北师大版八年级数学上册第一章演示教学
北师大版八年级数学上册第一章勾股定理复习与小结课件
P
M
教学过程——典例精析
第一章 勾股定理
听一听
典例3 如图,长方形 ABCD 中,AB=3,AD=9,将此长方形折叠,使点 D与点B
重合,折痕为 EF,求△ABE 的面积。
A
B
E
D
F
C
教学过程——典例精析
第一章 勾股定理
听一听
A
解析:折叠问题中,要找到折叠前
后相等的线段或角,注意这些线段
与其他线段的关系,再利用勾股定
D. 若、、是的△ABC的三边,且 − = ,则∠A=90°
第一章 勾股定理
基础训练
第一章 勾股定理
2. 如图是商场的台阶的示意图,已知每级台阶的宽度都是20cm,每级台
阶的高度都是15cm,则连接AB的线段长为( B )
A. 100cm
B. 150cm
C. 200cm
D. 250cm
解:(1)供水站P的位置如图所示.
(2)过B作BM⊥,过A’作A’M⊥BM于M.
B
A
由已知可得A’M=8,BM=2+4=6.
在Rt△AMB中,
A’B2=AM2+BM2=82+62=100
解得A’B=10
5000×10+50000=100000.
故供水站修建完成后共计要花100000元.
∙∙
A’
∙
是直角三角形.
知识梳理
第一章 勾股定理
内容:直角三角形两
直角边的平方和等于
斜边的平方.
探索勾
股定理
表达式:用
和分别表示直角三
角形的两直角边和斜
边,那么
验证方法:面积法
北师大版八年级数学上册《一次函数与正比例函数》示范公开课教学课件
当x=3时,y=3+3×0.5=4.5;
...
因此,x与y之间的关系式为:
情景二:某辆汽车油箱中原有油60 L,汽车每行驶50 km耗油6 L.
0
50
100
150
200
300
汽车行使路程x/ km
耗油量 y/ L
0
6
12
18
24
36
情景二:某辆汽车油箱中原有油60 L,汽车每行驶50 km耗油6 L.
下列关系式中,哪些是一次函数,哪些是正比例函数?
(1)y=3πx; (2)y=8x-6; (3)y= (4)y=2-8x; (5)y=5x2-4x+1; (6)y=8x2+x(1-8x).
解:(1)是一次函数,也是正比例函数;
(2)是一次函数,不是正比例函数;
0
1
2
3
4
5
x/ kg
y/ cm
3
3.5
4
4.5
5
5.5
情景一:某弹簧的自然长度为3 cm,在弹性限度内,所挂物体的质量x每增加1kg,弹簧长度y增加0.5 cm.
(2)你能写出y与x之间的关系吗?
它们之间的数量关系是:弹簧长度=原长+增加的长度
当x=0时,y=3;
当x=1时,y=3+1×0.5=3.5;
解:(2)当 x = 3500时, y = 0.2×3500-160 = 540 (元);
例2 自2019年9月1日起,我国居民个人劳务报酬所得税预扣预缴税款的计算方法是:每次收入不超过800元的,预扣预缴税款为0;每次收入超过800元但不超过4000元的,预扣预缴税款=(每次收入–800 )×20%;……如某人取得劳务报酬2000元,他这笔所得应预扣预缴税款(2000-800)×20%=240(元).
2022秋八年级数学上册 第一章 勾股定理1 探索勾股定理第2课时勾股定理的验证与应用课件北师大版
*8.(中考·绍兴)如图,小巷左右两侧是竖直的墙,一架梯子斜靠 在左墙时,梯子底端到左墙脚的距离为0.7 m,顶端距离地 面2.4 m.如果保持梯子底端位置不动,将梯子斜靠在右墙 时,顶端距离地面2 m,则小巷的宽度为( )
A.0.7 m B.1.5 m C.2.2 m D.2.4 m
【点拨】如图,在Rt△ACB中,∠ACB=90°,BC=0.7 m,AC=2.4 m, 所以AB2=0.72+2.42=6.25. 在Rt△A′BD中,∠A′DB=90°,A′D=2 m, 所以BD2+22=6.25,即BD2=2.25. 所以BD=1.5 m. 所以CD=BC+BD=0.7+1.5=2.2(m). 【答案】C
3.(2019·咸宁)勾股定理是“人类最伟大的十个科学发现之 一”,我国对勾股定理的证明是由汉代的赵爽在注解《周 髀算经》时给出的,他用来证明勾股定理的图案被称为 “赵爽弦图”.2002年在北京召开的国际数学家大会选它作 为会徽.下列图案中是“赵爽弦图”的是( B )
4.在Rt△ABC中,a,b是两直角边,c为斜边,如果已知a, b,那么c2=__a_2+__b_2____;如果已知a,c,那么b2= __c_2_-__a_2___;如果已知b,c,那么a2=__c_2_-__b_2 ___.当 不能直接运用勾股定理求线段长度时,则设所求线段的 长度为x,并选择一个合适的直角三角形,根据勾股定理, 列出含___x_____的方程.
6.(中考·荆州)《九章算术》中的“折竹抵地”问题(如图):
今有竹高一丈,末折抵地,去根六尺.问折高者几何?
意思是:一根竹子,原高一丈(一丈=10尺),一阵风将
竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,
问折断处离地面的高度是多少?设折断处离地面的高度
八年级数学上册第1章《一定是直角三角形吗》优质教案(北师大版)
第一章勾股定理2. 一定是直角三角形吗一、学情与教材分析1.学情分析学生已经了勾股定理,并在先前其他内容学习中已经积累了一定的逆向思维、逆向研究的经验,如:已知两直线平行,有什么样的结论?反之,满足什么条件的两直线是平行?因而,本课时由勾股定理出发逆向思考获得逆命题,学生应该已经具备这样的意识,但具体研究中,可能要用到反证等思路,对现阶段学生而言可能还具有一定困难,需要教师适时的引导.2.教材分析本节课是北师大版数学八年级(上)第一章《勾股定理》第2节.教学任务有:探索勾股定理的逆定理,并利用该定理根据边长判断一个三角形是否是直角三角形,利用该定理解决一些简单的实际问题;通过具体的数,增加对勾股数的直观体验;经历一般规律的探索过程,发展学生的抽象思维能力、归纳能力.二、教学目标1.理解勾股定理逆定理的具体内容及勾股数的概念;2.能根据所给三角形三边的条件判断三角形是否是直角三角形.三、教学重难点教学重点:探索并掌握直角三角形的判别条件.教学难点:运用直角三角形判别条件解题四、教法建议1.教学方法:实验—猜想—归纳—论证本节课的教学对象是初二学生,他们的参与意识较强,思维活跃,对通过实验获得数学结论已有一定的体验,但数学思维严谨的同学总是心存疑虑,利用逻辑推理的方式,让同学心服口服显得非常迫切,为了实现本节课的教学目标,我力求从以下三个方面对学生进行引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,通过以旧引新,顺势教学过程;(3)利用探索,研究手段,通过思维深入,领悟教学过程.2.课前准备教具:教材、电脑、多媒体课件.学具:教材、笔记本、课堂练习本、文具.五、教学设计(一)课前设计1.预习任务任务1:小明说:我们以前学过直角三角形的两个锐角互余,那么反过来,就是说“如果一个三角形的两个角度互余,那么这个三角形就是直角三角形?”这句话对么?请尝试着证明?任务2:通过上个预习任务的证明,我们知道了,通过角度的互余能够判定一个三角形是直角三角形,小红想:勾股定理不是说“在一个直角三角形中,两直角边的平方和等于斜边的平方”反过来说是不是也能够判定一个三角形是直角三角形呢?1):小红提出的勾股定理反过来说应该怎样表述?2):请根据下面三组数据,做出对应长度的纸条,拼成三角形,用量角器验证你的结论①3,4,5 ②5,12,13 ③7,15,172.预习自测一、选择题1. 在下列长度的各组线段中,能组成直角三角形的是()A.5,6,7 B.1,4,8C.5,12,13 D.5,11,12答案:C解析:A、因为52+62≠72,所以不能组成直角三角形;B、因为12+42≠82,所以不能组成直角三角形;C、因为52+122=132,所以能组成直角三角形;D、因为52+112≠122,所以不能组成直角三角形.故选:C.点拨:欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.2. 已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A.25 B.14 C.7 D.7或25答案:D解析:分两种情况:(1)3、4都为直角边,由勾股定理得,斜边为5;(2)3为直角边,4为斜边,由勾股定理得,直角边为.∴第三边长的平方是25或7,故选D.点拨:已知的这两条边可以为直角边,也可以是一条直角边一条斜边,从而分两种情况进行讨论解答.二、填空题3. 若一个三角形的三边满足c2﹣a2=b2,则这个三角形是________.答案:直角三角形解析:∵c2﹣a2=b2,∴a2+b2=c2,∴此三角形是直角三角形.点拨:对原式变形,利用勾股定理的逆定理,从而确定三角形的形状.4. 若8,a,17是一组勾股数,则a=________.答案:15解析:①a为最长边,a=,不是正整数,不符合题意;②17为最长边,a==15,三边是整数,能构成勾股数,符合题意.故答案为:15.点拨:分a为最长边,17为最长边两种情况讨论,根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.(二)课堂设计本节课设计了五个教学环节:第一环节:情境引入;第二环节:探究发现;第三环节:知识运用;第四环节:随堂检测;第五环节:课堂小结.第一环节:情境引入情境:1.直角三角形中,三边长度之间满足什么样的关系?2.如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?意图:通过情境的创设引入新课,激发学生探究热情.效果:从勾股定理逆向思维这一情景引入,提出问题,激发了学生的求知欲,为下一环节奠定了良好的基础.第二环节:探究发现活动1:探究下面有三组数,分别是一个三角形的三边长c b a ,,,①5,12,13;②7,24,25;③8,15,17;并回答这样两个问题:1.这三组数都满足吗?2.分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?学生分为4人活动小组,每个小组可以任选其中的一组数.意图:通过学生的合作探究,得出“若一个三角形的三边长,满足,则这个三角形是直角三角形”这一结论;在活动中体验出数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由“特殊→一般→特殊”的发展规律.效果:经过学生充分讨论后,汇总各小组实验结果发现:①5,12,13满足222c b a =+,可以构成直角三角形;②7,24,25满足222c b a =+,可以构成直角三角形;③8,15,17满足222c b a =+,可以构成直角三角形.从上面的分组实验很容易得出如下结论:如果一个三角形的三边长c b a ,,,满足222c b a =+,那么这个三角形是直角三角形.活动2:说理提问:有同学认为测量结果可能有误差,不同意这个发现.你认为这个发现正确吗?你能给出一个更有说服力的理由吗?意图:让学生明确,仅仅基于测量结果得到的结论未必可靠,需要进一步通过说理等方式使学生确信结论的可靠性,同时明晰结论:如果一个三角形的三边长c b a ,,,满足222c b a =+,那么这个三角形是直角三角形.满足222c b a =+的三个正整数,称为勾股数.注意事项:为了让学生确认该结论,需要进行说理,有条件的班级,还可利用几何画板动画演示,让同学有一个直观的认识.活动3:反思总结提问:1.同学们还能找出哪些勾股数呢?2.今天的结论与前面学习勾股定理有哪些异同呢?3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢?4.通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢?意图:进一步让学生认识该定理与勾股定理之间的关系第三环节:知识运用做一做:1.下列哪几组数据能作为直角三角形的三边长?请说明理由.①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22 解答:①②2.一个三角形的三边长分别是15cm ,20cm ,25cm ,则这个三角形的面积是( )A250 B 1502cm C 200 2cm D 不能确定 解答:B*3.如图,在ABC ∆中,BC AD ⊥于D ,20,12,9===AC AD BD ,则ABC ∆是( ) A 等腰三角形 B 锐角三角形C 直角三角形D 钝角三角形解答:C *4.将直角三角形的三边扩大相同的倍数后,得到的三角形是( )A 直角三角形B 锐角三角形C 钝角三角形D 不能确定解答:A意图:通过练习(3/4题根据学生程度适当添加课件中讲解),加强对勾股定理及勾股定理逆定理认识及应用.效果:每题都要求学生独立完成(5分钟),并指出各题分别用了哪些知识. 例题:1.一个零件的形状如图1所示,按规定这个零件中∠A ,∠DBC 都应是直角.工人师傅量得这个零件各边尺寸如图2所示,这个零件符合要求吗?解答:符合要求 222543=+,︒=∠∴90DAB又22213125=+ , ∴︒=∠90DBC2.(补充)一艘在海上朝正北方向航行的轮船,航行240海里时方位仪坏了,凭经验,船长指挥船左传90°,继续航行70海里,则距出发地250海里,你能判断船转弯后,是否沿正西方向航行?解答:由题意画出相应的图形AB=240海里,BC=70海里,AC=250海里;在△ABC 中,2222240250-=-AB AC =(250+240)(250-240)=4900=270=2BC即222AC BC AB =+∴△ABC 是Rt △答:船转弯后,是沿正西方向航行的.意图:利用勾股定理逆定理解决实际问题,进一步巩固该定理.效果:学生能用自己的语言表达清楚解决问题的过程即可;利用三角形三C C 1312534D A B B AD B边数量关系222c b a =+判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将222c b a =+作适当变形(222a b c =-),以便于计算.第四环节:随堂检测一、选择题1. 分别以下列五组数为一个三角形的边长:①6,8,10 ②13,5,12 ③1,2,3 ④9,40,41 ⑤3,4,5.其中能构成直角三角形的有( )组.A .2B .3C .4D .5答案:B解析:因为①62+82=102,②132=52+122,④92+402=412,符合勾股定理的逆定理,所以能构成直角三角形的有三组.故选B .点拨:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.2. △ABC 的三边长分别为a ,b ,c ,下列条件:①∠A=∠B ﹣∠C ;②∠A :∠B :∠C=3:4:5;③a 2=(b+c )(b ﹣c );④a :b :c=5:12:13,其中能判断△ABC 是直角三角形的个数有( )A .1个B .2个C .3个D .4个答案:C解析:①∠A=∠B ﹣∠C ,∠A+∠B+∠C=180°,解得∠B=90°,故①是直角三角形;②∠A :∠B :∠C=3:4:5,∠A+∠B+∠C=180°,解得∠A=45°,∠B=60°,∠C=75°,故②不是直角三角形;③∵a 2=(b+c )(b ﹣c ),∴a 2+c 2=b 2,符合勾股定理的逆定理,故③是直角三角形; ④∵a :b :c=5:12:13,∴a 2+b 2=c 2,符合勾股定理的逆定理,故④是直角三角形.能判断△ABC 是直角三角形的个数有3个;故选:C .点拨:直角三角形的定义或勾股定理的逆定理是判定直角三角形的方法之一.二、填空题3. 一个三角形的三边长分别为6,8,10,则这个三角形最长边上的高是________.答案:4.8解析:∵三角形的三边长分别为6,8,10,符合勾股定理的逆定理62+82=102,∴此三角形为直角三角形,则10为直角三角形的斜边,设三角形最长边上的高是h,根据三角形的面积公式得:×6×8=×10h,解得h=4.8.点拨:根据已知先判定其形状,再根据三角形的面积公式求得其高.4. 已知两条线段的长为3cm和4cm,当第三条线段的长为________cm时,这三条线段能组成一个直角三角形.答案:5或解析:当第三边是直角边时,根据勾股定理,第三边的长==5,三角形的边长分别为3,4,5能构成三角形;当第三边是斜边时,根据勾股定理,第三边的长==,三角形的边长分别为3,,亦能构成三角形;综合以上两种情况,第三边的长应为5或.点拨:本题从边的方面考查三角形形成的条件,涉及分类讨论的思考方法,即:由于“两边长分别为3和5,要使这个三角形是直角三角形,”指代不明,因此,要讨论第三边是直角边和斜边的情形.5. 能够成为直角三角形三条边长的正整数,称为勾股数.请你写出三组勾股数:________________________.答案:3,4,5;6,8,10;5,12,13.(答案不唯一)解析:答案不唯一,三组勾股数可以是:3,4,5;6,8,10;5,12,13.点拨:根据勾股数的定义即可求解,如3,4,5;6,8,10;5,12,13等,本题答案不唯一.三、解答题6. 我们知道3,4,5是一组勾股数,那么3k,4k,5k(k是正整数)也是一组勾股数吗?一般地,如果a,b,c是一组勾股数,那么ak,bk,ck(k是正整数)也是一组勾股数吗?答案:ak ,bk ,ck 是一组勾股数解析:∵k 是正整数,∴3k ,4k ,5k 都是正整数,∵(3k )2+(4k )2=(5k )2,∴3k ,4k ,5k (k 是正整数)是一组勾股数;因为a ,b ,c 是一组勾股数,且k 是正整数,所以ak ,bk ,ck 是三个正整数,且a 2+b 2=c 2,因为(ak )2+(bk )2=a 2k 2+b 2k 2=(a 2+b 2)k 2=c 2k 2=(ck )2,所以ak ,bk ,ck 是一组勾股数.点拨:根据勾股数的定义:满足a 2+b 2=c 2的三个正整数,称为勾股数,即可判断3k ,4k ,5k (k 是正整数)与ak ,bk ,ck (k 是正整数)是不是一组勾股数. 第五环节:课堂小结教师提问:通过这节课的学习,你有什么样的收获?师生共同畅谈收获.1.今天所学内容:①会利用三角形三边数量关系222c b a =+判断一个三角形是直角三角形;②满足222c b a =+的三个正整数,称为勾股数;2.从今天所学内容及所作练习中总结出的经验与方法:①数学是源于生活又服务于生活的;②数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由“特殊→一般→特殊”的发展规律;③利用三角形三边数量关系222c b a =+判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将222c b a =+作适当变形,222a b c =-便于计算.意图:鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史;敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.效果:学生畅所欲言自己的切身感受与实际收获,总结出利用三角形三边数量关系22c2+判断一个三角形是直角三角形从古至今在实际生活中的广泛应用.ba=布置作业:课本习题1.3 T1,2,4分层作业基础型:一、选择题1. 满足下列条件的△ABC不是直角三角形的是()A.BC=1,AC=2,AB= B.BC:AC:AB=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5答案:D解析:A、当BC=1,AC=2,AB=时,满足BC2+AB2=1+3=4=AC2,所以△ABC为直角三角形;B、当BC:AC:AB=3:4:5时,设BC=3x,AC=4x,AB=5x,满足BC2+AC2=AB2,所以△ABC为直角三角形;C、当∠A+∠B=∠C时,且∠A+∠B+∠C=180°,所以∠C=90°,所以△ABC为直角三角形;D、当∠A:∠B:∠C=3:4:5时,可设∠A=3x°,∠B=4x°,∠C=5x°,由三角形内角和定理可得3x+4x+5x=180,解得x=15°,所以∠A=45°,∠B=60°,∠C=75°,所以△ABC为锐角三角形;故选D.点拨:根据勾股定理的逆定理可判定A、B,由三角形内角和可判定C、D,可得出答案.2. 在△ABC中,三边长满足b2﹣a2=c2,则互余的一对角是()A.∠A与∠B B.∠B与∠CC.∠A与∠C D.以上都不正确答案:C解析:∵△ABC的三边长满足b2﹣a2=c2,∴b2=a2+c2,∴△ABC是直角三角形且∠B=90°,∴∠A+∠C=90°.故选C.点拨:先根据勾股定理的逆定理得出∠B=90°,再利用直角三角形两锐角互余得出∠A+∠C=90°.二、填空题3. 在△ABC中,若三边长分别为9,12,15,则以两个这样的三角形拼成的长方形的面积为________.答案:108解析:∵在△ABC中,三条边的长度分别为9、12、15,92+122=152,∴△ABC是直角三角形,∴用两个这样的三角形所拼成的长方形的面积是2××9×12=108.故答案为:108.点拨:根据三条边的长度分别为9、12、15,得出△ABC是直角三角形,再根据长方形的面积是两个直角三角形的面积之和,列式计算即可.三、解答题4. 如图所示,在△ABC中,AC=8cm,BC=6cm;在△ABE中,DE为AB边上的高,DE=12cm,△ABE的面积S=60cm2.(1)求出AB边的长;(2)你能求出∠C的度数吗?请试一试.答案:(1)AB=10;(2)∠C=90°.=DE•AB=60,∴AB=10;解析:(1)∵DE=12,S△ABE(2)∵AC=8,BC=6,62+82=102,∴AC2+BC2=AB2,由勾股定理逆定理得∠C=90°.点拨:(1)由S=60,求得AB=10;△ABE(2)根据勾股定理的逆定理得出△ABC为直角三角形,从而得到∠C的度数.能力型:一、选择题1. 已知△ABC 中,a、b、c分别为∠A、∠B、∠C的对边,则下列条件中:①a=4,b=7;c=8;②a2:b2:C2=1:3:2;③∠A:∠B:∠C=3:4:5;④∠A=2∠B=2∠C.其中能判断△ABC是直角三角形的有()个.A.1 B.2 C.3 D.4答案:C解析:①∵a2+b2==()2,c2=(8)2=()2∴a2+b2=c2,∴此三角形是直角三角形,故本小题正确;②∵a2:b2:c2=1:3:2,∴设a2=x,则b2=3x,c2=2x,∵x+2x=3x,∴a2+c2=b2,∴此三角形是直角三角形,故本小题正确;③∵∠A:∠B:∠C=3:4:5,∴设∠A=3x,则∠B=4x,∠C=5x.∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,解得x=15°,∴∠A=45°,∠B=60°,∠C=75°,∴此三角形不是直角三角形,故本小题错误;④∵∠A=2∠B=2∠C,∴设∠B=∠C=x,则∠A=2x,∴x+x+2x=180°,解得:x=45°,∴∠A=2x=90°,∴此三角形是直角三角形,故本小题正确.故选C.点拨:分别根据三角形内角和定理、勾股定理的逆定理对各选项进行逐一分析即可.二、填空题2. 如图,已知四边形ABCD中,AB=20cm,BC=15cm,CD=7cm,AD=24cm,∠ABC=90°.猜想∠A与∠C关系是________.答案:互补解析:∠A与∠C关系为:互补.理由如下:连结AC,∵∠ABC=90°,∴在Rt△ABC中,由勾股定理得:AC==25cm,∵AD2+DC2=625=252=AC2,∴△ADC是直角三角形,且∠D=90°,∵∠DAB+∠B+∠BCD+∠D=180°,∴∠DAB+∠BCD=180°,即∠A+∠C=180°,故答案为:互补.点拨:连接AC,然后根据勾股定理求出AC的值,然后根据勾股定理的逆定理判断△ADC为Rt△,然后根据四边形的内角和定理即可得到∠A与∠C关系.3. 已知|x﹣12|+(y﹣13)2+z2﹣10z+25=0,则以x,y,z为三边边长的三角形的形状是________三角形.答案:直角解析:∵|x﹣12|+(y﹣13)2+z2﹣10z+25=0,∴x﹣12=0,y﹣13=0,z﹣5=0,∴x=12,y=13,z=5,∴x2+z2=y2,∴以x、y、z为三边的三角形是直角三角形,故答案为:直角.点拨:根据非负数的性质求出x、y、z的值,求出x2+z2=y2,根据勾股定理的逆定理判断即可.三、解答题4. 如图,已知∠ADC=90°,AD=8,CD=6,AB=26,BC=24.(1)证明:△ABC是直角三角形.(2)请求图中阴影部分的面积.答案:见解析解析:(1)证明:∵在Rt△ADC中,∠ADC=90°,AD=8,CD=6,∴AC2=AD2+CD2=82+62=100,∴AC=10(取正值).在△ABC中,∵AC2+BC2=102+242=676,AB2=262=676,∴AC2+BC2=AB2,∴△ABC为直角三角形;(2)解:S阴影=SRt△ABC﹣SRt△ACD=×10×24﹣×8×6=96.点拨:(1)先根据勾股定理求出AC的长,再根据勾股定理的逆定理即可证明△ABC为直角三角形;(2)根据S阴影=SRt△ABC﹣SRt△ACD,利用三角形的面积公式计算即可求解.探究型:一、解答题1. 在△ABC中,BC=a,AC=b,AB=c,设c为最长边,当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△ABC三边分别为6、8、9时,△ABC为________三角形;当△ABC三边分别为6、8、11时,△ABC为________三角形.(2)猜想,当a2+b2________c2时,△ABC为锐角三角形;当a2+b2________c2时,△ABC为钝角三角形.(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.答案:(1)锐角;钝角;(2)>;<;(3)2<c<6.解析:(1)两直角边分别为6、8时,斜边==10,∴当△ABC三边分别为6、8、9时,△ABC为锐角三角形;当△ABC三边分别为6、8、11时,△ABC为钝角三角形;(2)当a2+b2>c2时,△ABC为锐角三角形;当a2+b2<c2时,△ABC为钝角三角形;(3)∵c为最长边,2+4=6,∴4<c<6,a2+b2=22+42=20,①a2+b2>c2,即c2<20,0<c<2,∴当4<c<2时,这个三角形是锐角三角形;②a2+b2=c2,即c2=20,c=2,∴当c=2时,这个三角形是直角三角形;③a2+b2<c2,即c2>20,c>2,∴当2<c<6时,这个三角形是钝角三角形.点拨:(1)利用勾股定理列式求出两直角边为6、8时的斜边的值,然后作出判断即可;(2)根据(1)中的计算作出判断即可;(3)根据三角形的任意两边之和大于第三边求出最长边c点的最大值,然后得到c的取值范围,然后分情况讨论即可得解.2. 王老师在一次“探究性学习”课中,设计了如下数表:(1)请你分别观察a,b,c与n之间的关系,并用含自然数n(n>1)的代数式表示:a=________,b=________,c=________.(2)猜想:以a,b,c为边的三角形是否为直角三角形?并证明你的猜想?(3)观察下列勾股数32+42=52,52+122=132,72+242=252,92+402=412,分析其中的规律,根据规律写出第五组勾股数.答案:见解析解析:(1)由图表可以得出:∵n=2时,a=22﹣1,b=4,c=22+1,n=3时,a=32﹣1,b=2×3,c=32+1,n=4时,a=42﹣1,b=2×4,c=42+1,…∴a=n2﹣1,b=2n,c=n2+1.(2)a、b、c为边的三角形时:∵a2+b2=(n2﹣1)2+4n2=n4+2n2+1,c2=(n2+1)2=n4+2n2+1,∴a2+b2=c2,∴以a、b、c为边的三角形是直角三角形.(3)由分析得出:第7组的式子为:112+602=612.点拨:(1)利用图表可以发现a,b,c与n的关系,a与c正好是n2,加减1,即可得出答案;(2)利用完全平方公式计算出a2+b2的值,以及c2的值,再利用勾股定理逆定理即可求出.(3)①这些式子每个都呈a2+b2=c2(a,b,c为正整数)的形式.②每个等式中a是奇数,b为偶数(实际上还是4的倍数),c奇数.③c=b+1.④各个式子中,a的取值依次为3,5,7,9,11,是连续增大的奇数.⑤各个式子中,b的取值依次为4,12,24,40,所以第5个式子为112+602=612.。
2024北师大版八年级数学上册第一章《勾股定理》(大单元(教案))
(2)勾股数及其应用:辨识勾股数,运用勾股定理解决实际问题,如测量距离、计算面积等。
举例:给出一个实际问题,如测量一个直角三角形的斜边长度,指导学生运用勾股定理求解。
(3)勾股定理的逆定理:理解并掌握勾股定理的逆定理,能够判断一个三角形是否为直角三角形。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了勾股定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对勾股定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
今天我们在课堂上学习了《勾股定理》这一章节,整体来看,学生们对勾股定理的概念和应用有了基本的了解。但在教学过程中,我也发现了一些问题,需要在此进行反思。
首先,对于勾股定理的概念,我发现部分学生对其理解不够深入,仅仅停留在表面记忆。在今后的教学中,我需要更加注重引导学生从几何和代数两个角度去理解勾股定理,使其真正明白定理的内涵。
其次,在勾股定理的证明环节,学生们对于不同的证明方法掌握程度不一。有的学生能够熟练运用图形证明,而有的则更擅长代数证明。针对这一点,我计划在接下来的课程中,增加一些针对性的练习,帮助学生巩固证明方法,提高其解题能力。
二、核心素养目标
本章节旨在培养学生以下核心素养:
1.数学抽象:通过勾股定理的学习,使学生能从实际问题中抽象出数学概念,理解数学知识的本质。
2.逻辑推理:引导学生运用逻辑思维,掌握勾股定理的证明过程,提高推理能力。
3.数学建模:培养学生运用勾股定理解决实际问题的能力,学会构建数学模型。
4.数学运算:让学生在探索勾股定理的过程中,熟练运用基本的数学运算,提高运算准确性。
北师大版八年级数学上册第一章全部课件
勾股定理的验证主要是通过拼图法利用面积的 关系完成的,拼图又常以补拼法和叠合法两种方式拼 图,补拼是要无重叠,叠合是要无空隙;而用面积法 验证的关键是要找到一些特殊图形(如直角三角形、 正方形、梯形)的面积之和等于整个图形的面积,从 而达到验证的目的.
(来自《点拨》)
知1-练
1 用四个边长均为a,b,c的直角三角板,拼成如
(来自《典中点》)
知2-导
知识点 2 勾股定理的应用
例2 我方侦察员小王在距离东西向公路400m处侦察,发现一 辆敌方汽车在公路上疾驰.他赶紧拿出红外测距仪,测得 汽车与他相距400m,10s后,汽车与他相距500m,你能 帮小王计算敌方汽车的速度吗?
分析:根据题意,可以画出右图, 其中点A表示小王所在位置, 点C、点B表示两个时刻敌方 汽车的位置.
弦 勾
股 图1
北师大版八年级数学上册
C A
B C
图2-1
A
B
图2-2
(图中每个小方格代表一个单位面积)
知1-导
(1)观察图2-1 正方形A中含有 9 个 小方格,即A的面积 是 9 个单位面积. 正方形B的面积是 9 个单位面积.
正方形C的面积是 18 个单位面积.
北师大版八年级数学上册
C A
B C
(来自《点拨》)
知1-讲
总结
勾股定理的验证主要是通过拼图法利用面积的 关系完成的,拼图又常以补拼法和叠合法两种方式拼 图,补拼是要无重叠,叠合是要无空隙;而用面积法 验证的关键是要找到一些特殊图形(如直角三角形、 正方形、梯形)的面积之和等于整个图形的面积,从 而达到验证的目的.
(来自《点拨》)
知1-讲
1 课堂讲解 2 课时流程
北师大版八年级数学上册《数据的离散程度》第1课时示范公开课教学课件
(3)若预测,跳过165cm(包含165cm)就很可能获得冠军.该校为了获得冠军,可能选哪名运动员参赛?若预测跳过170cm(包含170cm)才能获得冠军呢?
若跳过165cm(包含165cm)就很可能获得冠军,则在这8次成绩中,甲8次都跳过了165cm,而乙只有5次,所以应选甲运动员参赛;若跳过170cm(包含170cm)才能获得冠军,则在这8次成绩中,甲只有3次跳过了170cm,而乙有5次,所以应选乙运动员参赛.
78
72
-
= 6g
80
71
-
= 9g
极差:一组数据中最大数据与最小数据的差. 它是刻画数据离散程度的一个统计量.
计算下面各组数据的极差
(1)-5,6,4,0,1,7,5
(2)11,12,13,14,15,16
7-(-5)=12
16-11=5
最大数据与最小数据的差
如果丙厂也参与了竞争,从该厂抽样调查了20只鸡腿,数据如下图所示:
教科书第151页知识技能1、2.
9
9
甲的方差为s甲2=[(10-9)2+(8-9)2+(9-9)2+(8-9)2+(10-9)2+(9-9)2+(10-9)2+(8-9)2]÷8=0.75,乙的方差为s乙2=[(10-9)2+(7-9)2+(10-9)2+(10-9)2+(9-9)2+(8-9)2+(8-9)2+(10-9)2]÷8=1.25.
2.某射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了8次测试,测试成绩(单位:环)如下表:
第一次
第二次
第三次
第四次
第五次
第六次
第七次
第八次
甲
10
8
9
8
北师大版八年级数学上册第一章勾股定理回顾与思考教学设计
-教学策略:采用小组合作、讨论交流的方式,引导学生主动发现勾股定理的规律。
2.突破难点,通过多种证明方法,帮助学生全面理解勾股定理。
-教学策略:呈现多种证明方法,如几何拼贴法、代数法、平面几何法等,让学生从不同角度理解定理的本质。
5.结合课堂所学,探讨勾股定理在以下特殊直角三角形中的应用:
-等腰直角三角形
- 30°-60°-90°直角三角形
- 45°-45°-90°直角三角形
作业要求:
1.请同学们认真完成作业,确保解答过程清晰、逻辑严密。
2.作业完成后,进行自我检查,确保答案正确无误。
3.互相交流、讨论作业中的问题,共同提高。
4.通过小组合作、讨论交流等形式,培养学生团队协作能力和表达能力。
(三)情感态度与价值观
1.培养学生对勾股定理的兴趣,激发学生学习数学的热情。
2.让学生感受数学的简洁美和逻辑美,增强对数学的热爱。
3.通过勾股定理的探究,培养学生勇于质疑、追求真理的精神。
4.培养学生面对困难时,保持积极向上的态度,勇于克服困难,解决问题。
1.充分利用学生已掌握的直角三角形知识,引导他们自主探究勾股定理的内涵和证明方法。
2.针对学生空间想象能力的差异,采用直观教具和多媒体辅助教学,帮助学生建立清晰的几何图形。
3.注重培养学生的逻辑思维能力,通过问题驱动、范例引导等方式,激发学生主动思考、分析问题的兴趣。
4.关注学生个体差异,创设分层教学情境,使每个学生都能在原有基础上得到提高。
4.培养学生运用勾股定理进行数学推理,提高逻辑思维能力。
(二)过程与方法
1.通过引导学生回顾勾股定理的发现过程,培养学生主动探究、发现问题的能力。
北师大版-数学-八年级上册-第一章第一节勾股定理 第一课时教案--
《八年级上第一章第一节勾股定理》教案第1课时 1.1勾股定理(1)【教学课型】:新课◆课程目标导航:【教学目标】:1. 经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。
2. 探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单推理的意识及能力。
【教学重点】:了解勾股定理的由来并能用它解决一些简单问题。
【教学难点】:勾股定理的发现【教学工具】:1.学生准备方格纸.2.多媒体课件,易折的小木棍◆教学情景导入王大妈家的天线杆在一次大风中被刮成了两节,成了如图所示的样子,(出示动画课件)rew天线杆高24米,在离地面9米处断裂,杆顶落地点离线杆底的距离在什么范围内?生:这是已知三角形的两边,求第三边范围,利用三角形三边关系可求出杆顶落地点离线杆底的距离在大于7米且小于24米之间。
师:好!如果线杆底部仍和地面垂直,顶部到底部的距离唯一吗?如何解决?(用小木棍演示三角形三边的变化过程。
)将这个图形抽象成数学图形,这是已知直角三角形两边求第三边的问题,这节课我们就来探索直角三角形三边有什么关系。
(板书课题)◆教学过程设计1.活动与探究[师](出示课件)观察右图,并回答问题:图中的三个正方形和直角三角形之间有什么关系?正方形的边长恰好是直角三角形的三边长。
[师]好!那这三个正方形的面积有无联系呢?我们先来看看方个格中的图形:bca(1)观察方格中的图1.正方形A 中含有_________个小方格,即A 的面积是_________; 正方形B 中含有_________个小方格,即B 的面积是_________ 正方形C 中含有_________个小方格,即C 的面积是_________.(2)在图2、图3中,正方形A 、B 、C 中各含有多少个小方格?它们的面积各是多少?你是如何得到上述结果的?(与同伴交流.)A 的面积(单位面积)B 的面积(单位面积) C 的面积(单位面积) 图1 图2 图3([生1]在图1中,正方形A 含1个小方格,所以它的面积是1个单位面积;正方形B 含1个小方格,所以B 的面积也是1个单位面积;正方形C 含2个小方格,所以C 的面积是2个单位面积.[师]如何求得正方形C 的面积呢?[生2]正方形C 可划分为四个直角边长都为1个单位的四个全等的等腰直角三角形,所以C 的面积为4×(21×1×1)=2个单位面积. [生3]我们观察可发现,这四个等腰直角三角形重新拼摆,刚好可拼摆成2个小方格,所以C 的面积为2个单位面积.[生4]正方形C 还可以看成边长为2个单位的正方形面积的一半,即C 的面积为21×22=2个单位面积.)[师]同学们能够不拘一格地积极思考问题,用多种方法去求得图1中C 的面积,图2,图3中的A ,B ,C 的面积是否可借鉴图1中的A ,B ,C 的求法获得呢?请小组讨论、交流。
北师大版八年级数学上册《勾股定理的应用》示范课教学设计
第一章勾股定理3 勾股定理的应用一、教学目标1.会灵活运用勾股定理求解立体图形上两点之间路线最短的问题.体会勾股定理在代数问题和几何问题中的应用.2.能正确运用勾股定理及直角三角形的判别方法解决简单的实际问题.3.能够运用勾股定理解决实际生活中的问题,熟练运用勾股定理进行计算,增强数学知识的应用意识.4.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.二、教学重难点重点:会用勾股定理求解立体图形上两点之间路线最短的问题.难点:能正确运用勾股定理及直角三角形的判别方法解决简单的实际问题.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【复习回顾】教师活动:教师引导学生回顾勾股定理,并通过简单的提问,回顾勾股定理逆定理以及勾股数的内容,接着通过小情境引入本节课要讲解的内容.勾股定理:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a²+b²=c².如果三角形的三边长a、b、c满足a²+b²=c²,那么这个三角形是.预设答案:直角三角形.满足a²+b²=c²的三个正整数,称为.预设答案:勾股数.观察思考:小明要去野外郊游,走哪条路最近呢?为什么呢?教师活动:教师提出问题,观察学生如何思考,再让学生说明理由.关注学生能否都认真看题积极思考,能否立刻利用两点之间线段最短确定最短路径.答案:线路③.【问题探究】有一个圆柱,它的高等于12cm,底面上圆的周长等于18cm.在圆柱下底面的点A有一只蚂蚁,它想吃到上底面上与点A相对的点B处的食物,沿圆柱侧面蚂蚁怎么爬行的路程最短呢?做一做自己做一个圆柱,尝试从A点到B点沿圆柱侧面画出几条路线,你觉得哪条路线最短呢?教师活动:让学生说出自己规划的蚂蚁的路线,然后用课件展示.③A→B的路线长为:AA′+A′B ;③A→B的路线长为:AA′+曲线A′B;③A→B的路线长为:曲线AP +曲线PB;③A→B的路线长:曲线AB.将圆柱侧面剪开展成一个长方形,从点A到点B的最短路线是什么?你画对了吗?教师活动:对照圆柱上的线路,用课件展示侧面剪开图,让学生观察并说出哪条线路最近.教师活动:将圆柱的侧面展开,把曲线分别转化为对应线段,然后结合两点之间线段最短,得出结论:第(4)种方案路程最短.追问:蚂蚁从点A出发,想吃到点B上的食物,它沿圆柱侧面爬行的最短路程是多少?该如何计算呢?答案:在Rt③A′AB中,利用勾股定理,得AB²=AA′²+A′B².其中AA′是圆柱体的高,A′B是底面圆周长的一半(πr) .已知圆柱体高为12 cm,底面周长为18 cm,则AB=15cm.做一做如图,在棱长为10 cm的正方体的一个顶点A处有一只蚂蚁,现要向顶点B处爬行,已知蚂蚁爬行的速度是1 cm/s,且速度保持不变,问蚂蚁能否在20 s内从A爬到B?教师活动:先由学生独立完成,教师及时给予指导,在此活动中,教师应重点关注学生能否进一步理解蚂蚁最近线路该如何走.多媒体展示答题过程解:将正方体展开得到如下图形,由勾股定理得,22AB2.=10+20=50020×1=20(cm).③202<500.③蚂蚁不能在20 s内从A爬到B.【思考探究】教师活动:多媒体演示课件,引导学生观察并思考:李叔叔想要检测雕塑底座正面的边AD和边BC是否分别垂于底边AB,但他随身只带了卷尺.你能替他想办法完成任务吗?提示:连接BD,如果能算出AD2+AB2=BD2 ,就可以说明边AD和边BC分别垂于底边AB.提示:连接AC,如果能算出AB2+BC2=AC2 ,就可以说明边BC垂于底边AB.问题:李叔叔想要检测雕塑底座正面的边AD 和边BC是否分别垂直于底边AB,但他随身只带了卷尺.李叔叔量得边AD长是30 cm,边AB长是40 cm,边BD长是50 cm.边AD垂直于边AB 吗?教师活动:引导学生通过勾股定理证得BC垂直于AB得出结论.巡视同学做题过程,对于有困难的学生给予指导,然后用多媒体展示答题过程.解:连接BD③AD=30,AB=40,BD=50又③AD2+AB2=302+402=502=BD2③ΔABD为直角三角形,③A=90°③AD⊥AB同理可证得:BC⊥AB.问题:小明随身只有一个长度为20cm的刻度尺,他能有办法检验边AD是否垂直于边AB吗?解:在AD上取点M,使AM=9,在AB上取点N,使AN=12,92+122=152【典型例题】教师提出问题,学生先独立思考,解答.然后再在小组内交流探讨,教师巡视,如遇到有困难的学生适当点拨,最终教师展示答题过程.典型例题【例1】如图是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的高度CE=3 m,CD=1 m,试求滑道AC的长.分析:根据题意可的AC=AB,可设AC为x m,从而AE是(x-1)m,而③AEC是直角三角形,由勾股定理可得AC的值.解:设滑道AC的长度为x m,则AB的长度为x m,AE的长度为(x-1)m.在Rt③AEC中,③AEC=90°,由勾股定理得AE2+CE2=AC2,即(x-1)2+32= x 2,解得x =5.故滑道AC的长度为5 m.【例2】在一次台风的袭击中,小明家房前的一棵大树在离地面6米处断裂,树的顶部落在离树根底部8米处.你能告诉小明这棵树折断之前有多高吗?教师根据题干分析题中提供的已知条件,并画出图形.解:根据题意可以构建一直角三角形模型,如图.在Rt③ABC中,AC=6米,BC=8米,由勾股定理得AB=10米.③这棵树在折断之前的高度是10+6=16(米).教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.小华和小刚兄弟两个同时从家去同一所学校上学,速度都是每分钟走50米.小华从家到学校走直线用了10分钟,而小刚从家出发先去找小明再到学校(均走直线),小刚到小明家用了6分钟,小明家到学校用了8分钟,小刚上学走了个()A.锐角弯B.钝角弯C.直角弯D.不能确定教师画示意图:222⨯+⨯=⨯(650)(850)(1050)∴所以小刚上学走了个直角弯.答案:C2.如图是一张直角三角形的纸片,两直角边AC=6 cm,BC=8 cm,将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长是.教师提示:因为DE是折痕,所以E为AB的中点,AE=BE=12AB,只要根据勾股定理求出Rt△ABC斜边AB的长,就可求出BE的长.答案:5 cm.3.如图,某探险队的A组由驻地O点出发,以12km/h的速度前进,同时,B组也由驻地O出发,以9km/h的速度向另一个方向前进,2h后同时停下来,这时A、B两组相距30km.此时,A,B两组行进的方向成直角吗?请说明理由.解:2小时后,A组行驶的路程为:12×2=24(km);B组行驶的路程为:9×2=18(km);又因为A,B两组相距30 km,且有242+182=302所以A,B两组行进的方向成直角.。
北师大版八年级数学上册 (探索勾股定理)勾股定理教育教学课件
“弦高公式”,它常与勾股定理联合使用.
C
4
B
3.阴影部分是一个正方形,则此正方形的面积为
常用数据: 112=121 122=144 132=169 142=196 152=225 162=256 172=289 182=324 192=361
15 cm 17 cm
64.cm²
4.求出图中直角三角形第三边的长度.
a2 b2 c2
三、得出结论:勾股定理
直角三角形两直角边的平方和等于斜边的平方,如果用a,b,c 分别表示直角三角形的两直角边和斜边,那么
a2 b2 c2
B
几何语言:
c
a
∵在Rt △ABC,∠C=90°
C
b
A
∴a2+b2=c2
说明:勾股定理的应用条件是在直角三角形中;勾股定理是刻画 直角三角形三边平方的关系.
趣味小常识
直角三角形中 较短的直角边称为 勾 ,
较长的直角边称为 股 ,
在中国古代,
斜边称为 弦 .
人们把弯曲成直角
的手臂的上半部分 勾
弦
称为“勾”,下半
部分称为“股”.
(在西方称为毕达
股
勾2 + 股2 = 弦2
哥拉斯定理)
a2 b2 c2
四、探究活动
观察图片,分别求出正方形A,B,C的面积。
2. 思考:任意一个的直角三角形都满足你 所猜测的规律吗?用网格纸中画的直角三角 形尝试证明一下吧?
语言表述: 几何表示:
勾股定理 P3
A c
b
C
a
B
赵爽弦图
2002年国际数学家大会会标
1. 从这个会标中你能证明你的猜想吗?如何证明? 你的思路是什么? 2. 给四个完全一样的直角三角线,你能否把它们 拼成正方形?能同样推导出勾股定理吗?
北师大版数学八年级上册第一章勾股定理说课稿
2.互动教学:组织学生进行小组讨论、合作探究,培养学生的团队协作能力和自主学习能力。
3.激励评价:对学生在课堂上的表现给予积极的评价和鼓励,增强学生的自信心,激发学习动力。
4.游戏教学:设计勾股定理相关的数学游戏,让学生在轻松愉快的氛围中学习,提高学习效果。
2.证明区:展示勾股定理的证明过程,通过图示和步骤说明,帮助学生理解定理的推导。
3.应用区:列举典型例题和应用场景,采用示例和解答的形式呈现。
板书的作用在于直观展示知识结构,帮助学生梳理学习思路。为确保板书清晰、简洁,我将:
-使用大号字体,确保学生远距离也能看清楚。
-采用直线、箭头等符号连接知识点,体现逻辑关系。
-重点内容用不同颜色标注,便于学生识别。
-在书写过程中,及时擦除不必要的辅助信息,保持板书的整洁。
(二)教学反思
在教学过程中,我预见到以下问题或挑战:
1.学生对勾股定理的理解可能不够深入,难以应用到实际问题中。
2.部分学生的空间想象能力较弱,可能在解决直角三角形问题时遇到困难。
应对措施:
-对于理解不足的问题,通过增加实例讲解和练习,帮助学生加深理解。
(二)学习障碍
学生在学习本节课之前,具备的前置知识主要包括直角三角形的定义、性质以及基本的几何知识。可能存在的学习障碍有:
1.对勾股定理的理解不够深入,难以将其应用于实际问题。
2.空间想象能力不足,导致在解决直角三角形问题时感到困惑。
3.学习习惯不佳,缺乏主动探究和合作交流的能力。
(三)学习动机
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
3.数学游戏:设计勾股定理相关的数学游戏,让学生在轻松愉快的氛围中巩固知识,提高学习效果。
新北师大版八年级上册数学全册教案
这里的 29 英寸(74 厘米)的电视机,指的是屏幕的长吗?只的 是屏幕的款吗?那他指什么呢?
五、巩固练习 1、错例辨析: △ABC 的两边为 3 和 4,求第三边 解:由于三角形的两边为 3、4 所以它的第三边的 c 应满足 =25 即:c=5 辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必 不可少的条件,可本题 △ABC 并未说明它是否是直角三角形,所以用勾股定理就没有依 据。 (2)若告诉△ABC 是直角三角形,第三边 C 也不一定是满足 , 题目中并为交待 C 是斜边 综上所述这个题目条件不足,第三边无法求得。 2、练习 P7 §1.1 1 六、作业 课本 P7 §1.1 2、3、4 §1.1 探索勾股定理(二) 教学目标: 1.经历运用拼图的方法说明勾股定理是正确的过程,在数学活 动中发展学生的探究意识和合作交流的习惯。 2.掌握勾股定理和他的简单应用 重点难点: 重点: 能熟练运用拼图的方法证明勾股定理
和能力,初步形成积极参与数学活动的意识. 教学重点 运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一
难点:用面积证勾股定理
教学过程
一、创设问题的情境,激发学生的学习热情,导入课题
我们已经通过数格子的方法发现了直角三角形三边的关系,究竟
是几个实例,是否具有普遍的意义,还需加以论证,下面就是今天所
要研究的内容,下边请大家画四个全等的直角三角形,并把它剪下来,
用这四个直角三角形,拼一拼、摆一摆,看看能否得到一个含有以斜
法说明勾股定理。
二、讲例
1、飞机在空中水平飞行,某一时刻刚好飞机飞到一个男孩头顶
正上方 4000 多米处,过 20 秒,飞机距离这个男孩头顶 5000 米,飞
机每时飞行多少千米?
分析:根据题意:可以先画出符合题意的图形。如右图,图中△ABC
北师大版八年级数学上册第一章《勾股定理》教案
第一章勾股定理1 探索勾股定理第1课时勾股定理(1)1.经历测量和用数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系.2.探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单推理的意识及能力.3.利用勾股定理,已知直角三角形的两边求第三边长.4.在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想.5.经历观察与发现直角三角形三边关系的过程,感受勾股定理的应用意识.6.通过对勾股定理历史的了解,感受数学变化,激发学习热情.7.在探究活动中,体现解决问题方法的多样性,培养学生的合作交流意识和探索精神.【教学重点】探索勾股定理.【教学难点】用测量和数格子的方法探索勾股定理.一、创设情境,导入新课我们知道,任意三角形的三条边必须满足定理:三角形的两边之和大于第三边.对于等腰三角形和等边三角形的边,除满足三边关系定理外,它们还分别存在着两边相等和三边相等的特殊关系.那么对于直角三角形的边,除满足三边关系定理外,它们之间也存在着特殊的关系,这就是我们这一节要研究的问题:勾股定理.出示投影1(章前的图文P1),介绍数学家曾用这个图形作为与“外星人”联系的信号.【教学说明】通过复习旧知识,引入新课.出示投影,介绍与勾股定理有关的背景,激发学生的学习兴趣.二、思考探究,获取新知勾股定理做一做:1.在纸上画若干个直角三角形,分别测量它们的三条边,看看三边长的平方之间有怎样的关系?与同伴交流.【教学说明】学生根据教师的要求完成这个问题,自主交流发现直角三角形的性质.2.观察教材图1—2,正方形A中有个小方格,即A的面积为个面积单位.正方形B中有个小方格.即B的面积为个面积单位.正方形C中有个小方格,即C的面积为个面积单位.你是怎样得出上面结果的?在学生交流回答的基础上教师接着发问.教材图1—2中,A、B、C之间的面积之间有什么关系?【教学说明】通过观察特殊图形下方格数与正方形面积之间的转化,进一步体会探索勾股定理.归纳得出结论:S A+S B=S C.3.教材图1—3中,A、B、C之间是否还满足上面的关系?你是如何计算的?【教学说明】通过观察计算一般情况下方格数与正方形面积之间的转化,进一步加强对勾股定理的理解.4.如果直角三角形两直角边分别是1.6个单位长度和2.4个单位长度,上面所猜想的数量关系还成立吗?说明你的理由.【教学说明】渗透从特殊到一般的数学思想,充分发挥学生的主体地位,让学生体会到观察、猜想、归纳的思想,也让学生的分析问题、解决问题的能力得到了提高.议一议:你能发现直角三角形三边长度之间的关系吗?【教学说明】学生自主探究,发现直角三角形的性质,并整合成精确的语言将之表达出来,有利于培养学生综合概括能力和语言表达能力.【归纳结论】直角三角形的两直角边的平方和等于斜边的平方.这就是著名的“勾股定理”.也就是说:如果直角三角形的两直角边为a、b,斜边为c,那么a2+b2=c2.我国古代称直角三角形的较短的直角边为勾,较长的直角边为股,斜边为弦,这便是勾股定理的由来.三、运用新知,深化理解1.在直角三角形ABC中,∠C=90°,若a=5,b=12,则c= .2.在直角三角形的ABC中,它的两边长的比是3∶4,斜边长是20,则两直角边长分别是.【教学说明】学生的完成,加深对勾股定理的理解和检测对勾股定理的简单运用,对学生的疑惑或出现的错误及时指导,并进行强化.【答案】1.13;2.12,16四、师生互动,课堂小结通过本节课的学习,你掌握了哪些新知识,还有什么困惑?【教学说明】教师引导学生回顾新知识,加强对勾股定理的理解,进一步完善了学生对知识的梳理.完成练习册中本课时相应练习.本节内容重在探索与发现,要给充分的时间让学生讨论与交流.适当的练习以巩固所学也是必要的,当然,这些内容还需在后面的教学内容再加深加广.第2课时勾股定理(2)1.经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯.2.掌握勾股定理和它的简单应用.3.通过从实际问题中抽象出直角三角形这一模型,初步掌握转化和数形结合的思想方法.4.经历探究勾股定理在实际问题中的应用过程,感受勾股定理的应用方法.5.在数学活动中发展了学生的探究意识和合作交流的习性;体会勾股定理的应用价值,通过本节课学习,让学生体会到数学来源于生活,又应用到生活中,增加学生应用数学知识解决实际问题的经验和感受.【教学重点】能熟练应用拼图法证明勾股定理.【教学难点】用面积证勾股定理.一、创设情境,导入新课我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需要加以论证,下面就是今天所要研究的内容.【教学说明】让学生经历从特殊到一般的数学方法,明白数学问题是需要通过一定的论证才能说明它的正确性,为后面学习证明打下埋伏.二、思考探究,获取新知勾股定理的验证及简单运用做一做:1.画一个直角三角形,分别以这个直角三角的三边为边长向外作正方形,你能利用这个图证明勾股定理的正确性吗?你是如何做的?与同伴进行交流.【教学说明】让学生进一步体会探索勾股定理的过程,体会数形结合的思想.2.为了计算教材图1—4中大正方形的面积,小明对这个大正方形适当割补后,得到教材P51—5、1—6图.(1)将所有三角形和正方形的面积用a,b,c的关系式表示出来;(2)教材图1—5、1—6中正方形ABCD的面积分别是多少?你们有哪些表示方式?与同伴进行交流.(3)你能分别利用教材图1—5、1—6验证勾股定理吗?【教学说明】学生通过各种方法验证勾股定理的正确性,加深对勾股定理的理解,又让学生体会到一题多解.【归纳结论】勾股定理的证明方法达300多种,请同学们利用业余时间探究、讨论并阅读教材P7-8的其它证明勾股定理的方法,以开阔事学们的视野.三、运用新知,深化理解1.一块长3m,宽2.2m的薄木板能否从一个长2m,宽1m的门框内通过,为什么?2.飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米?【教学说明】让学生从实际生活的角度大胆的去考虑,用生活经验和学过的知识去解答.并学会把实际问题抽象为直角三角形的数学模型的过程,能够熟练地将勾股定理应用到现实生活中去.【答案】1.能,让薄木板的宽从门框的对角线斜着通过.2.分析:根据题意,可以先画出符合题意的图形.如图,图中△ABC的∠C=90°,AC=4000米,AB=5000米欲求飞机每时飞行多少千米,就要知道20秒时间里飞行的路程,即图中的CB的长,由于△ABC的斜边AB=5000米,AC=4000米,这样BC就可以通过勾股定理得出,这里一定要注意单位的换算.解:由勾股定理得BC2=AB2-AC2=52-42=9(km2)即BC=3千米飞机20秒飞行3千米.那么它1小时飞行的距离为:3600/20×3=540(千米/时)答:飞机每小时飞行540千米.四、师生互动,课堂小结通过这节课的学习,你学会了哪几种证明勾股定理的方法?还有哪些疑问?【教学说明】总结归纳帮助学生进一步掌握解决实际问题的关键是抽象出相应的数学模型.完成练习册中本课时相应练习.了解多种证明勾股定理的方法,有助于加深对勾股定理内容的理解,但这需要花一定的时间,可以让学生课外了解.并运用所学知识解决实际问题,体验数学来源于生活,生活中也蕴含着许多数学道理.2 一定是直角三角形吗1.掌握直角三角形的判别条件,并能进行简单应用.2.通过用三角形的三边的数量关系来判断三角形的形状,体验数形结合方法的应用.3.敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.【教学重点】探索并掌握直角三角形的判别条件.【教学难点】运用直角三角形判别条件解题.一、创设情境,导入新课展示一根用13个等距的结把它分成等长的12段的绳子,请三个同学上台,按老师的要求操作.甲:同时握住绳子的第一个结和第十三个结.乙:握住第四个结.丙:握住第八个结.拉紧绳子,让一个同学用量角器,测出这三角形其中的最大角.发现这个角是多少度?古埃及人曾经用这种方法得到直角,这三边满足了什么条件?怎样的三角形才能成为直角三角形呢?这就是我们今天要研究的内容.【教学说明】利用古埃及人得到直角的方法,学生亲自动手实践,体验从实际问题中发现数学,同时明确了本节课的研究问题.既进行了数学史的教育,又锻炼了学生的动手实践、观察探究的能力.二、思考探究,获取新知直角三角形的判别做一做:下面的三组数分别是一个三角形的三边a、b、c.5、12、137、24、258、15、171.这三组数都满足a2+b2=c2吗?2.分别用每组数为三边作三角形,用量角器量一量,它们都是直角三角形吗?3.如果三角形的三边长为a、b、c,并满足a2+b2=c2.那么这个三角形是直角三角形吗?【教学说明】鼓励学生大胆发言,让他们体验通过实际的计算和探究得到结论的乐趣,增强了他们勇于探索的精神.【归纳结论】如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数.大家可以想这样的勾股数是很多的.今后我们可以利用“三角形三边a、b、c满足a2+b2=c2时,三角形为直角三角形”来判断三角形的形状,同时也可以用来判定两条直线是否垂直的方法.三、运用新知,深化理解1.下列几组数能否作为直角三角形的三边长?说说你的理由.(1)9,12,15;(2)15,36,39;(3)12,35,36;(4)12,18,22.2.已知△ABC中BC=41,AC=40,AB=9,则此三角形为三角形,是最大角.3.四边形ABCD中已知AB=3,BC=12,CD=13,DA=4,且∠DAB=90°,求这个四边形的面积.【教学说明】学生独立完成,能够加深判断一个三角形是直角三角形的条件的理解,帮助学生答疑解惑,及时指导,矫正强化.在完成上述题目后,引导学生完成《创优作业》中本课时的“课堂自主演练”部分.【答案】1.(1)(2)两组能作为直角三角形的三边长.∵92+122=152,152+362=392.∴这两个三角形都是直角三角形.2.直角,∠A3.解:连结BD,在△ABD中,∠DBA=90°,BD2=AB2+AD2=32+42,BD=5.在△DBC中,∵52+122=132,即DB2+BC2=DC2,∴△DBC为直角三角形,∠DBC=90°,∴S四边形ABCD=S△DAB+S△DBC=12×3×4+12×5×12=36.四、师生互动,课堂小结1.判断一个三角形是直角三角形的条件.2.今天的学习,你有哪些收获?还有哪些困惑?与同学交流.【教学说明】及时反馈教与学双边活动的结果,查漏补缺,让学生养成系统整理知识的好习惯.1.教材P10-11习题1.3第2、3、4题.2.完成练习册中本课时相应练习.这是勾股定理的逆向应用.大部分同学只要能正确掌握勾股定理的话,都不难理解.当然勾股定理的理解是关键.3勾股定理的应用1.能运用勾股定理及直角三角形的判别条件解决简单的实际问题.2.学生观察图形,勇于探索图形间的关系,培养学生的空间观念.3.在将实际问题抽象成几何图形的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.4.在不同条件,不同环境中反复运用勾股定理及直角三角形的判定条件,使学生达到熟练、灵活运用的程度.在解决问题的过程中,培养学生的空间观念,提高学生建立数学模型的能力.5.通过解决实际问题,提高了学生应用数学的意识和锻炼了学生与他人交流合作的意识,再次感悟勾股定理和直角三角形判定的应用价值.【教学重点】探索发现给定事物中隐含的勾股定理及直角三角表判定条件,并用它们解决生活中的实际问题.【教学难点】利用数学中的建模思想构造直角三角形,灵活运用勾股定理及直角三角形的判定,解决实际问题.一、创设情境,导入新课勾股定理的应用前几节课我们学习了勾股定理,你还记得它有什么作用吗?例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需要多长的梯子?日常生活当中,我们还会遇到下面的问题.【教学说明】回忆勾股定理,巩固旧知识,解决实际问题,完成知识的过渡,为学生学习新知识又一次打下了坚实的基础.二、思考探究,获取新知蚂蚁怎么走最近?出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,需要爬行的最短路程是多少?(π的取值3).(1)同学们可自己做一个圆柱,尝试从A点到B点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(2)如图,将圆柱侧面剪开展开成一个长方形,从A点到B点的最短路线是什么?你画对了吗?(3)蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱的侧面爬行的最短路程是多少?【教学说明】让学生经历把曲面上两点之间的距离转化为平面上两点之间线段最短更为直观,再次利用勾股定理解决生活中较为复杂的实际问题,使所学的知识得到充分运用.【归纳结论】我们知道,圆柱的侧面展开图是一长方形.好了,现在咱们就用剪刀沿母线AA′将圆柱的侧面展开(如下图).我们不难发现,刚才几位同学的走法:哪条路线是最短呢?你画对了吗?第(4)条路线最短.因为“两点之间的连线中线段最短”.三、运用新知,深化理解1.甲、乙两位探险者,到沙漠进行探险.某日早晨8∶00甲先出发,他以6千米/时的速度向东行走.1小时后乙出发,他以5千米/时的速度向北进行,上午10∶00,甲、乙两人相距多远?2.如图,有一个高1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分是0.5米,问这根铁棒应有多长?【教学说明】学生独立解决,把生活中的实际问题转化为解直角三角形,对学生所学的知识进行强化,以利于教师及时纠正.【答案】1.分析:首先我们需要根据题意将实际问题转化成数学模型.解:(如图)根据题意,可知A是甲、乙的出发点,10∶00时甲到达B点,则AB=2×6=12(千米);乙到达C点,则AC=1×5=5(千米).在Rt△ABC中,BC2=AC2+AB2=52+122=169=132,所以BC=13千米.即甲、乙两人相距13千米.2.分析:从题意可知,没有告诉铁棒是如何插入油桶中,因而铁棒的长是一个取值范围而不是固定的长度,所以铁棒最长时,是插入至底部的A点处,铁棒最短时是垂直于底面时.解:设伸入油桶中的长度为x米,则应求最长时和最短时的值.(1)x2=1.52+22,x2=6.25,x=2.5所以最长是2.5+0.5=3(米).(2)x=1.5,最短是1.5+0.5=2(米).答:这根铁棒的长应在2~3米之间(包含2米、3米).四、师生互动,课堂小结通过本节课的学习,你掌握了哪些知识?还有哪些疑问?【教学说明】学生梳理知识,加强教与学的互通,进一步提高课堂教学的效果.1.教材P14~15第1、2、3、4题.2.完成练习册中本课时相应练习.这节课的内容综合性比较强,可能有些同学掌握得不是太好,今后要继续加强这方面的训练.本章归纳总结1.掌握勾股定理和如何判断一个三角形是直角三角形,能灵活运用它们解决实际问题.2.通过梳理本章知识点,回顾解决实际问题中所涉及的数形合的思想和逆向思维思考问题,以便能熟练灵活运用.3.让学生养成把已有的知识建立联系的思维习性,积极参与数学活动,在活动中学会思考、讨论、交流和合作,激发他们的求知欲望.4.用勾股定理和如何判断一个三角形是直角三角形解决简单问题.【教学难点】能理解运用勾股定理解题的基本过程;掌握在复杂图形中确定相应的直角三角形,根据勾股定理建立方程.一、知识框图,整体把握【教学说明】引导学生回顾本章知识点,构建知识结构框架,让学生比较系统地了解本章知识及它们之间的相互联系.二、释疑解惑,加深理解1.勾股定理的证明勾股定理的证明方法有多种,一般是采用剪拼的方法,它把“数与形”巧妙地联系起来,是几何与代数沟通的桥梁,同时也为后面的四边形、圆、圆形变换、三角函数等知识的学习提供了方法和依据.说明:利用面积相等是证明勾股定理的关键所在.2.勾股定理中的分类讨论在勾股定理的实际运用中,如果不明给出直角三角形中有两条边的长,要求第三条边的长就需要分两种情况讨论,即第一种情况是告诉两条直角边长求斜边,第二种情况是告诉一条直角边和斜边长求另一条直角边.3.曲面两点间的距离问题在解决曲面中两点间的距离时,往往是要将曲面问题转化为同一平面内两点之间的距离,这是解决问题的关键.三、典例精析,复习新知例1 一张直角三角形纸片,两直角边AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕是DE(如图所示),求CD的长.【分析】设CD为x,∵AD=BD,∴AD=8-x. ∴在△ACD中,根据勾股定理列出关于x的方程即可求解.解:由折叠知,DA=DB.在Rt△ACD中,由勾股定理得AC2+CD2=AD2,若设CD=xcm,则AD=DB=(8-x)cm,代入上式得62+x2=(8-x)2,解得x=7/4=1.75(cm),即CD的长为1.75cm.例2有一个立方体礼盒如图所示,在底部A处有一只壁虎,C′处有一只蚊子,壁虎急于捕捉到蚊子充饥.(1)试确定壁虎所走的最短路线;(2)若立方体礼盒的棱长为20cm,则壁虎如果想在半分钟内捕捉到蚊子,每分钟至少要爬行多少厘米?(保留整数)【分析】求几何表面的最短距离时,通常可以将几何体表面展开,把立体图形转化为平面图形.解:(1)若把礼盒上的底面A′B′C′D′竖起来,如图所示,使它与立方体的正面(ABB′A′)在同一平面内,然后连接AC′,根据“两点间线段最短”知线段AC′就是壁虎捕捉蚊子所走的最短路线.(2)由(1)得,△ABC′是直角三角形,且AB=20,BC′=40.根据勾股定理,得AC′2=AB2+BC′2=202+402,AC′≈44.7(cm),44.7÷0.5≈90(cm/min).所以壁虎要想在半分钟内捕捉到蚊子,它每分钟至少爬行90厘米(只入不舍).【教学说明】师生共同回顾本章主要知识,对于例题中需要注意的事项教师可以适当点评,便于学生熟练加以运用.四、复习训练,巩固提高1.已知在△ABC中,∠B=90°,一直角边为a,斜边为b,则另一条直角边c满足c2= .2.在Rt△ABC中,∠C=90°,若a=12,c-b=8,则b= ,c= .3.如图所示,在△ABC中,∠ACB=90°,CD⊥AB,D为垂足,AC=2.1,BC=2.8.求:(1)△ABC的面积;(2)斜边AB的长;(3)斜边AB上的高CD的长;(4)斜边被分成的两部分AD和BD的长.【答案】1.b2-a2;2.5,13;3.解:(1)S△ABC=12AC×BC=12×2.1×2.8=2.94.(2)AB2=AC2+BC2=2.12+2.82=12.5,∴AB=3.5.(3)由三角形的面积公式得12AC×BC=12AB×CD,所以12×2.1×2.8=12×3.5×CD,解得CD=1.68.(4)在Rt△ACD中,由勾股定理得AD2+CD2=AC2,∴AD2=AC2-CD2=2.12-1.682=(2.1+1.68)(2.1-1.68)=3.78×0.42=2×1.89×2×0.21=22×9×0.214×0.21.∴AD=2×3×0.21=1.26.∴BD=AB-AD=3.5-1.26=2.24.五、师生互动,课堂小结本节复习课你能灵活运用勾股定理和如何判断一个三角形是直角三角形的解决问题吗?还有哪些不足?【教学说明】教师引导学生归纳本章主要的知识点,对于遗漏或需要强调的地方,教师应及时补充和点拨.1.复习题4.5第11、12题.2.完成练习册中本课时相应练习.勾股定理是解决线段计算问题的主要依据,它单独命题比较少见,更多时候是与其他知识综合应用,在综合题中如何找到适当的直角三角形是解题的关键.。
北师大版数学八年级上册第一章勾股定理第3节勾股定理的应用优秀教学案例
(三)学生小组讨论
1.教师给出具体的合作任务,如共同探究勾股定理的证明方法,分享解题心得等。
2.学生分组进行讨论,相互交流,共同解决问题。
3.教师巡回指导,关注学生的个体差异,给予有针对性的帮助。
(四)总结归纳
1.教师引导学生对所学内容进行总结,如勾股定理的定义、证明方法及其应用等。
北师大版数学八年级上册第一章勾股定理第3节勾股定理的应用优秀教学案例
一、案例背景
北师大版数学八年级上册第一章勾股定理第3节勾股定理的应用,旨在让学生通过探究、实践,掌握勾股定理在实际问题中的应用。本节内容与日常生活紧密相连,旨在培养学生运用数学知识解决实际问题的能力。
本节课的内容包括:理解勾股定理的应用场景,如直角三角形、矩形、正方形等;学会运用勾股定理解决实际问题,如计算直角三角形的斜边长度、判断一个四边形是否为矩形等;培养学生的合作交流能力,通过小组讨论、分享解题方法,提高学生对勾股定理应用的掌握程度。
三、教学策略
(一)情景创设
1.生活情境:以实际生活中的实例引入,如测量房屋面积、计算登机桥的长度等,让学生感受到勾股定理的实际应用。
2.媒体素材:运用多媒体课件、视频等素材,展示勾股定理的历史背景、发现过程,让学生深入了解勾股定理的来历。
3.问题情境:设计一些具有启发性的问题,如“为什么勾股定理适用于所有直角三角形?”“如何判断一个四边形是否为矩形?”等,激发学生的思考兴趣。
4.教师在小组合作过程中进行巡视指导,关注学生的个体差异,给予有针对性的帮助。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,如“在学习勾股定理的过程中,你遇到了哪些困难?是如何克服的?”“你在解决问题时采用了哪些方法?效果如何?”等。
北师大版八年级数学上册《勾股定理》复习课教学课件
北师大版八年级数学上册第一章《勾 股定理 》复习 课 课件 北师大版八年级数学上册第一章《勾 股定理 》复习 课 课件
北师大版八年级数学上册第一章《勾 股定理 》复习 课 课件
三、典例分析
例1、(1)已知直角三角形的两条直角边为 6cm和8cm,斜边是___1_0_c_m__, 则斜边上的高是 _4__.8_c_m__。 (2)若直角三角形的三边长分别为3、 6、x, 则x2=___4__5_或_2_7___。(分类思想)
新北师大版
八年级上册第一章 勾股定理复习
一、导课
商高,西周初数学家。商高在公元前 1000年发现勾股定理并完成证明。此发现 早于毕达哥拉斯定理五百到六百年。勾股定 理是中国数学家的独立发现,在中国早有记 载。勾股定理,我们把它称为世界第一定理。 勾股定理是我们数学史的奇迹,我们已经比 较完整地研究了这个先人给我们留下来的宝 贵的财富,这节课,我们将通过回顾与思考 中的几个问题更进一步了解勾股定理的应用。
六、当堂检测
1.在Rt△ABC中,∠C=90°,
2. ①若a=5,b=12,则c=___1_3_______; 3. ②若a=15,c=25,则b=__2_0________; 4. ③若c=61,b=60,则a=__1_1_______; 5.下列各组数中为勾股数的一组是( D )
A、7、12、13;B、1.5、2、2.5 C、3、4、7 D、8、15、17 3. 有一块田地的形状和尺寸如图所示,试求它的面积。
勾股定理的逆定理是判定一 个三角形是否是直角三角形 的一种重要方法,它通过 “数转化为形”来确定三角 形的可能形状,
北师大版八年级数学上册第一章《勾 股定理 》复习 课 课件
北师大版八年级数学上册第一章《勾 股定理 》复习 课 课件
北师大版八年级数学上册第1章勾股定理大单元教学设计
(一)教学重难点
1.重点:勾股定理的理解与应用,以及勾股定理的推导过程。
2.难点:勾股定理在实际问题中的灵活运用,以及运用勾股定理进行几何作图和推理证明。
(二)教学设想
1.创设情境,引入新课
-通过生活中的实际例子,如建筑设计、测量等,引出直角三角形斜边长度的问题,激发学生探究兴趣。
-利用多媒体展示勾股定理的历史背景,让学生了解其产生与发展过程,增强学生的学习动机。
2.自主探究,发现定理
-设计一系列具有启发性的问题,引导学生观察、思考和讨论,让学生在自主探究中逐步发现勾股定理。
-鼓励学生尝试用不同的方法推导勾股定理,培养学生的发散思维和创新能力。
3.知识讲解,巩固提高
-对勾股定理进行详细讲解,让学生理解其内涵和外延。
4.布置课后作业,要求学生在课后进一步巩固勾股定理的知识。
五、作业布置
1.基础巩固题:完成课本第1章第3节后的练习题1、2、3,要求学生在理解勾股定理的基础上,熟练运用定理解决直角三角形相关问题。
2.提高拓展题:选取课本第1章第3节后的练习题4、5,引导学生运用勾股定理解决实际生活中的问题,提高学生的应用能力。
(二)讲授新知
1.通过动画演示,让学生观察直角三角形的三条边,引导学生发现直角三角形两直角边的平方和等于斜边的平方这一规律。
2.分组讨论,让学生尝试用自己的语言描述这一规律,并进行推导。
3.教师详细讲解勾股定理的推导过程,强调数形结合的数学思想。
4.介绍勾股定理的数学表达式:a² + b² = c²,解释其中各个字母的含义。
3.创新思维题:设计一道与勾股定理相关的开放性题目,要求学生运用所学知识进行解答,鼓励学生从不同角度思考问题,培养学生的创新意识。
北师大版八年级数学上册第一章1.1探索勾股定理(教案)
1.理论介绍:首先,我们要了解勾股定理的基本概念。勾股定理是指在直角三角形中,两条直角边的平方和等于斜边的平方。它是解决直角三角形相关问题的重要工具,广泛应用于建筑、工程等领域。
2.案例分析:接下来,我们来看一个具体的案例。通过计算一个实际直角三角形的边长,展示勾股定理在实际中的应用,以及它如何帮助我们解决问题。
5.激发学生的创新意识,鼓励学生在探索勾股定理的过程中,提出不同的观点和证明方法,培养创新思维。
这些核心素养目标旨在帮助学生全面发展,将所学知识内化为自身能力,为新教材要求下的数学学习奠定坚实基础。
三、教学难点与重点
1.教学重点
(1)掌握勾股定理的表达式:直角三角形两条直角边的平方和等于斜边的平方。
北师大版八年级数学上册第一章1.1探索勾股定理(教案)
一、教学内容
本节内容选自北师大版八年级数学上册第一章1.1节,主要探索勾股定理。内容包括:
1.了解勾股定理的起源,通过探究活动引导学生发现直角三角形三边的关系。
2.掌握勾股定理的表达式:直角三角形两条直角边的平方和等于斜边的平方。
3.学会运用勾股定理解决实际问题,如计算直角三角形中未知边的长度。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了勾股定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对勾股定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.教学难点
(1)理解勾股定理背后的数学原理,如平方概念、直角三角形的性质等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学·人教版(RJ)
易错警示 应用勾股定理计算时,易出现下列两种错误:(1)忽视勾股 定理成立的条件,在非直角三角形中使用 a2+b2=c2;(2)当题
北师大版八年级数学上册第一章
考点攻略
考点一 应用勾股定理计算 例1 已知直角三角形的两边长分别为3,4,求第三边长的平方.
[解析] 因习惯了“勾三股四弦五”的说法,即意味着两直角边为3和4时,斜边长 为5.但这一理解的前提是3,4为直角边.而本题中并未加以任何说明,因而所求的 第三边可能为斜边,也可能为直角边.
数学·人教版(RJ)
例4 李老师让同学们讨论这样一个问题,如图1-3所示,有一个长方体盒子,底面 正方形的边长为2 cm,高为3 cm,在长方体盒子下底面的A点处有一只蚂蚁,它想吃到 上底面的F点处的食物,则怎样爬行路程最短?最短路程是多少?
过了一会,李老师问同学们答案,甲生说:先由A点到B点,再走对角线BF;乙生说: 我认为应由A先走对角线AC,再走C到F点;丙生说:将长方形ABCD与长方形BEFC展开成 长方形AEFD,利用勾股定理求AF的长;丁生说:将长方形ABCD与正方形CFGD展开成长方 形ABFG,利用勾股定理求AF的长.你认为哪位同学的说法正确?并说明理由.(参考数 据:29≈5.392)
就可以了.
解:连接
AE,设正方形边长为
a,则
DF=FC=a2,EC=a4.
在 Rt△ECF 中,有 EF2=a22+a42=156a2.
在 Rt△FDA 中,有 AF2=a22+a2=54a2.
在 Rt△ABE 中,有 BE=a-14a=34a,
∵AE2=a2+34a2=1265a2,
∴AF2+EF2=AE2.
按丁生的办法,将长方形ABCD与正方形CFGD展开成长方形ABFG,如图1-5所示: 则BF=BC+CF=3+2=5(cm),AB=2 cm,连接AF,在Rt△ABF中,AF2=BF2+AB2= 52+22=29≈5.392, ∴AF=5.39 cm.连接AC, ∵AF<AC+CF, ∴丁的方法比乙的好. 比较丙生与丁生的计算结果,知丙生的说法正确.
图1-2 数学·人教版(RJ)
[解析] 要判断公路 AB 段是否需要封锁,则需要比较点 C 到 AB 的距离与 250 m 的大小关系,可以借助勾股定理和三角形的面 积计算点 C 到 AB 的距离.
解:作 CD⊥AB 于 D,因为 BC=400 m,AC=300 m,∠ACB =90°,根据勾股定理,得 AC2+BC2=AB2,即 3002+4002=AB2, 所以 AB=500 m.
图1-4
图1-5 数学·人教版(RJ)
方法技巧 最短路径问题是勾股定理在立体几何中的应用,一般做法是把长方体(或其他几
何体)侧面展开,将立体图形问题转化为平面图形问题,再根据两点之间线段最短, 用勾股定理求解.
考点四 验证勾股定理
例5 一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的验证 方法.如图1-6,火柴盒的一个侧面ABCD倒下到AB′C′D′的位置,连接CC′,设AB =a,BC=b,AC=c,请利用四边形BCC′D′的面积验证勾股定理:a2+b2=c2.
目给出两条边长而没有给出图形时,可能考虑不周而漏解.
考点二 直角三角形的判别
例 2 如图 1-1,在正方形 ABCD 中,F 为 DC 的中点,E 为 BC 上一点,且 EC=14BC,请说明:AF⊥EF.
图 1-1
数学·人教版(RJ)
[解析] 要说明 AF⊥EF,可说明△AEF 是直角三角
形,只要根据勾股定理的逆定理说明 AF2+EF2=AE2
根据勾股定理的逆定理,得∠AFE=90°,
∴AF⊥EF.
数学·人教版(RJ)
易错警示 根据 a2+b2=c2,判别直角三角形时,容易出现计算一条 短边及最长边的平方和,导致错误.
考点三 勾股定理的实际应用
例3 如图1-2,在公路AB旁有一座山,现有一C处需要爆破,已知点C与公路上的停靠 站A的距离为300 m,与公路上另一停靠站B的距离为400 m,且CA⊥CB,为了安全起见, 爆破点C周围半径250 m范围内不得进入.在进行爆破时,公路AB段是否因有危险而[解析] 观察图形会发现易证△ABC≌△C′D′A,得∠CAC′=90°,于是梯形 BCC′D′的面积既等于12(C′D′+BC)·BD′,又等于 S△ABC+S△CAC′+S△D′AC′, 于是定理得证.
证明:由题意可知四边形 BCC′D′为直角梯形, 因为 Rt△ABC≌Rt△AB′C′, 所以∠BAC=∠B′AC′, ∠CAC′=∠CAB′+∠B′AC′=∠CAB′+∠BAC=90°. 所以 S 梯形 BCC′D′=S△ABC+S△CAC′+S△D′AC′, 12(a+b)(a+b)=12ab+12ab+12c2,
图1-3
数学·人教版(RJ)
[解析] 要使蚂蚁爬行的路程最短,可直接连接AF,再求出AF,但AF在盒子里面,不 符合题目要求.甲生和乙生的方案类似,只是顺序不同,丙生和丁生的方法类似, 只是长方形的长、宽不同,若在丙、丁的长方形中分别画出甲、乙的路线,则发现 丙生和丁生的办法都符合要求,但究竟哪个路程最短,就需要计算了.
解:按丙生的办法:将长方形ABCD与长方形BEFC展开成长方形AEFD,如图1-4 所示:
则AE=AB+BE=4(cm),EF=3 cm,连接AF,在Rt△AEF中,AF2=AE2+EF2=42 +32=25,∴AF=5(cm).连接BF,
∵AF<AB+BF, ∴丙的方法比甲的好.
数学·人教版(RJ)
由三角形的面积可知:12AB·CD=12BC·AC,所以 500CD= 400×300,所以 CD=240 m.
因为 240<250,即点 C 到 AB 的距离小于 250 m,所以有危险, 公路 AB 段需要暂时封锁.
数学·人教版(RJ)
方法技巧 转化思想是一种重要的数学思想,它的应用十分广泛,如通过作高可以 将非直角三角形的问题转化为直角三角形的问题来解决,通过建模可以 将实际问题转化为数学问题来解决等.