统计学第八章 相关与回归分析

合集下载

统计学 第8章 相关与回归分析

统计学 第8章 相关与回归分析

2
-1 1 0 -1 -2 0 1 -2
4
1 1 0 1 4 0 1 4 20
6 * 20 r 1 2 1 0.8788 2 n(n 1) 10 * (10 1)
6 d 2
8.3
8.3.1 8.3.2 8.3.3 8.3.4 8.3.5
一元线性回归
一元线性回归模型 参数的最小二乘估计 回归直线的拟合优度 显著性检验 利用回归方程进行预测
共计
325
462 77
445 89
707 101
685 137
1043 149
E(Y|X) 65
Y
X=X1时Y 的分布
X=X2时Y 的分布 X=X3时Y 的分布
b0
X=X1时的E(Y)
b0+ b 1X
X=X2时的E(Y) X=X3时的E(Y)
X1=80
X2=100
X3=120
X
总体回归函数
(population regression function)
相关系数的显著性检验
(检验的步骤)
1. 检验两个变量之间是否存在线性相关关系 2. 利用样本的相关系数对总体相关系数进行 检验 3. 采用R.A.Fisher提出的 t 检验 4. 检验的步骤为



提出假设:H0: ;H1: 0
n2 计算检验的统计量: tr ~ t (n 2) 2 1 r 确定显著性水平,并作出决策
2
2
或化简为 r
n x x n y y
2 2 2
n xy x y
2
例 产品产量与单位成本相关系数
产 月 量 份 x 1 2 2 3 3 4 4 3 5 4 6 5 合 21 计 单位 成本 y 73 72 71 73 69 68

《应用统计学》第八章相关和回归分析

《应用统计学》第八章相关和回归分析

《应用统计学》第八章相关和回归分析相关和回归分析是统计学中常用的分析方法,用来研究变量之间的关系以及预测因变量的值。

本章将介绍相关和回归分析的原理和应用。

相关分析是研究两个或多个变量之间关系的统计方法。

通过计算相关系数来衡量变量之间的线性相关程度。

常用的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。

皮尔逊相关系数适用于两个连续变量的相关分析,而斯皮尔曼相关系数适用于两个有序变量的相关分析。

回归分析是研究因变量与自变量之间关系的统计方法。

通过建立回归模型来预测因变量的值。

回归模型可以是线性模型、非线性模型或者多元回归模型。

线性回归模型的表达式为Y=a+bX,其中Y为因变量,X为自变量,a和b为参数。

回归分析有两个主要目的,一是预测因变量的值,二是研究自变量对因变量的影响程度和方向。

常用的回归分析方法有简单线性回归分析、多元线性回归分析和逻辑回归分析等。

相关和回归分析在实际应用中有着广泛的应用。

在社会科学研究中,相关和回归分析可以用来研究变量之间的关系,如收入和教育水平的相关性。

在医学研究中,相关和回归分析可以用来探索疾病与一些特定因素之间的关系,如高血压和体重的相关性。

在商业领域中,相关和回归分析可以用来分析销售量与广告投资的关系,预测未来的销售量。

需要注意的是,相关和回归分析只是描述性分析方法,并不能确定因果关系。

除了变量之间的线性关系,还可能存在其他非线性的关系。

此外,相关和回归分析只能用于连续变量的分析,不能用于分类型变量的分析。

在进行相关和回归分析时,需要注意几个问题。

首先是样本的选择和数据的收集,确保样本具有代表性,并获得准确和可靠的数据。

其次是确保数据满足相关和回归分析的假设前提。

例如,线性回归模型要求因变量与自变量之间呈线性关系,并且误差项满足正态分布和独立性。

最后是正确选择和解释统计指标,如相关系数和回归系数。

总之,相关和回归分析是应用统计学中常用的分析方法,用来研究变量之间的关系和预测因变量的值。

第八章 相关与回归分析

第八章 相关与回归分析

相关系数的特点:
相关系数的取值在-1与1之间。 相关系数的取值在之间。 =0时 表明X 没有线性相关关系。 当r=0时,表明X与Y没有线性相关关系。 表明X 当 时,表明X与Y存在一定的线性相关关 系; 表明X 为正相关; 若 表明X与Y 为正相关; 表明X 为负相关。 若 表明X与Y 为负相关。 表明X 完全线性相关; 当 时,表明X与Y完全线性相关; r=1, 完全正相关; 若r=1,称X与Y完全正相关; r=完全负相关。 若r=-1,称X与Y完全负相关
25 20 15 10 5 0 0 2 4 6 8 10 12
11.2 11 10.8 10.6 10.4 10.2 10 0 5 10
相关关系的类型
25
● 从变量相关关系变化的方向 方向看 方向 正相关——变量同方向变化 正相关 负相关——变量反方向变化 负相关 ● 从变量相关的程度看 完全相关 不完全相关 不相关
x
最小二乘法 ˆ ˆ (α 和 β 的计算公式)
根据最小二乘法, 根据最小二乘法,可得求解 和 的公式如下
最小二乘估计的性质 ——高斯 马尔可夫定理 高斯—马尔可夫定理 前提: 在基本假定满足时
最小二乘估计是因变量的线性函数 线性函数 最小二乘估计是无偏估计 无偏估计,即 无偏估计 在所有的线性无偏估计中,回归系数的最小二 乘估计的方差最小 方差最小。 方差最小
结论:
回归系数的最小二乘估计是最佳线性无偏估计 最佳线性无偏估计
四、简单线性回归模型的检验
回归模型的检验包括: 回归模型的检验包括: 理论意义检验: 理论意义检验:主要涉及参数估计值的符号和取 值区间,检验它们与实质性科学的理论以及人们 的实践经验是否相符。 一级检验: 一级检验:又称统计学检验,利用统计学的抽样 理论来检验样本回归方程的可靠性,具体分为拟 合优度检验和显著性检验。 二级检验: 二级检验:又称计量经济学检验,它是对标准线 性回归模型的假设条件是否满足进行检验,包括 自相关检验、异方差检验、多重共线性检验等。

相关与回归分析

相关与回归分析

相关与回归分析相关与回归分析是统计学中常用的方法,用于研究两个或多个变量之间的关系。

通过这种分析方法,我们可以了解这些变量之间的相互作用、依赖程度以及预测未来可能的变化。

一、相关分析相关分析是一种用来衡量两个变量之间相关程度的方法。

通常情况下,我们可以通过计算相关系数来确定变量之间的关联程度,最常见的相关系数是皮尔逊相关系数。

皮尔逊相关系数的取值范围为-1到1之间,其中1表示完全正相关,-1表示完全负相关,0表示不相关。

通过计算样本数据的皮尔逊相关系数,我们可以得出结论,判断变量之间的关系是正相关还是负相关。

相关分析的应用非常广泛,可以用在市场调研、经济预测、医学研究等领域。

例如,在市场调研中,我们可以通过相关分析来了解广告投放与销售额之间的关系,进而优化广告策略。

二、回归分析回归分析是一种通过建立数学模型来研究自变量与因变量之间关系的方法。

回归分析主要用于预测与解释因变量的变化。

在回归分析中,根据自变量的类型,可以分为线性回归和非线性回归。

1. 线性回归线性回归是指自变量与因变量之间存在线性关系的回归模型。

线性回归模型可以用直线方程来表示,即y = a + bx。

其中,a表示截距,b表示斜率,x表示自变量,y表示因变量。

线性回归分析可以用于预测未来的趋势,以及通过自变量来解释因变量的变化。

在金融领域中,我们经常使用线性回归来预测股票价格的变化。

2. 非线性回归非线性回归是指自变量与因变量之间存在非线性关系的回归模型。

与线性回归不同,非线性回归的数学模型一般无法用简单的直线方程表示。

非线性回归分析可以用来研究自变量与因变量之间的复杂关系。

例如,在生物学研究中,我们可以使用非线性回归来研究温度与生物体生长速度之间的关系。

三、相关与回归分析实例为了更好地理解相关与回归分析的应用,我们来看一个实例。

假设我们有一份房屋销售数据,其中包括房屋面积、售价以及地理位置等信息。

我们可以使用相关与回归分析来探索这些变量之间的关系。

2015年《统计学》第八章 相关与回归分析习题及满分答案

2015年《统计学》第八章 相关与回归分析习题及满分答案

2015年《统计学》第八章相关与回归分析习题及满分答案一、单选题1.相关分析研究的是( A )A、变量间相互关系的密切程度B、变量之间因果关系C、变量之间严格的相依关系D、变量之间的线性关系2.若变量X的值增加时,变量Y的值也增加,那么变量X和变量Y之间存在着(A )。

A、正相关关系B、负相关关系C、直线相关关系D、曲线相关关系3.若变量X的值增加时,变量Y的值随之下降,那么变量X和变量Y之间存在着(B)。

A、正相关关系B、负相关关系C、直线相关关系D、曲线相关关系4.相关系数等于零表明两变量(B)。

A.是严格的函数关系B.不存在相关关系C.不存在线性相关关系D.存在曲线线性相关关系5.相关关系的主要特征是(B)。

A、某一现象的标志与另外的标志之间的关系是不确定的B、某一现象的标志与另外的标志之间存在着一定的依存关系,但它们不是确定的关系C、某一现象的标志与另外的标志之间存在着严格的依存关系D、某一现象的标志与另外的标志之间存在着不确定的直线关系6.时间数列自身相关是指( C )。

A、两变量在不同时间上的依存关系B、两变量静态的依存关系C、一个变量随时间不同其前后期变量值之间的依存关系D、一个变量的数值与时间之间的依存关系7.如果变量X和变量Y之间的相关系数为负1,说明两个变量之间(D)。

A、不存在相关关系B、相关程度很低C、相关程度很高D、完全负相关8.若物价上涨,商品的需求量愈小,则物价与商品需求量之间(C)。

A、无相关B、存在正相关C、存在负相关D、无法判断是否相关9.相关分析对资料的要求是(A)。

A.两变量均为随机的B.两变量均不是随机的C、自变量是随机的,因变量不是随机的D、自变量不是随机的,因变量是随机的10.回归分析中简单回归是指(D)。

A.时间数列自身回归B.两个变量之间的回归C.变量之间的线性回归D.两个变量之间的线性回归11.已知某工厂甲产品产量和生产成本有直线关系,在这条直线上,当产量为10 00时,其生产成本为30000元,其中不随产量变化的成本为6000元,则成本总额对产量的回归方程为( A )A. y=6000+24xB. y=6+0.24xC. y=24000+6xD. y=24+6000x12.直线回归方程中,若回归系数为负,则(B) A.表明现象正相关B.表明现象负相关C.表明相关程度很弱D.不能说明相关方向和程度二、多项选择题1.下列属于相关关系的有(ABD )。

统计学原理(第八章)

统计学原理(第八章)
14
相关系数的计算
例:下表是某地区1996年—2008年的人均国民收 下表是某地区1996 1996年 2008年的人均国民收 入和人均消费金额,试判断二者之间的关系。 入和人均消费金额,试判断二者之间的关系。
15
相关系数的计算
单位:元 年份 1996 1997 1998 1999 2000 2001 2002 收入 消费额 393.8 249 419.14 267 460.86 289 544.11 329 668.29 406 737.73 451 859.97 513 年份 2003 2004 2005 2006 2007 2008 收入 消费额 1068.8 643 1169.2 699 1250.7 713 1429.5 803 1725.9 947 2099.5 1148
16
相关关系的判断 相关关系的判断
收入与消费的散点图 1400 1200 1000 800 600 400 200 0 0 500 1000 1500 2000
17
2500
相关系数的计算
根据上述资料计算人均国民收入和人 均消费金额之间的相关系数: 均消费金额之间的相关系数:
r=
∑ (x − x )( y − y ) ∑ (x − x ) ∑ ( y − y )
∑ (x − x )( y − y ) ∑ (x − x ) ∑ ( y − y )
13
8.2.3相关系数的应用 8.2.3相关系数的应用
1)-1≤r≤1 如果r>0 线性正相关;r<0, r>0, 2)如果r>0,线性正相关;r<0,线性负相关 3)如果r=0,则不存在线性关系 如果r=0 r=0, 4)如果 r ≺ 0.3 ,不相关 5)如果 0.3 ≺ r ≺ 0.5 ,低度相关 显著相关(中度相关) 6)如果 0.5 ≺ r ≺ 0.8 ,显著相关(中度相关) 7)如果 r ≻ 0.8 ,高度相关

统计学原理第八章相关与回归分析

统计学原理第八章相关与回归分析
相关分析的内容 1.判断现象之间是否存在相关关系; 2.如果存在相关关系,则要进一步判断相
关关系的种类和关系的紧密程度; 3.对相关系数进行显著性检验。
回归分析的内容
• 1. 建立反映变量间依存关系的数学模型 即回归方程;
• 2.对回归方程进行显著性检验; • 3.用回归过程进行预测。
回归分析和相关分析的主要区别
4.相关系数的绝对值越接近于1,表示相关 程度越强;越接近于0,表示相关程度越 弱。具体标准为:
R 的绝对值:0.3以下 微弱相关;
0.3-0.5 低度相关;
0.5-0.8 显著相关;
0.8以上 高度相关。
以上结论必须建立在对相关系数的显著性 检验基础之上。
三、相关系数的显著性检验
显著性检验的具体步骤:
资料:
销售量 500
(公斤)
价格 10
(元)
相关表

700 9
900 7
600 9
1000 800 89
1200 6
销售量 500
(公斤)
价格 10
(元)
600 9
700 9
800 9
900 7
1000 8
1200 6
相关图(散点图)
完全正线性相关
正线性相关
完全负线性相关
负线性相关
非线性相关
一、一元线性回归方程
❖ 只涉及一个自变量的回归
❖ 因变量y与自变量x之间为线性关系
➢ 被预测或被解释的变量称为因变量,用y表示
➢ 用来预测或用来解释因变量的一个或多个变量称为
自变量,用x表示
❖ 因变量与自变量之间的关系用一个线性方 程来表示
一元线性回归模型
❖ 一元线性回归模型可表示为

MBA管理统计学(中科大万红燕)第八章回归分析和相关分析

MBA管理统计学(中科大万红燕)第八章回归分析和相关分析

2010-7-23
销售额
12
第二节 相关分析
例1解:
xi = 2139, ∑ yi = 11966, ∑ xi2 = 179291 ∑ yi2 = 6947974, ∑ xi y i = 1055391, n = 30 ∑ r= n∑ xi yi ∑ xi ∑ yi (∑ xi ) 2 n∑ yi2 (∑ yi ) 2
2010-7-23
4
第一节 相关与回归分析的基本概念
三.相关分析与回归分析
相关分析和回归分析是研究现象之间相关关系 的两种基本方法. 相关分析:研究两个或两个以上随机变量之间 相关关系密切程度和相关方向的统计分析方法. 回归分析:研究某一随机变量(因变量)与其 他一个或几个变量(自变量)之间数量变动关 系形式的统计分析方法.
一.一元线性回归模型的建立 设因变量y(通常是随机变量)和一个自变量 (非随机变量)X之间有某种相关关系.在x的 不全相同的取值点x1,x2,…,xn作为独立观 察得到y的个观察值y1,y2,… ,yn记为( x1, y1 )( x2 , y2 ), … ,(xn , yn ). 根据这组数据寻求X与Y之间关系. 设一元线性回归模型为:yi=a+bxi+ ei
r=0.955248
2010-7-23 14
第二节 相关分析
25000 税收收入(亿元 亿元) 20000 15000 10000 5000 0
0 20000 40000 60000 80000 100000 120000 140000
GDP(亿元)
2010-7-23
15
第二节 相关分析
二.有序数据的相关系数(等级相关系数)
2010-7-23
8

统计学各章练习——相关与回归分析

统计学各章练习——相关与回归分析

第八章 相关与回归分析一、名词1、相关关系:是现象间确实存在的,但是不完全确定的,一种非严格的依存关系。

2、回归分析:是对具有相关关系的两个或两个以上变量之间数量变化的一般关系进行测定,确定一个相应的数学表达式,以便从一个已知量来推测另一个未知量,这种处理具有相关关系变量之间的统计方法。

3、相关系数:是测定变量之间相关密切程度和相关方向的代表性指标。

4、估计标准误差:就是回归分析的估计值与观测值(实际值)之间的平均误差大小的指标。

二、填空1.在自然界和社会现象中,现象之间的相互依存关系可以分为两种,一种是(函数关系),一种是(相关关系)。

2.相关关系按相关程度可分为(完全相关)、(不完全相关)和(不相关);按相关性质可分为(正相关)和(负相关);按相关形式可分为(直线相关)和(曲线相关);按影响因素多少可分为(单相关)和(复相关)。

3.互为因果关系的两个变量x 和Y ,可编制两个回归方程,一个是(y 倚x 回归方程)回归方程;另一个是(x 倚y 回归方程)回归方程。

4.相关分析是(回归分析)的基础,回归分析是(相关分析)的继续。

5.在回归分析中,因变量是(随自变量而变化的量),自变量是(主动变化的量)。

6.建立一元直线回归方程的条件是:两个变量之间确实存在(相关关系),而且其(相关的密切程度)必须是显著的。

一元直线回归方程的基本形式为:(Yc =a+bx )。

7.估计标准误可以说明回归方程的(代表性大小);说明回归估计值的(准确程度);说明两个变量x 和Y 之间关系的(密切程度)。

8.当相关系数(r)越大时,估计标准误差S Y 就(越小),这时相关密切程度就(越高),回归直线的代表性就(大);当r 越小时,S Y 就(越大),这时相关密切程度就(越低),回归直线的代表性就(小)。

三、判断1.正相关是指两个变量之间的变化方向都是上升的趋势,而负相关是指两个变量之间的变化方向都是下降的趋势。

(×)2.负相关是指两个量之间的变化方向相反,即一个呈下降(上升)而另一个呈上升(下降)趋势。

第八章相关与回归分析Correlation and Regression Analysis

第八章相关与回归分析Correlation and Regression Analysis
变量之间的函数关系和相关关系在一定条件下可以相互转化。 客观现象的函数关系可以用数学分析的方法去研究,而研究客观现
象的相关关系必须借助于统计学中的相关与回归分析方法。
Chap 08-4
相关关系的类型
从相关关系涉及的变量数量看:单相关和复相关 一个变量对另一变量的相关关系,称为单相关; 一个变量对两个以上变量的相关关系时,称为复相关; 从变量相关关系的表现形式看:线性相关和非线性相关 从变量相关关系变化的方向看:正相关和负相关 从变量相关的程度看:完全相关〔函数关系〕、不完全相
或:
r
n xtyt xt yt
[n ( xt2)( xt)2]n [( yt2)( yt)2]
Chap 08-7
2 简单线性相关与回归分析
2.1 简单线性相关系数及检验 2.2 总体回归函数与样本回归函数 2.3 回归系数的估计 2.4 简单线性回归模型的检验 2.5 简单线性回归模型预测
Chap 08-8
相关系数
总体相关系数〔 population correlation coefficient〕 ρ 是反映两变量之间线性相关程度的 一种特征值,表现为一个常数。
关、不相关
Chap 08-5
相关分析与回归分析
而样本回归函数中 的和 是随机变量,其具体数值随所抽取的样本观测值不同而变动。
是当 x 等于 0 时 y 的平均估计值 S越小说明实际观测点与所拟合的样本回归线的离差程度越小,即样本回归线具有较强的代表性,反之,S越大说明实际观测点与所拟 合的样本回归线的离差程度越大,即回归线的代表性越差。
Chap 08-1
本节学习目标
通过本节的学习,你应该能够:
理解和掌握相关分析和回归分析的原理 估计一元线性回归模型,并对模型进行检验 利用计算机软件估计多元线性回归模型,并对模型进行

统计学原理第八章相关与回归分析

统计学原理第八章相关与回归分析
பைடு நூலகம்
答案: 9x ? 17 ? kx 可以转化为 (9 ? k)x ? 17 即: x ? 17 ,x 为正整数 ,则 k ? 8或-8 9? k
测一测 3: 【中】 m 为整数,关于 x 的方程 x ? 6 ? mx 的解为正整数,求 m ? _____ 答案: 由原方程得: x ? 6 , x 是正整数,所以 m ? 1 只能为 6 的正约数,
a ? ____ b ? ____
答案: ?2a ? 12?x ? 5 ? ab . 要使 x 有无穷多个解,则 2a ? 12 ? 0 ab ? 5 ? 0
得到 a ? 6;b ? 5 6
测一测 2: 【中】
已知关于 x 的方程 2a ?x ? 1?? ?5 ? a?x ? 3b 有无数多个解,那么
m?1 m ? 1 ? 1,2,3,6 所以 m ? 0,1, 2,5
2. 两个一元一次方程同解问题
例题 2:⑴ 【易】若方程 ax ? 2x ? 9 与方程 2x ? 1 ? 5 的解相同,则 a 的值为 _________
【答案】 D
第一个方程的解为 x ? 1 ,将 x ? 1 代入到第二个方程中得: 2 ? a ? 1 =0 ,解得 a ? 5 2
答案:原方程可以转化为 ?3 ? m?x ? 4 ? n
⑴ 当 m ? 3,n为任意值时,方程有唯一解;
⑵ 当 m ? 3,n ? 4时,方程有无数解;
⑶ 当 m ? 3, n ? ? 4时,无解
测 一 测 1 :【 中 】 若 关 于 x 的 方 程 a ?2x ? b?? 12x ? 5 有 无 穷 多 个 解 。 求
a 当 a ? 0,b ? 0时,方程无解
当 a ? 0, b ? 0. 方程的解为任意数 .

统计学 第8章-相关回归分析

统计学 第8章-相关回归分析
730 900 970
150
200 280 350
384400
532900 810000 940900
22500
40000 78400 122500
93000
146000 252000 339500
7
8
2009
2010 合计
1050
1170 6480
450
510 2200
1102500
1368900 5681200
150
200 280 350
7
8
2009
2010 合计
1050
1170
450
510
以上例1资料计算r:
序号 1 2 年份 2003 2004
x(万元)
500 540
y(万元)
120 140
x2
y2
xy
3
4 5 6
2005
2006 2007 2008
620
730 900 970
150
200 280 350
r
2.简捷法
n xy x y r n x x n y y
2 2 2
2
以上例1资料计算r:
序号 1 2 年份 2003 2004
x(万元)
500 540
y(万元)
120 140
3
4 5 6
2005
2006 2007 2008
620
730 900 970
5
6 7 8
2007
2008 2009 2010
900
970 1050 1170
280
350 450 510

统计学第八章 相关与回归分析PPT课件

统计学第八章 相关与回归分析PPT课件

30.07.2020
河北工程大学经济管理学院
9
二、相关关系的种类
把握以下问题: 1、按相关程度划分; 2、按相关方向划分; 3、按相关形式划分; 4、按变量多少划分; 5、按相关性质划分。
30.07.2020
河北工程大学经济管理学院
10
1、按相关程度划分
可分为完全相关、不完全相关和不相关 (1)完全相关:当一种现象的数量变化完全
5、按相关性质划分
分为“真实相关”和“虚假相关”: (1)当两种现象间的相关确实具有内在的联 系时,称之为“真实相关”。例如消费与收入 的相关关系等。 (2)当两种现象间的相关只是表面存在,实 质没有内在联系时,称之为“虚假相关”。 判断依据是实质性科学提供的知识。
30.07.2020
河北工程大学经济管理学院
函数关系是指变量之间存在着严格确定的依
存关系,在这种关系中,当一个或几个变
量取一定量的值时,另一变量有确定值与
之相对应,并且这种关系可以用一个数学
表达式反映出来。例如:某种产品的总成
本S与该产品的产量Q以及该产品的单位成
本P之间的关系可用S=PQ表达,这就是一
种函数关系。通常把作为影响因素的变量
称为自变量,把发生相应变化的变量称为
30.07.2020
河北工程大学经济管理学院
5
一、函数关系与相关关系
▪ 客观现象总是普遍联系和相互依存的, 客观现象间的数量联系存在两种不同 类型:函数关系和相关关系。
▪ 把握三个问题:
▪ 1、函数关系;
▪ 2、相关关系;
▪ 3、二者关系。
30.07.2020
河北工程大学经济管理学院
6
1、函数关系
因变量。在本例中,S是因变量,P与Q则

统计学原理第8章相关与回归分析[精]

统计学原理第8章相关与回归分析[精]

估计标准误差就是因变量的估计值yc与实际值y之间差异 公 的平均程度。记为Syx,它的基本公式为:


式中,Syx表示估计标准误差;下标yx表示y依x的回归方程; y是因变量的实际值;yc是因变量的估计值。
例8.4以例8.1的资料计算估计标准误差。
步骤: 1.设计一张计算表,将已知x的值代入回归方程求出对应的yc的值 2.计算离差y-yc并加以平方求和 3.求出估计标准误差Syx。
数关系。
当r=0时,表示x与y完全没有线性相关。
当0<|r|<1时,表示x与y存在着一定的线性相关。一般分四个
等级,判断标准如下:
若0<|r|<0.3,则称x与y为微弱相关;
若0.3<|r|<0.5, 则称x与y为低度相关;
若0.5<|r|<0.8, 则称x与y为显著相关;
若0.8<|r|<1, 则称x与y为高度相关。
8.3.2简单直线回归方程
a, b是待定参数 利用最小二乘法 得到a,b求值,再反解得到方程式
建立回归直线的过程:列计算表,求出∑xy,∑x2,∑y2,x,y; 计算Lxy,Lxx和Lyy的值;求出b和a的值并写出方程
例 8.2某工厂某产品的产量与单位成本资料见表8.2,试 求单位成本依产量的回归直线方程。
★ 填空题 (1) 现象之间的相关关系,从相关因素的个数看,可分为()和();从相关的形式
的两个回归方程。() (9) 估计标准误差指的就是因变量的估计值yc与实际值y之间的平均误差程度。() (10) 在任何相关条件下,都可以用相关系数r说明变量之间相关的密切程度。() (11) 若变量x与y的相关系数r1=-0.8,变量p与q的相关系数r2=-0.92,由于r1>r2,

统计学原理第八章相关分析与回归分析

统计学原理第八章相关分析与回归分析

21
例1:P354页,第1题
企业 产量 X 单位成 XY
X2
Y2
序号 (4件) 本(元)Y
1
2
52
104
4
2704
2
3
54
162
9
2916
3
4
52
208
16
2704
4
4
48
192
16
2304
5
5
48
240
25
2304
6
6

24
46
276
36
2116
300
1182
106 15048
即:∑X=24,∑Y=300, ∑XY=1182,
• 2) X倚Y的直线方程的确定
• 根据最小平方法的原理:(x xc )2 最小值
• 将xc = c + dy代入上述公式中,分别对c和d 求一阶偏导数,并令偏导数等于0,就可以
得出两个正规方程:
x nc dy yx cy dy2
d
nyx y n y2 (
x
y )2
c x dy
举例:P355,第4题。
• 偏相关:在复相关中,当假定其他变量不 变时,其中两个变量间的相关关系称为偏 相关。例如,在假定人们收入水平不变的 条件下,某种商品的需求与其价格水平的 关系就是一种偏相关。
9
三、相关分析与回归分析
• (一)相关分析 • 是用一个指标(相关系数)来表明现象
之间相互依存的密切程度。 • (二)回归分析 • 是根据相关关系的具体形态,选择一个
• 曲线相关:如果现象之间的相关关系近似 地表现为某种曲线形式时,就称这种相关 关系为曲线相关。

统计学原理第8章相关与回归分析

统计学原理第8章相关与回归分析
两个回归方程。() (9) 估计标准误差指的就是因变量的估计值yc与实际值y之间的平均误差程度。() (10) 在任何相关条件下,都可以用相关系数r说明变量之间相关的密切程度。() (11) 若变量x与y的相关系数r1=-0.8,变量p与q的相关系数r2=-0.92,由于r1>r2,因
此x与y间相关的程度比较高。()
27
同步练习
★ 判断题 (1) 根据结果标志对因素标志的不同反映,可以把现象间数量上的依存关系划分为
函数关系和相关关系。() (2) 正相关指的就是因素标志和结果标志的数量变动方向都是上升的。() (3) 相关系数是测定变量间相关密切程度的唯一方法。() (4) 只有当相关系数接近于1时,才能说明两变量之间存在高度相关系数。() (5) 若变量x的值减少,y的值也减少,说明变量x与y之间存在相关关系。() (6) 回归系数b和相关系数r都可以来判断现象之间相关的密切程度。() (7) 若回归直线方程为:yc=160-2.3x,则变量x与y之间存在负的相关关系。() (8) 回归分析中,对于没有明显因果关系的两个变量x与y,可以建立y依x和x依y的
D产量每增加1000件时,单位成本下降78元
E产品的产量随生产用固定资产价值的减少而减少
(4) 测定现象间有无相关关系的方法是()。
A编制相关表 B绘制相关图 C对客观现象作定性分析
D计算估计标准误系数时,()。
A相关的两个变量都是随机的
B相关的两个变量是对等的关系
C相关的两个变量一个是随机的,一个是可以控制的量
特点 在进行回归分析时,必须根据研究目的确定相关的变量中谁为自变 量,谁为因变量。 回归方程的作用在于由自变量的数值来估计因变量的值。一个回 归方程只能作一种推算或估计。 在回归分析中,因变量是随机的,自变量是可以控制的量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第10章 相关与回归分析
§10.1 §10.2 §10.3 §10.4 相关分析的意义和内容 直线相关的测定 一元线性回归分析 利用回归方程进行估计和预测
学习目标
1. 掌握相关系数的分析方法
2. 掌握一元线性回归的基本原理和参数的 最小二乘估计 3. 了解回归直线的拟合优度的分析 4. 利用回归方程进行估计和预测
14 12
不良贷款
8 6 4 2 0 0 10 20 30 40 贷款项目个数
不良贷款
10
10 8 6 4 2 0 0 50 100 150 200 固定资产投资额
不良贷款与贷款项目个数的散点图
不良贷款与固定资产投资额的散点图
二、直线相关的测定——相关系数
(一)相关系数(correlation coefficient)的概念
父亲身高(y)与子女身高(x)之间的关系
收入水平(y)与受教育程度(x)之间的关系
粮食亩产量(y)与施肥量(x1) 、降雨量(x2) 、 温度(x3)之间的关系 商品的消费量(y)与居民收入(x)之间的关系 商品销售额(y)与广告费支出(x)之间的关系
二、相关关系种类
完全相关 不完全相关 不相关
相关程度
相关方向
正相关 负相关
相关形式
线性相关 非线性相关
单相关 影响因素多少 复相关
三、相关分析的内容
相关分析:就是研究两个或两个以上变量之间 相互关系的统计分析方法。 内容: 1.确定相关关系的存在、相关方向和存在形 式、密切程度(狭义相关分析) 2.确定相关关系的数学表达式 (回归分析) 3.利用建立的模型进行预测和控制(应用)
§10.2相关关系的描述与测定
一、散点图 二、直线相关的测定——相关系数
一、散点图
(scatter diagram)









非线性相关
完全正线性相关
完全负线性相关



§10.1 相关分析的意义和内容
一. 相关关系的概念 二. 相关关系种类 三. 相关分析的内容
一、相关关系的概念
是指变量间的不确定的依存关系。
函数关系
变量间的关系
相关关系
(一)函数关系
1. 是一一对应的确定关系 2. 设有两个变量 x 和 y ,变量 y 随变量 x 一起变化,并完 y 全依赖于 x ,当变量 x 取某 个数值时, y 依确定的关系 取相应的值,则称 y 是 x 的 函数,记为 y = f (x),其中 x 称为自变量,y 称为因变量 3. 各观测点落在一条线上 x
(二)相关关系
(correlation)
1. 变量间关系不能用函数关 y 系精确表达 2. 一个变量的取值不能由另 一个变量唯一确定 3. 当变量 x 取某个值时,变 量 y 的取值可能有几个 4. 各观测点分布在一条线周 x 围
相关关系
(几个例子)
相关关系的例子
相关系数分子和分母的意义
2.标准差

x

y
yy x x x x yy x y r n n x y
这意味着,X、Y于各自平均值的离差,分别用 各自标准差为尺度加以标准化,然后再求标准数量的 协方差。

回归一词是 怎么来的?
趋向中间高度的回归
回归这个术语是由英国著名统计学家Francis Galton在19世纪末期研究孩子及他们的父母的身高 时提出来的。Galton发现身材高的父母,他们的孩 子也高。但这些孩子平均起来并不像他们的父母那 样高。对于比较矮的父母情形也类似:他们的孩子 比较矮,但这些孩子的平均身高要比他们的父母的 平均身高高。 Galton把这种孩子的身高向中间值靠 近的趋势称之为一种回归效应,而他发展的研究两 个数值变量的方法称为回归分析。
3.
根 据 显 著 性 水 平 = 0.05 , 查 t 分 布 表 得 t(n2)=2.0687 由于t=7.5344>t(25-2)=2.0687,拒绝H0,不良贷 款与贷款余额之间存在着显著的正线性相关关系
相关系数的显著性检验
(例题分析)
各相关系数检验的统计量
为检验起来方便,利用变量t与r之间的关系,可 以得到以下等式:
3. 因变量与自变量之间的关系用一条线性方 程来表示
(二)一元线性回归模型
1. 描述因变量 y 如何依赖于自变量 x 和误差项 的 方程称为回归模型 2. 一元线性回归模型可表示为 y = b b1 x
y
3.5 3 2.5 2 1.5 1 0.5 0 1 2 3 4 5 x
y 3.5 3 2.5 2 1.5 1 0.5 0 1 2 3 4 5 x
从图中可见,两项资料的变异情况不同。 r1==1 r2=0.89
相关系数
(计算化简公式)
化简后的计算公式
L ( x x )( y y ) xy r 2 2 L L ( x x ) ( y y ) x y
回归分析与相关分析的区别
1. 相关分析中,变量 x 变量 y 处于平等的地位;回 归分析中,变量 y 称为因变量,处在被解释的地 位,x 称为自变量,用于预测因变量的变化 2. 相关分析中所涉及的变量 x 和 y 都是随机变量; 回归分析中,因变量 y 是随机变量,自变量 x 可 以是随机变量,也可以是非随机的确定变量 3. 相关分析主要是描述两个变量之间线性关系的密 切程度;回归分析不仅可以揭示变量 x 对变量 y 的影响大小,还可以由回归方程进行预测和控制
确定显著性水平,并作出决策
n 2 ~t( n 2 ) 2 1 r
相关系数的显著性检验
(例题分析)
对不良贷款与贷款余额之间的相关系数进行显著性检 (0.05) 1. 提出假设:H0: ;H1: 0 2. 计算检验的统计量
25 2 t 0 . 8436 7 . 5344 2 1 0 . 8436
( x x )( y y ) n
相关系数分子和分Βιβλιοθήκη 的意义1.协方差----
xy
xy
x x y y n
意义: 1.显示与是正相关还是负相关 2.显示与相关程度的大小 但是协方差是以绝对数表现的均值,其数值受到 变量值大小的影响,而且有计量单位,不便于进行比 较,因此仍然不完善。
一元线性回归
一. 什么是回归分析? 二. 一元线性回归模型 三. 回归直线的拟合优度
一、什么是回归分析?
(Regression)
1. 从一组样本数据出发,确定变量之间的数学 关系式,进而确定一个或几个变量(自变量 )的变化对另一个特定变量(因变量)的影 响程度。 2. 对这些关系式的可信程度进行各种统计检验 ,并从影响某一特定变量的诸多变量中找出 哪些变量的影响显著,哪些不显著 3. 利用所求的关系式,根据一个或几个变量的 取值来预测或控制另一个特定变量的取值, 并给出这种预测或控制的精确程度
1. 对变量之间线性关系密切程度的度量指标 2. 若相关系数是根据总体全部数据计算的,称 为总体相关系数,记为 3. 若是根据样本数据计算的,则称为样本相关 系数,记为 r
(二)相关系数的计算和应用
用积差法计算样本相关系数的公式为:
xy ( x x )( y y ) r x y n x y xy 协方差 xy
散点图
(例题分析)
散点图
(例题分析)
14
不 良 贷 款
14 12 10 8 6 4 2 0
0 100 200 300 400
12 10
不良贷款
8 6 4 2 0 贷款余额 不良贷款与贷款余额的散点图
14 12
0
10
20
30
累 计 应 收 贷 款 不 良 贷 款 与 累 计 应 收 贷 款 的 散 点 图
相关系数的显著性检验
(检验的步骤)
1. 2. 3. 4. 检验两个变量之间是否存在线性相关关系 等价于对回归系数 b1的检验 采用R.A.Fisher提出的 t 检验 检验的步骤为

提出假设:H0: ;H1: 0
t r 计算检验的统计量:
• 若t>t,拒绝H0 • 若t<t,不拒绝H0
函数关系
(几个例子)
函数关系的例子
某种商品的销售额(y)与销售量(x)之间的关系可 表示为 y = px (p 为单价) 圆的面积(S)与半径之间的关系可表示为S=R2 企业的原材料消耗额(y)与产量(x1) 、单位产量 消耗(x2) 、原材料价格(x3)之间的关系可表示为 y = x1 x2 x 3
负线性相关

不相关
正线性相关
散点图
(例题分析)
【例】一家大型商业银行在多个地区设有分行 ,其业务主要是进行基础设施建设、国家重 点项目建设、固定资产投资等项目的贷款。 近年来,该银行的贷款额平稳增长,但不良 贷款额也有较大比例的提高,这给银行业务 的发展带来较大压力。为弄清楚不良贷款形 成的原因,希望利用银行业务的有关数据做 些定量分析,以便找出控制不良贷款的办法 。下面是该银行所属的 25 家分行 2002 年的 有关业务数据
或化简为 r
n n x x y y
2 2 2 2
n xy x y
相关系数
(取值及其意义)
1. 2. r 的取值范围是 [-1,1] |r|=1,为完全相关

r =1,为完全正相关 r =-1,为完全负正相关
3. 4. 5. 6.
r = 0,不存在线性相关关系相关 -1r<0,为负相关 0<r1,为正相关 |r| 越趋于 1 表示关系越密切; |r| 越趋于 0 表示关 系越不密切
相关文档
最新文档