 - √2n+3 )= 12 √3 - √2n+3).要使T n >√310 成立. 即 12 √3 -√2n+3 √310 .解得n > 638 .所以最小正整数n 的值为8.【点评】:本题考查数列的递推式的运用.考查等差数列的定义和性质、通项公式.考查数列的裂项相消求和.以及不等式的解法.考查化简运算能力.属于中档题.21.(问答题.15分)对于函数f (x ).若存在实数对(m.n ).使得等式f (m+x )•f (m-x )=n 对定义域中的每一个x 都成立.则称函数f (x )是“(m.n )型函数”. (1)判断函数f (x )= √x 是否为“(m.n )型函数”.并说明理由; (2) ① 若函数g (x )是“(1.4)型函数”.已知g (0)=1.求g (2);② 若函数g (x )是“(1.4)型函数”.且当x∈[0.1]时.g (x )=x 2-a (x-1)+1(a >0).若当x∈[0.2]时.都有1≤g (x )≤4成立.试求a 的取值范围.【正确答案】:【解析】:(1) √m +x •√m −x =√m 2−x 2=n .则x 2=m 2-n 2不可能恒成立.即可判定; (2) ① 由g (x+1)g (1-x )=4.取x=1.则g (2)g (0)=4.即可求得g (2)=4. ② 方法一:可得当x∈[0.1]时.2-x∈[1.2]时.g (2-x )= 4g (x ) = 4x 2−a (x−1)+1 = 4x 2−ax+a+1 . (a )当0<a <1时.(b )当1≤a <2时.(c )当a≥2时讨论即可方法二:当x∈[1.2]时.1≤g (x )≤4;当x∈[0.1]时.2-x∈[1.2]时.所以g (2-x )∈[1.4].而g (x )g (2-x )=4.所以1 ≤4g (x )≤4 .即1≤g (x )≤4.问题转化为当x∈[0.1]时.1≤g (x )≤4即可.【解答】:解:(1) √m +x •√m −x =√m 2−x 2=n .则x 2=m 2-n 2不可能恒成立.所以f (x )=x 不是““(m.n )型函数”;(2) ① 由题意.g (x+1)g (1-x )=4.取x=1.则g (2)g (0)=4.又g (0)=1.所以g (2)=4.② 方法一:∵g (x+1)g (1-x )=4.所以g (x )g (2-x )=4.当x∈[0.1]时.2-x∈[1.2]时.g (2-x )= 4g (x ) = 4x 2−a (x−1)+1 = 4x 2−ax+a+1 .(a )当0<a <1时.0< a2<12 .则g (x )在[0.1]内先减后增.且g ( a2 ≤g (x )≤41+a−a 24.即1+a-14a 2≤g (x )≤2. 则当x∈[1.2]时.2≤g (x ) ≤41+a−14a 2.所以当x∈[0.2]时.1+a- 14a 2 ≤g (x )≤41+a−14a 2.由题意. {1+a −14a 2≥141+a−14a2≤4 .解得0≤a≤4.所以0<a <1.(b )当1≤a <2时. 12≤a 2<1 .则g (x )在][0.1]内先减后增.且g ( a2 )≤g (x )≤g (0).即1+a- 14a 2 ≤g (x )≤1+a . 则当x∈[1.2]时. 41+a ≤g (x )≤41+a−14a 2.要满足题意.则应满足 {41+a≥11+a −a 24≥1.且 {1+a ≤441+a−a24≤4解得0≤a≤33.所以1≤a <2.(c )当a≥2时. a 2≥1.则g (x )在[0.1]内递减.且g (1)≤g (x )≤g (0).即2≤g (x )≤1+a . 则当x∈[1.2]时. 41+a ≤g (x )≤2 .此时.g (x )min = 41+a .g (x )min =1+a .要满足条件.则应{41+a≥11+a ≤4.解得a≤3.所以2≤a≤3.综上所述.0<a≤3.方法二:当x∈[0.2]时.都有1≤g (x )≤4成立.所以当x∈[1.2]时.1≤g (x )≤4;当x∈[0.1]时.2-x∈[1.2]时.所以g (2-x )∈[1.4].而g (x )g (2-x )=4.所以1 ≤4g (x )≤4 .即1≤g (x )≤4. 所以问题转化为当x∈[0.1]时.1≤g (x )≤4即可.当x∈[0.1]时.g(x)=x2-a(x-1)+1(a>0).(1)当0<a2<1.即0<a<2时. {g(a2)=1+a−a24≥1g(0)=a+1≤4g(1)=2≤4.解得0≤a≤3.所以0<a<2;(2)当a2≥1 .即a≥2时.只要{g(0)=a+1≤4g(1)=2≥1解得a≤3.所以2<a≤3;综上所述.0<a≤3.【点评】:本题考查了函数的新定义.考查了函数的最值问题、分类讨论思想、转化思想.考查了分析问题的能力.属于难题.22.(问答题.15分)如图.在等腰三角形ABC中.AB=AC.∠A=120°.M为线段BC的中点.D为线段BC上一点.且BD=BA.沿直线AD将△ADC翻折至△ADC′.使AC′⊥BD.记二面角C′-AD-B的平面角为α.(1)证明:平面△AMC′⊥平面ABD;(2)比较∠C′DB与α的大小.并证明你的结论;(3)求cosα的值.【正确答案】:【解析】:(1)推导出AM⊥BD.BD⊥AC′.从而BD⊥平面AMC′.由此能证明平面△AMC′⊥平面ABD.(2)过点C′作C′P⊥AM.垂足为P.则C′P⊥平面ABD.过P作PQ⊥AD.连接C′Q.则C′Q⊥AQ.∠C′QP=α.QC′是由QC翻折得到.从而∠C′QP=α=2∠C′CQ.且∠C′CQ就是直线C′C与平面ABC所成的角.同理.∠C′DB=2∠C′CD.由此能证明∠C′DB>α.(3)在△C′AM中.过点C′作AM的垂线.垂足为P.过P作AD的垂线.垂足为Q.推导出∠C′QP 就是二面角C′-AD-B的平面角.由此能求出cosα的值.【解答】:解:(1)证明:∵AM⊥BD.BD⊥AC′.AM∩AC′=A.∴BD⊥平面AMC′.∵BD⊂平面ABD.∴平面△AMC′⊥平面ABD.(2)解:如图.在△C′AM所在平面内.过点C′作C′P⊥AM.垂足为P.则C′P⊥平面ABD.过P作PQ⊥AD.连接C′Q.则C′Q⊥AQ.∠C′QP=α.又QC′是由QC翻折得到.∴∠C′QP=α=2∠C′CQ.且∠C′CQ就是直线C′C与平面ABC所成的角.同理.又C′D是由DC翻折得到.∴∠C′DB=2∠C′CD.由线面角的最小性可知.∠C′CD>∠C′CQ.∴∠C′DB>α.(3)解:如图.在△C′AM中.过点C′作AM的垂线.垂足为P.过P作AD的垂线. 垂足为Q.平面AMC′⊥平面BCD.交线为AM.C′P⊥平面ABD.又PQ⊥AD.∴CQ⊥AD.∴∠C′QP就是二面角C′-AD-B的平面角.△AMC中.∠MAD=15°.∠CAD=45°.作出二面角的平面角∠C1QP后.若将半平面C1AD摊平.则P.Q.C的连线与AD垂直.且cos∠C′QP= PQQC1 = PQQC= PQAQ=tan∠PAQ=tan15°=2- √3.【点评】:本题考查平面与平面垂直的证明.考查两角大小的判断与证明.考查空间中线线、线面、面面间的位置关系等基础知识.考查运算求解能力.是中偿题.。
浙江省杭州市七县区2019_2020学年高二数学上学期期末考试试题
浙江省杭州市七县区2019-2020学年高二数学上学期期末考试试题一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知平面中的两点F1(-2,0),F2(2,0),则满足{M|121MF MF-=}的点M的轨迹是A.椭圆B.双曲线C.一条线段D.两条射线2.在空间直角坐标系中,与点A(1,2,3)关于平面xoy对称的点的坐标是A.(1,2,-3)B.(-1,-2,-3)C.(-1,-2,3)D.(1,-2,3)3.直线y=x+1被圆x2+y2=2截得的弦长为A.2B.22C.6D.264.某四棱锥的三视图如图1所示,则该几何体的体积为A.643B.323C.163D.835.已知直线l和平面α内的两条直线m,n,则“l⊥α”是“l⊥m且l⊥n”的A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件6.已知P,Q分别为直线l1:3x+4y-4=0与l2:3x+4y+1=0上的两个动点,则线段PQ的长度的最小值为A.35B.1C.65D.27.如图2,在正四面体OABC中,D是OA的中点,则BD与OC所成角的余弦值是A.12B.36C.22D.3368.棱长都相等的正三棱柱ABC-A'B'C'中,P是侧棱AA'上的点(不含端点)。
记直线PB与直线AC所成的角为α,直线PB与底面ABC所成的角为β,二面角P-B'B-C的平面角为γ,则A.γ<β<αB.γ<α<βC.β<γ<αD.α<β<γ9.在平面直角坐标系中,Q是圆O:x2+y2=9上的动点,满足条件|MO|=2|MQ|的动点M构成集合D,则集合D中任意两点间的距离d的最大值为A.4B.4210.已知A(x1,y1),B(x2,y2)是椭圆4x2+y2=1上两个不同点,且满足4x1x2+y1y2=12,则|2x1+y1-1|+|2x2+y2-1|的最大值为6-6+6二、填空题(单空题每题4分,双空题每题6分,共28分)11.双曲线22197x y+=的离心率为,渐近线方程为。
人教A版2019-2020学年浙江省杭州市学军中学高一第一学期(上)期末数学试卷 含解析
2019-2020学年学军中学高一第一学期期末数学试卷一、选择题1.设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩B=()A.{x|1≤x<2} B.{x|0<x<2} C.{x|0<x≤1} D.{x|0<x<1} 2.已知函数f(x)的定义域为(﹣1,1),则函数的定义域为()A.(0,2)B.(1,2)C.(2,3)D.(﹣1,1)3.若角α的终边与单位圆交于点P(﹣,),则sin(+α)=()A.B.﹣C.﹣D.4.函数f(x)=的图象大致为()A.B.C.D.5.已知a=log2e,b=ln2,c=,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b6.已知sinα+cosα=,α∈(0,π),则=()A.B.﹣C.D.﹣7.在矩形ABCD中,AB=2,AD=4,AB⊥AD,点P满足,且x+2y=1,点M 在矩形ABCD内(包含边)运动,且,则λ的最大值等于()A.1 B.2 C.3 D.48.平面向量,满足,,,则最大值是()A.1 B.2 C.3 D.49.将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增B.在区间[,π]上单调递减C.在区间[,]上单调递增D.在区间[,2π]上单调递减10.函数y=x+的值域为()A.[1+,+∞)B.(,+∞)C.[,+∞)D.(1,+∞)二、填空题本大题共7小题,每小题4分,共28分,请把答案填写在答题卷相应位置上.11.已知向量,,若满足,则x=,若满足,则x=.12.函数f(x)=的定义域为.13.若,则=14.已知△ABC的外接圆圆心为O,AB=3,AC=5,∠BAC=120°,则=.15.已知f(x)=sin(ω>0),f()=f(),且f(x)在区间上有最小值,无最大值,则ω=.16.定义在区间上的函数的图象与y=4tan x的图象的交点为P,过点P作PP1⊥x轴交于点P1,直线PP1与y=sin x的图象交于点P2,则线段P1P2的长为.17.设函数f(x)=2ax2+2bx,若存在实数x0∈(0,t),使得对任意不为零的实数a,b 均有f(x0)=a+b成立,则t的取值范围是.三、解答题:本大题共5小题,满分42分,解答应写出文字说明、证明过程或演算步骤.18.计算下列各式的值:(1)27﹣()﹣2﹣()(2)2(lg)2+lg•lg5+19.(1)已知tanθ=2,求sin2θ﹣2sinθcosθ﹣3cos2θ+4的值.(2)已知,求的值.20.在等腰梯形ABCD中,AB∥DC,AB=2,BC=1,∠ABC=60°.动点E和F分别在线段BC和DC上,且.(1)当λ=,求||;(2)求的最小值.21.已知函数:(Ⅰ)若,求y=f(x)的最大值和最小值,并写出相应的x值;(Ⅱ)将函数y=f(x)的图象向右平移个单位,再向上平移1个单位,得到函数y =g(x)的图象,区间[a,b](a,b∈R且a<b)满足:y=g(x)在[a,b]上至少含有20个零点,在所有满足上述条件的[a,b]中,求b﹣a的最小值.22.已知函数:f(x)=x2﹣mx﹣n(m,n∈R).(Ⅰ)若m+n=0,解关于x的不等式f(x)≥x(结果用含m式子表示);(Ⅱ)若存在实数m,使得当x∈[1,2]时,不等式x≤f(x)≤4x恒成立,求实数n 的取值范围.参考答案一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩B=()A.{x|1≤x<2} B.{x|0<x<2} C.{x|0<x≤1} D.{x|0<x<1} 【分析】利用交集定义直接求解.解:全集为R,集合A={x|0<x<2},B={x|x≥1},∴A∩B={x|1≤x<2}.故选:A.2.已知函数f(x)的定义域为(﹣1,1),则函数的定义域为()A.(0,2)B.(1,2)C.(2,3)D.(﹣1,1)【分析】由题意可得,由此求得x的范围,即为所求.解:函数f(x)的定义域为(﹣1,1),则对于函数,应有,求得1<x<2,故g(x)的定义域为(1,2),故选:B.3.若角α的终边与单位圆交于点P(﹣,),则sin(+α)=()A.B.﹣C.﹣D.【分析】利用任意角的三角函数的定义求得cosα的值,再利用诱导公式,求得sin(+α)的值.解:∵角α的终边与单位圆交于点P(﹣,),∴x=﹣,y=,r=|OP|=1,∴cosα==﹣,则sin(+α)=cosα=﹣,故选:B.4.函数f(x)=的图象大致为()A.B.C.D.【分析】判断函数的奇偶性和对称性,利用极限思想进行判断排除即可.解:函数的定义域为{x|x≠0},f(﹣x)==﹣f(x),则函数f(x)是奇函数,图象关于原点对称,排除A,当x→+∞,f(x)→+∞排除C,D,故选:B.5.已知a=log2e,b=ln2,c=,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b【分析】根据对数函数的单调性即可比较.解:a=log2e>1,0<b=ln2<1,c==log23>log2e=a,则a,b,c的大小关系c>a>b,故选:D.6.已知sinα+cosα=,α∈(0,π),则=()A.B.﹣C.D.﹣【分析】把已知等式两边平方,求得sinαcosα,进一步得到sinα﹣cosα的值,联立求得sinα,cosα,得到tanα,代入得答案.解:由sinα+cosα=,α∈(0,π),得,∴2sinαcosα=,则sinα>0,cosα<0,∴sinα﹣cosα==.联立,解得sinα=,cosα=,tanα==.∴==.故选:B.7.在矩形ABCD中,AB=2,AD=4,AB⊥AD,点P满足,且x+2y=1,点M 在矩形ABCD内(包含边)运动,且,则λ的最大值等于()A.1 B.2 C.3 D.4【分析】利用矩形建立坐标系,把所给向量条件转化为坐标关系,结合点在矩形内,横纵坐标满足的条件列不等式,求得范围.解:建立如图坐标系,则,,∴=x(2,0)+y(0,4)=(2x,4y),∴=(2λx,4λy),∵M在矩形ABCD内,∴,可得2λx+4λy≤6,λ(x+2y)≤3,∵x+2y=1,∴λ≤3.故选:C.8.平面向量,满足,,,则最大值是()A.1 B.2 C.3 D.4【分析】由题可得,则,又因为2==||2+4﹣2××2=﹣||2+10,可求最大值.解:由得,则||cosθ=,由可得1≤||≤3又因为2==||2+4﹣2××2=﹣||2+10,所以当||=1时2取最大值,即取最大值为.故选:C.9.将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增B.在区间[,π]上单调递减C.在区间[,]上单调递增D.在区间[,2π]上单调递减【分析】将函数y=sin(2x+)的图象向右平移个单位长度,得到的函数为:y=sin2x,增区间为[﹣+kπ,+kπ],k∈Z,减区间为[+kπ,+kπ],k∈Z,由此能求出结果.解:将函数y=sin(2x+)的图象向右平移个单位长度,得到的函数为:y=sin2x,增区间满足:﹣+2kπ≤2x≤,k∈Z,减区间满足:≤2x≤,k∈Z,∴增区间为[﹣+kπ,+kπ],k∈Z,减区间为[+kπ,+kπ],k∈Z,∴将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数在区间[,]上单调递增.故选:A.10.函数y=x+的值域为()A.[1+,+∞)B.(,+∞)C.[,+∞)D.(1,+∞)【分析】函数y=x+,可得y﹣x=,两边平方,即可求解.解:函数y=x+=x+,可知函数的定义域为R.当x≥1时,可知函数y是递增函数,可得y≥1+当x≤1时,可得y﹣x=≥0,两边平方,∵y﹣x≥0,即y>1;∴(y﹣x)2=,可得:x2﹣2xy+y2=x2﹣2x+3,(y≠1)∴x=≤1.得y∈R.由y﹣x=y﹣=≥0,∵y>1.∴y2﹣2y+3≥0可得:y∈R综上可得y>1.∴函数y=x+的值域为(1+∞).故选:D.二、填空题本大题共7小题,每小题4分,共28分,请把答案填写在答题卷相应位置上.11.已知向量,,若满足,则x=﹣,若满足,则x= 6 .【分析】根据平面向量共线与垂直的坐标表示,分别列方程求出x的值.解:向量,,若,则1×(﹣3)﹣2x=0,解得x=﹣;若,则•=1×x+2×(﹣3)=0,x=6.故答案为:﹣,6.12.函数f(x)=的定义域为[2,+∞).【分析】解关于对数函数的不等式,求出x的范围即可.解:由题意得:log2x≥1,解得:x≥2,∴函数f(x)的定义域是[2,+∞).故答案为:[2,+∞).13.若,则=【分析】直接利用三角函数的诱导公式化简即可.解:∵,∴cos(+α)=sin(﹣α)=.故答案为:.14.已知△ABC的外接圆圆心为O,AB=3,AC=5,∠BAC=120°,则=8 .【分析】可画出图形,并将O和AC中点D连接,O和AB中点E连接,从而得到OD⊥AC,OE⊥AB,根据数量积的计算公式及条件即可得出.解:如图,取AC中点D,AB中点E,并连接OD,OE,则OD⊥AC,OE⊥AB,∴•=,•=,∴•=•(﹣)=•﹣•=﹣=×52﹣×32=8,故答案为:8.15.已知f(x)=sin(ω>0),f()=f(),且f(x)在区间上有最小值,无最大值,则ω=.【分析】由题意可得函数的图象关于直线x=对称,再根据f(x)在区间(,)上有最小值、无最大值,可得ω+=,由此求得ω的值.解:对于函数f(x)=sin(ωx+)(ω>0),由f()=f()得,函数图象关于x=对称,又f(x)在区间(,)上有最小值,无最大值,可得ω×=,解得.故答案为:.16.定义在区间上的函数的图象与y=4tan x的图象的交点为P,过点P作PP1⊥x轴交于点P1,直线PP1与y=sin x的图象交于点P2,则线段P1P2的长为.【分析】先将求P1P2的长转化为求sin x的值,再由x满足6cos x=5tan x可求出sin x的值,从而得到答案.解:由题意可得,线段P1P2的长即为P2的纵坐标,即sin x的值,且其中的x即为P的横坐标,满足cos x=4tan x,解得sin x=.∴线段P1P2的长为,故答案为:.17.设函数f(x)=2ax2+2bx,若存在实数x0∈(0,t),使得对任意不为零的实数a,b 均有f(x0)=a+b成立,则t的取值范围是(1,+∞).【分析】对任意不为零的实数a,b均有f(x0)=a+b成立等价于(2x﹣1)b=(1﹣2x2)a,分x=或x≠两种情况讨论,即可求出t的范围.解:f(x)=a+b成立等价于(2x﹣1)b=(1﹣2x2)a,当x=时,左边=0,右边≠0,不成立,当x≠时,(2x﹣1)b=(1﹣2x2)a等价于=,设k=2x﹣1,则x=,则===(﹣k﹣2),∵x∈(0,t),(t<),或x∈(0,)∪(,t),(t>),∴k∈(﹣1,2t﹣1),(t<),或k∈(﹣1,0)∪(0,2t﹣1),(t>),(*)∵∀a,b∈R,∴=(﹣k﹣2),在(*)上有解,∴(﹣k﹣2),在(*)上的值域为R,设g(k)=(﹣k)﹣1,则g(k)在(﹣∞,0),(0,+∞)上单调递减,∴,解得t>1,故答案为:(1,+∞)三、解答题:本大题共5小题,满分42分,解答应写出文字说明、证明过程或演算步骤.18.计算下列各式的值:(1)27﹣()﹣2﹣()(2)2(lg)2+lg•lg5+【分析】(1)利用指数的运算法则化简求解即可.(2)利用对数的运算法则化简求解即可.解:(1)27﹣()﹣2﹣()=9+﹣4﹣=3;(2)2(lg)2+lg•lg5+=2(lg)2+lg•lg5+1﹣lg =2lg(lg+lg)+1﹣lg=lg+1﹣lg=1.19.(1)已知tanθ=2,求sin2θ﹣2sinθcosθ﹣3cos2θ+4的值.(2)已知,求的值.【分析】(1)利用同角三角函数基本关系式化弦为切求解;(2)利用诱导公式化简变形,代入求解.解:(1)∵tanθ=2,∴sin2θ﹣2sinθcosθ﹣3cos2θ+4====;(2)∵f(θ)===﹣sinθ.∴==﹣sin(﹣)=sin=.20.在等腰梯形ABCD中,AB∥DC,AB=2,BC=1,∠ABC=60°.动点E和F分别在线段BC和DC上,且.(1)当λ=,求||;(2)求的最小值.【分析】以等腰梯形ABCD的底AB所在的直线为x轴,以AB的垂直平行线为y轴,建立如图所示的坐标系,根据向量的坐标运算求出,,(1)当λ=时,=(,),即可求出答案,(2)根据向量的数量积和基本不等式即可求出答案.解:以等腰梯形ABCD的底AB所在的直线为x轴,以AB的垂直平分线为y轴,建立如图所示的坐标系,∵AB∥DC,AB=2,BC=1,∠ABC=60°,∴A(﹣1,0),B(1,0),C(,),D(﹣,),∴=+=(2,0)+λ(﹣,)=(2﹣λ,λ),(1)当λ=时,=(,),则||==(2)∵=+=(,)+(1,0)=(+,),∴=++≥+2=+=,当且仅当λ=时取得最小值.21.已知函数:(Ⅰ)若,求y=f(x)的最大值和最小值,并写出相应的x值;(Ⅱ)将函数y=f(x)的图象向右平移个单位,再向上平移1个单位,得到函数y =g(x)的图象,区间[a,b](a,b∈R且a<b)满足:y=g(x)在[a,b]上至少含有20个零点,在所有满足上述条件的[a,b]中,求b﹣a的最小值.【分析】(Ⅰ)根据三角函数的单调性的性质.(Ⅱ)根据三角函数的图象关系,求出函数的解析式,利用三角函数的性质进行求解即可.解:(Ⅰ)∵,∴2x+∈[,],∴≤sin x(2x+)≤1,即f(x)∈[,1],当x=时,f(x)取得最小值,最小值为,当x=时,f(x)取得最大值,最大值为1;(Ⅱ)函数y=f(x)的图象向右平移个单位,再向上平移1个单位,得到函数y=g (x)的图象,则g(x)=2sin[2(x﹣)+]+1=2sin(2x+)+1,令g(x)=2sin(2x+)+1=0,解得x=﹣+kπ或x=+kπ,k∈Z,即g(x)的零点相离间隔依次为和或,故若y=g(x)在[a,b]上至少含有20个零点,则b﹣a的最小值为10×+9×=.22.已知函数:f(x)=x2﹣mx﹣n(m,n∈R).(Ⅰ)若m+n=0,解关于x的不等式f(x)≥x(结果用含m式子表示);(Ⅱ)若存在实数m,使得当x∈[1,2]时,不等式x≤f(x)≤4x恒成立,求实数n 的取值范围.【分析】(Ⅰ)由题意可得(x+m)(x﹣1)≥0,讨论m=﹣1,m<﹣1,m>﹣1,结合二次不等式的解法可得所求解集;(Ⅱ)由题意可得1≤x++m≤4对x∈[1,2]恒成立,即存在实数m,使得﹣x﹣+1≤m≤﹣x﹣+4对x∈[1,2]恒成立,考虑y=﹣x﹣(n<0)在[1,2]递减,可得n 的不等式,即可得到n的最小值.解:(Ⅰ)由x≤x2+mx﹣m,即(x+m)(x﹣1)≥0,①m=﹣1时,可得x∈R;②m<﹣1时,﹣m>1,可得解集为(﹣∞,1]∪[﹣m,+∞);③m>﹣1时,﹣m<1,可得解集为(﹣∞,﹣m]∪[1,+∞);(Ⅱ)x∈[1,2]时,x≤x2+mx+n≤4x恒成立,即为1≤x++m≤4对x∈[1,2]恒成立,即存在实数m,使得﹣x﹣+1≤m≤﹣x﹣+4对x∈[1,2]恒成立,∴(﹣x﹣+1)max≤(﹣x﹣+4)min,由y=﹣x﹣(n<0)在[1,2]递减,∴﹣n≤2﹣,即n≥﹣4,∴n的最小值为﹣4.实数n的取值范围:[﹣4,+∞).。
浙江省杭州市七县区2019_2020学年高二数学上学期期末考试试题
浙江省杭州市七县区2019-2020学年高二数学上学期期末考试试题一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知平面中的两点F1(-2,0),F2(2,0),则满足{M|121MF MF-=}的点M的轨迹是A.椭圆B.双曲线C.一条线段D.两条射线2.在空间直角坐标系中,与点A(1,2,3)关于平面xoy对称的点的坐标是A.(1,2,-3)B.(-1,-2,-3)C.(-1,-2,3)D.(1,-2,3)3.直线y=x+1被圆x2+y2=2截得的弦长为A.2B.22C.6D.264.某四棱锥的三视图如图1所示,则该几何体的体积为A.643B.323C.163D.835.已知直线l和平面α内的两条直线m,n,则“l⊥α”是“l⊥m且l⊥n”的A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件6.已知P,Q分别为直线l1:3x+4y-4=0与l2:3x+4y+1=0上的两个动点,则线段PQ的长度的最小值为A.35B.1C.65D.27.如图2,在正四面体OABC中,D是OA的中点,则BD与OC所成角的余弦值是A.12B.36C.22D.3368.棱长都相等的正三棱柱ABC-A'B'C'中,P是侧棱AA'上的点(不含端点)。
记直线PB与直线AC所成的角为α,直线PB与底面ABC所成的角为β,二面角P-B'B-C的平面角为γ,则A.γ<β<αB.γ<α<βC.β<γ<αD.α<β<γ9.在平面直角坐标系中,Q是圆O:x2+y2=9上的动点,满足条件|MO|=2|MQ|的动点M构成集合D,则集合D中任意两点间的距离d的最大值为A.4B.4210.已知A(x1,y1),B(x2,y2)是椭圆4x2+y2=1上两个不同点,且满足4x1x2+y1y2=12,则|2x1+y1-1|+|2x2+y2-1|的最大值为6-6+6二、填空题(单空题每题4分,双空题每题6分,共28分)11.双曲线22197x y+=的离心率为,渐近线方程为。
浙江省杭州市西湖区杭州学军中学2020-2021学年高二上学期期末数学试题
8.正四面体 中, 在平面 内,点 是线段 的中点,在该四面体绕 旋转的过程中,直线 与平面 所成角不可能是( )
A. B. C. D.
9.已知 ,作直线 ,使得点 到直线 的距离均为 ,且这样的直线 恰有 条,则 的取值范围是()
A. B. C. D.
10.(2018届浙江省温州市一模)如图,正四面体 中, 在棱 上,且 ,分别记二面角 的平面角为 ,在()
16.在《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑.如图,在鳖臑 中, 平面 , ,且 ,过点 分别作 于点 , 于点 ,连结 ,当 的面积最大时, __________.
17.已知椭圆 上的三点 ,斜率为负数的直线 与 轴交于 ,若原点 是 的重心,且 与 的面积之比为 ,则直线 的斜率为__________.
20.如图,已知位于 轴左侧的圆 与 轴相切于点 且被 轴分成的两段圆弧长之比为 ,直线 与圆 相交于 , 两点,且以 为直径的圆恰好经过坐标原点 .
(1)求圆 的方程;
(2)求直线 的斜率 的取值范围.
21.如图,在四棱锥 中, , ,且 , , .
(Ⅰ)求证:平面 ⊥平面 ;
(Ⅱ)求直线 与平面 所成角的正弦值.
故选:B
【点睛】
本题考查了面面平行的判定定理的应用,属于基础题.
4.C
【分析】
先将两圆的方程化为标准方程,再根据圆与圆的位置关系的判断方法得到结论.
【详解】
圆 化为标准方程为:
圆 化为标准方程为:
所以两圆的圆心距为:
两圆相交
故选:C
【点睛】
本题主要考查了圆与圆的位置关系,还考查了运算求解的能力,属于基础题.
B:如果过 的直线都与 , 都平行,根据平行公理, , 平行这与 , 是异面直线矛盾,故本结论错误;
2019-2020学年人教A版浙江省杭州市西湖区学军中学紫金港学区高二第一学期期中数学试卷 解析版
2019-2020学年第一学期高二(上)期中数学试卷一、选择题1.下列四个几何体中,每个几何体的三视图中有且仅有两个视图相同的是()A.①②B.②③C.③④D.②④2.已知平面四边形ABCD,按照斜二测画法(∠x'O'y'=45°)画出它的直观图A'B'C'D'是边长为1的正方形(如图所示),则原平面四边形ABCD的面积是()A.B.C.D.3.设m,n为两条直线,若直线m⊥平面α,直线n⊂平面β,下列说法正确的是()①若α∥β,则m⊥n②若α⊥β,则m∥n③若m∥n,则α⊥β④若m⊥n,则α∥βA.①④B.②③C.①③D.③④4.如图,ABCD﹣A1B1C1D1是正方体,E是棱B1B上的动点(不含端点),平面A1C1E与底面ABCD所在平面的交线为l,则l与AC的位置关系是()A.异面B.平行C.相交D.与E点位置有关5.已知正方形ABCD的边长为1,沿对角线AC将△ADC折起,当AD与平面ABC所成的角最大值时,三棱锥D﹣ABC的体积等于()A.B.C.D.6.一个正方体内接于一个球,过这个球的球心作一平面,则截面图形不可能是()A.B.C.D.7.设实数a,b满足条件b>0且a+b=3,则的最小值为()A.B.C.D.8.直角梯形的上、下底和不垂直于底的腰的长度之比为,那么以垂直于底的腰所在的直线为轴,将梯形旋转一周,所得的圆台上、下底面积和侧面面积之比是()A.2:5:6 B.C.1:2:3 D.1:4:69.若直角三角形的斜边与平面α平行,两条直角边所在直线与平面α所成的角分别为θ1和θ2,则()A.B.C.D.10.高为1的正三棱锥P﹣ABC的底面边长为a,二面角P﹣AB﹣C与二面角A﹣PB﹣C之和记为θ,则在a从小到大的变化过程中,θ的变化情况是()A.一直增大B.一直减小C.先增大后减小D.先减小后增大二、填空题:单空题每题4分,多空题每题6分11.若正实数x,y满足x+y=2xy,则x+y的最小值是.xy的最小值是.12.已知三棱锥P﹣ABC的三条侧棱PA,PB,PC两两垂直,且PA=PB=PC=2,则三棱锥P ﹣ABC的外接球的表面积是.体积是.13.某公司租地建仓库,每月土地占用费y1与仓库到车站的距离成反比,而每月库存货物的运费y2与到车站的距离成正比,如果在距离车站10km处建仓库,这两项费用y1和y2分别为2万元和8万元,要使这两项费用之和最小,仓库应建立在距离车站km 处,最少费用为万元.14.如图所示,在边长为5+的正方形ABCD中,以A为圆心画一个扇形,以O为圆心画一个圆,M、N,K为切点,以扇形为圆锥的侧面,以圆O为圆锥底面,围成一个圆锥,则圆锥的全面积与体积分别是与.15.如图,已知三棱锥A﹣BCD的所有棱长均相等,点E满足,点P在棱AB上运动,设EP与平面BCD所成的角为θ,则sinθ的最大值为.16.若对任意的x∈(﹣∞,2],不等式恒成立,则实数a的取值范围是.17.在斜边长为4的等腰直角三角形ABC中,点D在斜边AC(不含端点)上运动,将△ABD 沿线段BD折到△PBD位置,则点P到平面BCD距离的最大值是.三、解答题:5小题,共74分18.某几何体的三视图如图所示.(1)求该几何体的表面积;(2)求该几何体的体积.19.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠ADC=60°,AD=AC=2,O 为AC的中点,PO⊥平面ABCD且PO=4,M为PD的中点.(1)证明:MO∥平面PAB;(2)求直线AM与平面ABCD所成角的正弦值.20.已知长方形ABCD中,现将长方形沿对角线BD折起,使AC=a,得到一个四面体A﹣BCD,如图所示,(1)试问:在折叠的过程中,异面直线AB与CD能否垂直?若能垂直,求出相应的a 的值;若不垂直请说明理由;(2)当四面体ABCD体积最大时,求二面角A﹣CD﹣B的余弦值.21.设x,y为实数,若x2+y2+xy=1.(1)求x+y的最大值;(2)求x2+y2的最小值.22.如图,已知四边形ABCD由Rt△ABC和Rt△BCD拼接而成,其中∠BAC=∠BCD=90°,∠DBC=30°,AB=AC,,将△ABC沿着BC折起,(1)若,求异面直线AB和CD所成角的余弦值;(2)当四面体ABCD的体积最大时,求二面角A﹣BC﹣D的余弦值.参考答案一、选择题:每小题4分,共40分1.下列四个几何体中,每个几何体的三视图中有且仅有两个视图相同的是()A.①②B.②③C.③④D.②④【分析】判断满足题意的三视图的视图形状,推出结果即可.解:正方体的三视图都是正方形,①不正确;圆锥的正视图与侧视图都时等腰三角形,俯视图是圆,所以②正确;三棱台的三视图没有相同的图形,所以③不正确;正四棱锥的正视图与侧视图都时等腰三角形,俯视图是轮廓是正方形,所以④正确;故选:D.2.已知平面四边形ABCD,按照斜二测画法(∠x'O'y'=45°)画出它的直观图A'B'C'D'是边长为1的正方形(如图所示),则原平面四边形ABCD的面积是()A.B.C.D.【分析】根据直观图与原图面积比为定值,计算出直观图的面积即可得到原图的面积.解:依题意,直观图A'B'C'D'的面积S直=1,设原图面积为S原,则=,所以=,所以S原=2,故选:C.3.设m,n为两条直线,若直线m⊥平面α,直线n⊂平面β,下列说法正确的是()①若α∥β,则m⊥n②若α⊥β,则m∥n③若m∥n,则α⊥β④若m⊥n,则α∥βA.①④B.②③C.①③D.③④【分析】根据线面平行和垂直以及面面平行和垂直的定义和性质分别进行判断即可.解:①若α∥β,∵m⊥平面α,∴m⊥平面β,∵n⊂平面β,∴则m⊥n成立,故①正确,②若α⊥β,∵m⊥平面α,∴m∥β或m⊂β,∵n⊂平面β,∴m∥n不一定成立,故②错误③若m∥n,则n⊥平面α,则α⊥β成立,故③正确,④若m⊥n,则α∥β不一定成立,故④错误,故正确的是①③,故选:C.4.如图,ABCD﹣A1B1C1D1是正方体,E是棱B1B上的动点(不含端点),平面A1C1E与底面ABCD所在平面的交线为l,则l与AC的位置关系是()A.异面B.平行C.相交D.与E点位置有关【分析】显然直线A1C1∥平面ABCD,从而根据线面平行的性质定理得出l∥A1C1,而显然AC∥A1C1,从而可得出l与AC的位置关系.解:∵A1C1∥平面ABCD,且A1C1⊂平面A1C1E,平面A1C1E∩平面ABCD=l,∴A1C1∥l,又AC∥A1C1,∴l∥AC.故选:B.5.已知正方形ABCD的边长为1,沿对角线AC将△ADC折起,当AD与平面ABC所成的角最大值时,三棱锥D﹣ABC的体积等于()A.B.C.D.【分析】判断AD与平面ABC所成的角最大值时,AD的位置,然后求解高与底面面积,即可得到体积.解:正方形ABCD的边长为1,沿对角线AC将△ADC折起,当AD与平面ABC所成的角最大值时,平面ADC与底面ABC垂直,此时棱锥的高为:,底面面积为:=.所以三棱锥D﹣ABC的体积:=.故选:A.6.一个正方体内接于一个球,过这个球的球心作一平面,则截面图形不可能是()A.B.C.D.【分析】当截面的角度和方向不同时,球的截面不相同,应分情况考虑即可.解:当截面平行于正方体的一个侧面时得C图;当截面过正方体的体对角线时得B图;当截面不平行于任何侧面也不过体对角线时得A图但无论如何都不能截出D图,故选:D.7.设实数a,b满足条件b>0且a+b=3,则的最小值为()A.B.C.D.【分析】实数a,b满足条件b>0且a+b=3,可得1=(a+b).可得=+=++,a<0时,利用基本不等式的性质即可得出.解:实数a,b满足条件b>0且a+b=3,∴1=(a+b).则=+=++,a<0时,≥﹣+2=+=.当且仅当b=﹣3a=时取等号.故选:A.8.直角梯形的上、下底和不垂直于底的腰的长度之比为,那么以垂直于底的腰所在的直线为轴,将梯形旋转一周,所得的圆台上、下底面积和侧面面积之比是()A.2:5:6 B.C.1:2:3 D.1:4:6【分析】由已知设直角梯形上底、下底和不垂直于底的腰长分别为x,2x,x;它们分别为圆台的上、下底半径和腰长,代入圆台底面积及侧面积公式,计算即可.解:由题意可设直角梯形上底、下底和不垂直于底的腰为x,2x,x;则圆台的上、下底半径和母线长分别为x,2x,x,如图所示;所以上底面的面积为S上底=π•x2;下底面的面积为S下底=π•(2x)2=4πx2;侧面积为S侧面=π(x+2x)•x=3πx2;所以圆台的上底、下底面积和侧面面积之比是πx2:4πx2:3πx2=1:4:3.故选:B.9.若直角三角形的斜边与平面α平行,两条直角边所在直线与平面α所成的角分别为θ1和θ2,则()A.B.C.D.【分析】由已知中直角三角形的斜边与平面α平行,两条直角边所在直线与平面α所成的角分别为θ1和θ2,根据空间直线与平面夹角的定义,我们可得θ1+θ2≤90°,当且仅当三角形所在平面与α垂直时取等,进而得到结论.解:∵直角三角形的斜边与平面α平行,两条直角边所在直线与平面α所成的角分别为θ1和θ2,则θ1+θ2≤90°(当且仅当三角形所在平面与α垂直时取等)则sin2θ1+sin2θ2≤1(当且仅当三角形所在平面与α垂直时取等)所以:.故选:C.10.高为1的正三棱锥P﹣ABC的底面边长为a,二面角P﹣AB﹣C与二面角A﹣PB﹣C之和记为θ,则在a从小到大的变化过程中,θ的变化情况是()A.一直增大B.一直减小C.先增大后减小D.先减小后增大【分析】考虑三个特殊情况,即a→0,a→+∞及正三棱锥P﹣ABC为正四面体时,可以发现θ先增大后减小.解:当a→0时,,当a→+∞时,θ→π,当正三棱锥P﹣ABC为正四面体时,如图,此时,设二面体P ﹣AB﹣C的大小为α,则,故,故,故选:C.二、填空题:单空题每题4分,多空题每题6分11.若正实数x,y满足x+y=2xy,则x+y的最小值是 2 .xy的最小值是 1 .【分析】①正实数x,y满足x+y=2xy,变为+=2,可得x+y=(+)(x+y),展开利用基本不等式的性质即可得出x+y的最小值.②由正实数x,y满足2xy=x+y,直接利用基本不等式的性质即可得出.解:①正实数x,y满足x+y=2xy,∴+=2,∴x+y=(+)(x+y)=(2++)≥(2+2)=2,当且仅当x=y=1时取等号.∴x+y的最小值是 2.②由正实数x,y满足2xy=x+y≥2,解得:xy≥1.∴xy的最小值是1.故答案为:2,1.12.已知三棱锥P﹣ABC的三条侧棱PA,PB,PC两两垂直,且PA=PB=PC=2,则三棱锥P ﹣ABC的外接球的表面积是12π.体积是4π.【分析】由三线垂直联想正方体,利用外接球直径为体对角线长,容易得解.解:由PA、PB、PC两两互相垂直,且PA=PB=PC=2,可知该三棱锥为正方体的一角,其外接球直径为体对角线长,即2R==2,∴R=.三棱锥P﹣ABC的外接球的表面积是4πR2=12π,体积为=4π.故答案为:12π,4π.13.某公司租地建仓库,每月土地占用费y1与仓库到车站的距离成反比,而每月库存货物的运费y2与到车站的距离成正比,如果在距离车站10km处建仓库,这两项费用y1和y2分别为2万元和8万元,要使这两项费用之和最小,仓库应建立在距离车站 5 km处,最少费用为8 万元.【分析】据题意用待定系数法设出两个函数y1=,y2=k2x,将两点(10,2)与(10,8)代入求出两个参数.再建立费用的函数解析式.用基本不等式求出等号成立的条件即可.解:设x为仓库与车站距离,由题意可设y1=,y2=k2x,把x=10,y1=2与x=10,y2=8分别代入上式得k1=20,k2=0.8,∴y1=,y2=0.8x费用之和y=y1+y2=0.8x+≥2=2×4=8,当且仅当0.8x=,即x=5时等号成立.当仓库建在离车站5km处两项费用之和最小.最少费用为8万元.故答案为:5,8.14.如图所示,在边长为5+的正方形ABCD中,以A为圆心画一个扇形,以O为圆心画一个圆,M、N,K为切点,以扇形为圆锥的侧面,以圆O为圆锥底面,围成一个圆锥,则圆锥的全面积与体积分别是10π与π.【分析】由已知中边长为5+的正方形ABCD中,以A为圆心画一个扇形,以O为圆心画一个圆,且以扇形为圆锥的侧面,以圆O为圆锥底面,可围成一个圆锥,设圆锥的母线长为l,底面半径为r,高为h,求出l,r,h后,代入圆锥表面积公式和体积公式,可以得到答案.解:设圆锥的母线长为l,底面半径为r,高为h,由已知条件可得:,解得r=,l=4,∴S=πrl+πr2=10π,又∵h==,∴V=πr2h=π.故答案为:10π,π15.如图,已知三棱锥A﹣BCD的所有棱长均相等,点E满足,点P在棱AB上运动,设EP与平面BCD所成的角为θ,则sinθ的最大值为.【分析】设棱长为4a,PC=x(0<x≤4a),则PE=.求出P到平面BCD 的距离,即可求出结论.解:设棱长为4a,PC=x(0<x≤4a),则PE=.正四面体的高为:,设P到平面BCD的距离为h,则,∴h=x,∴sinθ==,∴x=2a时,sinθ的最大值为:.故答案为:.16.若对任意的x∈(﹣∞,2],不等式恒成立,则实数a的取值范围是[0,+∞).【分析】利用对数函数的单调性化简不等式4x+(a﹣2)2x+1≥0,再利用换元法转化为含参数的二次不等式,分离参数后,用基本不等式求出实数a的范围.解:由不等式化为∴4x+(a﹣1)2x+1≥2x,∴4x+(a﹣2)2x+1≥0,令t=2x,∵x∈(﹣∞,2],∴0<t≤4,t2+(a﹣2)t+1≥0恒成立,等价于2﹣a≤+t在(0,4]上恒成立,即2﹣a≤(+t)min,而+t≥2,当且仅当t=1时取等号,∴2﹣a≤2,∴a≥0,∴实数a的取值范围是[0,+∞).故答案为:[0,+∞).17.在斜边长为4的等腰直角三角形ABC中,点D在斜边AC(不含端点)上运动,将△ABD 沿线段BD折到△PBD位置,则点P到平面BCD距离的最大值是2.【分析】由已知求得三角形直角边长,设AD=x(0<x<4),则CD=PD=4﹣x,把点P 到平面BCD距离用含有x的代数式表示,再由导数性质求最值.解:如图,∵△ABC为等腰直角三角形,且斜边AC=4,则AB=BC=2,设AD=x(0<x<4),则CD=4﹣x,PD=x,PB=2,则BD===.要使点P到平面BCD距离最大,则平面PBD⊥平面ABC,设点P到平面BCD距离为h,则,解得h==,∴h′==,由h′=0,得x=4,∴当x→4时,点P到平面BCD距离的最大值是:h=()==2.故答案为:2.三、解答题:5小题,共74分18.某几何体的三视图如图所示.(1)求该几何体的表面积;(2)求该几何体的体积.【分析】画出几何体的直观图,利用三视图的数据求解几何体的表面积与体积即可.解:由题意可知几何体的直观图如图是长方体的一部分是三棱锥A﹣BCD,CD=3,BC=3,AB=3,(1)该几何体的表面积:=+××=27;(2)该几何体的体积:=.19.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠ADC=60°,AD=AC=2,O 为AC的中点,PO⊥平面ABCD且PO=4,M为PD的中点.(1)证明:MO∥平面PAB;(2)求直线AM与平面ABCD所成角的正弦值.【分析】(1)推导出O是BD中点,从而OM∥PB,由此能证明OM∥平面PAB.(2)推导出四边形ABCD是菱形,以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出直线AM与平面ABCD所成角的正弦值.解:(1)证明:∵底面ABCD是平行四边形,O为AC的中点,M为PD的中点.∴O是BD中点,∴OM∥PB,∵OM⊄平面PAB,PB⊂平面PAB,∴OM∥平面PAB;(2)解:在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠ADC=60°,AD=AC=2,PO⊥平面ABCD且PO=4,∴四边形ABCD是菱形,以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,A(1,0,0),D(0,﹣,0),P(0,0,4),M(0,﹣,2),=(﹣1,﹣,2),平面ABCD的法向量=(0,0,1),设直线AM与平面ABCD所成角为θ,则sinθ===.∴直线AM与平面ABCD所成角的正弦值为.20.已知长方形ABCD中,现将长方形沿对角线BD折起,使AC=a,得到一个四面体A﹣BCD,如图所示,(1)试问:在折叠的过程中,异面直线AB与CD能否垂直?若能垂直,求出相应的a 的值;若不垂直请说明理由;(2)当四面体ABCD体积最大时,求二面角A﹣CD﹣B的余弦值.【分析】(1)若AB⊥CD,得AB⊥面ACD,解得a=;(2)四面体A﹣BCD体积最大,∵△BCD的面积为定值,∴只需三棱锥A﹣BCD的高最大即可,此时面ABD⊥面BCD,进而建立空间直角坐标系求解;解:(1)若AB⊥CD,由AB⊥AD,AD∩CD=D,得AB⊥面ACD,∴AB⊥AC,∴AB2+a2=BC2即1+a2=3,解得a=;∴AB⊥CD(2)四面体A﹣BCD体积最大,∵△BCD的面积为定值,∴只需三棱锥A﹣BCD的高最大即可,此时面ABD⊥面BCD,以O为坐标原点,在平面BCD中,过点O作BD的垂线为x轴,OD为y轴,OA为x轴,建立空间直角坐标系,则A(0,0,),C(,1,0),D(0,,0)面BCD的法向量=(0,0,),面ACD的法向量=(x,y,z),∵=(﹣,,0),=(0,﹣,),则取=(1,,3),设二面角A﹣CD﹣B的平面角为θ,则cos=|cos <,>==21.设x,y为实数,若x2+y2+xy=1.(1)求x+y的最大值;(2)求x2+y2的最小值.【分析】(1)直接利用二次函数的应用求出结果.(2)利用基本不等式的变换的应用求出结果.解:(1)设x,y为实数,若x2+y2+xy=1.整理得(x+y)2﹣xy=1,设x+y=t,则y=t﹣x,故t2﹣x(t﹣x)=1,整理得x2﹣tx+t2﹣1=0,利用t2﹣4(t2﹣1)≥0,解得,故x+y的最大值为.(2)设x,y为实数,若x2+y2+xy=1.由于x2+y2≥2xy,所以,所以,22.如图,已知四边形ABCD由Rt△ABC和Rt△BCD拼接而成,其中∠BAC=∠BCD=90°,∠DBC=30°,AB=AC,,将△ABC沿着BC折起,(1)若,求异面直线AB和CD所成角的余弦值;(2)当四面体ABCD的体积最大时,求二面角A﹣BC﹣D的余弦值.【分析】根据异面直角所成角的空间向量计算公式,再利用题给信息构造空间直角坐标系,即可求出所求角.解:(1)因为∠BAC=90°,且AB=AC,BC=,∴,∴AB=AC=AD,∴作AO⊥平面BCD,垂足O必为△BCD的外心,又因为△BCD中,∠BCD=90°,△BCD的外心在斜边中点处,即O点为BD中点,则以OA方向建立z轴,过O点作x轴平行于BC,作y轴平行于CD,如图所示得坐标,,,∴∴=(0,﹣2,0),,设AB与CD所成角为α,则.(2)当平面ABC⊥平面BCD时,四面体ABCD体积有最大值,此时二面角A﹣BC﹣D为90°,其余弦值为0.。
2019-2020学年浙江省杭州市西湖区学军中学西溪校区高二(上)期中数学试卷及答案
2019-2020学年浙江省杭州市西湖区学军中学西溪校区高二(上)期中数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)圆柱的轴截面是正方形,且轴截面面积是S,则它的侧面积是()A.B.πS C.2πS D.4πS2.(4分)若直线l与平面α相交,则()A.α内所有直线与l异面B.α内只存在有限条直线与l共面C.α内存在唯一的直线与l平行D.α内存在无数条直线与l垂直3.(4分)已知m,n是空间两条不同的直线,α,β是空间两个不同的平面,则下列命题正确的是()A.若α∥β,m⊂α,n⊂β,则m∥nB.若m,n异面,m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α⊥β,m∥n,m⊥α,则n∥βD.若α⊥β,α∩β=m,n⊥m,则n⊥β4.(4分)如图,三棱柱ABC﹣A′B′C′中,侧面B′B′CC′的面积是4,点A′到侧面B′BCC′的距离是3,则三棱柱ABC﹣A′B′C′的体积为()A.12B.6C.4D.无法确定5.(4分)四面体ABCD中,AB=CD=2,其余棱长均为4,则该四面体外接球半径为()A.B.C.3D.26.(4分)某几何体的三视图如图所示,则该几何体的最长棱长为()A.B.C.5D.27.(4分)在长方体ABCD﹣A1B1C1D1中,M,N分别是棱BB1,BC的中点,若M在以C1N 为直径的圆上,则异面直线A1D与D1M所成的角为()A.45°B.60°C.900D.随长方体的形状变化而变化8.(4分)一封闭的正方体容器ABCD﹣A1B1C1D1,P,Q,R分别为AD,BB1,A1B1的中点,如图所示.由于某种原因,在P,Q,R处各有一个小洞,当此容器内存水最多时,容器中水的上表面的形状是()边形A.3B.4C.5D.69.(4分)已知a=sin1.5+cos1.5,b=sin1.5•cos1.5,c=(cos1.5)sin1.5,d=(sin1.5)cos1.5,则a,b,c,d的大小关系为()A.b<c<d<a B.b<d<c<a C.d<b<c<a D.d<c<b<a 10.(4分)已知集合A={x|x2﹣x﹣6>0},B={x|x2﹣3ax+4≤0},若a>0,且A∩B中恰好有两个整数解,则a的取值范围是()A.[)B.()C.[)D.()二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(6分)棱长为a的正四面体ABCD中,E,F分别为棱AD,BC的中点,则异面直线EF与AB所成的角大小是,线段EF的长度为.12.(4分)二面角α﹣l﹣β的大小是60°,线段AB⊂α,B∈l,AB与l所成的角为45°,则AB与平面β所成的角的余弦值是.13.(6分)正三棱锥的高为1,底面边长为2,则它体积为;若有一个球与该正三棱锥的各个面都相切,则球的半径为.14.(6分)若f(x)=﹣3x为奇函数,则a=,此时,不等式f(1﹣x2)+f (3x+9)<0的解集为.15.(4分)在长方体ABCD﹣A1B1C1D1中,M是对角线AC1上一点,N是底面ABCD上一点.若AB=2,BC=AA1=,则MB1+MN的最小值为.16.(6分)在棱长为1的正方体ABCD﹣A1B1C1D1中,E为CC1的中点,P,Q是正方体表面上相异两点,满足BP⊥A1E,BQ⊥A1E.(1)若P,Q均在平面A1B1C1D1内,则PQ与BD的位置关系是;(2)|A1P|的最小值为.17.(4分)若不等式[2x(t﹣1)﹣1]•log a≥0对任意的正整数x恒成立(其中a∈R,且a>1),则t的取值范围是.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(14分)在△ABC中,角A,B,C的对边分别为a,b,c.(1)若cos C=,且=,求△ABC的面积;(2)设向量=(2sin,),=(cos B,cos),且∥,b=2,求a+c的取值范围.19.(15分)如图,在四棱锥P﹣ABCD的底面ABCD中,BC∥AD,且AD=2BC,O,E 分别为AD,PD中点.(1)设平面P AB∩平面PCD=l,请作图确定l的位置并说明你的理由;(2)若Q为直线CE上任意一点,证明:OQ∥平面P AB.20.(15分)已知数列{a n}的前n项和S n满足2S n﹣na n=3n(n∈N*),且a2=5.(1)证明数列{a n}为等差数列,并求{a n}的通项公式;(2)设b n=,T n为数列{b n}的前n项和,求使T n成立的最小正整数n的值.21.(15分)对于函数f(x),若存在实数对(m,n),使得等式f(m+x)•f(m﹣x)=n对定义域中的每一个x都成立,则称函数f(x)是“(m,n)型函数”.(1)判断函数f(x)=是否为“(m,n)型函数”,并说明理由;(2)①若函数g(x)是“(1,4)型函数”,已知g(0)=1,求g(2);②若函数g(x)是“(1,4)型函数”,且当x∈[0,1]时,g(x)=x2﹣a(x﹣1)+1(a>0),若当x∈[0,2]时,都有1≤g(x)≤4成立,试求a的取值范围.22.(15分)如图,在等腰三角形ABC中,AB=AC,∠A═120°,M为线段BC的中点,D为线段BC上一点,且BD=BA,沿直线AD将△ADC翻折至△ADC′,使AC′⊥BD,记二面角C′﹣AD﹣B的平面角为α.(1)证明:平面△AMC′⊥平面ABD;(2)比较∠C′DB与α的大小,并证明你的结论;(3)求cosα的值.2019-2020学年浙江省杭州市西湖区学军中学西溪校区高二(上)期中数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)圆柱的轴截面是正方形,且轴截面面积是S,则它的侧面积是()A.B.πS C.2πS D.4πS【解答】解:∵圆柱的轴截面是正方形,且轴截面面积是S,∴圆柱的母线长为,底面圆的直径为,∴圆柱的侧面积S=π××=πS.故选:B.2.(4分)若直线l与平面α相交,则()A.α内所有直线与l异面B.α内只存在有限条直线与l共面C.α内存在唯一的直线与l平行D.α内存在无数条直线与l垂直【解答】解:对于A,α内过直线l与平面α交点的直线与直线l是共面直线,∴A错误;对于B,α内过直线l与平面α交点的直线有无数条,且这些直线与直线l都是共面直线,∴B错误;对于C,α内不存在与直线l平行的直线,∴C错误;对于D,如图所示,直线P A与平面α交于点A,PO⊥α,则OA是P A在α内的射影,在α内作直线l⊥OA,则l⊥P A,这样的直线l有无数条,∴D正确.故选:D.3.(4分)已知m,n是空间两条不同的直线,α,β是空间两个不同的平面,则下列命题正确的是()A.若α∥β,m⊂α,n⊂β,则m∥nB.若m,n异面,m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α⊥β,m∥n,m⊥α,则n∥βD.若α⊥β,α∩β=m,n⊥m,则n⊥β【解答】解:A.若α∥β,m⊂α,n⊂β,则m∥n或为异面直线,因此不正确;B.若m,n异面,m⊂α,n⊂β,m∥β,n∥α,则α∥β,正确;C.若α⊥β,m∥n,m⊥α,则n∥β或n⊂β,因此不正确;D.若α⊥β,α∩β=m,n⊥m,则n⊂β,或n∥β,或n与β相交,因此不正确.故选:B.4.(4分)如图,三棱柱ABC﹣A′B′C′中,侧面B′B′CC′的面积是4,点A′到侧面B′BCC′的距离是3,则三棱柱ABC﹣A′B′C′的体积为()A.12B.6C.4D.无法确定【解答】解:∵侧面B′BCC′的面积是4,点A′到侧面B′BCC′的距离是3,∴V四棱锥A′﹣BCC′B′=.∵.∵V四棱锥A′﹣BCC′B′+V三棱锥A′﹣ABC=V三棱柱ABC﹣A′B′C′.∴.∴V三棱柱ABC﹣A′B′C′=6.故选:B.5.(4分)四面体ABCD中,AB=CD=2,其余棱长均为4,则该四面体外接球半径为()A.B.C.3D.2【解答】解:四面体ABCD放到长方体中,AB=CD=2,其余AC=BC=AD=DB=4设长方体的边长分别为a,b,c.则,解得a2+b2+c2=16,四面体外接球半径:2R=4.R=2.故选:D.6.(4分)某几何体的三视图如图所示,则该几何体的最长棱长为()A.B.C.5D.2【解答】解:由题意可知几何体是正方体的一部分,是四棱锥P﹣ABCD,正方体的棱长为3,P是所在棱的3等分点,PB==,P A==,PC==,所以最长棱长为PB,.故选:B.7.(4分)在长方体ABCD﹣A1B1C1D1中,M,N分别是棱BB1,BC的中点,若M在以C1N 为直径的圆上,则异面直线A1D与D1M所成的角为()A.45°B.60°C.900D.随长方体的形状变化而变化【解答】解:如图所示:∵M、N分别是棱BB1、BC的中点,∴MN∥CB1,∵M在以C1N为直径的圆上,∴∠C1MN=90°,∴C1M⊥MN,∴C1M⊥CB1,由长方体的几何特征,我们可得C1D1⊥B1C,∴B1C⊥平面C1D1M,∵A1D∥B1C,∴A1D⊥平面C1D1M,∴A1D⊥D1M,即异面直线A1D与D1M所成的角为90°,故选:C.8.(4分)一封闭的正方体容器ABCD﹣A1B1C1D1,P,Q,R分别为AD,BB1,A1B1的中点,如图所示.由于某种原因,在P,Q,R处各有一个小洞,当此容器内存水最多时,容器中水的上表面的形状是()边形A.3B.4C.5D.6【解答】解:如图,连接QR并延长,分别交AA1,AB的延长线与E,F,连接PE交A1D1于G,连接PF交BC于H,连接PH,QH,GR,则五边形PGRQH即为此容器内存水最多时,容器中水的上表面的形状,故选:C.9.(4分)已知a=sin1.5+cos1.5,b=sin1.5•cos1.5,c=(cos1.5)sin1.5,d=(sin1.5)cos1.5,则a,b,c,d的大小关系为()A.b<c<d<a B.b<d<c<a C.d<b<c<a D.d<c<b<a【解答】解:因为<1.5<,所以<sin1.5<1;0<cos1.5<,∴a>,0<b<;∴b<a;找中间量sin1.5sin1.5,由y=sin1.5x是R上的减函数,sin1.5>cos1.5,可得sin1.5sin1.5<sin1.5cos1.5;由y=x sin1.5是(0,+∞)上的增函数,sin1.5>cos1.5,可得cos1.5sin1.5<sin1.5sin1.5;故c<d,只有A答案合适.故选:A.10.(4分)已知集合A={x|x2﹣x﹣6>0},B={x|x2﹣3ax+4≤0},若a>0,且A∩B中恰好有两个整数解,则a的取值范围是()A.[)B.()C.[)D.()【解答】解:A=(﹣∞,﹣2)∪(3,+∞),令f(x)=x2﹣3ax+4,由题意,△=9a2﹣16>0,且a>0,∴解得,,又,∴要使A∩B中恰好有两个整数解,则只能是4和5,∴,解得,∴a的取值范围是.故选:A.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(6分)棱长为a的正四面体ABCD中,E,F分别为棱AD,BC的中点,则异面直线EF与AB所成的角大小是,线段EF的长度为a.【解答】解:棱长为a的正四面体ABCD中,E,F分别为棱AD,BC的中点,取BD中点G,连结BE,CE,EG,FG,则EG∥AB,且EG=FG==,∴∠EFG是异面直线EF与AB所成的角(或所成角的补角),BE=CE==,EF==,cos∠EFG===,∴∠EFG=,∴异面直线EF与AB所成的角大小是,线段EF的长度为.故答案为:,.12.(4分)二面角α﹣l﹣β的大小是60°,线段AB⊂α,B∈l,AB与l所成的角为45°,则AB与平面β所成的角的余弦值是.【解答】解:过点A作平面β的垂线,垂足为C,在β内过C作l的垂线,垂足为D.连结AD,根据三垂线定理可得AD⊥l,因此,∠ADC为二面角α﹣l﹣β的平面角,∠ADC=60°又∵AB与l所成角为45°,∴∠ABD=45°连结BC,可得BC为AB在平面β内的射影,∴∠ABC为AB与平面β所成的角.设AD=2x,则Rt△ACD中,AC=AD sin60°=x,Rt△ABD中,AB==2,BC==,∴Rt△ABC中,cos∠ABC===.故答案为:.13.(6分)正三棱锥的高为1,底面边长为2,则它体积为2;若有一个球与该正三棱锥的各个面都相切,则球的半径为﹣2.【解答】解:底面等边三角形的面积S==,所以V=,设内切球的球心为O,半径为r,则在O与底面的中心M,BM=,OE=r,OA=1﹣r,侧面斜边的高AB=由△AOE ∽△ABM,得相似得,得,,所以.故答案为:﹣2.14.(6分)若f(x)=﹣3x为奇函数,则a=1,此时,不等式f(1﹣x2)+f(3x+9)<0的解集为(﹣2,5).【解答】解:∵f(x)为奇函数,∴f(0)=0,,∴a=1.∴∵,∴f(x)为减函数,且为奇函数∵f(1﹣x2)+f(3x+9)<0,∴f(1﹣x2)<﹣f(3x+9)=f(﹣3x﹣9),∴1﹣x2>﹣3x﹣9,∴﹣2<x<5.故不等式的解集为(﹣2,5).故答案为:1,(﹣2,5).15.(4分)在长方体ABCD﹣A1B1C1D1中,M是对角线AC1上一点,N是底面ABCD上一点.若AB=2,BC=AA1=,则MB1+MN的最小值为.【解答】解:将△AB1C1绕边AC1旋转到APC1位置,使得平面APC1和平面ACC1在同一平面内,过点P作PN⊥平面ABCD,交AC1于M,垂足为N,则PN为MB1+MN的最小值.∵AB=2,BC=AA1=,∴AC1==2,AP=AB1==,∵sin∠C1AC===,∴∠C1AC=30°,∴∠P AN=2∠C1AC=60°,∴PN=AP•sin∠P AN==.∴MB1+MN的最小值为.故答案为:.16.(6分)在棱长为1的正方体ABCD﹣A1B1C1D1中,E为CC1的中点,P,Q是正方体表面上相异两点,满足BP⊥A1E,BQ⊥A1E.(1)若P,Q均在平面A1B1C1D1内,则PQ与BD的位置关系是平行;(2)|A1P|的最小值为.【解答】解:(1)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,则A1(1,0,1),E(0,1,),B(1,1,0),∵P,Q均在平面A1B1C1D1内,∴设P(a,b,1),Q(m,n,1),则=(﹣1,1,﹣),=(a﹣1,b﹣1,1),=(m﹣1,n﹣1,1),∵BP⊥A1E,BQ⊥A1E.∴,解得,∴PQ∥BD,即PQ与BD的位置关系是平行.故答案为:平行.(2)当|A1P|取最小值时,P在平面A1B1C1D1内,设P(a,b,1),由(1)得b=a+,∴|A1P|====,∴当a=,即P(,,1)时,|A1P|的最小值为.故答案为:.17.(4分)若不等式[2x(t﹣1)﹣1]•log a≥0对任意的正整数x恒成立(其中a∈R,且a>1),则t的取值范围是.【解答】解:原不等式等价于:或即①或②,注意到x=1时,②成立,此时≤t≤;当x∈Z,x≥2时,①成立,在①中,1+≤t≤x﹣,又g(x)=x﹣﹣为单调递增函数,所以,要使对x∈Z,x≥2成立,只需x=2时成立,又x=2时,≤t≤,所以要使不等式对任意的正整数x恒成立,则t的取值范围是:≤t≤,故答案为:≤t≤.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(14分)在△ABC中,角A,B,C的对边分别为a,b,c.(1)若cos C=,且=,求△ABC的面积;(2)设向量=(2sin,),=(cos B,cos),且∥,b=2,求a+c的取值范围.【解答】解(1)由•=,得ab cos C=.又因为cos C=,所以ab==.又C为△ABC的内角,所以sin C=.所以△ABC的面积S=ab sin C=3.(2)因为∥,所以2sin cos=cos B,即sin B=cos B.因为cos B≠0,所以tan B=.因为B为三角形的内角,0<B<π,所以B=.由正弦定理=,所以a=,c=,所以a+c=,又A+C=,所以a+c==4(cos C+)=4sin(C+),又0,所以<C+,所以∈(2,4].19.(15分)如图,在四棱锥P﹣ABCD的底面ABCD中,BC∥AD,且AD=2BC,O,E 分别为AD,PD中点.(1)设平面P AB∩平面PCD=l,请作图确定l的位置并说明你的理由;(2)若Q为直线CE上任意一点,证明:OQ∥平面P AB.【解答】(1)解:分别延长AB和DC交于点R,连接PR,则直线PR就是l的位置;R∈AB⊂平面P AB,R∈CD⊂平面PCD,所以P、R是平面P AB和平面PCD的两个公共点,由公理1可知,过P、R的直线就是两个平面的交线l.(2)证明:连接OE、OC,因为BC∥AD,且BC=AD,又AO=AD,所以BC∥AO,且BC=AO,所以四边形ABCO为平行四边形,所以OC∥AB,则OC∥平面P AB;又OE为△P AD的中位线,则OE∥AP,所以OE∥平面P AB,又OE⊂平面OEC,OC⊂平面OEC,且OE∩OC=O,所以平面P AB∥平面OEC,又OQ⊂平面OEC,所以OQ∥平面P AB.20.(15分)已知数列{a n}的前n项和S n满足2S n﹣na n=3n(n∈N*),且a2=5.(1)证明数列{a n}为等差数列,并求{a n}的通项公式;(2)设b n=,T n为数列{b n}的前n项和,求使T n成立的最小正整数n的值.【解答】解:(1)当n≥2时,2S n﹣1﹣(n﹣1)a n﹣1=3(n﹣1),又2S n﹣na n=3n,相减可得(n﹣1)a n﹣1﹣(n﹣2)a n=3,当n≥3时,(n﹣2)a n﹣2﹣(n﹣3)a n﹣1=3,所以(n﹣1)a n﹣1﹣(n﹣2)a n=(n﹣2)a n﹣2﹣(n﹣3)a n﹣1,可得2a n﹣1=a n﹣2+a n,所以{a n}为等差数列.又2S1﹣a1=3,且a1=S1,得a1=3,又a2=5,所以{a n}为公差为2的等差数列,则a n=2n+1;(2)b n=====(﹣),T n=(﹣+﹣+﹣+﹣+…+﹣)=(﹣),要使T n成立,即(﹣)>,解得n>,所以最小正整数n的值为8.21.(15分)对于函数f(x),若存在实数对(m,n),使得等式f(m+x)•f(m﹣x)=n对定义域中的每一个x都成立,则称函数f(x)是“(m,n)型函数”.(1)判断函数f(x)=是否为“(m,n)型函数”,并说明理由;(2)①若函数g(x)是“(1,4)型函数”,已知g(0)=1,求g(2);②若函数g(x)是“(1,4)型函数”,且当x∈[0,1]时,g(x)=x2﹣a(x﹣1)+1(a>0),若当x∈[0,2]时,都有1≤g(x)≤4成立,试求a的取值范围.【解答】解:(1),则x2=m2﹣n2不可能恒成立,所以f(x)=x不是““(m,n)型函数”;(2)①由题意,g(x+1)g(1﹣x)=4,取x=1,则g(2)g(0)=4,又g(0)=1,所以g(2)=4.②方法一:∵(x+1)g(1﹣x)=4,所以g(x)g(2﹣x)=4.当x∈[0,1]时,2﹣x∈[1,2]时,g(2﹣x)===.(a)当0<a<1时,0<,则g(x)在[0,1]内先减后增,且g(,即1+a﹣a2≤g(x)≤2,则当x∈[1,2]时,2≤g(x).所以当x∈[0,2]时,1+a﹣,由题意,,解得0≤a≤4,所以0<a<1.(b)当1≤a<2时,,则g(x)在][0,1]内先减后增,且g()≤g(x)≤g(0),即1+a﹣≤g(x)≤1+a,则当x∈[1,2]时,.要满足题意,则应满足,且解得0≤a≤33,所以1≤a<2.(c)当a≥2时,≥1,则g(x)在[0,1]内递减,且g(1)≤g(x)≤g(0),即2≤g(x)≤1+a,则当x∈[1,2]时,.此时,g(x)min=,g(x)min=1+a.要满足条件,则应,解得a≤3,所以2≤a≤3.综上所述,0<a≤3.方法二:当x∈[0,2]时,都有1≤g(x)≤4成立,所以当x∈[1,2]时,1≤g(x)≤4;当x∈[0,1]时,2﹣x∈[1,2]时,所以g(2﹣x)∈[1,4],而g(x)g(2﹣x)=4,所以1,即1≤g(x)≤4,所以问题转化为当x∈[0,1]时,1≤g(x)≤4即可.当x∈[0,1]时,g(x)=x2﹣a(x﹣1)+1(a>0),.(1)当0<<1,即0<a<2时,,解得0≤a≤3,所以0<a<2;(2)当,即a≥2时,只要解得a≤3,所以2<a≤3;综上所述,0<a≤3.22.(15分)如图,在等腰三角形ABC中,AB=AC,∠A═120°,M为线段BC的中点,D为线段BC上一点,且BD=BA,沿直线AD将△ADC翻折至△ADC′,使AC′⊥BD,记二面角C′﹣AD﹣B的平面角为α.(1)证明:平面△AMC′⊥平面ABD;(2)比较∠C′DB与α的大小,并证明你的结论;(3)求cosα的值.【解答】解:(1)证明:∵AM⊥BD,BD⊥AC′,AM∩AC′=A,∴BD⊥平面AMC′,∵BD⊂平面ABD,∴平面△AMC′⊥平面ABD.(2)解:如图,在△C′AM所在平面内,过点C′作C′P⊥AM,垂足为P,则C′P⊥平面ABD,过P作PQ⊥AD,连接C′Q,则C′Q⊥AQ,∠C′QP=α.又QC′是由QC翻折得到,∴∠C′QP=α=2∠C′CQ,且∠C′CQ就是直线C′C与平面ABC所成的角.同理,又C′D是由DC翻折得到,∴∠C′DB=2∠C′CD.由线面角的最小性可知,∠C′CD>∠C′CQ,∴∠C′DB>α.(3)解:如图,在△C′AM中,过点C′作AM的垂线,垂足为P,过P作AD的垂线,垂足为Q.平面AMC′⊥平面BCD,交线为AM,C′P⊥平面ABD,又PQ⊥AD,∴CQ⊥AD.∴∠C′QP就是二面角C′﹣AD﹣B的平面角.△AMC中,∠MAD=15°,∠CAD=45°,作出二面角的平面角∠C1QP后,若将半平面C1AD摊平,则P,Q,C的连线与AD垂直,且cos∠C′QP====tan∠P AQ=tan15°=2﹣.第21页(共21页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019学年学军中学高二上期末
一、选择题:每小题4分,共40分
1. 经过点()1,3A ,斜率为2的直线方程是( )
A .210x y --=
B .210x y ++=
C .210x y +-=
D .210x y -+=
2. 椭圆22
154
x y +=的焦距为( )
A .6
B .3
C .2
D .1
3. 已知直线m ,n 和平面α,β,γ,下列条件中能推出αβ∥的是( ) A .m α⊂,n β⊂,m n ∥ B .m α⊥,n β⊥
C .m α⊂,n α⊂,m β∥,n β∥
D .αγ⊥,βγ⊥
4. 圆2220x y x +-=和2240x y y ++=的位置关系是( )
A .相离
B .外切
C .相交
D .内切
5. 已知a ,b 是异面直线,P 是a ,b 外的一点,则下列结论中正确的是( ) A .过P 有且只有一条直线与a ,b 都垂直 B .过P 有且只有一条直线与a ,b 都平行
C .过P 有且只有一个平面与a ,b 都垂直
D .过P 有且只有一个平面与a ,b 都平行
6. 如图,ABC △中,AB BC =,120ABC ∠=︒,若以A ,B 为焦点的双曲线的渐近线经过点C ,则该双
曲线的离心率为( )
A
B
C
D
7. 直线3y kx =+与圆()()2
2
324x y -+-=相交于M ,N
两点,若MN ≥,则k 的取值范围是( )
A .3,04⎡⎤
-⎢⎥⎣⎦
B .[)3,0,4⎛
⎤-∞-+∞ ⎥
⎝
⎦
C
.⎡⎢⎣⎦
D .2,03⎡⎤
-⎢⎥⎣⎦
B
C
A
8. 正四面体ABCD 的棱CD 在平面α内,点E 是线段AC 的中点,在该四面体绕CD 旋转的过程中,直线
BE 与平面α所成角不可能...是( )
A .0
B .
6
π
C .
3
π D .
2
π 9.
已知两点(A
,(B 到直线l 的距离均等于a ,且这样的直线可作4条,则a 的取值范围是
( ) A .1a ≥ B .01a <<
C .01a <≤
D .02a <<
10. 如图,正四面体ABCD 中,P 、Q 、R 在棱AB 、AD 、AC 上,且AQ QD =,
1
2
AP CR PB RA ==,分别记二面角A PQ R --,A PR Q --,A QR P --的 平面角为α、β、γ,则( ) A .βγα>> B .γβα>>
C .αγβ>>
D .αβγ>>
二、填空题:单空题每题4分,多空题每题6分
11. 若圆22210x y ax y +++-=的圆心在直线y x =上,则a 的值是,半径为.
12. 若直线1:60l x my ++=与()2:2320l m x y m -++=互相平行,则m 的值
为,它们之间的距离为.
13. 某几何体的三视图如图所示,则该几何体的体积为,外接球的表面积为.
14. 已知双曲线22
:1x C y m -=与椭圆22195
y x +=共焦点,则m 的值为,设F 为双曲线C 的一个焦点,P 是
C 上任意一点,则PF 的取值范围是.
R
Q
P
D C
B
A 侧视图
俯视图
正视图
15. 异面直线a ,b 所成角为
3
π
,过空间一点O 的直线l 与直线a ,b 所成角均为θ,若这样的直线l 有且只有两条,则θ的取值范围为.
16. 在《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑.如图,在
鳖臑P ABC -中,PA ABC ⊥平面,AB BC ⊥,且1A P A C ==,过点A 分别作
AE ⊥PB 于点E ,AF ⊥PC 于点F ,连结EF ,当△AEF 的面积最大时,tan BPC ∠=.
17. 已知椭圆2
2:14
x C y +=上的三点A ,B ,C ,斜率为负数的直线BC 与y 轴交于M ,若原点O 是ABC
△的重心,且BMA △与CMO △的面积之比为3
2
,则直线BC 的斜率为.
三、解答题:5小题,共74分
18. 已知0x >,0y >,且2520x y +=.
(1)求xy 的最大值; (2)求
11
x y
+的最小值.
19. 如图所示,在四棱锥P ABCD -中,底面ABCD 是60DAB ∠=︒且边长为a 的菱形,侧面PAD 为正三角
形,其所在平面垂直于底面ABCD ,若G 为AD 的中点,E 为BC 的中点. (1)求证:BG ∥平面PDE ; (2)求证:AD PB ⊥;
F E C
A P
(3)在棱PC上是否存在一点F,使平面DEF⊥平面ABCD,若存在,确定点F的位置;若不存在,说明理由.
0,2且被x轴分成的两段圆弧长之比为1:2,直线l与20.如图,已知位于y轴左侧的圆C与y轴相切于点()
圆C相交于M,N两点,且以MN为直径的圆恰好经过坐标原点O.
(1)求圆C的方程;
(2)求直线OM的斜率k的取值范围.
21. 如图,在四棱锥P ABCD -中,AB AP ⊥,AB CD ∥
,且PB BC BD ==
,2CD AB ==,
120PAD ∠=︒.
(1)求证:平面PAD ⊥平面PCD ;
(2)求直线PD 与平面PBC 所成角的正弦值.
22. 如图,椭圆C :()222210x y a b a b +=>>
,且过点12⎫⎪⎭.点P 为椭圆C 上的动点,且在
第四象限,A 为左顶点,B 为上顶点,PA 交y 轴于点C ,PB 交x 轴于点D .
D
C
B
A
P
(1)求椭圆C的方程;
△的面积的最大值.(2)求PCD。