2019-2020辽宁省绥中县九年级第一学期期末数学试卷

合集下载

2019-2020学年九年级(上)期末数学试卷

2019-2020学年九年级(上)期末数学试卷

2019-2020学年九年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列事件中,是随机事件的是()A. 任意画一个三角形,其内角和是360°B. 任意抛一枚图钉,钉尖着地C. 通常加热到100℃时,水沸腾D. 太阳从东方升起2.若函数y=mx m2−5是反比例函数,且它的图象在第一、三象限,则m的值为()A. 2B. −2C. √6D. −√63.如图,AB//CD,AB=6,CD=9,AD=10,则OD的长为()A. 4B. 5C. 6D. 74.若正方形的边长为6,则其外接圆的半径为()A. 3B. 3√2C. 6D. 6√25.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A. 55°B. 60°C. 65°D. 70°6.如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是()A. 58°B. 60°C. 64°D. 68°的图象上,则x1,x2,x3的大小关系是()7.若点A(x1,−6),B(x2,−2),C(x3,2)在反比例函数y=12xA. x1<x2<x3B. x2<x1<x3C. x2<x3<x1D. x3<x2<x18.组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A. x(x+1)=28B. 1x(x−1)=28 C. x(x−1)=28 D. x(x−1)=2829.如图,△ABC与△DEF是位似图形,位似比为2:3,已知DF=4,则AC的长为()1A. 23B. 43C. 83D. 16310.已知直线y=n与二次函数y=12(x−2)2−1的图象交于点B,点C,二次函数图象的顶点为A,当△ABC是等腰直角三角形时,则n的值为()A. 1B. √2C. 2−√2D. 2+√2二、填空题(本大题共5小题,共15.0分)11.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是______.12.把二次函数y=x2−4x+3的图象沿y轴向下平移1个单位长度,再沿x轴向左平移3个单位长度后,此时抛物线相应的函数表达式是______.13.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(−2,5)的对应点A′的坐标是______.14.如图,在扇形OAB中,∠AOB=90°,点C为OB的中点,CD⊥OB交弧AB于点D.若OA=2,则阴影部分的面积为______.15.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为______.三、计算题(本大题共1小题,共8.0分)16.一定质量的氧气,它的密度ρ(kg/m3)是它的体积V(m3)的反比例函数,当V=10m3时,ρ=1.43kg/m3.(1)求ρ与V的函数关系式;(2)求当V=2m3时求氧气的密度ρ.第!异常的公式结尾页,共21页 2四、解答题(本大题共7小题,共67.0分)17.一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;(Ⅱ)求两次取出的小球标号相同的概率;(Ⅲ)求两次取出的小球标号的和大于6的概率.18.已知关于x的方程x2−(m+1)x+2(m−1)=0(1)求证:无论m取何值时,方程总有实数根;(2)若等腰三角形一边长为4,另两边恰好是此方程的根,求此三角形的另两边长.19.如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,(Ⅰ)求证:△AFE∽△CFD;(Ⅱ)若AB=4,AD=3,求CF的长.320.如图,AB为⊙O的直径,C、F为⊙O上两点,且点C为弧BF的中点,过点C作AF的垂线,交AF的延长线于点E,交AB的延长线于点D.(1)求证:DE是⊙O的切线;(2)若AE=3,DE=4,求⊙O的半径的长.21.如图,一次函数y=x+4的图象与反比例函数y=kx(k为常数且k≠0)的图象交于A(−1,a),B两点,与x轴交于点C.(1)求此反比例函数的表达式;(2)若点P在x轴上,且S△ACP=32S△BOC,求点P的坐标.第!异常的公式结尾页,共21页 422.数学兴趣小组活动中,小明进行数学探究活动,将边长为√2的正方形ABCD与边长为√5的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.23.如图,在平面直角坐标系中,直线y=−x+3与x轴,y轴分别交于点A,点B,抛物线y=ax2+bx+c(a≠0)经过A,B与点C(−1,0).5第!异常的公式结尾页,共21页6(1)求抛物线的解析式;(2)点P 是直线AB 上方的抛物线上一动点(不与点A 、B 重合),过点P 作x 轴的垂线,垂足为D ,交线段AB 于点E.设点P 的横坐标为m .①求△PAB 的面积y 关于m 的函数关系式,当m 为何值时,y 有最大值,最大值是多少?②若点E 是垂线段PD 的三等分点,求点P 的坐标.答案和解析1.【答案】B【解析】解:A、任意画一个三角形,其内角和是360°是不可能事件,故本选项错误;B、任意抛一枚图钉,钉尖着地是随机事件,故本选项正确;C、通常加热到100℃时,水沸腾是必然事件,故本选项错误;D、太阳从东方升起是必然事件,故本选项错误;故选:B.根据随机事件、必然事件以及不可能事件的定义即可作出判断.此题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.【答案】A【解析】【分析】本题考查的是反比例函数的定义和性质,形如y=k(k为常数,k≠0)的函数称为反比例函数.x根据反比例函数的定义列式求出m,根据反比例函数的性质得到m>0,得到答案.【解答】解:∵函数y=mx m2−5是反比例函数,∴m2−5=−1,解得,m=±2,∵它的图象在第一、三象限,∴m>0,∴m=2,故选A.3.【答案】C7【解析】解:∵AB//CD,∴△AOB∽△DOC,∴ABCD=AOOD,∵AB=6,CD=9,AD=10,∴69=10−ODOD,∴OD=6,故选:C.根据相似三角形的判定和性质列比例式即可得到结论.本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.4.【答案】B【解析】解:作OE⊥AD于E,连接OD,则AE=DE=3,OE=3.在Rt△ODE中,OD=√DE2+OE2=3√2.故选:B.作OE⊥AD于E,连接OD,在Rt△ODE中,根据垂径定理和勾股定理即可求解.此题主要考查了正多边形和圆,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.5.【答案】C【解析】【分析】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.根据旋转的性质和三角形内角和解答即可.【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°−20°=70°,第!异常的公式结尾页,共21页8∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.6.【答案】A【解析】【分析】此题考查了圆周角的性质与等腰三角形的性质.此题比较简单,解题的关键是注意数形结合思想的应用.根据半径相等,得出OC=OA,进而得出∠C=32°,利用直径和圆周角定理解答即可.【解答】解:∵OA=OC,∴∠C=∠OAC=32°,∵BC是直径,∴∠B=90°−32°=58°,故选A.7.【答案】B【解析】解:∵点A(x1,−6),B(x2,−2),C(x3,2)在反比例函数y=12的图象上,x∴x1=−2,x2=−6,x3=6;9又∵−6<−2<6,∴x2<x1<x3;故选:B.,分别求得x1,x2,根据反比例函数图象上点的坐标特征,将A、B、C三点的坐标代入反比例函数的解析式y=12xx3的值,然后再来比较它们的大小.的某点一定在该函数的图象上.本题考查了反比例函数图象上点的坐标特征.经过反比例函数y=kx8.【答案】B【解析】解:每支球队都需要与其他球队赛(x−1)场,但2队之间只有1场比赛,所以可列方程为:1x(x−1)=4×7.2故选:B.关系式为:球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可.本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.9.【答案】C【解析】解:∵△ABC与△DEF是位似图形,位似比为2:3,∴AC:DF=2:3,∴AC:4=2:3,则AC=8.3故选:C.位似图形就是特殊的相似图形位似比等于相似比.利用相似三角形的性质即可求解.本题主要考查位似的定义.解题的关键是掌握位似图形是相似图形的特殊形式,位似比等于相似比的特点.10.【答案】A【解析】【分析】本题考查了二次函数图象的性质以及根与系数的关系,属于较难题.设B(x1,n)、C(x2,n),作AD⊥BC,所以AD=1BC,即BC=2AD,AD=n−(−1)=n+1,BC=2√2+2n,所2第!异常的公式结尾页,共21页10以2√2+2n=2(n+1),容易求出n=1.【解答】解:设B(x1,n)、C(x2,n),作AD⊥BC,垂足为D,连接AB,AC,∵y=12(x−2)2−1,∴顶点A(2,−1),n>−1,AD=n−(−1)=n+1∵直线y=n与二次函数y=12(x−2)2−1的图象交于点B、C,∴12(x−2)2−1=n,化简,得x2−4x+2−2n=0,故x1+x2=4,x1x2=2−2n,∴BC=|x1 −x2|=√(x1−x2)2=√(x1+x2)2−4x1x2=√42−4(2−2n)=2√2+2n,∵点B、C关于直线AD对称,∴D为线段BC的中点,∵△ABC是等腰直角三角形,∴AD=12BC,即BC=2AD2√2+2n=2(n+1),∴2+2n=(n+1)2,化简,得n2=1,∴n=1或−1,n=−1时直线y=n经过点A,不符合题意舍去,所以n=1.故选:A.11.【答案】5611【解析】解:∵共6个球,有5个红球,∴从袋子中随机摸出一个球,它是红球的概率为56.故答案为:56.根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.12.【答案】y=(x+1)2−2【解析】解:∵y=x2−4x+3=(x−2)2−1,∴抛物线y=x2−4x+3沿y轴向下平移1个单位长度,再沿x轴向左平移3个单位长度后,得到抛物线解析是:y=(x−2+3)2−1−1=(x+1)2−2.故答案为:y=(x+1)2−2.首先将原式转化为顶点式,进而利用二次函数平移规律进而求出即可.本题主要考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.13.【答案】A′(5,2)【解析】解:∵线段AB绕点O顺时针旋转90°得到线段A′B′,∴△ABO≌△A′B′O,∠AOA′=90°,∴AO=A′O.作AC⊥y轴于C,A′C′⊥x轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′−∠COA′=∠COC′−∠COA′,第!异常的公式结尾页,共21页1213∴∠AOC =∠A ′OC ′.在△ACO 和△A ′C ′O 中,{∠ACO =∠A ′C ′O ∠AOC =∠A ′OC ′AO =A ′O , ∴△ACO ≌△A ′C ′O(AAS),∴AC =A ′C ′,CO =C ′O .∵A(−2,5),∴AC =2,CO =5,∴A ′C ′=2,OC ′=5,∴A ′(5,2).故答案为:A ′(5,2).由线段AB 绕点O 顺时针旋转90°得到线段A ′B ′可以得出△ABO ≌△A ′B ′O ′,∠AOA ′=90°,作AC ⊥y 轴于C ,A ′C ′⊥x 轴于C ′,就可以得出△ACO ≌△A ′C ′O ,就可以得出AC =A ′C ′,CO =C ′O ,由A 的坐标就可以求出结论.本题考查了旋转的性质的运用,全等三角形的判定及性质的运用,等式的性质的运用,点的坐标的运用,解答时证明三角形全等是关键.14.【答案】23π−√32【解析】解:连接DO 、BD∵点C 为OB 的中点,CD ⊥OB ,∴BD =OD ,∴BD =OD =OA =OB =2,∴△OBD 是等边三角形,∴∠COD=60°,则CD=√OD2−OC2=√3,∴阴影部分的面积=60π×22360−12×1×√3=23π−√32,故答案为:23π−√32.本题考查了扇形面积的计算,平行线的性质,等边三角形的判定和性质,根据等边三角形的性质出∠COD=60°是解题的关键.连接DO、BD,△OBD是等边三角形,得到∠COD=60°,再根据扇形面积公式计算、三角形面积公式即可.15.【答案】65或3【解析】【分析】根据勾股定理求出BD,分PD=DA、P′D=P′A两种情况,根据相似三角形的性质计算.本题考查的是相似三角形的性质、勾股定理和矩形的性质,掌握相似三角形的性质定理、灵活运用分情况讨论思想是解题的关键.【解答】解:∵四边形ABCD为矩形,∴∠BAD=90°,∴BD=√AB2+AD2=10,当PD=DA=8时,BP=BD−PD=2,∵△PBE∽△DBC,∴BPBD =PECD,即210=PE6,解得PE=65,当P′D=P′A时,点P′为BD的中点,∴P′E′=12CD=3,故答案为:65或3.第!异常的公式结尾页,共21页1416.【答案】解:(1)设ρ=kV,当V=10m3时,ρ=1.43kg/m3,所以1.43=k10,即k=14.3,所以ρ与V的函数关系式是ρ=14.3V;(2)当V=2m3时,把V=2代入得:ρ=7.15(kg/m3),所以当V=2m3时,氧气的密度为7.15(kg/m3).【解析】首先根据题意,一定质量的氧气,它的密度ρ(kg/m3)是它的体积V(m3)的反比例函数,将数据代入用待定系数法可得反比例函数的关系式;进一步求解可得答案.现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.17.【答案】解:(Ⅰ)画树状图得:(Ⅱ)∵共有16种等可能的结果,两次取出的小球的标号相同的有4种情况,∴两次取出的小球标号相同的概率为416=14;(Ⅲ)∵共有16种等可能的结果,两次取出的小球标号的和大于6的有3种结果,∴两次取出的小球标号的和大于6的概率为316.【解析】(Ⅰ)根据题意可画出树状图,由树状图即可求得所有可能的结果.(Ⅱ)根据树状图,即可求得两次取出的小球标号相同的情况,然后利用概率公式求解即可求得答案.(Ⅲ)根据树状图,即可求得两次取出的小球标号的和大于6的情况,然后利用概率公式求解即可求得答案.此题考查了列表法与树状图法求概率的知识.此题难度不大,解题的关键是注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.18.【答案】解:(1)证明:∵Δ=[−(m+1)]2−4×2(m−1)=m2−6m+9=(m−3)2≥0,15第!异常的公式结尾页,共21页 16∴无论m 取何值,这个方程总有实数根;(2)若腰长为4,将x =4代入原方程,得:16−4(m +1)+2(m −1)=0,解得:m =5,∴原方程为x 2−6x +8=0,解得:x 1=2,x 2=4.组成三角形的三边长度为2、4、4;若底边长为4,则此方程有两个相等实数根,∴Δ=0,即m =3,此时方程为x 2−4x +4=0,解得:x 1=x 2=2,由于2+2=4,不能构成三角形,舍去;所以三角形另外两边长度为4和2.【解析】本题考查了根的判别式、三角形三边关系、等腰三角形的性质以及解一元二次方程,解题的关键是:(1)牢记“当Δ≥0时,方程有实数根”;(2)代入x =4求出m 值.(1)根据方程的系数结合根的判别式,即可得出Δ=(m −3)2≥0,由此即可证出:无论m 取何值,这个方程总有实数根;(2)分腰长为4和底边长度为4两种情况分别求解可得.19.【答案】(Ⅰ)证明:∵四边形ABCD 是矩形,∴AE//DC∴∠FAE =∠FCD ,∠FEA =∠FDC∴△AFE ∽△CFD ;(Ⅱ)解:由(1)知△AFE ∽△CFD ,∴AF CF =AE CD 而E 是边AB 的中点,且AB =4,AD =3∴AE =2,AC =5∴AF CF =24=12 而AC =5∴AF =53,CF =103故CF的长为103.【解析】本题考查的是相似三角形的判定与性质,根据对应边成比例即可利用已知线段求出未知线段的长度.(Ⅰ)根据矩形对边平行,有AE//DC,可知△AFE∽△CFD;(Ⅱ)根据相似三角形的性质可得AFCF =AECD,再利用已知线段的长代入即可求出CF的长.20.【答案】(1)证明:连接OC,∵点C为弧BF的中点,∴弧BC=弧CF.∴∠BAC=∠FAC,∵OA=OC,∴∠OCA=∠OAC.∴∠OCA=∠FAC,∴OC//AE,∵AE⊥DE,∴OC⊥DE.∴DE是⊙O的切线.(2)解:由勾股定理得AD=5,∵∠OCD=∠AEC=90°,∠D=∠D,∴△OCD∽△AED,∴ODAD =OCAE,即5−r5=r3,解得r=158,∴⊙O的半径长为158.【解析】(1)连接OC,如图,由弧BC=弧CF得到∠BAC=∠FAC,加上∠OCA=∠OAC.则∠OCA=∠FAC,所以OC//AE,从而得到OC⊥DE,然后根据切线的判定定理得到结论;(2)利用勾股定理计算出AD=5,然后再证得△OCD∽△AED,得出ODAD =OCAE,则5−r5=r3,解得结果即可.17第!异常的公式结尾页,共21页 18本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.21.【答案】解:(1)把点A(−1,a)代入y =x +4,得a =3,∴A(−1,3)把A(−1,3)代入反比例函数y =k x ∴k =−3,∴反比例函数的表达式为y =−3x(2)联立两个函数的表达式得{y =x +4y =−3x解得{x =−1y =3或{x =−3y =1∴点B 的坐标为B(−3,1)当y =x +4=0时,得x =−4∴点C(−4,0)设点P 的坐标为(x,0)∵S △ACP=32S △BOC ∴12×3×|x −(−4)|=32×12×4×1 解得x 1=−6,x 2=−2∴点P(−6,0)或(−2,0)【解析】(1)利用点A 在y =−x +4上求a ,进而代入反比例函数y =kx求k . (2)联立方程求出交点,设出点P 坐标表示三角形面积,求出P 点坐标.本题是一次函数和反比例函数综合题,考查利用方程思想求函数解析式,通过联立方程求交点坐标以及在数形结合基础上的面积表达. 22.【答案】解:(1)四边形ABCD 与四边形AEFG 是正方形,∴AD =AB ,∠DAG =∠BAE =90°,AG =AE19在△ADG 和△ABE 中,{AD =AB∠DAG =∠BAE AG =AE,∴△ADG ≌△ABE(SAS),∴∠AGD =∠AEB ,如图1,延长EB 交DG 于点H ,∵△ADG 中∠AGD +∠ADG =90°,∴∠AEB +∠ADG =90°,∵△DEH 中,∠AEB +∠ADG +∠DHE =180°,∴∠DHE =90°,∴DG ⊥BE ;(2)∵四边形ABCD 与四边形AEFG 是正方形,∴AD =AB ,∠DAB =∠GAE =90°,AG =AE ,∴∠DAB +∠BAG =∠GAE +∠BAG ,∴∠DAG =∠BAE ,在△ADG 和△ABE 中,{AD =AB∠DAG =∠BAE AG =AE,∴△ADG ≌△ABE(SAS),∴DG =BE ,如图2,过点A 作AM ⊥DG 交DG 于点M ,∠AMD =∠AMG =90°,∵BD 是正方形ABCD 的对角线,∴∠MDA =∠MDA =∠MAB =45°,BD =2,∴AM =12BD =1,在Rt △AMG 中,∵AM 2+CM 2=AG 2,∴GM =2,∵DG =DM +GM =1+2=3,∴BE =DG =3.第!异常的公式结尾页,共21页 20 【解析】(1)由正方形的性质可证△ADG ≌△ABE(SAS),因此可证得∠AGD =∠AEB ,延长EB 交DG 于点H ,然后由三角形的内角和和直角三角形的两锐角互余可证得结论;由正方形的性质和等量代换可证△ADG ≌△ABE(SAS),因此可证得DG =BE ;(2)过点A 作AM ⊥DG 交DG 于点M ,根据正方形的性质可证得DM =AM =√2,然后根据勾股定理可求得GM 的长,进而可求得BE =DG =DM +GM ;本题主要考查了正方形的性质,锐角三角函数,解本题的关键是全等三角形的性质和判定以及勾股定理的综合应用. 23.【答案】解:(1)∵直线y =−x +3与x 轴,y 轴分别交于点A ,点B ,∴A(3,0),B(0,3),把A(3,0),B(0,3),C(−1,0)代入y =ax 2+bx +c 得,{9a +3b +c =0a −b +c =0c =3,解得:{a =−1b =2c =3,∴抛物线的解析式为:y =−x 2+2x +3;(2)①∵点P 的横坐标为m ,∴P(m,−m 2+2m +3),∵PD ⊥x 轴,∴E(m,−m +3),∴PE =−m 2+2m +3+m −3=−m 2+3m ,∴y =12(−m 2+3m)⋅m +12(−m 2+3m)(3−m),∴y 关于m 的函数关系式为:y =−3m 2+6m ,∵y =−3m 2+6m =−3(m −1)2+3,∴当m =1时,y 有最大值,最大值是3;②当PE =2ED 时,即−m 2+3m =2(−m +3),解得:m =2或m =3(不合题意舍去),当2PE =ED 时,即−2m 2+6m =−m +3,整理得,2m 2−7m +3=0,解得:m =12,m =3,(不合题意舍去),∴P(2,3),(12,15 4).【解析】(1)解方程得到A(3,0),B(0,3),解方程组即可得到结论;(2)①根据已知条件得到P(m,−m2+2m+3),求得E(m,−m+3),于是得到PE=−m2+2m+3+m−3=−m2+ 3m,根据三角形的面积公式即可得到结论;②分两种情况讨论即可.本题主要考查的是待定系数法求二次函数的解析式、一次函数与坐标轴的交点,二次函数的性质,正确的理解题意是解题的关键.21。

2019-2020学年度第一学期九年级数学期末试卷试题(含答案)

2019-2020学年度第一学期九年级数学期末试卷试题(含答案)

2019~2020学年度第一学期期末检测九年级数学评分标准(其他解法参照给分)一、选择题(本大题共8小题,每小题3分,共24分.)二、填空题(本大题共10小题,每小题3分,共30分)9.12; 10.1:4; 11.2; 12.>; 13.110;14.不具有; 15. 16.4; 17.16; 18.2+三、解答题(本大题共10小题,共86分.)19.(本题共2小题,每题5分,共10分)(1)(1)计算:1032sin302020-+︒-解:原式11=2132+⨯-…………………………………………………3分 1113=+-……………………………………………………4分 13=…………………………………………………………5分 (2)解方程:2340x x +-=(解法不唯一)解:()()410x x +-=,……………………………………………………7分40x +=,10x -=…………………………………………………9分 1241x x =-=,………………………………………………………10分20.(本小题7分)解:………………………………………………………………………………………5分 P (两次取球得分的总分不小于5分)=13…………………………………………7分21.(本小题7分)(1)816%=50÷,5010148612m =----=;…………………………2分(2)本次抽查的学生文章阅读篇数的中位数为5,众数为4;………………4分(3)14120033650⨯=,………………………………………………………6分 答:估计该校学生在这一周内文章阅读的篇数为4篇的人数为336人.………7分22.(本小题8分)(1)△ABC 的面积是 12 ;…2分(2)如图所示………6分(3)若P (a ,b )为线段BC 上的任一 点,则变换后点P 的对应点'P 的坐标为 (,)22a b .………8分23.(本小题8分)解:设市政府从2017年到2019年对校舍建设投入资金的年平均增长率为x .…1分 根据题意得,28(1)11.52x +=.…………………………………………………4分解这个方程,得 1220% 2.2x x ==-,(不合题意,舍去)……………………7分答:市政府从2017年到2019年对校舍建设投入资金的年平均增长率为20%…8分24.(本小题8分)解:(1)分别过点E 作EF ⊥AC ,EG ⊥AO,垂足为F 、G.∵至DE 处,测得顶点A 的仰角为75°, ∴∠AEG=75°……………1分∵在BC 处测得直立于地面的AO 顶点A 的仰角为30°,∴∠ACE=30°, ……2分 ∴∠CAE=∠AEG -∠ACE=45°……………………………………………3分(2)在Rt △CFE 中,CE=40,∴1sin 3040202EF CE =︒=⨯=………4分 在Rt △AFE 中,∠CAE =45°,AF=FE=20………5分∴sin 452EF AE ===︒…………………………………………6分(第24题)(3)20AC AF CF =+=在Rt △AFE 中,1sin 3020272AG AC =︒=⨯≈()……7分 ∴27 1.529AO AG OG =+=+≈……………………………8分25.(本小题9分)26.(本小题9分)m.…1分解:(1)设矩形生物园的长为xm,则宽为(8-x)m,小兔的活动范围的面积为y227.(本小题10分)(1)证明:如图1中,AE AD ⊥ ,90DAE ∴∠=︒,90E ADE ∠=︒-∠,…………1分AD 平分BAC ∠,12BAD BAC ∴∠=∠,同理12ABD ABC ∠=∠,…………………2分 ADE BAD DBA ∠=∠+∠ ,180BAC ABC C ∠+∠=︒-∠,11()9022ADE ABC BAC C ∴∠=∠+∠=︒-∠,(2)延长AD 交BC 于点F .AB AE = ,ABE E ∴∠=∠,BE 平分ABC ∠,ABE EBC ∴∠=∠,………………………4分E CBE ∴∠=∠,//AE BC ∴,……………………………………5分90AFB EAD ∴∠=∠=︒,BF BD AF DE=, :2:3BD DE = ,(3)ABC 与ADE 相似,90DAE ∠=︒,ABC ∴∠中必有一个内角为90︒ABC ∠ 是锐角,90ABC ∴∠≠︒.………………………………………………………7分 ①当90BAC DAE ∠=∠=︒时,12E C ∠=∠ , 12ABC E C ∴∠=∠=∠, 90ABC C ∠+∠=︒ ,30ABC ∴∠=︒,此时2ABC ADES S =V V .………………………………………8分 ②当90C DAE ∠=∠=︒时,1452E C ∠=∠=︒, 45EDA ∴∠=︒,ABC 与ADE 相似,45ABC ∴∠=︒,此时ABC ADE S S =V V .………………………………………9分28.(本小题10分) 解:(1)由抛物线2y ax bx c =++交x 轴于A 、B 两点,OA =1,OB =3,得点A 坐标为(1,0)-,点B 的坐标为(3,0);…………………………………2分 Q。

2019-2020学年度第一学期九年级数学期末考试题(附答案)

2019-2020学年度第一学期九年级数学期末考试题(附答案)

2019-2020学年度第一学期九年级数学期末考试题(附答案)一、单选题(共10题;共20分)1.下列事件是随机事件的是()A. 人长生不老B. 明天就是5月1日C. 一个星期有七天D. 2020年奥运会中国队将获得45枚金牌2.如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧AMB上一点,则sin∠APB的值为()A. B. C. D. 13.圆的弦长与它的半径相等,那么这条弦所对的圆周角的度数是()A. 30°B. 150°C. 30°或150°D. 60°4.已知一个扇形的半径是1,圆心角是120°,则这个扇形的弧长是()A. B. C. D.5.掷两枚硬币,则一枚硬币正面朝上,一枚硬币反面朝上的概率是( )A. 1B.C.D.6.若一个正六边形的半径为2,则它的边心距等于( ).A. 2B. 1C.D.7.如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平地面A处安置测倾器测得楼房CD顶部点D的仰角为45°,向前走20米到达A′处,测得点D的仰角为67.5°,已知测倾器AB的高度为1.6米,则楼房CD的高度约为(结果精确到0.1米,≈1.414)()A. 34.14米B. 34.1米C. 35.7米D. 35.74米8.如图,梯形ABCD中,AD∥BC,∠D=90°,以AB为直径的⊙O与CD相切于E,与BC相交于F,若AB=4,AD=1,则图中两阴影部分面积之和为()A. B. 2-1 C. D.9.如图,半径为1的圆O与正五边形ABCDE相切于点A、C,劣弧AC的长度为().A. B. C. D.10.如图,将边长为的正方形绕点逆时针旋转,那么图中阴影部分的面积为()A. B. C. D.二、填空题(共6题;共20分)11.如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,D、E分别是AC、BC上的一点,且DE=6 ,若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为________.12.△ABC中,∠A=40°,若点O是△ABC的外心,则∠BOC=________°;若点I是△ABC的内心,则∠BIC=________°.13.一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述试验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球________个.14.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是________.(11题)15.如图,在△ABC中,∠BAC=60°,点D是BC边上一点,连接AD,过点D分别作DE⊥AB于E,DF⊥AC于F.若AD=10,且DE=DF,则DE的长为________.(15题)(16题)16.如图,已知A,B,C,D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,一直到点B为止,点Q以2 cm/s的速度向点D移动,当点P停止运动时,点Q也停止运动.问:(1)P,Q两点从开始出发多长时间时,四边形PBCQ的面积是33 cm2?(2)P,Q两点从开始出发多长时间时,点P与点Q之间的距离是10 cm?三、解答题(共8题;共79分)17.如图,圆中两条弦AB、CD相交于点E,且AB=CD,求证:EB=EC.18.如图,跷跷板AB的一端B碰到地面时,AB与地面的夹角为18°,且OA=OB=3m.(1)求此时另一端A离地面的距离(精确到0.1m);(2)跷动AB,使端点A碰到地面,请画出点A运动的路线(写出画法,并保留画图痕迹),并求出点A 运动路线的长.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)19.如图,把一个转盘分成四等份,依次标上数字:1,2,3,4,若连续自由转动转盘二次。

2019-2020学年度第一学期九年级数学期末试题附答案答案

2019-2020学年度第一学期九年级数学期末试题附答案答案

我爱美丽靓湖2019-2020学年度第一学期九年级数学期末试题答案一、选择题(本大题10小题,共30分)1. 如图是一个小正方体的展开图,把展开图折叠成小正方体后,“爱”字一面的相对面上的字是( )A. 美B. 丽C. 靓D. 湖【答案】C【解析】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形, ∴有“爱”字一面的相对面上的字是靓.故选C .正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答. 本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2.当0<x <-1时,x ,1x,x 2的大小顺序是( ) A.1x <x <x 2 B .x <x 2<1x C .x 2<x <1x D.1x<x 2<x 【答案】A3.2018年5月3日,中国科学院在上海发布了中国首款人工智能芯片:寒武纪(MLU100),该芯片在平衡模式下的等效理论峰值速度达每秒128 000 000 000 000次定点运算,将数128 000 000 000 000用科学记数法表示为( )A .1.28×1014B .1.28×10﹣14C .128×1012D .0.128×1011【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:将128 000 000 000 000用科学记数法表示为:1.28×1014. 故选:A .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.如图,直线a ,b 被直线c 所截,a ∥b ,∠1=60°,则∠2的度数是( )A .120°B .60°C .45°D .30°【分析】利用两直线平行,同位角相等就可求出.【解答】解:∵直线被直线a 、b 被直线c 所截,且a ∥b ,∠1=60°∴∠2=∠1=60°.故选:B .【点评】本题考查了平行线的性质,应用的知识为两直线平行,同位角相等.5.若a +b =1,则a 2−b 2+2b 的值为( )A. 4B. 3C. 1D. 0【答案】C【解析】解:∵a +b =1,∴a 2−b 2+2b =(a +b)(a −b)+2b =a −b +2b =a +b =1.故选:C .首先利用平方差公式,求得a 2−b 2+2b =(a +b)(a −b)+2b ,继而求得答案. 此题考查了平方差公式的应用.注意利用平方差公式将原式变形是关键.6.为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为( )A. 1250条B. 1750条C. 2500条D. 5000条【答案】A【解析】解:由题意可得:50÷250=1250(条).故选:A .首先求出有记号的2条鱼在50条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.本题考查了统计中用样本估计总体,表示出带记号的鱼所占比例是解题关键.7.若不等式组{x >a x −3≤0,只有三个正整数解,则a 的取值范围为( ) A. 0≤a <1B. 0<a <1C. 0<a ≤1D. 0≤a ≤1 【答案】A【解析】解:{x >a ①x −3≤0 ②∵解不等式①得:x ≤3,又∵不等式组{x >a x −3≤0只有三个正整数解, ∴0≤a <1,故选:A .先确定不等式组的整数解,再求出a 的范围即可.本题考查了一元一次不等式组的整数解的应用,能根据已知不等式组的解集和整数解确定a 的取值范围是解此题的关键.8.方程(x+1)2=9的根是( )A .x =2B .x =-4C .x 1=2 x 2=-4D .x 1=4 x 2=-2解析: 把x=2、-2、4、-4分别代入方程(x+1)2=9中发现只有x =2和x =-4能使方程左右两边相等,所以选择答案C9.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确的是( )A. DE =12BCB. AD AB =AE ACC. △ADE∽△ABCD. S △ADE :S △ABC =1:2【答案】D【解析】解:∵D 、E 分别是AB 、AC 的中点,∴DE//BC ,DE =12BC ,∴ADAB =AEAC =DEBC =12,△ADE∽△ABC , ∴S △ADE :S △ABC =(AD AB )2=14, ∴A ,B ,C 正确,D 错误;故选:D .根据中位线的性质定理得到DE//BC ,DE =12BC ,再根据平行线分线段成比例定理和相似三角形的性质即可判定.该题主要考查了平行线分线段成比例定理和相似三角形的性质即可判定;解题的关键是正确找出对应线段,准确列出比例式求解、计算、判断或证明.10.如图,抛物线y =ax 2+bx +c(a ≠0)过点(1,0)和点(0,−2),且顶点在第三象限,设P =a −b +c ,则P 的取值范围是( )A. −4<P <0B. −4<P <−2C. −2<P <0D. −1<P <0【答案】A【解析】解:经过点(1,0)和(0,−2)的直线解析式为y =2x −2,当x =−1时,y =2x −2=−4,而x =−1时,y =ax 2+bx +c =a −b +c ,∴−4<a −b +c <0,即−4<P <0,故选:A .先利用待定系数法求出经过点(1,0)和(0,−2)的直线解析式为y =2x −2,则当x =−1时,y =2x −2=−4,再利用抛物线的顶点在第三象限,从而得到所以−4<a −b +c <0,根据顶点的纵坐标和与y 轴的交点坐标即可得出答案.本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左;当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c).抛物线与x 轴交点个数由判别式确定:△=b 2−4ac >0时,抛物线与x 轴有2个交点;△=b 2−4ac =0时,抛物线与x 轴有1个交点;△=b 2−4ac <0时,抛物线与x 轴没有交点二.填空题(本题共8小题,共计24分)11.函数y =√x+3x−1中自变量x 的取值范围是答案: x ≥−3且x ≠1【解析】【分析】本题考查了函数自变量的取值范围,要注意几点:①被开方数为非负数;②分母不为0;③a 0中a ≠0.根据被开方数为非负数和分母不为0列不等式计算.【解答】解:根据题意得:{x +3≥0x −1≠0, 解得:x ≥−3且x ≠1.12.因式分解:16a 2−16a +4= ______ .【答案】4(2a −1)2【解析】解:原式=4(4a 2−4a +1)=4(2a −1)2,故答案为:4(2a −1)2.首先提取公因式4,再利用完全平方公式进行二次分解即可.本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.13.一组数据2,4,a ,7,7的平均数x =5,则方差S 2=________.【答案】3.6【解析】解:∵数据2,4,a ,7,7的平均数x =5,∴2+4+a +7+7=25,解得a =5,∴方差s 2=15[(2−5)2+(4−5)2+(5−5)2+(7−5)2+(7−5)2]=3.6;故答案为:3.6.根据平均数的计算公式:x=x1+x2+⋯+x nn ,先求出a的值,再代入方差公式S2=1n[(x1−x)2+(x2−x)2+⋯+(x n−x)2]进行计算即可.本题主要考查的是平均数和方差的求法,一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1−x)2+(x2−x)2+⋯+(x n−x)2].14.若x1,x2是一元二次方程x2+3x−5=0的两个根,则x12x2+x1x22的值是______.【答案】15【解析】解:∵x1,x2是一元二次方程x2+3x−5=0的两个根,∴x1+x2=−3,x1x2=−5,∴x12x2+x1x22=x1x2(x1+x2)=−5×(−3)=15,故答案为:15.由根与系数的关系可求得(x1+x2)与x1x2的值,代入计算即可.本题主要考查根与系数的关系,由根与系数的关系求得(x1+x2)与x1x2的值是解题的关键.15.如图,在⊙O中,C是弦AB上一点,AC=2,CB=4.连接OC,过点C作DC⊥OC,与⊙O交于点D,DC的长为______.【答案】2√2【解析】解:延长DC交⊙O于点E.∵OC⊥DE,∴DC=CE,∵AC⋅CB=DC⋅EC(相交弦定理,可以证明△ADC∽△EBC得到),∴DC2=2×4=8,∵DC>0,∴DC=2√2,故答案为2√2.延长DC交⊙O于点E.由相交弦定理构建方程即可解决问题.本题考查垂径定理,相交弦定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.16.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为______米.(精确到1米,参考数据:√3≈1.73)【答案】208【解析】解:由题意可得:tan30°=BDAD =BD90=√33,解得:BD=30√3,tan60°=DCAD =DC90=√3,解得:DC=90√3,故该建筑物的高度为:BC=BD+DC=120√3≈208(m),故答案为:208.分别利用锐角三角函数关系得出BD,DC的长,进而求出该建筑物的高度.此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.17.如图,三角形ABC是边长为1的正三角形,与所对的圆心角均为120°,则图中阴影部分的面积为.考点:扇形面积的计算;等边三角形的性质.分析:设与相交于点O,连OA,OB,OC,线段OA将阴影的上方部分分成两个弓形,将这两个弓形分别按顺时针及逆时针方向绕点O旋转120°后,阴影部分便合并成△OBC,得到它的面积等于△ABC面积的三分之一,利用等边三角形的面积公式:×边长2,即可求得阴影部分的面积.解答:解:如图,设与相交于点O,连接OA,OB,OC,线段OA将阴影的上方部分分成两个弓形,将这两个弓形分别按顺时针及反时针绕点O旋转120°后,阴影部分便合并成△OBC,它的面积等于△ABC面积的三分之一,∴S阴影部分=××12=.故答案为:.点评:本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.也考查了等边三角形的面积公式:×边长2.x2−4与x轴交于A、B两点,P是以点C(0,3)18.如图,抛物线y=14为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是【答案】72【解析】解:连接BP,如图,x2−4=0,解得x1=4,x2=−4,则A(−4,0),当y=0时,14B(4,0),∵Q是线段PA的中点,∴OQ为△ABP的中位线,BP,∴OQ=12当BP最大时,OQ最大,而BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,∵BC=√32+42=5,∴BP′=5+2=7,∴线段OQ的最大值是7.2x2−4=0得A(−4,0),B(4,0),再判断OQ为△ABP的中位线连接BP,如图,先解方程14BP,利用点与圆的位置关系,BP过圆心C时,PB最大,如图,点P运动到得到OQ=12P′位置时,BP最大,然后计算出BP′即可得到线段OQ的最大值.本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了三角形中位线.三、解答题(本题共计10个小题,共计66分)19.(本题满分4分)计算:+(﹣3)0﹣6cos45°+()﹣1.【分析】本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+1﹣6×+2=3+1﹣3+2=3.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(本题满分4分)解不等式<x+1,并把它的解集在数轴上表示出来.【分析】根据解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.依次计算可得.【解答】解:去分母,得:5x﹣1<3x+3,移项,得:5x﹣3x<3+1,合并同类项,得:2x<4,系数化为1,得:x<2,将不等式的解集表示在数轴上如下:【点评】本题主要考查解一元一次不等式,解题的关键是掌握解不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.21.(本题满分5分)关于x的分式方程﹣=总无解,求a的值.【分析】分式方程去分母转化为整式方程,分类讨论a的值,使分式方程无解即可.【解答】解:去分母得:3﹣x﹣a(x﹣2)=﹣2,即(a+1)x=2a+5,当a=﹣1时,显然方程无解;当a≠﹣1时,x=,当x=2时,a不存在;当x=3时,a=2,综上,a的值为﹣1,2.【点评】本题考查了分式方程无解的条件,分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.22.(本题满分8分)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是(填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.【分析】(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.(2)由题意得:所调查的4个班征集到的作品数为:6÷=24(件),C班作品的件数为:24﹣4﹣6﹣4=10(件);继而可补全条形统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽中两名学生性别相同的情况,再利用概率公式即可求得答案.【解答】解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.故答案为抽样调查.(2)所调查的4个班征集到的作品数为:6÷=24件,平均每个班=6件,C班有10件,∴估计全校共征集作品6×30=180件.条形图如图所示,(3)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好抽中两名学生性别相同的概率为:=.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了概率公式.23.(本题满分6分)如图,在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连CF(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.【分析】(1)从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;(2)由∠BEF是120°,可得∠EBC为60°,即可得△BEC是等边三角形,求得BE=BC=CE=6,再过点E作EG⊥BC于点G,求的高EG的长,即可求得答案.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=EF,∴四边形BCFE是菱形;(2)解:∵∠BEF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴BE=BC=CE=6,过点E作EG⊥BC于点G,∴EG=BE•sin60°=6×=3,∴S菱形BCFE=BC•EG=6×3=18.【点评】本题考查菱形的判定和性质以及三角形中位线定理,以及菱形的面积的计算等知识点.注意证得△BEC是等边三角形是关键.24.(本题满分7分)快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?【答案】解:(1)设甲型机器人每台价格是x 万元,乙型机器人每台价格是y 万元,根据题意得{x +2y =142x +3y =24解这个方程组得:{x =6y =4答:甲、乙两种型号的机器人每台价格分别是6万元、4万元.(2)设该公可购买甲型机器人a 台,乙型机器人(8−a)台,根据题意得{6a +4(8−a)≤411200a +1000(8−a)≥8300解这个不等式组得32≤a ≤92∵a 为正整数∴a 的取值为2,3,4,∴该公司有3种购买方案,分别是购买甲型机器人2台,乙型机器人6台购买甲型机器人3台,乙型机器人5台购买甲型机器人4台,乙型机器人4台26.(本题满分7分)如图,已知一次函数与反比例函数的图象相交于点A (4,n ),与x 轴相交于点B .(1)填空:n 的值为 ,k 的值为 ; (2)以AB 为边作菱形ABCD ,使点C 在x 轴正半轴上,点D 在第一象限,求点D 的坐标;(3)考察反比函数的图象,当时,请直接写出自变量x 的取值范围.(1)3,1226.(本题满分7分)如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.(1)正方体的棱长为cm;(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.【解答】解:(1)由题意可得:12秒时,水槽内水面的高度为10cm,12秒后水槽内高度变化趋势改变,故正方体的棱长为10cm;故答案为:10;(2)设线段AB对应的函数解析式为:y=kx+b,∵图象过A(12,10),B(28,20),∴,解得:,∴线段AB对应的解析式为:y=x+(12≤x≤28);(3)∵28﹣12=16(s),∴没有立方体时,水面上升10cm,所用时间为:16秒,∵前12秒由立方体的存在,导致水面上升速度加快了4秒,∴将正方体铁块取出,经过4秒恰好将此水槽注满.27.(本题满分9分)如图,△ABC内接于⊙O,CD平分∠ACB交⊙O于D,过点D作PQ//AB 分别交CA、CB延长线于P、Q,连接BD.(1)求证:PQ是⊙O的切线;(2)求证:BD2=AC⋅BQ;(3)若AC、BQ的长是关于x的方程x+4x =m的两实根,且tan∠PCD=13,求⊙O的半径.(x−ℎ)2−2与x轴交于A,B两点(点A在点28.(本题满分9分)如图,抛物线l:y=12B的左侧),将抛物线l在x轴下方部分沿轴翻折,x轴上方的图象保持不变,就组成了函数f的图象.(1)若点A的坐标为(1,0).①求抛物线l的表达式,并直接写出当x为何值时,函数f的值y随x的增大而增大;②如图2,若过A点的直线交函数f的图象于另外两点P,Q,且S△ABQ=2S△ABP,求点P 的坐标;(2)当2<x<3时,若函数f的值随x的增大而增大,直接写出h的取值范围.4.【答案】解:(1)①把A(1,0)代入抛物线y=12(x−ℎ)2−2中得:12(x−ℎ)2−2=0,解得:ℎ=3或ℎ=−1,∵点A在点B的左侧,∴ℎ>0,∴ℎ=3,∴抛物线l的表达式为:y=12(x−3)2−2,∴抛物线的对称轴是:直线x=3,由对称性得:B(5,0),由图象可知:当1<x<3或x>5时,函数f的值y随x的增大而增大;②如图2,作PD⊥x轴于点D,延长PD交抛物线l于点F,作QE⊥x轴于E,则PD//QE,由对称性得:DF=PD,∵S△ABQ=2S△ABP,∴12AB⋅QE=2×12AB⋅PD,∴QE=2PD,∵PD//QE,∴△PAD∽△QAE,∴AEAD =QEPD,∴AE=2AD,设AD=a,则OD=1+a,OE=1+2a,P(1+a,−[12(1+ a−3)2−2]),∵点F、Q在抛物线l上,∴PD=DF=−[12(1+a−3)2−2],QE =12(1+2a −3)2−2, ∴12(1+2a −3)2−2=−2[12(1+a −3)2−2], 解得:a =83或a =0(舍),∴P(113,169); (2)当y =0时,12(x −ℎ)2−2=0,解得:x =ℎ+2或ℎ−2,∵点A 在点B 的左侧,∴A(ℎ−2,0),B(ℎ+2,0),如图3,作抛物线的对称轴交抛物线于点C ,分两种情况:①由图象可知:图象f 在AC 段时,函数f 的值随x 的增大而增大,则{ℎ−2≤2ℎ≥3, ∴3≤ℎ≤4,②由图象可知:图象f 点B 的右侧时,函数f 的值随x 的增大而增大,即:ℎ+2≤2,ℎ≤0,综上所述,当3≤ℎ≤4或ℎ≤0时,函数f 的值随x 的增大而增大.【解析】(1)①利用待定系数法求抛物线的解析式,由对称性求点B 的坐标,根据图象写出函数f 的值y 随x 的增大而增大(即呈上升趋势)的x 的取值;②如图2,作辅助线,构建对称点F 和直角角三角形AQE ,根据S △ABQ =2S △ABP ,得QE =2PD ,证明△PAD∽△QAE ,则AE AD =QE PD ,得AE =2AD ,设AD =a ,根据QE =2FD 列方程可求得a的值,并计算P 的坐标;(2)先令y =0求抛物线与x 轴的两个交点坐标,根据图象中呈上升趋势的部分,有两部分:分别讨论,并列不等式或不等式组可得h 的取值.本题是二次函数的综合题,考查了利用待定系数法求二次函数的解析式、二次函数的增减性问题、三角形相似的性质和判定,与方程相结合,找等量关系,第二问还运用了数形结合的思想解决问题.。

2019—2020九年级数学(上)期末试卷及答案

2019—2020九年级数学(上)期末试卷及答案

2019—2019—2020九年级数学(上)期末试卷及答案说明:1、本卷共有6个大题;24个小题;全卷满分120分;考试时间120分钟。

2、不要答在试题卷上;请将答案写在所给的答题卡相应位置;否则不给分。

一、选择题(本大题共6小题;每小题3分;共18分)1.下列电视台的台标;是中心对称图形的是A .B.C.D.2.掷一枚质地均匀的硬币10次;下列说法正确的是()A.必有5次正面朝上B.可能有5次正面朝上C.掷2次必有1次正面朝上D.不可能10次正面朝上3.用配方法解方程x2-2x-3=0时;配方后所得的方程为A、(x-1)2=4B、(x-1)2=2C、(x+1)2=4D、(x+1)2=24.九年级学生毕业时;每个同学都将自己的相片向全班其他同学各送一张留作纪念;全班共送了2070张相片;如果全班有x名学生;根据题意列出方程为A、错误!x(x-1)=2070B、错误!x(x+1)=2070C、x(x+1)=2070D、x(x-1)=20705.小明想用一个圆心角为120°;半径为6cm的扇形做一个圆锥的侧面(接缝处忽略不计);则做成的圆锥底面半径为A、4 cmB、3 cmC、2 cmD、1 cm6.已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图;其中正确的是A B C D二、填空题(本大题共8小题;每小题3分;共24分)7.一元二次方程x2=x的解为。

8.如图;若AB是⊙O的直径;AB=10;∠CAB=30°;则BC=。

9.如图所示的五角星绕中心点旋转一定的角度后能与自身完全重合;则其旋转的角度至少为。

10.某品牌手机两年内由每台2500元降低到每台1600元;则这款手机平均每年降低的百分率为。

B11.若正方形的边长为6cm ;则其外接圆半径是 。

12.林业工人为调查树木的生长情况;常用一种角卡工具;可以很快测出大树的直径;其工作原理如图所示;已知AC和AB 都与⊙O 相切;∠BAC =60°;AB =0.6m ;则这棵大树 的直径为 。

辽宁省2019-2020学年九年级上学期期末数学试题A卷

辽宁省2019-2020学年九年级上学期期末数学试题A卷

辽宁省2019-2020学年九年级上学期期末数学试题A卷姓名:________ 班级:________ 成绩:________一、单选题1 . 在平面直角坐标系中,直线(为常数)与抛物线交于,两点,且点在轴左侧,点坐标为,连结、,有以下说法:①;②当时,的值随的增大而增大;③当时,;④面积的最小值为.其中正确的是()A.①B.②C.③D.④2 . 将一元二次方程配方后,原方程可化为()A.B.C.D.3 . 下列成语中表示不确定事件的是()A.水中捞月B.守株待兔C.刻舟求剑D.竹篮打水4 . 如图,已知点A在反比例函数y=(x>0)的图象上,作Rt△ABC,边BC在x轴上,点D为斜边AC的中点,连结DB并延长交y轴于点E,若△BCE的面积为4,则k的值是()A.2B.4C.6D.85 . 下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.6 . 杨树乡共有耕地公顷,该乡人均耕地面积与总人口之间的函数图象大致为()A.B.C.D.7 . 下列属于正n边形的特征的有()①各边相等;②各个内角相等;③各条对角线都相等;④从一个顶点可以引(n-2)条对角线;⑤从一个顶点引出的对角线将正n边形分成面积相等的(n-2)个三角形.A.2个B.3个C.4个D.5个8 . 如图,△AOB中,∠B=25°,将△AOB绕点O顺时针旋转60°,得到△A′OB′,边A′B′与边OB交于点C(A′不在OB上),则∠A′CO的度数为()A.85°B.75°C.95°D.105°9 . 如图,是直径,是的切线,连接交于点,连接,,则的度数是().A.B.C.D.10 . 抛物线y=2x2+1向右平移1个单位,再向下平移1个单位,所得到的抛物线是()A.y=2(x﹣1)2+3B.y=2(x+1)2﹣3C.y=2(x﹣1)2﹣1D.y=3(x﹣1)2+1二、填空题11 . 某体育公园的圆形喷水池的水柱如图①所示,如果曲线APB表示落点B离点O最远的一条水流(如图②),其上的水珠的高度y(米)关于水平距离x(米)的函数解析式为y=-x2+4x+,那么圆形水池的半径至少为_______米时,才能使喷出的水流不落在水池外.12 . 如图,在平行四边形ABCD中,∠B=120°,AB与CD之间的距离是,AB=28,在AB上取一点E(AE <BE),使得∠DEC=120°,则AE=_____.13 . 已知反比例函数的图象如图所示,则实数m的取值范围是___________.14 . 点P(a+2,b-1)关于原点的对称点Q的坐标是(-3,2),则ab=______15 . 一个不透明的盒子中装有15个黑球和若干个白球,它们除颜色不同外,其余均相同,从盒子中随机摸出一球记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验300次,其中有200次摸到白球,由此估计盒子中的白球大约有____个.16 . 用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于_______.三、解答题17 . 如图,AB是⊙O的直径,D,E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE,DE,DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数.18 . 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件.若设每件衬衫降价x元,解答下列问题:(1)当每件衬衫降价5元,则每件利润元,平均每天可售出件.(2)若平均每天获利为Q元,请求出Q与x的函数关系式.(3)若商场想平均每天盈利1200元,每件衬衫应降价多少元?19 . 解方程:(1)(x+2)2=25(2)x2﹣2x﹣2=0(3)x2﹣6x﹣16=0(4)(x﹣2)2﹣(3x+8)2=020 . (8分)如图,一次函数的图象与x轴交于点B,与反比例函数的图象的交点为A(﹣2,3).(1)求反比例函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.21 . 如图,AB为⊙O的直径,点C在AB的延长线上,CD、CE分别与⊙O相切于点D、E,若AD=2,∠DAC=∠DCA,求CE.22 . 为丰富学生的校园生活,某校举行“与爱同行”朗诵比赛,赛后整理参赛同学的成绩,绘制成如下不完整的统计图表,请根据图表中的信息解答下列问题.组别成绩x(分)频数(人数)A8.0≤x<8.5aB8.5≤x<9.08C9.0≤x<9.515D9.5≤x<103(1)图中a= ,这次比赛成绩的众数落在组;(2)请补全频数分布直方图;(3)学校决定选派本次比赛成绩最好的3人参加全市中学生朗诵比赛,并为参赛选手准备了2件白色、1件蓝色上衣和黑色、蓝色、白色的裤子各1条,小军先选,他从中随机选取一件上衣和一条裤子搭配成一套衣服,请用画树状图法或列表法求出上衣和裤子搭配成不同颜色的概率.23 . 如图,有一块矩形硬纸板,长50cm,宽30cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为600cm2?24 . 在平面直角坐标系中,设二次函数y1=mx2﹣6mx+8m(m为常数).(1)若函数y1经过点(1,3),求函数y1的表达式;(2)若m<0,当x<时,此二次函数y随x的增大而增大,求a的取值范围;(3)已知一次函数y2=x﹣2,当y1•y2>0时,求x的取值范围.。

2019-2020年九年级第一学期期末考试数学试题.docx

2019-2020年九年级第一学期期末考试数学试题.docx

2019-2020年九年级第一学期期末考试数学试题一、选择题(本大题共有8 小题,每小题 3 分,共 24 分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母填涂在答题卡相应位置上).......1.已知一组数据: 5, 9, 13, 13, 5.下列说法正确的是(▲ ).平均数是 9.极差是 4.众数是 9.中位数是 13A B C D2.下列函数表达式中,一定为二次函数的是(▲ )..y ax 2bx c C.s 2t2D.y x21A y 3x﹣1B x3.一只不透明的袋子中装有 5 个黑球4 个白球,这些球除颜色外都相同,搅匀后从中任意摸出 1 个球,摸到白球的概率为(▲ )A.1B.1C.4D.4 94594.对于二次函数y x128 的图像,下列说法正确的是(▲ )A.开口向下B.对称轴是直线x1C.顶点坐标是(1,﹣8)D.可由y x2的图像平移得到5.下列各组图形一定相似的是(▲ )A.两个矩形B.两个等边三角形.各有一角是 80°的两个等腰三角形.各角都是 135°的两个八边形C D6.如图,在直角坐标系中,有两点A(6,3)、 B(6,0),以原点 O为位似中心,位似比为1,在第一像限内3把线段 AB缩小后得到线段CD,则点 C的坐标为(▲ )A.(2,1)B.(2,0)C.(3,3)D.(3,1)(第6题)7.如果关于x的一元二次方程( m-1) x2+2 x+1=0有两个不相等的实数根,那么m的取值范围是(▲ )A. m>2B. m<2C. m>2且 m≠1D.m<2且 m≠18.如图,一次函数y1x 5 与二次函数y2ax 2bx c 的图像相交于A、 B 两点,则y yy y yB函数 y ax 2 1 b x 5 c 的图像可能为(▲ )二、填空题(本大题共有10 小题,每小题 3 分,共 30 分.不需写出解答过程,请把答案直接填写在答题卡相应位置上).......9.若⊙O的半径为5cm,点A到圆心O的距离为 4cm,那么点A与⊙O的位置关系是:点A 在⊙ O▲.(填“上”、“内”、“外”)10.某小区 2014 年绿化面积为500 平方米,计划 2016 年绿化面积要达到720 平方米.如果每年绿化面积的增长率相同,那么这个增长率是▲.11.若圆锥的底面半径是2cm,母线长是9cm,则它的侧面展开图的面积是▲2 cm.12.将二次函数y x2的图像向右平移 3 个单位,再向上平移1个单位后,所得图像的函数表达式是▲.13.如图,⊙O的半径为2,C1是函数y=1 221x2x 的图像, C 是函数 y =的图像,则阴影部22分的面积是▲.14.若线段=2,点C 是线段的黄金分割点,且>,则的长是▲.AB AB AC BC ACC EODA B(第 13 题)(第15题)15.如图,⊙O中,∠AOB= 110°,点C、D是优弧AEB上任两点,则∠C+∠ D的度数是▲°.16.如图,⊙O的半径是5,△ABC是⊙O的内接三角形,过圆心线,垂足为E、F、G,连接 EF.若 OG﹦2,则 EF=▲O 分别作.AB、BC、AC的垂17.如图,在正方形网格中,每个小正方形的边长均相等,点A、 B、 O 均在格点处,则cos AOB▲.18.如图,等腰△ABC中,AB AC 4 ,BC=m,点D是边AB的中点,点P是边BC上的动点,且不与B、C重合,DPQ B ,射线PQ交 AC于点 Q.当点 Q总在边 AC上..时, m 的最大值是▲.AGO A O C A QE D FB B(第 16 题)(第 17 题)B P(第18题)C三、解答题(本大题共有 10 小题,共96 分.请在答题卡指定区域内作答,解答时应写出必.......要的文字说明、证明过程或演算步骤)19.(本题满分 10 分)( 1)解方程:x22x 1 0 (用配方法);1( 2)计算:8 4 cos45o013.14220.(本题满分8 分)如图,在△ABC 中,已知∠ C=90°,∠ B=60°, BC=2.( 1)求边AB、AC的长;B( 2)求△ABC内切圆⊙O的半径r.CA21.(本题满分8 分)某班组织了一次经典诵读比赛,男女生各 5 人组成甲、乙两队参与比赛,成绩如下表(10 分制):甲队810999乙队1088109( 1)甲队成绩的平均数是▲分,乙队成绩的平均数是▲分;(2)分别计算两队成绩的方差;(3)根据( 1)、( 2)计算的结果,你认为那一队的成绩较好,并说明理由。

2019-2020年九年级上学期期末考试数学试题.docx

2019-2020年九年级上学期期末考试数学试题.docx

2019-2020 年九年级上学期期末考试数学试题说明:1.本试卷分选择题和非选择题两部分, 共6 页.2.答题前,考生务必将本人的学校、班级、姓名、考试号填写在答题纸相应位置上.3.考生答题必须用0.5 毫米黑色墨水签字笔,写在答题纸指定位置处,答在试卷、草稿纸等其他位置上一律无效.一、选择题(本大题共有 6 小题,每小题 3 分,共 18 分)1. 一名射击爱好者 5 次射击的中靶环数如下:6,7,9,8,9,这 5 个数据的中位数是(▲).A.6B.7 2.掷一个骰子时,点数小于C. 8D2 的概率是(. 9▲) .A.1B. 1C.1D. 0 6323.下列说法中,正确的是(▲).A .长度相等的弧叫等弧 B.直角所对的弦是直径C .同弦所对的圆周角相等 D.等弧所对的弦相等第 4 题图4.如图,坡角为30的斜坡上两树间的水平距离AC为2m,则两树间的坡面距离AB为(▲).A.4m B. 3 m C.4 3m D .4 3 m 35.若两个相似多边形的面积之比为1:4,则它们的周长之比为(▲).A. 1 : 2 B . 1: 4 C .2: 1 D .4: 16. 如图,在平面直角坐标系中,抛物线y=经过平移得到抛物线y=,其对称轴与两段抛物线所围成的阴影部分的面积为第 6 题图(▲).A .2B . 4C. 8D. 16二、填空题(本大题共10 小题,每小题 3 分,共 30 分,请把答案直接写在相应的位置上)7.在比例尺为 1:10000000的地图上,量得甲、乙两地的距离是 30厘米,则两地的实际距离是▲千米 .8.已知 x : y =2:3,则 (x+y) : y 的值为▲.9.一个不透明的袋中装有 2 枚白色棋子和 n枚黑色棋子,它们除颜色不同外,其余均相同.若小明从中随机摸出一枚棋子,多次实验后发现摸到黑色棋子的频率稳定在80%.则n 很可能是▲枚.10.在△中,∠ =90°,=2,2,则边的长是▲.ABC C BC sin A3AC11.某居民小区为了了解本小区100户居民家庭平均月使用塑料袋的数量情况,随机调査了10 户居民家庭月使用塑料袋的数量,结果如下:(単位:只)65 70 85 74 86 78 74 92 8294根据统计情况,估计该小区这100 户家庭平均使用塑料袋▲只.12.在某一时刻,测得一根高为 1.8的竹竿的影长为 3 ,同时测得一根旗杆的影长为25 ,m m m 那么这根旗杆的高度为▲.m13.如图,抛物线的对称轴是直线x 1 ,与x轴交于A、B两点,若B点坐标是(3,0),则2A 点的坐标是▲.A BE EPC ODF B A C第 13 题图第 14 题图第 16 题图14.如图, PA、 PB分别与⊙ O相切于点 A、B,⊙ O的切线 EF分别交 PA、PB于点 E、 F,切点C 在⌒ 上,若PA长为 2,则△的周长是▲.AB PEF15.若粮仓顶部是圆锥形,且这个圆锥的高为2m,母线长为 2.5m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是▲m2.16.如图,△ ABC中,∠ ACB=90°,AC=8cm,BC=6cm,D为BC的中点,若动点 E 以 1cm/s的速度从 A 点出发,沿着 A→B→A的方向运动,设 E 点的运动时间为t 秒( 0≤t < 15),连接 DE,当△ BDE是直角三角形时,t 的值为▲.三、解答题(本大题共有 1 0 小题,共102 分,解答时应写出必要的文字说明、证明过程或演算步骤)17. ( 12 分)( 1)计算: 3sin30 °- 2cos45 ° +tan 2600;( 2)在Rt△ABC中,∠C=90° ,c=20,∠ A=30°,解这个直角三角形.18. ( 8 分)甲、乙两人在相同的条件下各射靶10 次,每次命中的环数如下:甲: 9, 7,8, 9, 7, 6, 10,10, 6,8;乙: 7, 8, 8, 9, 7, 8, 9,8, 10, 6(1)分别计算甲、乙两组数据的方差;(2)根据计算结果比较两人的射击水平.19.( 8 分)在一个不透明的布口袋中装有只有颜色不同,其他都相同的白、红、黑三种颜色的小球各 1只,甲、乙两人进行摸球游戏:甲先从袋中摸出一球,看清颜色后放回,再由乙从袋中摸出一球.(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为甲胜,问谁在游戏中获胜的可能性更大些?20.( 8 分)某课题组为了解全市九年级学生对数学知识的掌握情况, 在一次数学检测中 , 从全市20000名九年级考生中随机抽取部分考生的数学成绩进行调查, 并将调查结果绘制成如下图表:分数段频数频率50x60200.1060x7028b70x80540.2780x90a0.2090x100240.12100x110180.09110x120160.08(1) 表中a 和b所表示的数分别为=,=;a b(2) 请在图中补全频数分布直方图;(3)如果把成绩在 70 分以上 ( 含 70 分 ) 定为合格 , 那么该市 20000 名九年级考生数学成绩为合格的考生约有多少名 ?21.(10分)如图,某居民小区有一朝向为正南方向的居民楼,?该居民楼的一楼是高 6 米的小区超市,超市以上是居民住房,在该楼的前面24 米处要盖一栋高20 米的新楼.当冬季正午的阳光与水平线的夹角为32 时.( 1)问超市以上的居民住房采光是否有影响,为什么?( 2 )若要使超市采光不受影响,两楼应相距多少米? (参考数据: sin 32 ≈53, cos 32 ≈ 106 , tan32 ≈5.)100 1258第 21 题图22. (10 分 ) 如图,已知二次函数= 2+ + 的图像过 ( 2,0), ( 0,﹣ 1)和 ( 4,5)y ax bx c A B C三点.( 1)求二次函数的解析式;( 2)设二次函数的图像与 x 轴的另一个交点为 D ,求点 D 的坐标;( 3)在同一坐标系中画出直线 y =x +1,并写出当 x 在什么范围内时,一次函数的值大于二次函数的值.第 22 题图23. (10 分)一块直角三角形木版的一条直角边 AB 为 3m ,面积为 6 m 2 ,要把它加工成一个面积最大的正方形桌面, 小明打算按图①进行加工, 小华准备按图②进行裁料,他们谁的加工方案符合要求?CE DBD EB F A A G F C图①图②第23 题图24.( 10 分))如图,在△ ABC 中, AB=AC,以 AB 为直径作半圆⊙ 0,交 BC 于点 D ,连接AD ,过点 D 作 DE ⊥ AC,垂足为点 E,交 AB 的延长线于点 F .(1)求证: EF 是⊙ 0 的切线 ;(2)如果⊙ 0 的半径为 9, sin∠ADE = 7,求 AE 的长.9第24 题图25. ( 12 分)如图所示, E 是正方形 ABCD 的边 AB 上的动点,正方形的边长为4, EF⊥DE 交 BC 于点 F.(1)求证:△ ADE ∽△ BEF ;(2) AE=x ,B F=y .当 x 取什么值时, y 有最大值 ? 并求出这个最大值 ;(3) 已知 D 、C 、F 、E 四点在同一个圆上, 连接 CE 、DF ,若 sin ∠ C EF = 3 ,求此圆直径.5D C DCFFAEBAEB第 25题图备用图26. ( 14 分)如图,二次函数 y2x 2 bx c 的图像交 x 轴于 A 、 C 两点,交 y 轴于 B3点,已知 A 点坐标是( 2, 0), B 点的纵坐标是 8.( 1)求这个二次函数的表达式及其图像的顶点坐标;( 2)作点 A 关于直线 BC 的对称点 A ’,求点 A ’的坐标;(3)在 y 轴上是否存在一点 ,M 的坐标,如不M ,使得∠ AMC = 30° 如存在,直接写出点 存在,请说明理由 .第 26 题图 备用图九年级数学试卷参考答案(下列答案仅供参考,如有其它解法 ,请参照标准给分 ,如有输入错误,请以正确答案给分 )........ ...... ....... ...... ........一.选择题 (本大题共有 6 小题,每小题 3 分,共 18 分) 1. C; 2.A; 3.D; 4.C; 5.A; 6.B.二、填空题 (本大 题共 10 小题,每小题 3 分,共 30 分)7. 3000; 8.5; 9. 8; 10.5 ; 11.80 ; 12. 15; 13. (1,0) ; 14. 4; 15. 15324 ;16. 5 或 8.2 或 11.8 (少一解扣 1分,多解不扣分)三、解答题 (本大题共有 10小题,共 102分)17. (12 分)( 1) 1.5 2 3 ( 3 分) = 4.52 (3 分);( 2)a=10(2 分), b=103(2 分),∠ B = 60°( 2 分)18. ( 8 分)( 1)甲、乙的平均数分别是 8, 8 ( 2 分) ; . 甲、乙的方差分别是2,1.2 ( 4分);(2)∵ S 2 甲 > S 2 乙,∴乙的射击水平高(2 分).19. ( 8 分)( 1 )树状图如下或列表如下: ( 4 分);1(2)乙摸到与甲相同颜色的球有三种情况,乙能取胜的概率为,所以甲在游戏中获胜的3可能性更大( 4 分)。

最新2019—2020九年级数学(上)期末试卷及答案

最新2019—2020九年级数学(上)期末试卷及答案

最新2019—最新2019—2020九年级数学(上)期末试卷及答案说明:1、本卷共有6个大题,24个小题,全卷满分120分,考试时间120分钟.2、不要答在试题卷上,请将答案写在所给的答题卡相应位置,否则不给分.一、选择题(本大题共6小题,每小题3分,共18分)1.下列电视台的台标,是中心对称图形的是A .B. C.D.2.掷一枚质地均匀的硬币10次,下列说法正确的是()A.必有5次正面朝上B.可能有5次正面朝上C.掷2次必有1次正面朝上D.不可能10次正面朝上3.用配方法解方程x2-2x-3=0时,配方后所得的方程为A、(x-1)2=4B、(x-1)2=2C、(x+1)2=4D、(x+1)2=24.九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x名学生,根据题意列出方程为A、错误!x(x-1)=2070B、错误!x(x+1)=2070C、x(x+1)=2070D、x(x-1)=20705.小明想用一个圆心角为120°,半径为6cm的扇形做一个圆锥的侧面(接缝处忽略不计),则做成的圆锥底面半径为A、4 cmB、3 cmC、2 cmD、1 cm6.已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是A B C D二、填空题(本大题共8小题,每小题3分,共24分)7.一元二次方程x2=x的解为.8.如图,若AB是⊙O的直径,AB=10,∠CAB=30°,则BC=.9.如图所示的五角星绕中心点旋转一定的角度后能与自身完全重合,则其旋转的角度至少为. A O BC10.某品牌手机两年内由每台2500元降低到每台1600元,则这款手机平均每年降低的百分率为 .11.若正方形的边长为6cm ,则其外接圆半径是 . 12.林业工人为调查树木的生长情况,常用一种角卡工具,可以很快测出大树的直径,其工作原理如图所示,已知AC和AB 都与⊙O 相切,∠BAC =60°,AB =0.6m ,则这棵大树 的直径为 .13.将二次函数y =-2(x -1)2 +3的图象关于原点作对称变换,则对称后得到的二次函数的解析式为 .14.如图,矩形ABCD 内接于⊙O ,∠OAD =30°,若点P 是⊙O 上一点,且OP ⊥OA ,则∠OPB 的度数为 . 三、(本大题共4小题,每小题6分,共24分)15.已知一抛物线与x 轴的交点是A (-2,0)、B (1,0),且经过点C (2,8).求该抛物线的解析式.16.如图,在10×10的正方形格纸中,小正方形的顶点称为格点,用尺规完成下列作图(保留作图痕迹,不要求写作法).(1)在图1的方格纸中,画出一个经过E 、F 两点的圆弧,并且使得半径最小,请在图中标出圆心O 并直接写出该圆的半径长度.(2)在图2的方格纸中,画出一个经过E 、F 两点的圆弧,并且使圆心是格点,请在图中标出圆心O 并直接写出该圆的半径长度.17.在体育课上,老师向排好队列的学生讲解行进间传球的要领时,叫甲、乙、丙、丁四位是年级球队队员的同学出列,配合老师进行传球示范.(1)首先球在老师手里时,直接传给甲同学的概率是多少?(2)当老师传给甲后,老师叫四位同学相互传球,其他人观看体会,当甲第一个传出,求甲传给下一个同学后,这个同学又再传回给甲的概率.18.已知关于x 的方程x 2+ax +a -2=0.(1)若该方程的一个根为1,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.图1 E F 图2E F C A B ·O A D B C·O四、(本大题共3小题,每小题8分,共24分)19.如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.20.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,OA=1.(1)求∠C的大小;(2)求阴影部分的面积.21.在等边△ABC中,以BC为直径的⊙O与AB交于点D,DE⊥AC,垂足为点E.(1)求证:DE为⊙O的切线;(2)计算错误!.五、(本大题共2小题,每小题9分,共18分)22.某校七年级学生准备去购买《英汉词典》一书,此书标价为20元.现A、B两书店都有此书出售,A店按如下方法促销:若只购一本,则按标价销售;若一次性购买多于一本,但不多出20本时,每多购一本,每本销售价在标价的基础上优惠2%(例如买两本,每本价优惠2%;买三本价优惠4%,以此类推);若购买多于20本时,每本售价为12元.B 店一律按标价的7折销售.(1)试分别写出在两书店购此书的总价y A、y B与购本书数x之间的函数关系式.(2)若某班一次性购买多于20本时,那么去哪家书店购买更合算?为什么?若要一次性购买不多于20本时,先写出y(y=y A-y B)与购书本数x之间的函数关系式,并在图中画出其函数图象,再利用函数图象分析去哪家书店购买更合算.y23.在一节数学实践活动课上,老师拿出三个边长都为5cm的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径应有多大?问题提出后,同学们经过讨论,大家觉得本题实际上就是求将三个正方形硬纸板无重叠地适当放置,圆形硬纸板能盖住时的最小直径.老师将同学们讨论过程中探索出的三种不同摆放类型的图形画在黑板上,如下图所示:(1)计算(结果保留根号与π).(Ⅰ)图①能盖住三个正方形所需的圆形硬纸板最小直径应为cm;(Ⅱ)图②能盖住三个正方形所需的圆形硬纸板最小直径为cm;(Ⅲ)图③能盖住三个正方形所需的圆形硬纸板最小直径为cm;(2)其实上面三种放置方法所需的圆形硬纸板的直径都不是最小的,请你画出用圆形硬纸板盖住三个正方形时直径最小的放置方法,(只要画出示意图,不要求说明理由),并求出此时圆形硬纸板的直径.六、(本大题共12分)24.如图1,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合),我们定义:这样的两条抛物L1,L2互为“友好”抛物线,可见一条抛物线的“友好”抛物线可以有多条.(1)如图2,已知抛物线L3:y=2x2-8x+4与y轴交于点C,试求出点C关于该抛物线对称轴对称的点D的坐标;(2)请求出以点D为顶点的L3的友好抛物线L4的解析式,并指出L3与L4中y同时随x 增大而增大的自变量的取值范围;(3)若抛物y=a1 (x-m) 2+n的任意一条友好抛物线的解析式为y=a2 (x-h) 2+k,请写出a1与a2的关系式,并说明理由.xyCOL3xAyL2BO参考答案一、选择题1、A2、B3、A4、D5、C6、D二、填空题7、x 1=0,x 2=1; 8、5 9、72° 10、20% 11、3,2 cm 12、错误!错误! 13、y =2(x +1)2 -3 14、15°或75°三~六15、y =2x 2+2x -416、解:(1)作图如图1,半径等于10. (2)作图如图2,半径等于5或 5. 17、解:(1)当球在老师手里时,先直接传给甲同学的概率是错误!;…………………2分(2)当甲传出球后,经两次传球的情况可用如下树状图表示:…………………4分∴再传回甲的概率为错误!=错误!.………………………………………6分18、(1)将x =1代入方程x 2+ax +a -2=0得,1+a +a -2=0,解得,a =错误!; 方程为x 2+错误!x -错误!=0,即2x 2+x -3=0,设另一根为x 1,则x 1=-错误!.(2)∵△=a 2-4(a -2)=a 2-4a +8=a 2-4a +4+4=(a -2)2+4>0,…3分图1 E F 图2 FE O O O O O∴不论a取何实数,该方程都有两个不相等的实数根.……………6分19、(1)画图正确.…………2分(2)画图正确.………………4分(3)BB1=,22+22 =2,2 ;……5分弧B1B2的长=错误!=错误!.……7分点B所走的路径总长=2,2 +错误!.……8分20、(1)证明:由CD⊥AB,得⌒,AD=⌒,DB;∴∠AOD=2∠C由AO⊥BC,易得∠C=30°.…………4分(2)错误!π-错误!………………8分21、(1)证明:连接OD,∵△ABC为等边三角形,∴∠ABC=60°,又∵OD=OB,∴△OBD为等边三角形,∴∠BOD=60°=∠ACB,∴OD∥AC,又∵DE⊥AC,∴∠ODE=∠AED=90°,∴DE为⊙O的切线;………………4分(2)解:连接CD,∵BC为⊙O的直径,∴∠BDC=90°,又∵△ABC为等边三角形,∴AD=BD=错误!AB,在Rt△AED中,∠A=60°,∴∠ADE=30°,∴AE=错误!AD=错误!AC,CE=AC-AE=错误!AC,∴错误!=3.………………8分22、解:(1)设购买x本,则在A书店购书的总费用为20x[1-2%(x-1)](0<x≤20)12x,(x>20)………………3分在B书店购书的总费用为y B=20×0.7x=14x ………5分(2)当x>20时,显然y A<y B,去A店买更合算.当0<x≤20时,y=y A-y B=-错误!x2+错误!x=-错误!(x-8)2+25.6当-错误!(x-8)2+25.6=0时,x=0或16.………7分由图象可得:当0<x<16时,y>0;当x=16时,y=0;当16<x≤20时,y<0.综上所述,若购书少于16本时,到B书店购买;若购买16本,到A、B书店费用一样;A DB Cy A=若超过16本,则到A 书店购买合算.…………9分23、(1)(Ⅰ)如图1,连结BD , 易得圆的最小直径为5,10 cm ;……………1分(Ⅱ)如图2,易得A ,B ,C 三点在以O 为圆心,OA 为半径的圆上.利用勾股定理求得OA =5,2 ,所以圆的最小直径为10,2 cm.…………3分(Ⅲ)如图3,由垂径定理可知,OA 为最小圆的半径, 易得OA =5,2 ,所以圆的最小直径为10,2 cm.…………5分(2)如图④为盖住三个正方形时直径最小的放置方法:……6分 连接OB ,ON ,延长OH 交AB 于点P , 则OP ⊥AB ,P 为AB 中点设OG =x ,则OP =10-x , 则有:x 2+52=(10-x ) 2+( 错误!)2. 解得:x =错误!; 则ON =错误!,…………8分所以直径为错误!.…………9分24、(1)点D 坐标(4,4)…………3分(2)L 4的解析式y =-2(x -4) 2+4…………6分由图象可知,当2≤x ≤4时,抛物线L 3与L 4中y 同时随x 增大而增大.……8分(3)a 1与a 2的关系式为a 1+a 2=0或a 1=-a 2.…………9分理由如下:∵抛物线y =a 1 (x -m ) 2+n 的一条“友好”抛物线的解析式为y =a 2 (x -h ) 2+k , ∴y =a 2 (x -h ) 2+k 过点(m ,n ),且y =a 1 (x -m ) 2+n 过点(h ,k ),即 k =a 1 (h -m ) 2+n …………①;n =a 2 (m -h ) 2+k …………② …………10分 由①+②得(a 1+a 2) (h -m ) 2=0. …………11分 又“友好”抛物线的顶点不重合,∴h ≠m ,∴a 1+a 2=0或a 1=-a 2. …………12分A B COA B D A O E。

2019-2020年九年级上学期期末考试数学试题(无答案)(I).docx

2019-2020年九年级上学期期末考试数学试题(无答案)(I).docx

2019-2020 年九年级上学期期末考试数学试题(无答案) (I)注意事项:1、考生答题前,务必将自己的姓名、准考证号填写在该科的试题卷和答题卡上;并将该科的准考证号“条形码”粘贴在答题卡指定的位置上 .2、每道选择题的答案选出后,请用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动, 先用橡皮擦干净后, 再选涂其它答案标号.非选择题的答案请考生用0.5 毫米黑色墨水签字笔直接在答题卡上对应的答题区域内作答.写在试题卷上无效。

3、考试结束后,请将本试题卷和答题卡一并上交 .一、选择题(本大题共有 10 个小题,每小题 3 分,满分 30 分. )在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.1.下列汽车标志中,可以看作是中心对称图形的是A BC D2.下列说法错误的是 ..A .必然事件发生的概率为 1B .不确定事件发生的概率为 0.5C .不可能事件发生的概率为 0D .随机事件发生的概率介于0和1之间3.用配方法解方程x 2 6 x 30 ,此方程可变形为A. ( x 23)212B. ( x 3)26 C.( x 3)212D. ( x3) 294.对于反比例函数y3,下列说法正确的是xA . 图象经过点( 1,﹣ 3)B .图象在第二、四象限C . x >0 时, y 随 x 的增大而增大D . x < 0 时, y 随 x 增大而减小5.如图,是某座天桥的设计图,设计数据如图所示,桥拱是2m10m 圆弧形,则桥拱的半径为24m A. 13m B . 15m C.20m D.26m6.将等腰 Rt △ABC绕点A逆时针旋转 15°得到△AB′ C′,若 AC=1,(第 5 题图)A 则图中阴影部分面积为15OA.3B. 33C.3D.3B367.将抛物线y23先向左平移CCBx 1 1 个单位,再向下平移(第 6 题图)3个单位,所得抛物线的解析式为A.y x 22B.y x 2 26A22EC.y x6.xD y O 8.如图,△ ABC 内接于⊙ O,∠ B= 60,∠ A= 40,半径CB OE⊥ AB,连接 CE,则∠ E 等于A. 20 oB. 15 oC. 10 oD. 5o9.某商品原价为200 元,为了吸引更多顾客,商场连续两次降价后的(第 8 题图)售价为 162元 . 设平均每次降价的百分率为x,根据题意可列方程为A.162(1) 2200B.200(1x)2162xC. 200( 1-2 x)=162D.162162(1x) 162(1x) 2200 10. 二次函数y ax 2bx c(a0) 的图象如图所示,则下列结论中正确的是A.a0B.当 1 x 3 时,y 0C.c0D.当x≥ 1 时,y随x的增大而增大(第 10 题图)二、填空题: ( 每小题 3 分,共 18 分)11.写出一个必然事件.12.如图,点,,C 在⊙O上,∥ ,∠= 50°.OA B AO BC AOB则∠ OAC的度数是.CA13.一元二次方程 x25x20 的两个根分别为x1, x 2,B则 x1 x 2 x1 x2的值是.(第 12 题图)14. 在平面直角坐系中,点P(-4,2)向右平移7 个位度得到点P1,点 P1原点逆旋 90°得到点2,点 2 的坐是.P P15.已知蓄池的定,使用蓄池,流I (位: A)与阻(位:Ω )是R反比例函数关系,它的象如所示.如果以此蓄池源的用器,其限制流不能超10A,那么用器可阻R控制的范是.16.如,一段抛物:y x x30 x 3, C1,它与x 交于点O,A1;将1 点 1 旋180°得2,交x 于点2;再将 2 点 2 旋180°得C A C A C AC3,交 x 于点 A3;⋯,如此行下去,直至得C13.若 P(37,m)在第13 段抛物C 上, m =_____________.13I / A4O9/ ΩR(第 15 题图)(第 16 题图)三、解答题:( 9 个小题,共 72 分)17.( 6 分)解方程:2x 25x 3 .18.( 6 分)如,△ ABC 中,∠ B=15°,∠ ACB=25 °, AB=4cm,△ ABC 逆旋一定角度后与△ ADE 重合,且点 C 恰好成 AD 的中点.E( 1)指出旋中心,并求出旋的度数;A D( 2)求出∠BAE的度数和AE的.CB19.( 6 分)已知一个口袋装有7 个只有颜色不同、其它都相同的球,其中 3 个白球、 4 个黑球.( 1)求从中随机取出一个黑球的概率;( 2)若往口袋中再放入x 个黑球,且从口袋中随机取出一个白球的概率是1,请求出x 4的值.20.(8 分)如图,在△ABC 中, AB=AC,⊙ O 是△ ABC 的内切圆,它与AB,BC,CA 分别相切于点 D 、E、 F.A( 1)求证: BE=CE;D F·O (2)若∠ A=90°, AB=AC=2,求⊙ O 的半径.B EC 21.( 8 分)反比例函数 yk 在第一象限的图象如图所示,过坐标平面内一点A(1,0)x作x轴的垂线,交反比例函数y k的图象于点M AOM 3.,△的面积为x(1)求反比例函数的解析式;(2)点B(t,0)在x轴上,其中t >1,若以AB为一边的正方形有一个顶点在反比例函数 y k 的图象上,求t的值.xyMO Ax22.( 8 分)如图,某校要在长为32m,宽为 20m的长方形操场上修筑宽度相同的道路(图中阴影部分),在余下的空白部分种上草坪,要使草坪的面积为540m2,求道路的宽.2 3.( 8 分)如图,AB为⊙O的直径,AC,DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.(1)求证:DP是⊙O的切线;(2)若⊙O的半径为 3cm,求图中阴影部分的面积 .24.( 10 分)陆羽广场上要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP,柱子顶端 P 处装上出水喷头,由P处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如图所示).若已知 OP=3m,喷出的水流的最高点 A 距水面的高度是4m,离柱子 OP的距离为1m.yAP(1)求这条抛物线的解析式;(2)若不计其他因素,水池的半径至少为多少米,才能使喷出的水流不至于洒落在池外?y ax2bx c 与x轴相交于A,B 两25.( 12分)如图,对称轴为直线x1的抛物线点,其中 A 点的坐标为(- 3, 0).(1)求点B的坐标;(2)已知a 1,点C为抛物线与y轴的交点.①若点 P 在抛物线上,且 S△POC=4S△BOC,求点 P 的坐标;②设点 Q是线段 AC上的动点,作QD⊥ x 轴交抛物线于点D,求线段 QD长度的最大值.yx=-1A OB xC。

辽宁省2020年九年级上学期期末数学试题A卷

辽宁省2020年九年级上学期期末数学试题A卷

辽宁省2020年九年级上学期期末数学试题A卷姓名:________ 班级:________ 成绩:________一、单选题1 . 如图,一张地图上有A、B、C三地,C地在A地的北偏东38°方向,在B地的西北方向,则∠ACB等于()A.73°B.83°C.90°D.97°2 . “流浪地球“一上映就获得追捧,第一天票房约8亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达29.12亿元,若把增长率记作x,则方程可以记为()A.8(1+x)=29.12B.8=29.12C.8+8(1+x)+8=29.12D.8+8=29.123 . 某公司员工的月工资如下表:员工经理副经理职员A职员B职员C职员D职员E职员F职员G月工资/480035002000190018001600160016001000元则这组数据的平均数、众数、中位数分别为()A.2200元 1800元 1600元B.2000元 1600元 1800元C.2200元 1600元 1800元D.1600元 1800元 1900元4 . 两个相似三角形的面积之比为1:9,则相似比为()A.1:9B.9:1C.1:3D.3:15 . 如图所示,⊙O的内接多边形的周长为3,⊙O的外切多边形的周长为3.4,则下列各数中与此圆的周长最接近的是()A.B.C.D.6 . 如图,圆锥的侧面展开图是半径为4,圆心角为90°的扇形,则该圆锥的底面周长为()A.πB.2πC.8πD.167 . 下列说法错误的是()A.必然事件的概率为1B.数据1、2、2、3的平均数是2C.数据5、2、﹣3、0的极差是8D.如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次中奖8 . 如图是一个反比例函数的图象,它的表达式可能是()A.B.C.D.9 . 如图,是圆的直径,点、在圆上,且点、在的异侧,连结、、.若,且,则的度数为A.B.C.D.10 . 方程的根的情况是()A.有两个相等实数根B.有两个不相等实数根C.有一个实数根D.没有实数根11 . 用配方法解方程x2﹣4x+1=0,配方后所得的方程是()A.(x﹣2)2=3B.(x+2)2=3C.(x﹣2)2=﹣3D.(x+2)2=﹣312 . 用配方法解方程,可变形为()A.B.C.D.13 . 已知二次函数y=ax2+bx+c的图象如图所示,则a、b、c满足()A.a<0,b<0,c>0B.a<0,b<0,c<0C.a<0,b>0,c>0D.a>0,b<0,c>014 . 如图,小明将-3,-2,-1,0,1,2,3,4,5分别填入九个空格内,便每行、每列、每条对角线上的三个数之和相等,现在分别表示其中的一个数,则的值()A.B.0C.3D.115 . 对于二次函数的图象与性质,下列说法正确的是()A.对称轴是直线,最大值是2B.对称轴是直线,最小值是2C.对称轴是直线,最大值是2D.对称轴是直线,最小值是216 . (2017湖北省宜昌市)如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.二、填空题17 . 如图所示,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(-3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为_______________.18 . 为估计某水库鲢鱼的数量,养鱼户李老板先捞上150条鲢鱼并在鲢鱼身上做红色的记号,然后立即将这150条鲢鱼放回水库中,一周后,李老板又捞取200条鲢鱼,发现带红色记号的鱼有三条,据此可估计出该水库中鲢鱼约有________条.19 . 小贝将一个网球从斜坡O点处抛出,网球的路线是抛物线y=4x-x2图象的一段,斜坡的截线OA是一次函数y=x图象的一段,建立如图所示的平面直角坐标系,则网球在斜坡上的落点A的垂直高度是___米.三、解答题20 . 二次函数y=的图象与x轴交于点A和点B,以AB为边在x轴下方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点A.(1)求出m的值并求出点A、点B的坐标.(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.21 . 如图,已知墙高AB为6.5米,将一长为6米的梯子CD斜靠在墙面,梯子与地面所成的角∠BCD=55°,此时梯子的顶端与墙顶的距离AD为多少米?(结果精确到0.1米)22 . 如图,AB是⊙O的直径,CD是⊙O的弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若⊙O的半径为5,AE=2,则CD=.23 . 甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲a77 1.2乙7b8c(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员.24 . 某汽车销售公司2月份销售新上市一种新型低能耗汽车20辆,由于该型汽车的优越的经济适用性,销量快速上升,4月份该公司销售该型汽车达45辆.(1)求该公司销售该型汽车3月份和4月份的平均增长率;(2)该型汽车每辆的进价为10万元;且销售a辆汽车,汽车厂返利销售公司0.03a万元/辆,该公司的该型车售价为11万元/辆,若使5月份每辆车盈利不低于2.6万元,那么该公司5月份至少需要销售该型汽车多少辆?此时总盈利至少是多少万元?(盈利=销售利润+返利)25 . 如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC于点F.(1)若⊙O的半径为3,∠CDF=15°,求阴影部分的面积;(2)求证:DF是⊙O的切线;(3)求证:∠EDF=∠DAC.26 . 如图,一组抛物线的顶点A1(x1,y1),A2(x2,y2),…An(xn,yn)(n为正整数)依次是反比例函数y=图象上的点,第一条抛物线以A1(x1,y1)为顶点且过点O(0,0),B1(2,0),等腰△A1OB1为第一个三角形;第二条抛物线以A2(x2,y2)为顶点且经过点B1(2,0),B2(4,0),等腰△A2B1B2为第二个三角形;…;第n条抛物线以An(xn,yn)为顶点且经过点Bn﹣1(2n﹣2,0),Bn(2n,0),等腰△AnBn﹣1Bn为第n个三角形.(1)写出满足△AnBn﹣1Bn的面积为整数的n的值_____.(2)若第n条抛物线为y=anx2+bnx+cn满足10an+5bn+cn=0,称“滑翔抛物线”,试求出满足条件的“滑翔抛物线”解析式为_____.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档