垂直于弦的直径ppt
合集下载
垂直于弦的直径时课件
02
垂直于弦的直径的性质证明
证明方法
01
02
03
三角形类似证明法
通过构造与垂直于弦的直 径相关的两个三角形,并 证明这两个三角形类似, 从而得出直径的性质。
圆周角定理证明法
利用圆周角定理,推导出 与垂直于弦的直径相关的 角的关系,从而证明直径 的性质。
反证法
假设与垂直于弦的直径相 关的性质不成立,通过推 理得出矛盾,从而证明直 径的性质成立。
总结词
在椭圆中,垂直于弦的直径同样具有平分弦和弧的特性。
详细描述
在椭圆中,如果有一条直径垂直于弦,那么这条直径也会平分这条弦,即弦被分 成两等分。同时,该直径还会平分弦所对的弧,即该弧被分为两个相等的部分。 这个性质在椭圆中同样适用,是几何学中的一个基本定理。
实例三:抛物线中的垂直于弦的直径
总结词
实例一:圆中的垂直于弦的直径
总结词
在圆中,垂直于弦的直径平分该弦,并且平分弦所对的弧。
详细描述
在圆中,如果有一条直径垂直于弦,那么这条直径会平分这 条弦,即弦被分成两等分。同时,该直径还会平分弦所对的 弧,即该弧被分为两个相等的部分。这是圆的基本性质之一 ,也是几何学中的一个基本定理。
实例二:椭圆中的垂于弦的直径
03
垂直于弦的直径的应用
在几何图形中的应用
垂直于弦的直径是几何图形中 重要的概念,它有助于理解图 形的形状、大小和性质。
在圆中,垂直于弦的直径将弦 分为两段相等的部分,这是等 腰三角形的一个重要性质。
垂直于弦的直径还可以用于确 定圆心角和圆周角的关系,以 及解决与圆相关的几何问题。
在物理中的应用
05
垂直于弦的直径的练习题及答案
练习题一及答案
人教版九年级数学上册第二十四章圆24.垂直于弦的直径教学课件
复习备用
C
垂径定理:垂直于弦的直径平分弦,并
且平分弦所对的两条弧.
O
∵ ① CD是直径 ② CD⊥AB
A
③AM=BM, ∴ ④AC=BC,
⑤AD=BD.
B D
1
复习备用
垂径定理的几个基本图形:
C
O
A
A
E
B
D
A
O
D
B
C
D
B
O
A
C
O
C
B
2
复习备用
垂径定理在基本图形中的应用:
A
O
D
B
C
① 设CD=h,AD=a,半径为 r, 则OD=r﹣h.在Rt∆AOD中,由 勾股定理得:r2﹣(r﹣h)2=a2
B x
17
知识点二:垂径定理与平面直角坐标系的综合应用
新知探究
y
解析:如图,作PC⊥x轴于点C,交AB于点D,
作PE⊥AB于点E,连接PB
B
∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a.
A
把x=3代人y=x,得y=3 ∴CD=3,
O
x
∴△OCD为等腰直角三角形,
∴△PED也为等腰直角三角形.
11
知识点一:利用垂径定理解决实际问题
学以致用
3、如图,一条排水管的截面如图所示, 已知排水管的半径OA=1m,水面宽AB= 1.2m,某天下雨后,排水管水面上升了 0.2m,则此时排水管中水面宽为( B ) A.1.4m B.1.6m C.1.8m D.2m
O
C
D
A
B
12
知识点一:利用垂径定理解决实际问题
4
复习备用
C
垂径定理:垂直于弦的直径平分弦,并
且平分弦所对的两条弧.
O
∵ ① CD是直径 ② CD⊥AB
A
③AM=BM, ∴ ④AC=BC,
⑤AD=BD.
B D
1
复习备用
垂径定理的几个基本图形:
C
O
A
A
E
B
D
A
O
D
B
C
D
B
O
A
C
O
C
B
2
复习备用
垂径定理在基本图形中的应用:
A
O
D
B
C
① 设CD=h,AD=a,半径为 r, 则OD=r﹣h.在Rt∆AOD中,由 勾股定理得:r2﹣(r﹣h)2=a2
B x
17
知识点二:垂径定理与平面直角坐标系的综合应用
新知探究
y
解析:如图,作PC⊥x轴于点C,交AB于点D,
作PE⊥AB于点E,连接PB
B
∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a.
A
把x=3代人y=x,得y=3 ∴CD=3,
O
x
∴△OCD为等腰直角三角形,
∴△PED也为等腰直角三角形.
11
知识点一:利用垂径定理解决实际问题
学以致用
3、如图,一条排水管的截面如图所示, 已知排水管的半径OA=1m,水面宽AB= 1.2m,某天下雨后,排水管水面上升了 0.2m,则此时排水管中水面宽为( B ) A.1.4m B.1.6m C.1.8m D.2m
O
C
D
A
B
12
知识点一:利用垂径定理解决实际问题
4
复习备用
垂直于弦的直径ppt课件
注意:过圆心和垂直于弦两个条件缺一不可
O
A
进一步,我们还可以得到结论:
B
E
D
平分弦(不是直径)的直径垂直于弦,并且平
分弦所对的两条弧。
•即:如果CD过圆心,且AE=BE
则CD⊥AB, AC= BC, AD= BD
7
C
O
垂径定理:
A
M
B 由
① CD是直径 ② CD⊥AB
可推得
D
推论:
O
由 ① CD是直径 可推得
在Rt △ AOE 中
AO2 OE2 AE2
·
O
AO OE2 AE2 = 32 +42 =5cm
答:⊙O的半径为5cm.
如上图.若⊙O的半径为10cm,
OE=6cm,则AB= cm。 9
1.下列图形是否具备垂径定理的条件?
C
c
C
C
A
D
B
O
O
O
O
A
E
B
A
E
BA
EB
D
是
不是
是
D
不是
注意:定理中的两个条件(直 径,垂直于弦)缺一不可!
OEA 90 EAD 90 ODA 90
∴四边形ADOE为矩形, AE 1 AC,AD 1 AB
2
2
又 ∵AC=AB
C
∴ AE=AD ∴ 四边形ADOE为正方形.
E
·O
A
D
B
17
M
C
D
A
B
A
B
.
O
O.
E AC
DB
.O
N
小结:解决有关弦的问题,经常是过圆心作
24.垂直于弦的直径PPT课件(人教版)
(√ ) (√ ) (×)
轴
经过圆心
中心
圆心
垂直于弦的 直径平分弦,并且平分弦所对的两条弧
垂直
弦所对的两条弧
问题:你知道赵州桥吗?它是1300多年前我国隋代建 造的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主 桥拱是圆弧形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦的距离)为7.2m,你能求出赵州桥主 桥拱的半径吗?
∵AB∥CD,∴ON⊥CD于N
在RtAOM中,AM 5cm,OM OA2 AM2 12cm. 在RtOCN中,CN 12cm,ON OC2 CN 2 5cm.
∵MN=OM-ON,∴MN=7cm. (2)当AB、CD在O点异侧时,如图②所示,
由(1)可知OM=12cm,ON=5cm,MN=OM+ON,
(并2且)平A分M=A(BBM及,AA(DCB=.BC,AD=BD,即直径CD平分弦AB,
这样,我们就得到下面的定理:垂直于弦的直径平分弦, 并且平分弦所对的两条弧。进一步,我们还可以得到结论:平 分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 。
知识点一 垂径定理及其推论
C
知识点一 垂径定理及其推论
通过本节课的学习,我们就会很容易解决这一问题.
探究:1.圆是轴对称图形吗?如果是,它的对称轴是什 么?你能找到多少条对称轴?
分析讨论:圆是轴对称图形,它的对称轴是直径,我能找到 无数多条直径.
探究: 2.你是用什么方法解决上述问题的?与同伴进行 交流.
分析讨论我:是利用沿着圆的任意一条直径折叠的方法解决 圆的对称轴问题的.
.2垂直于弦的直径
判断:
(1)直径是弦.( √ )
(2)弦是直径. ( × )
垂直于弦的直径课件(共21张PPT)
C E A
O
D
B
三 垂径定理的有关计算 例2 如图,⊙ O的弦AB=8cm ,直径CE⊥AB于
D,DC=2cm,求半径OC的长.
解:连接OA,∵ CE⊥AB于D, ∴
1 1 AD AB 8 4 (cm) 2 2
E
方程思想
A
D C
Hale Waihona Puke O ·设OC=xcm,则OD=x-2,根据 勾股定理,得 x2=42+(x-2)2, 解得 x=5, 即半径OC的长为5cm.
试一试:根据刚刚所学,你能利用垂径定理求出引入 中赵州桥主桥拱半径的问题吗?
7.23米
37米
解:如图,用AB表示主桥拱,设 AB所在圆的圆心为O,半径为R. 经过圆心O作弦AB的垂线OC 垂足为D,与弧AB交于点C, 则D是AB的中点,C是弧AB的 中点,CD就是拱高. ∴ AB=37m,CD=7.23m.
C B O A
D
定理及推论,总结: 一条直线只需满足: (1)过圆心 (2)垂直于弦 (3)平分弦 (4)平分弦所对的优弧 (5)平分弦所对的劣弧 上述条件中的任意两个条件,就能推 出其它三个.
五 学以致用
例2 赵州桥(图24.1-7)是我国隋代建造白石拱桥,距今 约有1 400年的历史,是我国古代人民勤劳与智慧的结晶.它 的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37 m,拱高 (弧的中点到弦的距离)为7.23 m,求赵州桥主桥拱的半径(结果 保留小数点后一位).
一 三 垂径定理的有关计算 例1 如图,OE⊥AB于E,若⊙O的 半径 AB 为10cm, 16 61 cm. OE=6cm,则 半径为 AB=
A
E
B
解析:连接OA, ∵ OE⊥AB, ∴∠AEO=90°,AB=2AE
第课时 垂直于弦的直径(共26张PPT)
24.1 圆
第2课时 垂直于弦的直径
如图,1 400 多年前,我国隋代建造的赵州石拱桥
主桥拱是圆弧形,它的跨度(弧所对的弦长)是 37 m,
拱高(弧的中点到弦的距离)为 7.23 m,求赵州桥主桥 拱的半径(精确到 0.1 m).
1.探索并了解圆的对称性和垂径定理.
2.能运用垂径定理解决几何证明、计算问 题,并会解决一些实际问题.
探究点一 圆的轴对称性
如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E.
(1)这个图形是轴对称图形吗?如果是,它的对称轴是什么?
(2)你能发现图中有那些相等的线段和弧?为什么?
【针对训练】
A
探究点二 垂径定理及其推论的推导
垂径定理: 教科书第89页习题24.
垂直于弦的直径平分弦,并且平分弦所对的两 平分弦(不是直径)并且平分弦所对的两条孤.
探平(究分点 弦由一(不圆)是的直垂轴径对径)称并性定且平理分弦—所构对的造两条直孤.角三角形—结合)勾股定理—建立方程.
(1)这个图形是轴对称图形吗?如果是,它的对称轴是什么? 教科书第89页习题24. 探究点二 垂径定理及其推论的推导 (2)垂径定理的推论: 垂直于弦的直径平分弦,并且平分弦所对的两条弧.
垂直于弦的直径平分弦,并且平分弦所对的两条弧. 如图,连接 OA,OB,设 AO=BO, (2)你能发现图中有那些相等的线段和弧?为什么? 如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E.
重要思路: 如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E.
能运用垂径定理解决几何证明、计算问题,并会解决一些实际问题. 探究点二 垂径定理及其推论的推导 平分弦(不是直径)并且平分弦所对的两条孤.
第2课时 垂直于弦的直径
如图,1 400 多年前,我国隋代建造的赵州石拱桥
主桥拱是圆弧形,它的跨度(弧所对的弦长)是 37 m,
拱高(弧的中点到弦的距离)为 7.23 m,求赵州桥主桥 拱的半径(精确到 0.1 m).
1.探索并了解圆的对称性和垂径定理.
2.能运用垂径定理解决几何证明、计算问 题,并会解决一些实际问题.
探究点一 圆的轴对称性
如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E.
(1)这个图形是轴对称图形吗?如果是,它的对称轴是什么?
(2)你能发现图中有那些相等的线段和弧?为什么?
【针对训练】
A
探究点二 垂径定理及其推论的推导
垂径定理: 教科书第89页习题24.
垂直于弦的直径平分弦,并且平分弦所对的两 平分弦(不是直径)并且平分弦所对的两条孤.
探平(究分点 弦由一(不圆)是的直垂轴径对径)称并性定且平理分弦—所构对的造两条直孤.角三角形—结合)勾股定理—建立方程.
(1)这个图形是轴对称图形吗?如果是,它的对称轴是什么? 教科书第89页习题24. 探究点二 垂径定理及其推论的推导 (2)垂径定理的推论: 垂直于弦的直径平分弦,并且平分弦所对的两条弧.
垂直于弦的直径平分弦,并且平分弦所对的两条弧. 如图,连接 OA,OB,设 AO=BO, (2)你能发现图中有那些相等的线段和弧?为什么? 如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E.
重要思路: 如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E.
能运用垂径定理解决几何证明、计算问题,并会解决一些实际问题. 探究点二 垂径定理及其推论的推导 平分弦(不是直径)并且平分弦所对的两条孤.
垂直于弦的直径ppt课件
∵ OM ⊥ AB,∴ AM=BM.
∵ AC=BD,∴ CM=DM.
又∵ OM ⊥ CD,∴ OC=OD.
∴△ OCD 为等腰三角形 .
感悟新知
知2-练
3-1. [模拟·鼓楼区] 如图,AB是⊙O的弦,半径OD⊥AB,
垂足为H,BC⊥AB, 交AD延长线于点C.
感悟新知
(1)求证:D是AC的中点;
⌒
⌒
⌒
⌒
直于 AB,并且AC = CB, AD = DB .
可用几何语言表述为:
⊥ ,
是直径
=⌒,
= ⇒ ⌒
⌒
=⌒ .
不是直径
感悟新知
拓宽视野
对于圆中的一条直线,如果具备下列五个条件
中的任意两个,那么一定具备其他三个:
(1)过圆心;
(2)垂直于弦;
么可用几何语言表述为:
= ,
是直径, ⇒ ⌒
=⌒,
⊥ ,
⌒
=⌒ .
感悟新知
知2-练
例2 如图24.1-9,弦CD垂直于⊙ O的直径AB,垂足
为点H,且 CD=2 , BD= ,则 AB 的长为
(
A. 2
)
B. 3
C. 4
D. 5
思路导引:
感悟新知
1.垂径定理
垂直于弦的直径平分弦,并且平分弦所对的两条弧 .
感悟新知
知1-讲
特别提醒
1. “垂直于弦的直径”中 的“直径”,其实质是:
过圆心且垂直于弦的线段、直线均可.
2. “两条弧”是指弦所对 的劣弧和优弧或两个半圆.
感悟新知
知1-讲
2.示例
如图 24.1-8, CD ⊥ AB 于点 E, CD 是⊙ O 的直径,那
∵ AC=BD,∴ CM=DM.
又∵ OM ⊥ CD,∴ OC=OD.
∴△ OCD 为等腰三角形 .
感悟新知
知2-练
3-1. [模拟·鼓楼区] 如图,AB是⊙O的弦,半径OD⊥AB,
垂足为H,BC⊥AB, 交AD延长线于点C.
感悟新知
(1)求证:D是AC的中点;
⌒
⌒
⌒
⌒
直于 AB,并且AC = CB, AD = DB .
可用几何语言表述为:
⊥ ,
是直径
=⌒,
= ⇒ ⌒
⌒
=⌒ .
不是直径
感悟新知
拓宽视野
对于圆中的一条直线,如果具备下列五个条件
中的任意两个,那么一定具备其他三个:
(1)过圆心;
(2)垂直于弦;
么可用几何语言表述为:
= ,
是直径, ⇒ ⌒
=⌒,
⊥ ,
⌒
=⌒ .
感悟新知
知2-练
例2 如图24.1-9,弦CD垂直于⊙ O的直径AB,垂足
为点H,且 CD=2 , BD= ,则 AB 的长为
(
A. 2
)
B. 3
C. 4
D. 5
思路导引:
感悟新知
1.垂径定理
垂直于弦的直径平分弦,并且平分弦所对的两条弧 .
感悟新知
知1-讲
特别提醒
1. “垂直于弦的直径”中 的“直径”,其实质是:
过圆心且垂直于弦的线段、直线均可.
2. “两条弧”是指弦所对 的劣弧和优弧或两个半圆.
感悟新知
知1-讲
2.示例
如图 24.1-8, CD ⊥ AB 于点 E, CD 是⊙ O 的直径,那
《垂直于弦的直径》ppt
①④
①⑤ ②③ ②④ ②⑤
②③⑤
②③④ ①④⑤ ①③⑤ ①③④
③④
③⑤ ④⑤
①②⑤
①②④ ①②③
爱是什么? 一个精灵坐在碧绿的枝叶间沉思。 风儿若有若无。 一只鸟儿飞过来,停在枝上,望着远处将要成熟的稻田。 精灵取出一束黄澄澄的稻谷问道:“你爱这稻谷吗?” “爱。” “为什么?” “它驱赶我的饥饿。” 鸟儿啄完稻谷,轻轻梳理着光润的羽毛。 “现在你爱这稻谷吗?”精灵又取出一束黄澄澄的稻谷。 鸟儿抬头望着远处的一湾泉水回答:“现在我爱那一湾泉水,我有点渴了。” 精灵摘下一片树叶,里面盛了一汪泉水。 鸟儿喝完泉水,准备振翅飞去。 “请再回答我一个问题,”精灵伸出指尖,鸟儿停在上面。 “你要去做什么更重要的事吗?我这里又稻谷也有泉水。” “我要去那片开着风信子的山谷,去看那朵风信子。” “为什么?它能驱赶你的饥饿?” “不能。” “它能滋润你的干渴?” “不能。”爱是什么? 一个精灵坐在碧绿的枝叶间沉思。 风儿若有若无。 一只鸟儿飞过来,停在枝上,望着远处将要成熟的稻田。 精灵取出一束黄澄澄的稻谷问道:“你爱这稻谷吗?” “爱。” “为什么?” “它驱赶我的饥饿。” 鸟儿啄完稻谷,轻轻梳理着光润的羽毛。 “现在你爱这稻谷吗?”精灵又取出一束黄澄澄的稻谷。 鸟儿抬头望着远处的一湾泉水回答:“现在我爱那一湾泉水,我有点渴了。” 精灵摘下一片树叶,里面盛了一汪泉水。 鸟儿喝完泉水,准备振翅飞去。 “请再回答我一个问题,”精灵伸出指尖,鸟儿停在上面。 “你要去做什么更重要的事吗?我这里又稻谷也有泉水。” “我要去那片开着风信子的山谷,去看那朵风信子。” “为什么?它能驱赶你的饥饿?” “不能。” “它能滋润你的干渴?” “不能。”
AD=BD
O · A
E D
垂直于弦的直径ppt课件
年的历史,是我国古代人民勤劳与智慧的结晶.它的主
桥拱是圆弧形,它的跨度(弧所对的弦的长)为 37
m,拱高(弧的中点到弦的距离)为 7.23 m,求赵州
桥主桥拱的半径(结果保留小数点后一位).
解:如图,过桥拱所在圆的圆心 O 作 AB 的垂线,交 AB
于点 C,交弦 AB 于点 D,则 CD = 7.23.
赵州桥中,弦长 a,弦心距 d,弓形高 h,半径 r 之间有
以下关系:
指圆心 O 到弦的距离
C
d+h=r
h
a
A
B 数量关系
D
2
r d
O
总结
垂径定理往往转化成应用勾股定理解直角三角形
课堂练习
1. 如图 a、b,一弓形弦长为
cm,弓形所在的圆的
半径为 7 cm,则弓形的高为________cm.
2 或 12
问题2:不借助任何工具,你能找到圆形纸片的圆心吗?
由此你得到了什么结论?你能证明你的结论吗?
●O
结论:圆是轴对称图形,任何一条直径所在的直
线都是圆的对称轴.
问题3:如何证明圆是轴对称图形?
圆上任意一点关于直径所在直线 (对称轴) 的对称
点也在圆上.
同学们在自己作的圆中按照如下步骤作图,并
写出已知和证明:
基本图形及
变式图形
构造直角三角形,利用勾股定理
计算或建立方程.
OC =2,则☉ O 的半径长为
.
3. (2023·宜昌中考)如图, OA , OB , OC 都是☉
O 的半径, AC , OB 交于点 D . 若 AD = CD =8,
OD =6,则 BD 的长为 4 .
垂直于弦的直径的应用课课件
应用
利用垂直于弦的直径来证 明平面图形中的一些定理 和性质
实例
利用垂直于弦的直径来计 算平面图形的面积和周长
03
CHAPTER
垂直于弦的直径在实际问题 中的应用
在建筑设计中的应用
建筑结构分析
垂直于弦的直径在建筑设计中可用于分析结构的稳定性。通过计算直径上的应 力分布,可以评估结构的承载能力和安全性。
案例三
总结词
日常生活用品中的垂直于弦的直径应用主要 体现在工具和家居用品的设计上。
详细描述
在日常生活中,许多工具和家居用品都利用 了垂直于弦的直径原理。例如,剪刀、餐具 等工具的设计中,通过垂直于弦的直径实现 受力点的优化,提高使用舒适度和效率。在 家居用品中,如椅子、桌子等,垂直于弦的 直径有助于提高家具的稳定性和承重能力, 保证使用的安全性和舒适性。
交通工具设计
在交通工具设计中,垂直于弦的直径也有广泛应用。例如, 在汽车、火车等交通工具的车身和部件设计中,通过分析直 径上的应力分布,可以优化车身结构和材料选择,提高其安 全பைடு நூலகம்和经济性。
04
CHAPTER
垂直于弦的直径的应用案例 分析
案例一:建筑设计中的垂直于弦的直径应用
总结词
建筑设计中的垂直于弦的直径应用主要 体现在空间布局和结构稳定性方面。
实例
利用直径和垂直于直径的弦来计算圆的面积和周 长
在三角形中的应用
01
02
03
定理
垂直于弦的直径平分弦, 并且平分弦所对的两条弧
应用
利用垂直于弦的直径来证 明三角形的中线定理和平 行四边形定理
实例
利用垂直于弦的直径来计 算三角形的面积和周长
在其他图形中的应用
垂径定理ppt课件
28.4 垂径定理 *
28.4 垂径定理 *
● 考点清单解读
● 重难题型突破
■考点一
垂径定理
考
点
内容
清
单
解
读 垂直于弦的直径
平分这条弦,并
且平分这条弦所
对的两条弧
符号语言
图形
28.4 垂径定理 *
归纳总结
考
点
(1)定理中的“垂径”可以是直径、半径或过圆心的直
清
单 线(线段),其本质是“过圆心”;(2)该定理中的弦为
[答案] 解:在题图上连接 OA,∵⊙O 的直径 CD=20
考
点
清 ,0M∶OC=3∶5,∴OC=10,OM=6.∴OA=OC=10.∵AB⊥CD,
单
− =8,∴AB=2AM=16.
∴AM=
解
读
28.4 垂径定理 *
考
点
清
单
解
读
■考点二
垂径定理的推论
定义
内容
推
平分弦(不是直径)的
论
m;
28.4 垂径定理 *
(2)如答案图,过点 O 作 OH⊥FE,交 FE 的延长线
重
难
题 于点 H,由题意知 EF⊥AB,∴∠CEH=∠ECO=∠OHE=90°,
型 ∴ 四边形 OHEC 是矩形,∴OH=CE=BC-4=12 m ,OF = r =
突
破 20 m,在 Rt△OHF 中,HF= − =16m,∵HE=OC
)
C
突
破
A.5 cm
B.7 cm
C.8 cm
D.10 cm
28.4 垂径定理 *
解题通法 解决此类问题的关键是从实际问题中抽象出
28.4 垂径定理 *
● 考点清单解读
● 重难题型突破
■考点一
垂径定理
考
点
内容
清
单
解
读 垂直于弦的直径
平分这条弦,并
且平分这条弦所
对的两条弧
符号语言
图形
28.4 垂径定理 *
归纳总结
考
点
(1)定理中的“垂径”可以是直径、半径或过圆心的直
清
单 线(线段),其本质是“过圆心”;(2)该定理中的弦为
[答案] 解:在题图上连接 OA,∵⊙O 的直径 CD=20
考
点
清 ,0M∶OC=3∶5,∴OC=10,OM=6.∴OA=OC=10.∵AB⊥CD,
单
− =8,∴AB=2AM=16.
∴AM=
解
读
28.4 垂径定理 *
考
点
清
单
解
读
■考点二
垂径定理的推论
定义
内容
推
平分弦(不是直径)的
论
m;
28.4 垂径定理 *
(2)如答案图,过点 O 作 OH⊥FE,交 FE 的延长线
重
难
题 于点 H,由题意知 EF⊥AB,∴∠CEH=∠ECO=∠OHE=90°,
型 ∴ 四边形 OHEC 是矩形,∴OH=CE=BC-4=12 m ,OF = r =
突
破 20 m,在 Rt△OHF 中,HF= − =16m,∵HE=OC
)
C
突
破
A.5 cm
B.7 cm
C.8 cm
D.10 cm
28.4 垂径定理 *
解题通法 解决此类问题的关键是从实际问题中抽象出
垂直于弦的直径公开课版课件
垂直于弦的直径公开 课版课件
• 垂直于弦的直径的基本概念 • 垂直于弦的直径的性质证明 • 垂直于弦的直径定理的应用 • 垂直于弦的直径定理的推论 • 垂直于弦的直径定理的证明方法
目录
Part
01
垂直于弦的直径的基本概念
定义与性质
定义
垂直于弦的直径是一条线段,它 过圆心并与给定的弦垂直。
性质
推论二:经过圆心,平分弦的线段垂直于该弦
总结词
此推论说明,如果一条线段经过圆心并平分弦,那么这条线段垂直于该弦。
详细描述
由于线段经过圆心,它必然与圆相交于两点。由于它平分弦,这两点将与弦形成两个相等的部分。根 据垂径定理,经过圆心的线段与弦垂直。
推论三:平分弦的直径垂直于该弦
总结词
这个推论表明,如果一条直径平分弦,那么这条直径垂直于该弦。
利用圆的性质证明
总结词:逻辑周密
详细描述:根据圆的性质,直径是圆中最长的弦,因此它必然平分与之垂直的任何其他弦。
利用反证法证明
总结词:反向思考
详细描述:第一假设与弦垂直的直径不平分该弦,然后通过一系列逻辑推理,最终得出矛盾,从而证 明垂直于弦的直径必然平分该弦。
THANKS
感谢您的观看
总结词
垂直于弦的直径将弦分为两段相等的线 段,这是垂直于弦的直径的基本性质之 一。
VS
详细描述
由于直径是弦的中垂线,它必然将弦分为 两段相等的线段。这是基于几何学的基本 定理,即任何经过圆心并垂直于弦的线段 都将弦平分,并将弦分为两段相等的线段 。这个性质在解决几何问题时非常有用, 因为它可以帮助我们快速找到弦的中点, 从而简化问题。
Part
03
垂直于弦的直径定理的应用
在几何证明题中的应用
• 垂直于弦的直径的基本概念 • 垂直于弦的直径的性质证明 • 垂直于弦的直径定理的应用 • 垂直于弦的直径定理的推论 • 垂直于弦的直径定理的证明方法
目录
Part
01
垂直于弦的直径的基本概念
定义与性质
定义
垂直于弦的直径是一条线段,它 过圆心并与给定的弦垂直。
性质
推论二:经过圆心,平分弦的线段垂直于该弦
总结词
此推论说明,如果一条线段经过圆心并平分弦,那么这条线段垂直于该弦。
详细描述
由于线段经过圆心,它必然与圆相交于两点。由于它平分弦,这两点将与弦形成两个相等的部分。根 据垂径定理,经过圆心的线段与弦垂直。
推论三:平分弦的直径垂直于该弦
总结词
这个推论表明,如果一条直径平分弦,那么这条直径垂直于该弦。
利用圆的性质证明
总结词:逻辑周密
详细描述:根据圆的性质,直径是圆中最长的弦,因此它必然平分与之垂直的任何其他弦。
利用反证法证明
总结词:反向思考
详细描述:第一假设与弦垂直的直径不平分该弦,然后通过一系列逻辑推理,最终得出矛盾,从而证 明垂直于弦的直径必然平分该弦。
THANKS
感谢您的观看
总结词
垂直于弦的直径将弦分为两段相等的线 段,这是垂直于弦的直径的基本性质之 一。
VS
详细描述
由于直径是弦的中垂线,它必然将弦分为 两段相等的线段。这是基于几何学的基本 定理,即任何经过圆心并垂直于弦的线段 都将弦平分,并将弦分为两段相等的线段 。这个性质在解决几何问题时非常有用, 因为它可以帮助我们快速找到弦的中点, 从而简化问题。
Part
03
垂直于弦的直径定理的应用
在几何证明题中的应用
《垂直于弦的直径》圆PPT精品课件
C
A
B
O
(2)
C
O AD B
(3)
C
OE
A
B
D
(4)
没有垂直
AB、CD都 不是直径
抢答
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
想一想
怎样修改图(2)、(4)能够满足垂径定理的条件?
C
O AE B
D
(1)
C
A
B
O
(2)
C
O AD B
(3)
C A OE B
DD
(4)
垂径定理: 过圆心
垂径定理的推论:
①③→②④⑤
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
①过圆心, ②垂直于弦, ③平分弦, ④平分弦所对的优弧弧, , ⑤平分弦所对的劣弧.
还有别的结论吗? 如:①④→②③⑤?
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
延伸
①过圆心,②垂直于弦,③平分弦,
合作探究
剪一个圆形纸片,沿着它的任意一条直径对折, 重复做几次,你发现了什么?
①圆是轴对称图形,
O
②任何一条直径所在的直线
都是圆的对称轴.
你能证明上面的结论吗?
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
证明
如图,设CD是⊙O的任意一条直径,A为⊙O上点C,D以 外的任意一点.证明点A关于直线CD的对称点仍在⊙O上.
C
A
D
R
由题设可知:AB37,CD7.23,
B ∴AD 1 AB 1 3718.5,
22 ODOCCDR7.23,
O
在Rt△OAD中,由勾股定理得: