高分子化学复习解析
高分子化学复习资料
高分子化学复习资料高分子化学复习资料高分子化学是化学领域中的一个重要分支,研究的是由大量重复单元组成的高分子材料。
在我们的日常生活中,高分子材料无处不在,如塑料、橡胶、纤维等。
因此,了解高分子化学的基本知识和原理对我们的生活和工作都有着重要的意义。
一、高分子化学的基本概念和分类高分子化学研究的对象是由单体分子通过聚合反应形成的聚合物。
聚合物是由大量重复单元组成的化合物,分为线性聚合物、支化聚合物和交联聚合物三类。
线性聚合物是由单一线性链结构组成的聚合物,如聚乙烯、聚丙烯等。
支化聚合物是在线性聚合物的基础上引入支链结构的聚合物,如聚苯乙烯、聚苯乙烯-丙烯酸酯共聚物等。
交联聚合物是由多个线性链或支链通过交联反应形成的聚合物,如橡胶、树脂等。
二、高分子化学的聚合反应机理聚合反应是指将单体分子通过共价键连接形成聚合物的过程。
常见的聚合反应有自由基聚合、阴离子聚合、阳离子聚合和羧酸酯聚合等。
自由基聚合是指通过自由基引发剂将单体分子中的双键断裂形成自由基,然后自由基与其他单体分子发生反应形成聚合物。
阴离子聚合是指通过阴离子引发剂将单体分子中的活性基团负离子化,然后负离子与其他单体分子发生反应形成聚合物。
阳离子聚合和羧酸酯聚合的反应机理类似。
三、高分子化学的物性与应用高分子材料具有许多独特的物性,如高分子链的灵活性、分子间的相互作用、热稳定性等。
这些物性使得高分子材料在各个领域得到广泛应用。
例如,聚乙烯具有良好的绝缘性能,可用于电线电缆的绝缘材料;聚丙烯具有良好的耐热性和耐腐蚀性,可用于化工容器和管道;聚苯乙烯具有良好的透明性和抗冲击性,可用于食品包装和保护材料。
四、高分子化学的研究进展随着科学技术的不断发展,高分子化学的研究也在不断取得新的进展。
目前,高分子材料的研究重点主要集中在以下几个方面:1. 高分子合成方法的改进:研究人员通过改进聚合反应的条件和催化剂,使得高分子的合成更加高效、环保和可控。
2. 高分子结构与性能的关系研究:通过改变高分子的结构和组成,研究人员可以调控高分子的性能,实现特定应用需求。
高分子化学重点课后习题解答讲解学习
高分子化学重点课后习题解答讲解学习1.图1 相对分子质量~转化率关系1.链式聚合2.活性聚合3.逐步聚合对链式聚合,存在活性中心,活性中心的特点一是在反应过程中不断生成,二是高活性,可使高分子链是瞬间形成,因此在不同转化率下分离所得聚合物的相对分子质量相差不大,延长反应时间只是为了提高转化率。
对逐步聚合,是官能团间反应,由于大部分单体很快聚合成二聚体、三聚体等低聚物,短期内可达到很高转化率,但因官能团活性低,故需延长反应时间来提高相对分子质量。
对活性聚合,活性中心同时形成,且无链转移和链终止,故随反应进行,相对分子质量和转化率均线性提高。
2.连锁聚合与逐步聚合的单体有何相同与不同?连锁聚合单体的主要反应部位是单体上所含不饱合结构(双键或叁键),在聚合过程中不饱合键打开,相互连接形成大分子链。
需要有活性中心启动聚合反应,为此多需用引发剂,反应活化能低,反应速率快,相对分子质量高。
逐步聚合单体的主要反应部位是单体上所带可相互反应的官能团,在聚合过程中官能团相互反应连接在一起,形成大分子链。
不需活性中心启动反应,但反应活化能高,为此多需用催化剂,反应速率慢,受平衡影响大,相对分子质量低。
3.凝胶点:出现凝胶化时的反应程度。
(逐步聚合概念)凝胶化:体形逐步聚合的交联反应到一定程度时,体系粘度变得很大,难以流动,反应及搅拌产生的气泡无法从体系中溢出,出现凝胶或不溶性聚合物明显生成的实验现象。
(逐步聚合概念)凝胶效应:自由基聚合中随反应进行体系粘度加大,妨碍了大分子链自由基的扩散运动,降低了两个链自由基相遇的几率,导致链终止反应速率常数随粘度的不断增加而逐步下降;另一方面,体系粘度的增加对小分子单体扩散的影响并不大,链增长反应速率常数基本不变,因而出现了自动加速现象。
这种因体系粘度增加引起的自动加速又称凝胶效应。
(自由基聚合概念)4.为什么在缩聚反应中不用转化率而用反应程度描述反应过程?在逐步聚合中,带不同官能团的任何两分子都能相互反应,无特定的活性种,因此,在缩聚早期单体很快消失,转变成二聚体、三聚体等低聚物,单体的转化率很高。
高分子复习资料(准确情报)
所以:
即:
答……
第四章.离子、配合聚合
一.叙述下列定义:
1.离子聚合
离子聚合是单体在引发剂或催化中心作用下,按离子反应历程转化为聚合物的化学过程。
2.阴离子聚合
以带负电荷的离子或离子对为活性中心的一类连锁反应。
3.阳离子聚合
以带负电荷的离子或离子对为活性中心的一类连锁反应。
4.配位聚合
配位聚合也称配位离子聚合,是由两种或两种以上组分组成的配位催化剂引发的聚合反应。单体首先在过渡金属活性中心的空位上配位,形成σ→п配位化合物,进而这种被活化的的单体插入过渡金属-碳键进行链增长,最后形成大分子的过程。
综合各种情况,聚合速率方程可表达为:
Rp=K[I]n[M]m
一般情况下,式中指数n=0.5~1.0;m=1~1.5(个别为2)
2.局限性:主要是基于稳态法的基本假定
.不考虑链转移,为双基终止;
.单体总消耗速率=聚合反应总速率;链增长速率等于聚合反应总速率Rp=-d[M]/dt=Ri+Rp;
.游离基活性与链增长无关,Kp为常数;
O
2.-[HN-(CH2)5-C]n-聚合物名称:聚w-氨基己酸
单体名称:w-氨基己酸
合成式:
n H2N-(CH2)5-COOH→H-[N-(CH2)5-CO]n-OH + (n-1)H2O3.-[CH2-C-CH2]n-聚合物名称:聚1-甲基环丙烷
CH3单体名称:1-甲基环丙烷
合成式:CH3
C →-[CH2-C-CH2]n-
(3)
.链终止
偶合终止:
岐化终止:
(4)
式中
根据假定自由基浓度不变,进入稳定状态,或者说引发速率和终止速率相等,即Ri=Rt构成平衡,则
高分子化学知识点总结
高分子化学知识点总结高分子化学是研究高分子化合物的合成、结构、性能和应用的一门学科。
它是化学领域中的一个重要分支,对于材料科学、生物医学、环境保护等众多领域都有着深远的影响。
以下是对高分子化学一些重要知识点的总结。
一、高分子的基本概念高分子化合物是指相对分子质量很大的化合物,其相对分子质量通常在 10^4 到 10^7 之间。
高分子化合物由许多结构单元通过共价键重复连接而成,这些结构单元被称为单体。
例如,聚乙烯是由乙烯单体聚合而成,其结构单元就是乙烯。
高分子的相对分子质量具有多分散性,即同一种高分子化合物中,不同分子的相对分子质量大小不同。
通常用平均相对分子质量来表示高分子的相对分子质量,常见的平均相对分子质量有数均相对分子质量、重均相对分子质量和粘均相对分子质量。
二、高分子的分类根据来源,高分子可以分为天然高分子和合成高分子。
天然高分子如纤维素、蛋白质、淀粉等,是自然界中存在的;合成高分子则是通过人工合成得到的,如聚乙烯、聚丙烯、聚苯乙烯等。
按照高分子的主链结构,可分为碳链高分子、杂链高分子和元素有机高分子。
碳链高分子的主链完全由碳原子组成,如聚乙烯、聚丙烯;杂链高分子的主链除了碳原子外,还含有氧、氮、硫等原子,如聚酯、聚酰胺;元素有机高分子的主链中不含碳原子,而是由硅、磷、钛等元素组成,侧链则为有机基团。
三、高分子的合成方法(一)加聚反应加聚反应是指由不饱和单体通过加成聚合反应生成高分子化合物的过程。
在加聚反应中,单体分子中的双键或三键打开,相互连接形成高分子链。
常见的加聚反应有自由基聚合、离子聚合和配位聚合。
自由基聚合是应用最广泛的一种加聚反应,其反应条件相对简单,通常在加热或引发剂的作用下进行。
引发剂分解产生自由基,引发单体聚合。
离子聚合包括阳离子聚合和阴离子聚合,它们对反应条件要求较高,需要在无水、无氧的环境中进行。
配位聚合可以制备具有规整结构的高分子,如等规聚丙烯。
(二)缩聚反应缩聚反应是指由具有两个或两个以上官能团的单体通过缩合反应生成高分子化合物,并伴随有小分子副产物(如水、醇、氨等)生成的过程。
高分子化学答案详解第五版
第一章绪论思考题1. 举例说明单体、单体单元、结构单元、重复单元、链节等名词的含义,以及它们之间的相互关系和区别。
答:合成聚合物的原料称做单体,如加聚中的乙烯、氯乙烯、苯乙烯,缩聚中的己二胺和己二酸、乙二醇和对苯二甲酸等。
在聚合过程中,单体往往转变成结构单元的形式,进入大分子链,高分子由许多结构单元重复键接而成。
在烯类加聚物中,单体单元、结构单元、重复单元相同,与单体的元素组成也相同,但电子结构却有变化。
在缩聚物中,不采用单体单元术语,因为缩聚时部分原子缩合成低分子副产物析出,结构单元的元素组成不再与单体相同。
如果用2种单体缩聚成缩聚物,则由2种结构单元构成重复单元。
聚合物是指由许多简单的结构单元通过共价键重复键接而成的分子量高达104-106的同系物的混合物。
聚合度是衡量聚合物分子大小的指标。
以重复单元数为基准,即聚合物大分子链上所含重复单元数目X表的平均值,以DP表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以n 示。
2. 举例说明低聚物、齐聚物、聚合物、高聚物、高分子、大分子诸名词的的含义,以及它们之间的关系和区别。
答:合成高分子多半是由许多结构单元重复键接而成的聚合物。
聚合物(polymer)可以看作是高分子(macromolecule)的同义词,也曾使用large or big molecule的术语。
从另一角度考虑,大分子可以看作1条大分子链,而聚合物则是许多大分子的聚集体。
根据分子量或聚合度大小的不同,聚合物中又有低聚物和高聚物之分,但两者并无严格的界限,一般低聚物的分子量在几千以下,而高聚物的分子量总要在万以上。
多数场合,聚合物就代表高聚物,不再标明“高”字。
齐聚物指聚合度只有几~几十的聚合物,属于低聚物的范畴。
低聚物的含义更广泛一些。
8. 举例说明和区别线形结构和体形结构、热塑性聚合物和热固性聚合物、非晶态聚合物和结晶聚合物。
答:线形和支链大分子依靠分子间力聚集成聚合物,聚合物受热时,克服了分子间力,塑化或熔融;冷却后,又凝聚成固态聚合物。
高分子化学复习要点海南大学
高分子化学复习大纲第一章:绪论1. 高分子的基本概念(单体、重复结构单元、结构单元、单体单元)2. 高分子命名3. 聚合物的四大特征(分子量大、分子量分散性、分子形态多样性、显著多层次结构)4. 平均分子量的表示方法和计算方法(数均分子量,重均分子量和粘均分子量)5. 分子量分布指数定义?分子量分布指数与分子量分散性的关系?即重均分子量与数均分子量的比值,M w / M n第二章:逐步聚合1. 逐步聚合反应特征?适合逐步聚合的单体特征?(1)聚合反应是通过单体官能团之间的反应逐步进行的;分子链逐渐增长,高分子量聚合物需较长时间形成;(2)短时间单体转化率很高,但分子量很低;故转化率无实际意义,而通常用反应程度P来描述反应深度;(3)在反应前期,P的增大对Xn 影响不大,反应后期,随着P的增大,Xn 也显著增大(4)平衡常数K根据不同反应类型,存在很大差异。
2. 缩聚过程中的副反应?(环化、消去反应、脱羧等)3. 线性缩聚动力学研究(P:反应程度的定义?转化率的定义?)4. 调控聚合度的有效方法是什么?5.当某单体稍稍过量时,其聚合度的表达式为:(摩尔系数r=N a /N b , r ≤1)6. 本章重点掌握的公式要点:7. 逐步聚合的实施方法?⏹ 熔融缩聚(melt polycondensation)⏹ 溶液缩聚(solution polycondensation)⏹ 界面缩聚 (interfacial polycondensation)⏹ 固相缩聚(solid polycondensation )8. 体型缩聚的一般特点?9.什么是凝胶化现象?什么是凝胶点?凝胶化现象:随着交联反应的进行,体系粘度增加,难以流动,反应及搅拌所产生的气泡无法从体系逸出,可看到凝胶或不溶性聚合物的明显生成,体系转变为具有弹性的凝胶状物质。
出现凝胶化现象时的临界反应程度叫凝胶点(Gel Point ))1(22211P q q rP r r X n -++=-++=10. 凝胶点的预测和理论计算方法?(掌握官能团、官能度以及平均官能度的概念?)第三章:自由基聚合1. 连锁聚合单体的特征?(包括自由基聚合、阴离子聚合和阳离子聚合?)—X是吸电基团,δ+适当,自由基聚合;δ+足够,阴离子聚合;—X是供电基团,δ-足够,阳离子聚合;—X是带π键的取代基(π~π共轭体系)可进行三种历程的聚合。
[讲解]高分子化学知识点
高分子化学知识点1.高分子,又称(聚合物),一个大分子往往由许多简单的(结构单元)通过(共价键)重复键接而成。
2.(玻璃化温度)和(熔点)是评价聚合物耐热性的重要指标。
3.(缩聚反应)是缩合聚合反应的简称,是指带有官能团的单体经许多次的重复缩合反应而逐步形成聚合物的过程,在机理上属于(逐步聚合),参加反应的有机化合物含有(两个)以上官能团。
4. 缩聚反应按缩聚产物的分子结构分类分为(线型)缩聚反应和(体型)缩聚反应。
一、名词解释(1分×20=20分)1.阻聚剂:具有阻聚作用的物质称为~ 232.笼闭效应:聚合体系中引发剂浓度很低,引发剂分子处于在单体或溶剂的包围中,就像关在“笼子”里一样,笼子内的引发剂分解成的初级自由基必须扩散并冲出“笼子”后,才能引发单体聚合。
3. 引发剂效率:引发聚合的部分引发剂占引发剂分解或消耗总量的分率。
284.自动加速效应(autoacceleration effect):p40又称凝胶化效应。
在自由基聚合反应中,由于聚合体系黏度增大而使活性链自由基之间碰撞机会减少,难于发生双基终止,导致自由基浓度增加,此时单体仍然能够与活性链发生链增长反应,从而使聚合速率自动加快的现象。
5.半衰期:引发剂分解至起始浓度一半时所需要的时间。
27三、简答题(5分×3=15分)1. 根据预聚物性质与结构不同预聚物分为那几种?根据预聚物性质与结构不同分为:无规预聚物和结构预聚物。
2.反应程度与转化率是否为同一概念?反应程度与转化率根本不同。
转化率:参加反应的单体量占起始单体量的分数。
是指已经参加反应的单体的数目。
反应程度:是参加反应的官能团数占起始官能团数的分数,用P表示。
反应程度可以对任何一种参加反应的官能团而言是指已经反应的官能团的数目。
3.自由基聚合反应转化率-时间曲线特征诱导期:初级自由基为阻聚杂质所终止,无聚合物形成,聚合速率零。
若严格取除杂质,可消除诱导期。
高分子化学知识点总结
高分子化学知识点总结高分子化学是一门研究高分子材料的合成、结构、性质、加工和应用的学科,其内容涉及有机化学、物理化学、材料科学等多个学科领域。
下面是关于高分子化学的一些常见知识点的总结。
1. 高分子的定义和分类:高分子是由多个结构相似的重复单元组成的巨大分子。
根据高分子的来源可以分为天然高分子和合成高分子;按照化学结构可以分为线性高分子、支化高分子、网络高分子和共聚高分子等。
2. 高分子的合成方法:高分子合成方法主要包括聚合反应和缩聚反应。
聚合反应是指在单体之间发生共价键的形成,从而形成高分子;缩聚反应是指两个或多个单体通过失去一个小分子而结合成高分子。
3. 高分子的聚合反应:聚合反应可以分为自由基聚合、阴离子聚合、阳离子聚合和离子聚合等几种类型。
其中,自由基聚合是最常见的一种聚合反应,其原理是利用自由基引发剂引发单体之间的自由基反应,从而形成高分子。
4. 高分子的物理性质:高分子的物理性质受到其分子结构的主导。
常见的高分子物理性质包括玻璃化转变温度、熔融温度、热膨胀系数、力学性能等。
另外,高分子的物理性质还与其分子量、分子量分布、聚合度和晶形等因素有关。
5. 高分子的结构性质:高分子的结构性质是指高分子链的空间构型和排列方式。
高分子的结构性质直接影响其力学性能、热学性能和电学性能等。
常见的高分子结构性质包括晶体结构、无规共聚物和嵌段共聚物等。
6. 高分子的应用:高分子材料是一类重要的工程材料,广泛应用于塑料、橡胶、纤维、涂料、胶粘剂、管材、包装材料、电子材料、医疗材料等领域。
高分子材料具有重量轻、力学性能好、耐高温、绝缘性能好等优点。
7. 高分子的改性:由于高分子的一些性能和应用方面的限制,科学家通过添加助剂、共混物、交联等方式对高分子进行了改性。
改性可以改变高分子的力学性能、热学性能、电学性能等,并且使其能够满足特定应用的要求。
8. 高分子的可持续发展:随着环境问题的日益突出,高分子化学也在朝着可持续发展的方向发展。
高分子化学复习资料
高分子化学复习资料一、解释名词1.自加速效应:随着聚合反应的进行,单体转化率(c%)逐步提高,[I]、[M]逐步下降,聚合反应速率Rp理应下降,但在许多聚合体系中,Rp不但不下降,反而显著上升,这种现象是没有任何外界因素影响,在反应过程中自动发生的,因而称为自动加速现象。
2.反应程度:把在缩聚反应中参加反应的官能团数目与起始官能团数目的比值称作反应程度,以P表示,则:P=Pa=Pb=(N0-N)/N0=1-N/N03.聚合度:聚合物大分子中重复结构单元的数目称为聚合度。
6.结构单元与重复单元:在大分子链中出现的以单体结构为基础的原子团称为结构单元。
聚合物大分子中以共价键相互连接的、重复出现的、小而简单的结构单位称为重复单元。
4.竞聚率:令r1=k11/k12,r2=k22/k21,表示两种链增长速率常数之比,称为竞聚率。
5.平均官能度:单体混合物的平均官能度f是每一个分子所含有的官能团数目的加和平均。
f??Nf?N 式iii中,Ni为单体i的分子数;i为单体i的官能度。
7.理想恒比共聚:聚合的竞聚率r1=r2=1,这种聚合不论配比和转化率如何,共聚物组成和单体组成完全相同,F1=f1,并且随着聚合的进行,F1、f1,的值保持恒定不变。
8.官能团等活性:不同链长的端基官能团,具有相同的反应能力和参加反应的机会,即官能团的活性与分子链长无关。
9.引发效率与笼蔽效应、诱导分解:引发剂效率:用于引发聚合的引发剂量占引发剂分解或损耗总量的比例,以f表示。
诱导分解:实际上是自由基(包括初级自由基、单体自由基、链自由基等)向引发剂分子的链转移反应。
笼蔽效应:聚合体系中引发剂浓度很低,引发剂分解出的初级自由基常被溶剂分子所形成的“笼子”包围着,初级自由基必须扩散出笼子,才有机会引发单体聚合。
如来不及扩散出去,初级自由基之间有可能发生反应而终止或形成较为稳定的自由基不易引发单体聚合,这样就是消耗引发剂分子而不能引发聚合,使得引发剂效率f减小,这种效应称为笼蔽效应。
高分子化学复习讲义
《高分子化学复习资料》第一章——绪论第一节高分子的基本概念1.高分子化学:是研究聚合反应机理和动力学,聚合反应与聚合物的分子量和分子量分布,以及聚合物结构之间关系的一门学科;研究髙分子化合物合成和化学反应的一门科学。
2.高分子化合物:所谓高分子化合物,系指那些由众多原子或原子团主要以共价键结合而成的相对分子量在一万以上的化合物。
3.单体:能通过聚合反应形成高分子化合物的低分子化合物,即合成聚合物的原料.4.结构单元:在大分子链中出现的以单体结构为基础的原子团(由一种单体分子通过聚合反应而进入聚合物重复单元的那一部分).5.重复单元:聚合物中组成和结构相同的最小单位称为又称为链石。
重复单元或结构单元类似大分子链中的一个环节,故俗称链节6.单体单元:与单体的化学组成完全相同,只是化学结构不同的结构单元(电子结构有所改变).第二节高分子化合物的分类和命名1、分类(1)单体来源分类:天然髙分子(纤维素、蛋白质、淀粉等);合成髙分子(聚酯、聚酰胺等):半天然高分子(改性淀粉、乙酸纤维素)等.(2)根据材料的性能和用途分类:橡胶(丁苯橡胶、顺丁橡胶、氯丁橡胶等);纤维(涤纶、腊纶、锦纶、维尼纶等):塑料(热塑性塑料:线型或支化聚合物,如聚乙烯、聚氯乙烯等; 热固性塑料:体型聚合物,如酚醛树脂、不饱和聚酯等);涂料:粘合剂:功能高分子. (3)根据高分子的主链结构分类:a.碳链聚合物:大分子主链完全由碳原子组成绝大部分烯类、二烯类聚合物属于这一类.b.杂链聚合物:大分子主链中除碳原子外,还有0、N、S等杂原子.c.元素有机聚合物:大分子主链中没有碳原子,主要由Si、B、Al、0、N、S、P等原子组成,侧基则由有机基团组成。
如:硅橡胶.(4)按分子的形状分:线形高分子、支化髙分子、交联(或称网状)高分子(5)按单体分:均聚物、共聚物、高分子共混物(又称高分子合金)(6)按聚合反应类型分:缩聚物、加聚物(7)按热行为分:热塑性聚合物:聚合物大分子之间以物理力聚集而成,加热时可熔融,并能溶于适当溶剂中。
高分子复习思考题答案
⾼分⼦复习思考题答案⾼分⼦复习思考题答案⼀、名词解释链段:⾼分⼦链中能够独⽴运动的最⼩单元柔顺性:⾼分⼦长链能够不同程度地卷曲的特性叫做⾼分⼦的柔顺性碳链⾼分⼦:主链全部由碳原⼦组成的⾼分⼦化合物杂链⾼分⼦:主链由碳原⼦与其他原⼦以共价键连接⽽成的⾼分⼦化合物元素有机⾼分⼦:分⼦主链由碳和氧、氮、硫等以外其他元素的原⼦组成,或全部由其他元素的原⼦组成,并连接有机基团的⾼分⼦近程结构:单个⾼分⼦内⼀个或⼏个结构单元的化学结构和⽴体化学结构,包括构造与构型远程结构:单个⾼分⼦的⼤⼩和在空间所存在的各种形状构象:由于单键内旋转所形成的分⼦内各原⼦的空间排布构型:某⼀原⼦的取代基在空间的排列普弹性:⼤应⼒作⽤下,材料分⼦中键长、键⾓变化引起的⼩形变,形变瞬时完成,除去外⼒后形变⽴恢复称为普弹性⾼弹性:⼩应⼒作⽤下由于⾼分⼦链段运动⽽产⽣的很⼤的可逆形变称为⾼弹性强迫⾼弹性:玻璃态⾼聚物在外⼒作⽤下出现的⾼弹现象称为强迫⾼弹性蠕变:在恒温恒负荷条件下,⾼聚物材料的形变随时间延长⽽逐渐增加的现象应⼒松弛:在恒定温度和形变保持不变的情况下,⾼聚物内部的应⼒随时间延长⽽逐渐衰减的现象滞后现象:⾼聚物在交变⼒作⽤下,形变落后于应⼒变化的现象内耗:⾼分⼦材料在受到交变应⼒时,形变的变化落后于应⼒变化发⽣滞后现象,每个循环中所消耗的功银纹屈服:很多⾼聚物,尤其是玻璃态透明⾼聚物(PS、PMMA、PC)储存过程及使⽤过程中,往往会在表⾯出现像陶瓷的那样,⾁眼可见的微细的裂纹,这些裂纹,由于可以强烈地反射可见光看上去是闪亮的,所以⼜称为银纹,这现象称为银纹屈服剪切屈服:⾼聚物在拉伸或压缩作⽤下,在与负荷⽅向成45°的截⾯上会产⽣最⼤的剪切⼒,从⽽引发⾼分⼦链沿最⼤剪切⾯⽅向产⽣滑动形变,从⽽导致材料形状扭变的现象⼆、问答题1. ⾼分⼦有何特征?1、分⼦量很⾼、或分⼦键很长.2、⾼分⼦是由很⼤数⽬的结构单元通过共价键连接⽽成的。
(完整版)高分子化学知识点总结,推荐文档
(完整版)⾼分⼦化学知识点总结,推荐⽂档第⼀章绪论1.1 ⾼分⼦的基本概念⾼分⼦化学:研究⾼分⼦化合物合成与化学反应的⼀门科学。
单体:能通过相互反应⽣成⾼分⼦的化合物。
⾼分⼦或聚合物(聚合物、⼤分⼦):由许多结构和组成相同的单元相互键连⽽成的相对分⼦质量在10000以上的化合物。
相对分⼦质量低于1000的称为低分⼦。
相对分⼦质量介于⾼分⼦和低分⼦之间的称为低聚物(⼜名齐聚物)。
相对分⼦质量⼤于1 000 000的称为超⾼相对分⼦质量聚合物。
主链:构成⾼分⼦⾻架结构,以化学键结合的原⼦集合。
侧链或侧基:连接在主链原⼦上的原⼦或原⼦集合,⼜称⽀链。
⽀链可以较⼩,称为侧基;也可以较⼤,称为侧链。
端基:连接在主链末端原⼦上的原⼦或原⼦集合。
重复单元:⼤分⼦链上化学组成和结构均可重复出现的最⼩基本单元,可简称重复单元,⼜可称链节。
结构单元:单体分⼦通过聚合反应进⼊⼤分⼦链的基本单元。
(构成⾼分⼦链并决定⾼分⼦性质的最⼩结构单位称为~)。
单体单元:聚合物中具有与单体的化学组成相同⽽键合的电⼦状态不同的单元称为~。
聚合反应:由低分⼦单体合成聚合物的反应。
连锁聚合:活性中⼼引发单体,迅速连锁增长的聚合。
烯类单体的加聚反应⼤部分属于连锁聚合。
连锁聚合需活性中⼼,根据活性中⼼的不同可分为⾃由基聚合、阳离⼦聚合和阴离⼦聚合。
逐步聚合:⽆活性中⼼,单体官能团之间相互反应⽽逐步增长。
绝⼤多数缩聚反应都属于逐步聚合。
加聚反应:即加成聚合反应,烯类单体经加成⽽聚合起来的反应。
加聚反应⽆副产物。
缩聚反应:缩合聚合反应,单体经多次缩合⽽聚合成⼤分⼦的反应。
该反应常伴随着⼩分⼦的⽣成。
1.2 ⾼分⼦化合物的分类1) 按⾼分⼦主链结构分类:可分为:①碳链聚合物:⼤分⼦主链完全由碳原⼦组成的聚合物。
②杂链聚合物:聚合物的⼤分⼦主链中除了碳原⼦外,还有氧、氮,硫等杂原⼦。
③元素有机聚合物:聚合物的⼤分⼦主链中没有碳原⼦孙,主要由硅、硼、铝和氧、氮、硫、磷等原⼦组成。
高分子化学第五版复习资料
⾼分⼦化学第五版复习资料名词解释:1、溶胶效应→当转化率达到⼀定数值时,由于粘度的增加⽽导致聚合速度迅速增⼤的现象叫做凝胶效应2、凝胶点→多官能团单体聚合到某⼀程度,开始交联,⽓泡也难以上升,出现凝胶化现象,这时所对应的反应程度叫做凝胶点3、半衰期→引发剂分解⾄其实浓度⼀般所需要的时间4、引发剂效率→引发聚合的引发剂占引发剂分解或者消耗总量的分数5、⾃由基寿命→⾃由基从产⽣到终⽌所经历的时间5、动⼒学连场→每⼀个单体从链引发到链终⽌所消耗的单体分⼦数6、均聚物→有⼀种单体引发聚合的聚合物7、官能度→⼀分⼦物质能参与反应的官能团数⽬8、⽴构规整度→⽴构规整聚合物占总聚合物的百分数填空:1、聚合反应按聚合机理可分为逐步聚合和连锁聚合,按单体结构变化可分为缩聚反应、加聚反应和开环聚合。
其中属于连锁反应的⼜分为⾃由基聚合、阴离⼦聚合和阳离⼦聚合。
连锁反应的基元反应包含链引发、链增长、(链转移)、链终⽌。
2、聚合物按主链结构可分为碳链聚合物、杂链聚合物、半有机聚合物、(⽆机聚合物)。
3、有机合成材料包含橡胶、纤维、树脂三⼤类。
4、著名的化学家Carothers 提出了凝胶点理论,Ziegler-Natta 发现了⾦属络合催化体系。
5、甲苯和甲醛进⾏共聚的时候甲苯的聚合度为 3 。
6、共聚中影响聚合度的因素有反应程度、平衡常数和集团数⽐,如果集团数⽐不相同时⼀般通过控制集团数⽐来控制预聚合度 7、线型缩聚通过外加酸催化时平均聚合度和时间的关系为1'0+=t C k X n8、逐步聚合的实施⽅法有:溶液聚合、熔融聚合、界⾯聚合和固相聚合,其中酯交换法合成聚氨酯和涤纶聚酯的合成时⽤熔融聚合的⽅法,光⽓法合成聚氨酯应当⽤界⾯聚合。
9、⾃由基聚合从微观⾓度看其聚合特点是:慢引发、快增长、速终⽌。
故其控速步骤是链引发阶段。
10、聚合反应中所应⽤的引发剂可分为偶氮类、有机过氧类和⽆机过氧类三种。
11、⾃由基聚合中聚合速率与引发剂浓度之间的关系为:[][]M I 2121=t d p t k fk k R ,此关系成⽴的前提是做出了聚合度⽐较⼤、等活性理论和稳态假设三个假定。
高分子化学总复习提纲1
自动加速效应 autoacceleration effect 又称凝胶效应。在自由基聚合反应中,由于聚合体系黏 度增大而使活性链自由基之间的碰撞机会减少,双基终止难 于发生,导致自由基浓度增加,此时单体仍然能够与活性链 发生链增长反应,从而使聚合速度自动加快的现象。 竞聚率: 两种单体均聚速率常数与共聚速率常数之比称为竞聚 率: r1 == k11 / k12;r2 == k22 / k21。 活性聚合、活性聚合物、计量聚合 living polymer 在无链转移和链终止反应发生的连锁聚合反应条件下,聚合 反应完成以后大分子链端仍然保留着活性,一旦加入单体即 可以重新开始聚合反应,这样的聚合反应称为活性聚合;生 成物叫活性聚合物。阴离子聚合、配位阴离子聚合、阳离子 聚合以及自由基聚合反应在特定的条件下都可以得到活性聚 合物。不过阴离子聚合是目前合成活性聚合物最有效的方 法。
5.体型缩聚凝胶点计算: 首先判断两类官能团摩尔数是否相等,再分别按照不 同公式计算平均官能度: 1)如果两种官能团等摩尔即 fa Na == fb Nb + fc Nc, 则平均官能度为官能团总摩尔数与单体总摩尔数之比:
_
f
=
fa Na + fb Nb + fc Nc Na + Nb + Nc
2)如果两种官能团摩尔数不等,则平均官能度应该等于摩 尔数少的官能团摩尔数的二倍与单体总摩尔数之比:设fa Na > fb Nb + fc Nc,
=
_ _ _ _ HO [OC(CH2)4CO HN(CH2)6NH ]n H + (2 n 1) H2 O
4. 尼龙-6, 也有两条合成路线: 1)n HOOC(CH2)5NH2 == HO–[OC(CH2)5NH]n–H + (n -1) H2O
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.高分子也叫高分子化合物,是指分子量很高并由共价键连接的一类化合物。
2.在大分子链中出现的以单体结构为基础的原子团称为结构单元。
3.合成高分子的低分子原料称为单体。
4.与单体的分子相比,原子种类和各种原子的个数完全相同的结构单元又可称为单体单元。
5.多分散性:高分子(除少数天然高分子如蛋白质、DNA等外)不是由单一分子量的化合物所组成即使是一种“纯粹”的高分子,也是由化学组成相同、分子量不等、结构不同的同系聚合物的混合物所组成。
这种高分子的分子量不均一(即分子量大小不一、参差不齐)的特性,就称为分子量的多分散性。
6.塑料是在玻璃态下使用的高分子材料。
在一定温度、压力下可塑制成型,在常温下能保持其形状不变。
7.塑料是以树脂为主要成分,加入各种添加剂。
树脂是塑料的主要成分,对塑料性能起决定性作用。
8.按树脂受热时行为可分为热塑性塑料和热固性塑料。
按使用范围可分为通用塑料、工程塑料和特种塑料。
9.热固性塑料是在树脂中加入固化剂压制成型而形成的体形聚合物。
10.高分子的化学反应分为三大类①“ n不变”:聚合物侧基和(或)端基的化学反应,分子主链不发生变化②n变大:交联、扩链、接枝、嵌段③n减小:降解(光降解、热降解),解聚。
11.高分子的侧基或端基发生改变,反应前后聚合度不变,该种聚合物的化学反应称为聚合度相似转变(官能团转变)。
12.纤维素的改性:纤维素由葡萄糖单元组成,每一个结构单元上有三个羟基,它们是反应性基团,在适当的条件下可以发生反应。
⑴纤维素硝化纤维素经浓硝酸和浓硫酸处理制成硝化纤维素,其含氮量为12.5%~13.6%称为高氮硝化纤维,含氮量为13%可用作无烟火药,含氮量为10%~12.5%的称为低氮硝化纤维; 含氮量为11%用来制作赛璐珞塑料,含氮量为12%用作涂料和照相底片。
所有的硝化纤维素都易燃,除用作火药外,已被醋酸纤维素所代替。
⑵醋酸纤维素的制备纤维素与醋酸和醋酸酐混合液作用在浓硫酸存在下可以制备醋酸纤维素。
一醋酸纤维素强度大、透明,可用做录音带、电影胶卷、眼镜架、电器零部件等。
二醋酸纤维素和三醋酸纤维素:人造丝13.聚乙烯醇的合成:⑴以醋酸乙烯为单体经自由基溶液聚合制备PVAC⑵ PVAC经醇解制备PVA14.降解:高分子在储存、加工和使用过程中,分子链在机械力、热、高能辐射、超声波或化学反应等的作用下,高分子的链段断裂成较小聚合度产物的反应过程。
15.老化:聚合物在加工、贮存及使用过程中,物理化学性质和力学性能发生不可逆的坏变现象称为老化。
聚合物降解与老化是两个不同的概念。
除了聚合物降解可引起聚合物老化外,一些物理因素也会引起聚合物的老化。
16.热降解:聚合物在隔绝空气和辐射的情况下,单纯由热引起的聚合物的降解反应。
17.热降解的三种方式:⑴无规降解聚合物在热的作用下,大分子链发生任意断裂,分子量迅速下降,形成低聚体,但单体收率很低(一般小于3%),这种热降解称为无规降解。
利用聚合物的热降解可制备低聚体。
如将废聚乙烯、聚丙烯塑料薄膜热降解,可制柴油、煤油和汽油等。
聚乙烯、聚丙烯、聚丁二烯等容易发生无规降解聚乙烯无规降解的结果变为C9~C13烃类,可做柴油、煤油和汽油等。
(2) 解聚聚合物在热的作用下发生热降解,但降解反应是从链的末端开始,降解结果变为单体,单体收率可达90%-100%,这种热降解叫解聚。
典型代表:聚甲基丙烯酸甲酯解聚反应主链带有季碳原子的高分子易发生解聚,如PMMA、聚α-甲基苯乙烯、聚异丁烯;(3)取代基的脱除聚氯乙烯和聚偏二氯乙烯加热时易着色,起初变黄,然后变棕,最后变为暗棕或黑色,同时有氯化氢放出。
18.机械降解:高分子在机械力和超声波作用下,都可能使大分子断链而降解。
19.天然橡胶的塑炼是典型的机械降解的例子。
天然橡胶经过塑炼加工后,分子量降低,塑性增加,加工性能变好。
20.聚乳酸可作外科缝合线,由于它能在生物体内水解为乳酸被生物体吸收,对生物体无害,并参与生物体内的新陈代谢而排出体外,所以伤口愈合后不必拆线。
21.高分子的结构——组成高分子的不同尺度的结构单元在空间的排布状态,包括高分子的链结构和高分子聚集态结构。
①高分子链结构是指单个分子的结构和形态,又分为近程结构和远程结构。
近程结构:单体单元的化学组成和构型。
远程结构:单个高分子在空间中所存在的各种形状-构象。
②高分子聚集态结构是指高分子链之间的几何排列和堆砌状态。
包括晶态结构、非晶态结构、取向态结构、液晶态结构以及织态结构。
22.近程结构是反映高分子各种特性的最主要结构层次,它直接影响高分子的熔点、密度、溶解性、粘度、粘附性等许多性能。
正因为这些性能与高分子链的结构单元化学组成及构型的密切联系,各种聚合物才得以显示出它们特征的千差万别。
23.构型:指分子中由化学键所固定的原子或原子团在空间的几何排列。
这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。
高分子链的构型包括几何异构和旋光异构。
24.构造:分子链的构造指的是不考虑化学键内旋转的情况下大分子链的各种形状。
包括线型,支化和交联。
25.构象:是指分子中的原子或原子团由于C-C单键内旋转而形成的空间排布(位置、形态)。
(即C-C单键内旋转产生每种排布就是一种构象,所以高分子链有无穷多个构象)。
由于热运动,分子的构象在时刻改变着,因此高分子链的构象是统计性的。
26.单间内旋转是导致链成蜷曲构象的根本原因。
内旋转越自由,蜷曲的趋势越大。
27. 构型与构象的区别:①定义不同构型:指分子中由化学键所固定的原子或原子团在空间的几何排列构象:是指分子中的原子或原子团由于C-C单键内旋转而形成的空间排布(位置、形态)。
②特点:构型是稳定的,要改变构型必须通过化学键的断裂或重组。
构象是通过单键的内旋转实现的(热运动),是不稳定的,具有统计性。
由统计规律知道,大分子链蜷曲的几率最大,呈伸直链构象的几率最小。
28. 柔顺性:高分子链能够改变其构象的性质。
29. 链段:一个单键内旋转牵连着若干个结构单元一起运动,则这若干个结构单元组成的能够独立运动的单元叫做一个链段(50~100)。
30. 影响柔性的因素非键合原子间相互作用越小,内旋转阻力越小。
单键内旋转的越容易或构象数目越多链段越短,高分子链越柔顺。
﹤1﹥主链的结构①若主链全由C-C单键组成,内旋转容易,链柔顺性好。
柔性顺序:Si-O﹥C -N﹥C-O﹥C-C(键长、键角)(举例)②主链含有芳杂环时,内旋转难,链柔性差。
③主链中含有孤立C=C双键时,链柔顺性好,聚丁二烯等橡胶。
但含有C=C-C =C及-Ph-Ph-Ph的链柔顺性差,是刚性链。
﹤2﹥取代基的结构①侧基的极性越大,极性基团数目越多,相互作用越强,单键内旋转越困难,分子链柔顺性越差。
如:柔顺性:聚乙烯 > 氯化聚乙烯 >聚氯乙烯②非极性侧基的体积越大,内旋转位阻越大,柔顺性越差;如:柔顺性:聚乙烯 >聚丙烯> 聚苯乙烯③链段之间是否存在氢键,能形成氢键的,高分子柔性差一些.聚酯聚酰胺聚氨酯④分子链中取代基的对称分布柔顺性大于不对称分布,如聚偏二氯乙烯>聚二氯乙烯。
<3>高分子链的长短.链越长(分子量有一定限度),柔性越大。
如橡胶分子量大, 柔性好;﹤5﹥支化和交联支链长,则阻碍链的内旋转,柔顺性下降交联结构,当交联度不大时(含硫2-3%的橡胶)对链的柔顺性影响不大,但是交联度达到一定程度(如含硫30%以上)则大大影响链的柔顺性。
﹤4﹥分子间作用力分子间作用力增大,则柔顺性减小。
﹤6﹥分子链的规整性分子结构规整,结晶能力强,则柔顺性差。
﹤7﹥外界因素的影响a. 温度的影响:温度越高,高分子链柔性越好b. 与外力的作用有关慢:外力增加,链的柔性增加快:外力增加,链的柔性降低31.分子链的柔顺性和高分子材料的柔顺性不能混为一谈,它们在大多数情况下一致,有时却不一致。
但是当分子链排列堆砌形成聚集态时,由于分子结构非常规整,形成了结晶。
一旦形成结晶,链柔性就表现不出来,高分子表现刚性。
比如聚乙烯和聚甲醛,它们都具有很好的柔性,但这两种高分子都是塑料,聚甲醛还是刚性较大的工程塑料。
所以在判断高分子材料的刚柔性时,必须同时考虑分子链的柔性、分子链间的相互作用以及聚集态结构。
32.内聚能:把1mol的液体或固体分子移到其分子引力范围之外所需要的能量。
内聚能密度:单位体积的内聚能。
CED越大,分子间作用力越大;CED越小,分子间作用力越小。
不同种类的高分子其内聚能密度相差很大:当CED<290J/m3,非极性聚合物分子间主要是色散力,较弱;再加上分子链的柔顺好,使这些材料易于变形具有弹性--橡胶当CED>420J/m3,分子链上含有强的极性基团或者形成氢键,因此分子间作用力大,机械强度好,耐热性好,再加上分子链结构规整,易于结晶取向--纤维当CED在290~420J/m3,分子间作用力适中--塑料。
33.高分子再结晶过程中可以形成相差极大的晶体,主要有单晶、球晶、纤维晶、串晶、树枝状晶、伸直链晶体。
也可分类为单晶、多晶、非晶、准晶。
34.球晶:当高分子从浓溶液中析出或从熔体中冷却结晶时,在不存在应力或流动的情况下,形成外观为球体的结晶形态。
a. 生成条件:①高分子浓溶液中析出;②熔体冷却,不存在应力或流动力b. 外观:圆球形,直径在5~10微米之间;由偏光显微镜观察——黑十字消光图案c. 生长过程:①成核:由一个多层片晶形成球晶的晶核。
②片晶生长:片晶逐渐向外生长并不断分叉形成捆束状形态。
③形成球晶:捆束状形态进一步发展,最后填满空间形成球状晶体。
35.控制球晶大小的方法:①将熔体急速冷却(得到小球晶),缓慢冷却得到较大球晶;②共聚破坏链均一和规整性——小球晶;③外加成核剂——小(微球晶)。
36.链结构与结晶能力的关系(影响因素):1)链的对称性升高,结晶能力升高对称性高,所以极易结晶(任何苛刻条件均可,例如在液氮中急冷也能结晶)但PE氯化得到结晶能力几乎丧尽,对称性破坏了。
2)链的空间立构规整性上升,结晶能力也提高A.有规立构的都可以结晶:全同PP;全同(间同)PMMA;全同PS;全顺式;全反式1,4聚丁二烯。
B.无规立构PP、无规立构PMMA、无规立构PS均为典型的非结晶高聚物(例外的是无规立构的PVAc水解的聚乙烯醇可以结晶)。
3)分子间作用力使结晶能力上升(分子间力增大,使分子变得刚硬,不利于链规则排列,同时使分子敛集紧密,两种作用的结果还是利于结晶)。
例如:尼龙,聚乙烯醇都有较大结晶度。
4)链的几何形状支化越多,结晶下降(因为支化的分子链不规整,难以结晶);交联越多,结晶也下降(因为交联的分子链不规整,难以结晶)5)高分子的相对分子质量对同一聚合物而言,在相同的温度下,相对分子质量越低,结晶进行得越快。