材料力学-05附录
材料力学附录
h
dy
y O
x( c 2) h/2 x h/2
1 bh3 bh3 Ix 2 12 24
( 3)
x1
2h bh I x1 I xc 3 2
2
h h bh I x I xc 2 3 2
y
a
a
a z
a
4
4a 4 5a 4 3 64
四 惯性矩和惯性积的转轴公式.截面的主惯 性轴和主惯性矩
y
I x1 I y1
Ix Iy
2 Ix Iy 2
Ix Iy
2 Ix Iy
cos I xy sin 2 cos I xy sin 2
I x1 y1
如图所示将截面任意分为两部分A1与A2,证明这 I.4 两部分面积对整个截面形心轴xc的静矩绝对值相 等。
例题
设: A1,A2对xc轴的静矩分别为Sxc1和Sxc2
S xc S xc1 S xc2
A1
0 S xc1 S xc2
C
xc
S xc1 S xc2
A2
证毕
S y Ax
S x Ay
1 截面图形的静矩相对坐标轴定义的,与坐 标轴有关 2 静矩的值可能为正、负、也可能为零 3 截面对形心轴的静矩为零
4 若截面对某轴的静矩为零,则该轴 必为形心轴
二 极惯性矩.惯性矩.惯性积
y
x dA
I p dA
2
I x y dA
2
x
ρ
y
O
I y x dA
材料力学 第五版 第五章
15
材 料 力 学 Ⅰ 电 子 教 案
第四章 弯曲应力
(2) 圆截面
在等直圆杆扭转问题(§3-4)中已求得:
πd 4 Ip 2 d A A 32
d
o y
z
dA
z
y
而由图可见,ρ2=y2+z2 , 从而知
πd 4 Ip 2 d A y2 d A z2 d A I z I y A A A 32
梁横截面上的正应力公式。
My Iz
M为截面的弯矩,y为欲求应力点至 中性轴的距离,Iz为截面对中性轴的 惯性矩。 σ
x
注意: 1.当弯矩为正时,梁下部产 生拉应力;上部产生压应力; 弯矩为负时,则相反。一般用 计算正应力时,M与y均取正值, 而正应力的拉、压由观察判断。
M
12
材 料 力 学 Ⅰ 电 子 教 案
max
式中,[]为材料的许用弯曲正应力。
20
材 料 力 学 Ⅰ 电 子 教 案
第四章 弯曲应力
对于中性轴为横截面对称轴的梁,上述强度条件可写作
M max Wz
由拉、压许用应力[t]和[c]不相等的铸铁等脆性材 料制成的梁,为充分发挥材料的强度,其横截面上的中性 轴往往不是对称轴,以尽量使梁的最大工作拉应力t,max和
2.公式是根据纯弯曲的情形导出的,但对于横向 弯曲(即剪力、弯矩均不为零的情形),也可以足 够精确地用来计算正应力。 3. 公式虽然是针对梁横截面有对称轴的情形 推出的,但对于不对称截面,公式的适用范围推 广到不对称截面梁,且外力作用面通过一个形心 主轴的情形。
13
材 料 力 学 Ⅰ 电 子 教 案
2.所有的纵线都弯曲 成曲线。靠近底面的 纵线伸长,靠近顶面 的纵线缩短。而位于 中间的某一条纵线O-O ,其长度不变。
《材料力学》课程讲解课件附录I平面图形几何性质
解:
y
d
S x
yd A
A
2 yb( y) d y
0
b(y)
C
xc
yc
d
2 y2
R2 y2 d y d3
0
12
x
d
yc
Sx A
d3 12 πd 2 8
2d 3π
b( y) 2 R2 y2
29
yc
Sx A
d3 12 πd 2 8
2d 3π
y
2、求对形心轴 xc 的惯性矩
Ix
πd 4 64 2
3、惯性积是对轴而言。
y
z
dA
4、惯性积的取值为正值、负值、零。
y
5、规律:
o
z
20
5、规律:
Izy
zydA
A
0
y
dA z z dA
y
y
z
o
两坐标轴中,只要有一个轴为图形的对称轴,则 图形这一对坐标轴的惯性积为零。
21
对比记忆 静矩、形心;惯矩和惯性半径;它们都是反映截
面面积关于坐标轴分布情况的物理量。 静矩=(面积)(形心坐标) 惯矩=(面积)(惯性半径)2
z
o
dA y
z
全面积对z轴的惯性矩: I z y2dA,
2 z2 y2
全面积对y轴的惯性矩: I y A z2dA
A
15
Iz y2dA, I y z2dA
A
A
y
z
dA
y
o
z
2、量纲:[长度]4;单位:m4、cm4、mm4。 2 z2 y2
3、惯性矩是对轴而言(轴惯性矩)。
A
材料力学笔记(附录)
材料力学(土)笔记附录I 截面的几何性质1.截面的静矩和形心位置设任意形状的截面,其截面面积为A ,从截面中坐标为(,)x y 处取一面积元素dA 则xdA 和ydA 分别称为该面积元素dA 对于y 轴和x 轴的静矩或一次矩y AS xdA =⎰定义为该截面对y 轴的静矩x AS ydA =⎰定义为该截面对x 轴的静矩上述积分应遍及整个截面面积A截面的静矩是对一定的轴而言的,同一截面对不同坐标轴的静矩不同 静矩可能为正值也可能为负值,也可能等于零,常用单位为m ³或mm ³ 由理论力学可知,在Oxy 坐标系中,均质等厚度薄板的重心坐标为y AxdA S x AA==⎰,xAydA S y AA==⎰ 均质薄板的重心与该薄板平面图形的形心是重合的上式可计算形心坐标,在知道截面对y 轴和x 轴的静矩以后,即课的截面形心坐标 将上式改写为y S Ax =,x S Ay =则在已知截面的面积A 及其形心的坐标x 、y 时 就可求得截面对y 轴和x 轴的静矩,由上式可看出,截面对通过其形心的轴的静矩恒等于零反之,若截面对于某一轴的静矩等于零,则该轴必通过截面的形心当截面由若干简单图形组成时,由于简单图形的面积及其形心位置均为已知由静矩定义可知,截面各组成部分对某一轴的静矩之代数和等于该截面对同一轴的静矩 即得整个截面的静矩为1n y i i i S A x ==∑,1nx i i i S A y ==∑式中,i A 和i x 、i y 分别代表任一简单图形的面积及其形心的坐标n 为组成截面的简单图形个数可得组合截面的星系坐标为11ni ii nii A xx A===∑∑,11ni ii nii A yy A===∑∑2.极惯性矩·惯性矩·惯性积设一面积为A 的任意形状截面,从截面坐标为(,)x y 处取一面积元素dA 则dA 与其至坐标原点距离平方的乘积2dA ρ 称为面积元素对O 点的极惯性矩或截面二次极矩2p AI dA ρ=⎰定义为整个截面对O 点的极惯性矩上述积分应遍及整个截面面积A ,极惯性矩的数值恒为正,单位为4m 或4mm面积元素dA 与其至y 或x 轴距离平方的乘积2x dA 或2y dA 分别称为该面积元素对y 轴或x 轴的惯性矩或截面二次轴距22y Ax A I x dA I y dA ⎫=⎪⎬=⎪⎭⎰⎰ 分别定义为整个截面对y 轴或x 轴的惯性矩 上述积分遍及整个截面的面积A222x y ρ=+,故有222()p y x AAI dA x y dA I I ρ==+=+⎰⎰任意截面对一点的极惯性矩,等于截面对以该点为原点的任意两正交坐标轴的惯性矩之和面积元素dA 与分别至y 轴和x 轴距离的乘积xydA ,称为该面积元素对两坐标轴的惯性积 定义为整个截面对x 、y 两坐标轴的惯性积,其积分也应遍及整个截面的面积 从上述定义可见,同一截面对于不同坐标轴的惯性矩或惯性积一般是不同的 惯性矩的数值恒为正值,而惯性积可能为正值也可能为负值,也可能等于零 若x 、y 两坐标轴有一为截面的对称轴,则其惯性积恒等于零因在对称轴两侧,处于对称位置的两面积元素dA 的惯性积xydA ,数值相等而正负号相反 致使整个截面的惯性积必等于零,惯性矩和惯性积的单位相同在某些应用中,将惯性矩表示为截面面积A 与某一长度平方的乘积,即2y y I i A =,2x xI i A = 式中,y i 和x i 分别称为截面对y 轴和x 轴的惯性半径,其单位为m 或mm 当已知截面面积A 和惯性矩y I 和x I 时,惯性半径即可从下式求得y i =x i =3.惯性矩和惯性积的平行移轴公式·组合截面的惯性矩和惯性积 3.1 惯性矩和惯性积的平行移轴公式 面积为A 的任意形状的截面截面对任意的x 、y 两坐标轴的惯性矩和惯性积分别为x I 、y I 和xy I 通过截面的形心C 有分别与x 、y 轴平行的C x 、C y 轴称为形心轴 截面对形心轴的惯性矩和惯性积分别为xC I 、yC I 和xCyC I截面上任一面积元素dA 在两坐标系内的坐标(,)x y 与(,)C C x y 间的关系为C x x b =+,C y y a =+式中,a 、b 是截面形心在Oxy 坐标系内的坐标值,即两平行坐标系间的间距 将其代入可得2222()2x C C C AAAAAI y dA y a dA y dA a y dA a dA ==+=++⎰⎰⎰⎰⎰根据惯性矩和静矩的定义,上式右端的各项积分分别为2C xC Ay dA I =⎰,C xC Ay dA S =⎰,AdA A =⎰其中xC S 为截面形心轴C x 的静矩,恒等于零,则原式子可写为2x xC I I a A =+,同理2y yC I I b A =+,xy xCyC I I abA =+a 、b 有正负号,可由截面形心所在的象限来确定,上式称为平行移轴公式应用上式即可根据截面对形心轴的惯性矩或惯性积,计算截面对于形心轴平行的坐标轴的惯性矩惯性矩或惯性积,或进行相反运算3.2 组合截面的惯性矩及惯性积组合截面对某坐标的惯性矩(或惯性积)就等于其各组成部分对同一坐标轴的惯性矩(或惯性积)之和,若截面是由n 个部分组成,则组合截面对x 、y 两轴的惯性矩和惯性积为1n x xi i I I ==∑,1n y yi i I I ==∑,1nxy xyi i I I ==∑式子中,xi I 、yi I 、xyi I 分别为组合截面中组成部分i 对x 、y 两轴的惯性矩和惯性积4.惯性矩和惯性积的转轴公式·截面的主惯性轴和主惯性矩 4.1 惯性矩和惯性积的转轴公式 设一面积为A 的任意形状截面截面对通过其上任意一点O 的两坐标轴x 、y 的惯性矩和惯性积分别为x I 、y I 和xy I 若坐标轴x 、y 绕O 点旋转α角(α角以逆时针转向为正)至1x 、1y 则该截面对新坐标轴1x 、1y 的惯性矩和惯性积分别为1x I 、1y I 和11x y I 截面上任一面积元素dA 在新、老两坐标系内的坐标11(,)x y 与(,)x y 的关系为1cos sin x x y αα=+ 1cos sin y y x αα=-经过展开逐项积分可得,该截面对坐标轴1x 的惯性矩1x I22221cos sin 2sin cos x AAAI y dA x dA xydA αααα=+-⎰⎰⎰根据惯性矩和惯性积的定义,右端的各项积分分别为2x Ay dA I =⎰,2y Ax dA I =⎰,xy AxydA I =⎰将其代入,即得1cos 2sin 222x y x y x xy I I I I I I αα+-=+- 1cos 2sin 222x yx yy xy I I I I I I αα+-=-+11sin 2cos 22x yx y xy I I I I αα-=+以上三式就是惯性矩和惯性积的转轴公式11x y x y I I I I +=+上式表明,截面对于通过同一点的任意一对相互垂直的坐标轴的两惯性矩之和为一常数 并等于截面对该坐标原点的极惯性矩4.2 截面的主惯性主和主惯性矩当坐标轴旋转时,惯性积11x y I 将随着α角作周期性变化,且有正有负 必有一特定的角度0α,使得截面对该坐标轴0x 、0y 的惯性积等于零 截面对其惯性积等于零的一对坐标轴,称为主惯性轴 截面对于主惯性轴的惯性矩,称为主惯性矩当一对主惯性轴的交点与截面的形心重合时,则称为形心主惯性轴 截面对于形心主惯性轴的惯性矩,称为形心主惯性矩设0α角为主惯性轴与原坐标轴之间的夹角 则将0α角代入惯性积的转轴公式并令其等于零,即00sin 2cos 202x yxy I I I αα-+=移项后得02tan 2xy x yI I I α-=-由上式解得的0α的值,即为梁主惯性轴中0x 轴的位置将所得的0α值代入,即得截面的主惯性矩0cos 2I I α-==02sin 2I α-==经化简后即得主惯性矩的计算公式0022x yx x y y I I I I I I +=+=惯性矩1x I 、1y I 都是α角的正弦和余弦函数,α角在0°到360°内变化 因此1x I 、1y I 必有极值由于对通过同一点的任意一对坐标轴的两惯性矩之和为一常数因此其中一个将为极大值,另一个则为极小值,由10x dI d α=和10y dI d α= 解得时惯性矩取得极值的坐标轴的位置的表达式,与上式完全一致可知,截面对通过任一点的主惯性轴的主惯性矩的值也就是通过该点所有轴的惯性矩中的极大值max I 和极小值min I在通过截面形心的一对坐标轴中,若有一个为对称轴,则该对坐标轴就是形心主惯性轴 因为截面对于包括对称轴在内的一对坐标轴的惯性积等于零 在计算组合截面的形心主观性轴是,首先应确定其形心位置 然后通过形心选择一对便于计算惯性矩和惯性积的坐标轴 算出组合截面对这一对坐标轴的惯性矩和惯性积最后利用主惯性矩的计算公式即可确定形心主惯性轴的位置和形心主惯性矩的数值 若组合截面具有对称轴,则包含对称轴的一对相互垂直的形心轴就是形心主惯性轴。
附录 截面的几何性质(材料力学)
b b( y ) ( h y ) h
b(y )
S x A y d A 0
b bh2 (h y ) y d y h 6
h
dy
材 料 力 学 Ⅰ 电 子 教 案
例 试确定图示截面心 C 的位置。 解:将截面分为 1,2 两个矩形。 取 x 轴和 y 轴分别与截面 的底边和左边缘重合 y
10
1
x1
C( y, x )
y1
o
2
y2
10
x2
80
x
材 料 力 学 Ⅰ 电 子 教 案
思考: 求下图所示截面的形心位置
50
10 A1
z
60
A2
10
y
12
yc1 A1 yc 2 A2 yc A1 A2
材 料 力 学 Ⅰ 电 子 教 案
例 半径为r的半圆:求半圆的形心。 解 在距 z 轴任意高度 y 处取狭长条 作为微面积,即
分别称为截面图形对于z轴和y 轴的惯性矩。 惯性矩的数值恒为正,常用单位为m4 。
14
dA
y x
材 料 力 学 Ⅰ 电 子 教 案
二、极惯性矩
y
I p 2 dA
A
称为截面图形对O点的极惯性矩。
x
dA y x
2 x2 y 2
I p 2dA x 2 y 2 dA x 2dA y 2dA I y I x
A
y
z y A o
A
A
y
dA z
y
ydA S A z A A
求静矩的另一公式:
Sy x A
5
Sx y A
材料力学(附录)
2I xy Ix I y
0
x1
x
012tan1(I2xIxIyy )
0
0
2
与 0 对应的旋转轴为x0 、y0 轴,
平面图形对x0 、y0轴惯性矩 I x0 、 I y0 为
y
IIm mianxIx2Iy (Ix2Iy)2Ix2y
y0
x0
0
x
平面图形对x0 、y0 轴的惯性积 I x 0 y 0 为
单位:cm
40 10
20 y
1
C2
15 单位:cm
Iy
Iy
i
I y1
Iy2
1020 3 I y1 12
0.67104(cm4)
I
y
2
40 15 12
3
1.13104(cm4)
x
Iy Iy1Iy2
y
x1
(0.671.13)104
1.8104 (cm4 )
[例] 计算图示图形对其形心轴x轴的惯性矩。
360 40
40
20 180
2.592108(mm4)
t
an20
2I xy Ix I y
52.7(521.15.8932)21.3226
2052.9 , 0 26.45
yo 180 y
I max I min
IxIy 2
(Ix 2Iy)2Ix2y
360 40
§I-2 惯性矩和惯性半径 一、惯性矩:
定义: I x y 2 dA
A
I y x 2dA
y
A
Ix、Iy称为图形对x轴、y轴
05工程力学(静力学和材料力学)第2版课后习题答案_范钦珊主编_第5章_轴向拉伸与压缩
eBook工程力学(静力学与材料力学)习题详细解答(教师用书)(第5章)范钦珊 唐静静2006-12-18第5章轴向拉伸与压缩5-1试用截面法计算图示杆件各段的轴力,并画轴力图。
解:(a)题(b)题(c)题(d)题习题5-1图F NxF N(kN)x-3F Nx A5-2 图示之等截面直杆由钢杆ABC 与铜杆CD 在C 处粘接而成。
直杆各部分的直径均为d =36 mm ,受力如图所示。
若不考虑杆的自重,试求AC 段和AD 段杆的轴向变形量AC l Δ和AD l Δ解:()()N N 22ssππ44BCAB BC AB ACF l F l l d dE E Δ=+33321501020001001030004294720010π36.××+××=×=××mm ()3N 232c100102500429475286mm π10510π364..CDCD AD AC F l l l d E ΔΔ×××=+=+=×××5-3 长度l =1.2 m 、横截面面积为1.10×l0-3 m 2的铝制圆筒放置在固定的刚性块上;-10F N x习题5-2图刚性板固定刚性板A E mkN习题5-4解图直径d =15.0mm 的钢杆BC 悬挂在铝筒顶端的刚性板上;铝制圆筒的轴线与钢杆的轴线重合。
若在钢杆的C 端施加轴向拉力F P ,且已知钢和铝的弹性模量分别为E s =200GPa ,E a =70GPa ;轴向载荷F P =60kN ,试求钢杆C 端向下移动的距离。
解: a a P A E l F u u ABB A −=−(其中u A = 0)∴ 935.0101010.11070102.1106063333=×××××××=−B u mm钢杆C 端的位移为33P 32s s601021100935450mm π20010154...BC C B F l u u E A ×××=+=+=×××5-4 螺旋压紧装置如图所示。
材料力学第5版(孙训方编)
FAy
F
(b)
5. 将上述二个补充方程与由平衡条件ΣMA=0所得平衡方程
FN1a FN3
1 2
a
FN
2
(2a)
F
(3a)
0
联立求解得
FN3
3 2F 110 2
,FN1
2FN3
6 2F 110 2
,FN2
4FN3
12 2F 110 2
17
第六章 简单的超静定问题
Ⅱ. 装配应力和温度应力 (1) 装配应力
所以这仍然是一次超静定问题。
23
第六章 简单的超静定问题
2. 变形相容条件(图c)为 l1 l3 e
这里的l3是指杆3在装配后的缩短值,不带负号。 3. 利用物理关系得补充方程:
FN1l FN3l e EA E3 A3
24
第六章 简单的超静定问题
4. 将补充方程与平衡方程联立求解得:
FN1 FN2
MA
Me
MB
Me
Mea l
M eb l
34
第六章 简单的超静定问题 (a)
4. 杆的AC段横截面上的扭矩为
TAC
M A
M eb l
从而有
C
TAC a GI p
M eab lGI p
35
第六章 简单的超静定问题
例题6-6 由半径为a的铜杆和外半径为b的钢管经紧 配合而成的组合杆,受扭转力偶矩Me作用,如图a。试求 铜杆和钢管横截面上的扭矩Ta和Tb,并绘出它们横截面上 切应力沿半径的变化情况。
而杆1和杆2中的装配内力利用图b中右侧的图可知为
FN1
FN 2
FN3
2 c os
2
材料力学习题大全及答案
习题2-1图 习题2-2图习题2-3图 习题2-4图习题2-5图 习题2-6图材料力学习题大全及答案第1章 引 论1-1 图示矩形截面直杆,右端固定,左端在杆的对称平面内作用有集中力偶,数值为M 。
关于固定端处横截面A -A 上的内力分布,有四种答案,根据弹性体的特点,试分析哪一种答案比较合理。
正确答案是 C 。
1-2 图示带缺口的直杆在两端承受拉力F P 作用。
关于A -A 截面上的内力分布,有四种答案,根据弹性体的特点,试判断哪一种答案是合理的。
正确答案是 D 。
1-3 图示直杆ACB 在两端A 、B 处固定。
关于其两端的约束力有四种答案。
试分析哪一种答案最合理。
正确答案是 D 。
1-4 等截面直杆在两端承受沿杆轴线的拉力F P 。
关于杆中点处截面A -A 在杆变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试判断哪一种答案是正确的。
正确答案是 D 。
1-5 图示等截面直杆在两端作用有力偶,数值为M ,力偶作用面与杆的对称面一致。
关于杆中点处截面A -A 在杆变形后的位置(对于左端,由A A '→;对于右端,由A A ''→),有四种答案,试判断哪一种答案是正确的。
正确答案是 C 。
习题2-1图习题2-2图习题2-3图习题2-4图1-6 等截面直杆,其支承和受力如图所示。
关于其轴线在变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试分析哪一种是合理的。
正确答案是 C 。
第2章 杆件的内力分析2-1 平衡微分方程中的正负号由哪些因素所确定?简支梁受力及Ox 坐标取向如图所示。
试分析下列平衡微分方程中哪一个是正确的。
(A )d d Q x F d M(B )d d Q x F (C )d d Q x F (D )d d Q xF 2-2 对于图示承受均布载荷q 的简支梁,其弯矩图凸凹性与哪些因素相关?试判断下列四种答案中哪几种是正确的。
《材料力学》第五章课后习题参考答案
错误原因及避免方法
错误原因
1. 对材料力学的基本原理理解不深入,导致选择错误的公式或方法进行 计算。
2. 计算过程中出现数值错误或单位不统一等问题,导致结果偏差较大。
错误原因及避免方法
• 对计算结果缺乏分析和讨论,无法判断其 合理性和准确性。
错误原因及避免方法
01
避免方法
02
03
04
1. 加强对材料力学基本原理 的学习和理解,掌握各种公式 和方法的适用范围和条件。
题目一
分析并比较不同材料在拉伸过程中的力学行为差异。
题目二
讨论材料疲劳破坏的机理及影响因素。
要求
掌握材料在拉伸过程中的应力-应变曲线,理解弹性模量 、屈服强度、抗拉强度等概念,能够运用所学知识分析不 同材料的力学行为。
要求
了解材料疲劳破坏的基本概念,掌握疲劳破坏的机理和影 响因素,能够运用所学知识分析实际工程中的疲劳破坏问 题。
知识点综合运用
弹性力学基础
运用弹性力学的基本原理,分析 材料在弹性阶段的力学行为,计
算弹性模量等参数。
塑性力学基础
运用塑性力学的基本原理,分析材 料在塑性阶段的力学行为,理解屈 服强度、抗拉强度等概念。
疲劳破坏理论
运用疲劳破坏的基本理论,分析材 料在交变应力作用下的力学行为, 讨论疲劳破坏的机理和影响因素。
加强实践应用
除了理论学习外,我还计划通过 实践应用来加深对材料力学的理 解。例如,可以尝试利用所学知 识解决实际工程问题,或者参加 相关的实验和课程设计等。
拓展相关学科领域
材料力学是一门基础学科,与其他学 科领域有着密切的联系。因此,我计 划拓展相关学科领域的学习,如结构 力学、弹性力学等,以便更全面地了 解材料的力学性能和工程应用。
材料力学第5版(孙训方编高等教育出版社)第一章
第27页 / 共79页
材料力学
第一章 绪论及基本概念
四、对学生的能力的培养要求
通过材料力学课程的学习,学生应掌握杆件的强 度、刚度以及稳定性问题的基本概念、基础知识和一 定的分析能力,具有比较熟练的计算能力和一定的实 验能力。
第28页 / 共79页
材料力学
1、拉伸或压缩实例
第58页 / 共79页
材料力学
轴向拉伸或压缩 • 受力特征 • 变形特征
轴向拉伸
b 轴向压缩
第59页 / 共79页
材料力学
2、剪切实例
第60页 / 共79页
材料力学
第61页 / 共79页
材料力学
剪切
• 受力特征 • 变形特征
第62页 / 共79页
材料力学
3、扭转实例
第63页 / 共79页
第39页 / 共79页
材料力学
竹竿 金属杆 玻璃纤维 碳纤维复合材料
→ →→
撑 高 跳 女 皇
伊 辛 巴 耶 娃
第40页 / 共79页
材料力学
第41页 / 共79页
材料力学
材料力学与工程密切相关
力学是一种文化。 基础力学教育是一种素质教育。
第42页 / 共79页
材料力学
第一章 绪论及基本概念
三、材料力学课程内容及基本要求
总共9章:
1、绪论及基本概念(2课时) 材料力学的任务,可变形固体的基本假设,杆件变形的
基本形式。 2、轴向拉伸和压缩(8+2课时)
截面法,轴力和轴力图,横截面上的应力,纵向变形, 线应变,拉压胡克定律,变形和位移的计算,材料拉伸和 压缩时的力学性质,强度条件,应力集中的概念。
附录 材料力学 孙训方
材料力学电子教程
21
至于I x 则需先求出半圆形对其自身 2 形心轴的惯性矩。根据平行移轴公式可 2 2 2d πd ,而半圆形对于 得 I x′ = I x + ⋅ C 8 3π 直径轴x'(图b)的惯性矩等于圆形对x'轴 πd 4 的一半,于是得 的惯性矩 64
I xC
组合截面对某一轴的静矩应等 于其各组成部分对该轴静矩的 代数和。 代数和。
xc =
∑Ax
i i
n
ci
∑A
i
n
yc =
∑A y
i i
n
ci
i
∑A
i
n
i
材料力学电子教程 例题
附
录
10
一矩形截面如图所示, 均为已知值。 一矩形截面如图所示,图中的b、h和y1均为已知值。试 的静矩。 求有阴影线部分的面积对于对称轴X的静矩。
O
材料力学电子教程
简单几何图形的惯性矩: 简单几何图形的惯性矩:
附
录
14
求矩形截面对于对称轴(即形心轴) 求矩形截面对于对称轴(即形心轴)X和Y的惯性矩
bh 3 I x = ∫ y dA = ∫ y bdy = 12 h A
2 2
h 2
X
hb Iy = 12
3
−
2
求图示圆形截面对于形心轴即直径轴的惯性矩。 求图示圆形截面对于形心轴即直径轴的惯性矩。
用惯性半径表示惯性矩: 用惯性半径表示惯性矩:
Ix = ∫ y
A
2
dA
=
2 ix A
或
ix =
iy =
Ix A
Iy A
Iy
=
材料力学第五版课后习题答案
材料⼒学第五版课后习题答案⼆、轴向拉伸和压缩2-1试求图⽰各杆1-1和2-2横截⾯上的轴⼒,并作轴⼒图。
(a)解:;;(b)解:;;(c)解:;。
(d)解:。
2-2 试求图⽰等直杆横截⾯1-1,2-2和3-3上的轴⼒,并作轴⼒图。
若横截⾯⾯积,试求各横截⾯上的应⼒。
解:2-3试求图⽰阶梯状直杆横截⾯1-1,2-2和3-3上的轴⼒,并作轴⼒图。
若横截⾯⾯积,,,并求各横截⾯上的应⼒。
解:2-4 图⽰⼀混合屋架结构的计算简图。
屋架的上弦⽤钢筋混凝⼟制成。
下⾯的拉杆和中间竖向撑杆⽤⾓钢构成,其截⾯均为两个75mm×8mm的等边⾓钢。
已知屋⾯承受集度为的竖直均布荷载。
试求拉杆AE和EG横截⾯上的应⼒。
解:=1)求内⼒取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应⼒75×8等边⾓钢的⾯积A=11.5 cm2(拉)(拉)2-5(2-6)图⽰拉杆承受轴向拉⼒,杆的横截⾯⾯积。
如以表⽰斜截⾯与横截⾯的夹⾓,试求当,30,45,60,90时各斜截⾯上的正应⼒和切应⼒,并⽤图表⽰其⽅向。
解:2-6(2-8) ⼀⽊桩柱受⼒如图所⽰。
柱的横截⾯为边长200mm的正⽅形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
如不计柱的⾃重,试求:(1)作轴⼒图;(2)各段柱横截⾯上的应⼒;(3)各段柱的纵向线应变;(4)柱的总变形。
解:(压)(压)2-7(2-9)⼀根直径、长的圆截⾯杆,承受轴向拉⼒,其伸长为。
试求杆横截⾯上的应⼒与材料的弹性模量E。
解:2-8(2-11)受轴向拉⼒F作⽤的箱形薄壁杆如图所⽰。
已知该杆材料的弹性常数为E,,试求C与D两点间的距离改变量。
解:横截⾯上的线应变相同因此2-9(2-12) 图⽰结构中,AB为⽔平放置的刚性杆,杆1,2,3材料相同,其弹性模量E=210GPa,已知,,,。
试求C点的⽔平位移和铅垂位移。
解:(1)受⼒图(a),。
(2)变形协调图(b)因,故=(向下)(向下)为保证,点A移⾄,由图中⼏何关系知;第三章扭转3-1 ⼀传动轴作匀速转动,转速,轴上装有五个轮⼦,主动轮Ⅱ输⼊的功率为60kW,从动轮,Ⅰ,Ⅲ,Ⅳ,Ⅴ依次输出18kW,12kW,22kW和8kW。
材料力学(I)附录资料
解:1. 取参考轴z,y
6 cm
2. 求形心
yC
Ai y A
16
材料力学Ⅰ电子教案
附录
Ⅱ. 组合截面的惯性矩及惯性积 若组合截面由几个部分组成,则组合截面对于z,y
两轴的惯性矩和惯性积分别为
Iz
n
I
,
zi
i1
d2
Iy
n
I
,
yi
i1
n
I zy I ziyi i1
y2
h
y1
d1
z Oz
y b
17
材料力学Ⅰ电子教案
例题:求图示截面对形心 轴yC和zC的惯性矩
I y
z 2dA
A
-图形对 y 轴的惯性矩
I z
y 2dA -图形对 z轴的惯性矩
A
惯性积 (product of inertia)
z
I yz
yzdA
A
-图形对 y z 轴的惯性积
极惯性矩 (polar moment of inertia of an area)
I P A 2dA -图形对 O 点的极惯性矩
A1 z C1
A2 zC 2
An zCn
n
Ai zCi
i 1
n
yC zC
Sz A
Sy A
Ai yCi
i 1
n
Ai
i 1
n
Ai zCi
i 1 n
Ai
i 1
4
附录
材料力学Ⅰ电子教案
附录
§Ⅰ- 2 极惯性矩·惯性矩·惯性积
一、定义式
y
z
dA
A y
O
惯性矩 (moment of inertia)
材料力学附录(截面特性)
设
、
为形心坐标,则根据合力之矩定理
(A-2) 或
页码,3/14
(A-3)
这就是图形形心坐标与静矩之间的关系。 根据上述定义可以看出: 1.静矩与坐标轴有关,同一平面图形对于不同的坐标轴有不同的静矩。对某些坐标轴静矩为 正;对另外某些坐标轴为负;对于通过形心的坐标轴,图形对其静矩等于零。
2.如果已经计算出静矩,就可以确定形心的位置;反之,如果已知形心位置,则可计算图形的
,
(A-12) (A-13)
式中,D为圆环外径;d为内径。 4.根据惯性矩的定义式(A-6)、(A-7),注意微面积的取法(图A-3所示),不难求得矩形对于平 行其边界的轴的惯性矩:
file://D:\收藏\专业相关\附录A平面图形的几何性质.htm
2005-8-23
附录A平面图形的几何性质
页码,6/14
(A-18)
file://D:\收藏\专业相关\附录A平面图形的几何性质.htm
2005-8-23
附录A平面图形的几何性质
页码,8/14
此即关于图形对于平行轴惯性矩与惯性积之间关系的移轴定理。其中,式(A-18)表明: 1.图形对任意轴的惯性矩,等于图形对于与该轴平行的形心轴的惯性矩,加上图形面积与两平 行轴间距离平方的乘积。
之间的关系。
根据转轴时的坐标变换:
于是有
file://D:\收藏\专业相关\附录A平面图形的几何性质.htm
2005-8-23
附录A平面图形的几何性质
页码,9/14
将积分记号内各项展开,得
改写后,得
(A-19)
上述式(A-19)和(A-20)即为转轴时惯性矩与惯性积之间的关系。
(A-20)
若将上述
材料力学 第五版 i 截面的几何性质+习题答案
附录I 截面的几何性质 习题解[习题I-1] 试求图示各截面的阴影线面积对x 轴的静积。
(a )解:)(24000)1020()2040(3mm y A S c x =+⨯⨯=⋅=(b )解:)(42250265)6520(3mm y A S c x =⨯⨯=⋅= (c )解:)(280000)10150()20100(3mm y A S c x =-⨯⨯=⋅=(d )解:)(520000)20150()40100(3mm y A S c x =-⨯⨯=⋅=[习题I-2] 试积分方法求图示半圆形截面对x 轴的静矩,并确定其形心的坐标。
解:用两条半径线和两个同心圆截出一微分面积如图所示。
dx xd dA ⋅=)(θ;微分面积的纵坐标:θsin x y =;微分面积对x 轴的静矩为: θθθθθdxd x x dx xd y dx xd y dA dS x ⋅=⋅⋅=⋅⋅=⋅=sin sin )(2半圆对x 轴的静矩为:32)]0cos (cos [3]cos []3[sin 33003002r r x d dx x S r rx =--⋅=-⋅=⋅=⎰⎰πθθθππ因为c x y A S ⋅=,所以c y r r ⋅⋅=232132π π34ry c = [习题I-3] 试确定图示各图形的形心位置。
(a ) 解:习题I-3(a): 求门形截面的形心位置矩形 Li Bi Ai Yci AiYci Yc 离顶边上 400 20 8000 160 1280000 左 150 20 3000 75 225000 右150 20 3000 75 225000140001730000Ai=Li*Bi Yc=∑AiYci/∑Ai(b)解:(c)解:[习题I-4]试求图示四分之一圆形截面对于x轴和y轴的惯性矩x I、y I和惯性积xy I。
解:用两条半径线和两个同心圆截出一微分面积如图所示。
dx xd dA ⋅=)(θ;微分面积的纵坐标:θsin x y =;微分面积对x 轴的惯性矩为: θθθθθdxd x dx xd x dx xd y dA y dI x ⋅=⋅⋅=⋅==232222sin sin )(四分之一圆对x 轴的惯性矩为: ⎰⎰⎰-⋅==2/0042/02322cos 1]4[sin ππθθθθd x d dx x I r rx)]2(2cos 21[2142/02/04θθθππd d r ⎰⎰-⋅= }]2[sin 212{82/04πθπ-=r 164r ⋅=π由圆的对称性可知,四分之一圆对y 轴的惯性矩为:164r I I x y ⋅==π微分面积对x 轴、y 轴的惯性积为:xydA dI xy =8)42(21]42[21)(21444042222022r r r x x r dx x r x ydx xdx I r rx r rxy =-=-=-==⎰⎰⎰- [习题I-5] 图示直径为mm d 200=的圆形截面,在其上、下对称地切去两个高为mm 20=δ的弓形,试用积分法求余下阴影部分对其对称轴x 的惯性矩。
材料力学附录I
tg 2α 0 =−
2 I xCyC I xC − I yC
⎧ I x −I y 2 2 ⎪ I x0 I x + I y ± ( ) + I xy 主惯性矩: ⎨ = 2 2 ⎪ ⎩ I y0
2.形心主轴和形心主惯性矩: 主轴过形心时,称其为形心主轴。平面图形对形心主轴之 惯性矩,称为形心主惯性矩
2 A
y r z
dA
y
三、惯性积:面积与其到两轴距离之积。
I yz = ∫ yzdA
A
如果 y 或 z 是对称轴,则Iyz =0
附录 I.3 惯性矩和惯性积的平行移轴定理 一、平行移轴定理:(与转动惯量的平行移轴定理类似)
z y a r b
以形心为原点,建立与原坐标轴
zC dA C z y
平行的坐标轴如图 ⎧ y = yC + a ⎨ z = zC + b yC ⎩ 2
dA y1 x1 x
α
I x + I y ⎛ I x −I y ⎞ ⎟ +⎜ − I x1 = cos 2 α I sin 2 α xy ⎟ 2 ⎜ 2 ⎝ ⎠
I x + I y ⎛ I x −I y ⎞ −⎜ I y1 = cos2α −I xy sin2α ⎟ ⎜ ⎟ 2 ⎝ 2 ⎠ ⎛ I x −I y ⎞ I x1 y1 =⎜ ⎜ 2 sin2α + I xy cos2α ⎟ ⎟ ⎝ ⎠
dS z = dA ⋅ y
y z y dA
S y = ∫ dS y = ∫ zdA
A A
S z = ∫ dS z = ∫ ydA
A A
二、形心:(等厚均质板的质心与形心重合。)
yd m ∫ m y=