数学物理方法答案-刘连寿
理论物理基础教程刘连寿第五篇第二章答案

∴
∂ 2ψ 1 ( x) + λ2 xψ 1 ( x) = 0 2 ∂x
由边界条件得ψ 1 ( x) = A sin( λ x x) , A sin( λ x a) = 0 ,
λx = n1π a
( n1 = 1,2,3........ )
2 a
本征函数ψ 1 ( x) = A sin( n1π
a
x) ,归一化后得 A =
nπ nπ nπ 8 sin( 1 z ) sin( 2 y ) sin( 3 z ) abc a b c
2 n2 λ 2 h 2π 2 n12 n2 = ( 2 + 2 + 3 ) 2m 2m a b c2 2
2 2 h ∵ λ2 = λ2 x + λ y + λz ∴ E =
n1 , n 2 , n3 = 1,2,3........
其中 k =
2 mE / h 2
。
2
x) 2m( E − U ) + ψ ( x) = 0 解:由定态薛定谔方程 d ψ ( 2 2 dx h
∴
′′( x) + ψ1 ′′ ( x ) + ψ2 ′′( x ) + ψ3
2m( E − U 1 ) ψ 1 ( x) = 0 h2 2mE ψ 2 ( x) = 0 h2
∴
ψ 1 ( x) =
nπ 2 sin( 1 x ) a a nπ 2 sin( 3 z ) c c
同理可得ψ 2 ( y) =
nπ 2 sin( 2 y ) ,ψ 3 ( z ) = b b
PDF 文件使用 "pdfFactory" 试用版本创建
ψ ( x, y, z ) =
数学物理方法习题解答(完整版)

数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
理论物理基础教程刘连寿第五篇第一章答案

PDF 文件使用 "pdfFactory" 试用版本创建
ˆ+F ˆ + ]vdτ = v[( F ˆ + )u ]* d τ , F ˆ +F ˆ + 是厄米算符。 所以 ∫ u * [ F ∫ ˆ +F
* ˆ −F ˆ + )]vdτ 同理, ∫ u [i( F + * ˆ ˆvdτ − i u * F ˆ u ) * dτ = i∫ u * F vdτ − i ∫ v( F ∫ ˆ vdτ = i ∫ u F
Axe − λx = ∫ c ( p x )ψ p x dp x
x
( x) =
1 e ipx x / h 2πh
其中
v c ( p x ) = ∫ψ ψ ( x)d r =
* px 3
∫ (e 2πh
0
1
∞
ip x x / h *
) Axe −λx dx
= =
A xe −( λx +ipx x / h ) dx ∫ 2πh 0 h [− xe − ( λ +ip x / h ) x 2πh λh + ip x x
P305
1. 计算下列各种频率的谐振子的能量子: (a)υ = 50HZ 的带电谐振子; (b)υ = 1010 HZ 的微波; (c)υ = 1015 HZ 的光波, 进而指出为什么普通振子的能量不显分立性。 答:(a)
hυ = 6.63 *10 −34 J ⋅ S * 50 HZ = 3.31 * 10 −32 J
因为在 z → ±∞ 时, u , v 都趋于 0,所以第一项和第三项都为 0,所以,上式变为
PDF 文件使用 "pdfFactory" 试用版本创建
高等数学第四册第三版数学物理方法答案(完整版)

22
22
解: , ,它表示两相切 x2 + (y − 1)2 > 1 22
x2 + (y − 3)2 > 1 22
1
圆半径为 2 的外部区域。
(9).Im z > 1且 z < 2;
解:此图形表示半径为 2 的圆的内部,
4
且Im z >1的部分,它是区域。 ) (10). z < 2且0 < arg z < π ;
, 得 ,即 。 x2 + y2 =1
arg ( x + iy) = π
2
x = 0, y = 1
z=i
7
20.试求 及 。 (1+ i)i,3i,ii,e2+i
Ln(1+ i)
解: ii
= eiLni
i(π +2kπ )i
=e 2
−π −2kπ
=e 2 ,k
= 0, ±1, ±2,⋅⋅⋅
, (1+ i)i
03
2.计算积分路径是(1)直线段,(2)右
半单位圆,(3)左半单位圆。
8
解: , (1)令z = it(−1 ≤ t ≤ 1),dz = idt, z = t
i
1
1
1
∫ ∫ ∫ ∫ 所以 z dz = t idt = i (−t)dt + i tdt = i
−i
−1
−1
0
(2).令:z = cosθ + i sinθ (− π ≤ θ ≤ π ),dz = (− sinθ + cosθ )dθ,
k = 0, ±1, ±2,⋅⋅⋅
3i = eiLn3 = ei(ln3+2kπ ) = cos ln 3 + i sin ln 3
数学物理方法习题解答(完整版)

数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
数学物理方法答案(10) 刘连寿

3.反演 u(x,t)=L-1[u(x,p)]=L-1[x b -p b L [- 2 e a ] L-1[ 2 ] p p -1 x b -p b e a 2] 2 p p
(1)L-1[
b ] bt p2
f (t ), t 由延迟定理L-1[e p F(p)] f (t ) 0,t< x x b(t ), t p b - x a a L1[- 2 e a ] p 0,t x a
F[
8.用傅里叶变换求解下列定解问题:
2u 2u 0, x 2 y 2 x , y 0;
u y 0 ( x), u x 0, u y 0.
(k , y ), f ( x) f (k ) ,则原定解问题称为 解:设 u ( x, y ) u
x 0, t 0
t 0
u x 0 0, u t 0 0, ut
b
解:对方程及边界条件作关于变量 1. t的拉氏变换。
2 2 2 d p u(x,p)-pu(x,0)-u (x,0)-a u(x,p)=0 t 2 dx u(0,p)=0, u (x,p) 0 x x
(t )
A 0 0 t t0 t 0, t t0
如图 4,求电流。
5.试证明
(1) n 2 cos( a) 2 sin 2 ( a ) n ( n a )
式中实数 a 0, 1, 2,
6.求解半无界弦的振动
utt a 2u xx 0
2
C ( p ) ,则有 4.证明象函数 C ( p) 的位移定理,若有 f (t )
e ip0t f (t ) C ( p p0 )
理论物理统计物理基础刘连寿第七篇答案

,其中
都是
把体积 看成是 数并微分有:
两边同时积分有:
由极限情况下: ,
故: 得到:
3.一弹性棒的热力学状态可用它的长度 L,应力描述 f 和温度 T 关系,即为其状 态方程,今设此弹性棒发生一微小变化,从一平衡态变到另一平衡态,试证明:
其中 为棒横截面积, 为线膨胀系数, 为杨氏模量。
3.证明:杨氏模量的定义: 对长度 积分有:
证毕
第三章统计系综
1. 将 各近独立的频率 为的谐振子组成的系统,每个谐振子的能量为
(a)求当系统的能量为
时的微观态数和熵
(b)求当系统达到平衡时,此系统能量与温度的关系,并和§7.3.2 中用正则分
布所得的结果比较。
解:(a) 假定 N 个独立的谐振子对应的量子数分别为
根据题意
则系统的微观态数即相当于将 个东西分配到 个不相同(可以区别)的容器 中的方法种数, 可等于 0 相当于容器可以是空的.故:
当
时,
,故
5.试给出半径为的维球体积: 5.证明:在半径为 1 的 维球区域内积分为:
以另一种方式求上述积分有: 由两式可知: 证毕
6.利用附录给出的斯特林公式: 满足下式:
证明上题中的系数
6.证明:第一部分:
只要将上题中解答过程的(3)式中的 换成 即得。故关键是证明第二部分 由于
(1) 由于:
叠(如图),链条两个端点的距离为 ,系统是孤立的,链环各种方位有相同的
能量,证明
时可以得到胡克定律。
证明:我们从端点 开始规定每节链环的方向,凡是指向右方的链环记为“+”, 指向左方的记为“-”。设所有指向右方的链环数为 ,所有指向左方的链环数 为 则总链环数为:
数学物理方法(刘连寿第二版)第06章习题[1]
![数学物理方法(刘连寿第二版)第06章习题[1]](https://img.taocdn.com/s3/m/971ff7003169a4517723a369.png)
第六章 习题答案6.1-1 求解下列本征值问题的本征值和本征函数。
(1)0=+''X X λ ()00=X ()0='l X(2)0=+''X X λ ()00='X ()0='l X (3)0=+''X X λ ()00='X ()0=l X (4)0=+''X X λ()0=a X()0=b X解:(1)0=λ时,()b ax x X +=,代入边界条件得 ()00==b X 和()0=='a l X 得到()0=x X ,不符合,所以0≠λ0>λ时,()x b x a x X λλsin cos +=,代入边界条件得()00==a X ,()()2224120sin ln l b l X nπλλ+=⇒==',2,1,0=n所以:()()x ln x X 212sin π+=,2,1,0=n(2)0=λ时,()b ax x X +=,代入边界条件得 ()00=='a X 和()0=='a l X ,所以()b x X =存在。
0>λ时,()x b x a x X λλsin cos +=,代入边界条件得()000=⇒=='b b X λ,() ,2,10sin 222==⇒=-='n ln l a l X n πλλλ综合:本征值:222l n n πλ=,2,1,0=n 本征函数:()x ln x X n πcos = ,2,1,0=n(3)0=λ时,()b ax x X +=,代入边界条件得 ()00=='a X 和()0==b l X ,()0=x X 不符合。
0>λ时,()x b x a x X λλsin cos +=,代入边界条件得()000=⇒=='b b X λ,()() ,2,1,04120cos 222=+=⇒==n ln l a l X nπλλ本征函数:()x ln x X n πcos = ,2,1,0=n(4)0=λ时,()d cx x X +=,代入边界条件得 ()0=+=d ca a X 和()0=+=d cb l X ,得到b a =,故0≠λ。