人教版八年级数学上册全等三角形PPT课件(8篇)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴AB=EB,BC=BD
A
∵AB=3cm,BC=5cm
∴BE=3cm,BD=5cm
如图, △EFG≌△NMH
E H
M
F
G
1、请找出对应边和对应角。
N
2、如果EF=2.1cm,EH=1.1cm,
HN=3.3cm, 求NM、HG的长.
解:∵△EFG ≌ △NMH ∴NM=EF=2.1,EG=HN=3.3
一对最小的角是对应角
1.有公共边的,公共边一定是对应边。
2.有对顶角的,对顶角一定是对应角。
3.有公共角的,公共角一定是对应角。
4.对应角所对的边是对应边,对应边 所对的角是对应角.
5.在两个全等三角形中最长边对最长边, 最短边对最短边,最大角对最大角,最 小角对最小角。
找出下列全等三角形的对应边、对应角
D
B
CE
F
2、把对对两应应个角边三是是角∠A形AB和重和∠合DD到E,,一起.
重∠A合BC和的和∠顶DE点F,∠,叫CB和做C∠对和F应EF顶; 点,
对重应合顶的点边是叫点做A对和应点边D,,
点重B合和的点角E叫,做点对C和应点角F。;
A
D
B
CE
F
“全等”你用能符否号直“接≌ 从”记表作示
图∆A中B的C△≌A∆BDC和EF△中DE判F全断等出,所 记读有对作作的应::△△对角AA应 ?BBCC顶≌全点△等D于、E△F对D应EF边和
人民教育出版社义务教育教科书八年级数学(上册)
下列各组图形的形状 与大小有什么特点?
下列各组图形的形状 与大小有什么特点?
下列各组图形的形状 与大小有什么特点?
思考:他们能完全重合吗?
每组的两个图 形有什么特点?
完全重合
把一块三角板按在纸上,画下图形,
照图形剪下纸板。剪下的纸板与三角板 大小、形状完全相同吗?他们能够完全 重合吗?
对应边和对应角
D
B
∵△AOC≌△BOD
o
∴AO=BO,AC=BD,OC=OD.
∴∠A=∠B,∠C=∠D,
A
C
∠AOC= ∠BOD.
规律二:有对顶角的,对顶角是对应角
先写出全等式,再指出它 A 们的对应边和对应角
E
C
∵△ABC≌△ADE
∴AB=AD,AC=AE,
BC=DE
B
D
∴∠A=∠A,∠B=∠D,
• 形状、大小相同的图形放在一起 能够完全重合。
• 能够完全重合的两个图形叫做全 等形
• 能够完全重合的两个三角形叫做 全等三角形
全等形包括规则图形和不规 则图形全等
下面三组图形,它们是不 是全等图形?为什么?
形状相同
大小相同
两个图形全等,它们的形状 一定相同 ,大小一定相等!
下列两三角形是怎样由一 个三角形得到另一个三角 形?它们有什么特点?
∠ACB与∠DBC是对应角
例题讲解,掌握新知
图中△ABO≌△DCO, A 试写出这两个三角形中 相等的边和相等的角。
D O
B
C
解:∵△ABO≌△DCO
∴AB=DC,BO=CO,AO=DO
∠A=∠ D,∠ABO=∠DCO,
∠AOB=∠DOC
先写出全等式,再指出
它们的对应边和对应角
A
D
C
E
B
F
∵△ACB≌△DEF
∠ACB= ∠AED.
规律三:有公共角的,公共角是对应角
先写出全等式,再指出 它们的对应边和对应角
A ∵△ABC≌△FDE
E B
∴AB=FD,AC=FE,
BC=DE
∴∠A=∠F, ∠B=∠D, ∠ACB= ∠FED.
D
C
规律四:一对最长的边是对应边
一对最短的边是对应边
规律五:一对最大的角是对应角
F
∴AB=DF, CB=EF,AC=DE.
∴∠A=∠D,∠CBA=∠F,∠C= ∠DEF.
先写出全等式,再指
C
出它们的对应边和对应角
百度文库
A
B
∵△ABC≌△ABD
D ∴AB=AB,BC=BD,AC=AD.
∴∠BAC=∠BAD,∠ABC=∠ABD ∠C= ∠D.
规律一:有公共边的,公共边是对应边
先写出全等式,再指出它们的
A
如图:∵△ABC≌ △DFE
B
C
∴ AB=DF, BC=FE, AC=DE
D
∵△ABC≌ △DFE
F
E
∴∠A=∠D,∠B=∠F,∠C=∠E
例题讲解,掌握新知
如图, △ABC≌△DCB,A
D
指出所有的对应边和
对应角。
O
B
C
解:∵△ABC≌△DCB
∴AB与DC,BC与CB,
AC与BD是对应边
∠A与∠ D,∠ABC与∠DCB,
E
A PC M
D
A
BN
B
C
下列两三角形是怎样由一 个三角形得到另一个三角 形?它们有什么特点?
A
B
D
A
B
C
D
C
E
下列两三角形是怎样由一 个三角形得到另一个三角 形?它们有什么特点?
D
B
C
一个三角形经过平移、旋转、翻折 后所得到的三角形与原三角形全等。
1、能够完全重合的两个三角形,叫全等三角形
A
记两个三角形全等时,通常 注意 把表示对应顶点的字母写在
对应的位置上。
A
E
B
CF
D
ABC ≌ DEF
ABC ≌ ΔEFD
寻找各图中两个全等
三角形的对应元素。
两个全等三角形的位置变化了,对应边、
对应角的大小有没有变化?由此你能得到
什么结论?
A
D
B
A
C EM
SF
C
O
O B
D
N
T
全等三角形的对应边相等, 全等三角形的对应角相等.
A
△ABD≌△CBD
B
D
C
找出下列全等三角形的对应边、对应角
D
△AOD≌△COD
A O
C
B
找出下列全等三角形的对应边、对应角 A △ABC≌△ADE
B D
E C
找出下列全等三角形的对应边、对应角
△ADE≌△CBF
A
E
B
D
F
C
找出下列全等三角形的对应边、对应角 A △△AABBNM≌≌△△AACCMN
∴HG=EG-HG=3.3-1.1=2.2
△ABD≌△ACE,若∠ADB=100°,∠B=30°, 说出△ACE中各角的大小?
解:∵ △ABD≌△ACE, ∴∠AEC= ∠ADB=1000 ,
∠C= ∠B=300, 又∵∠A+∠AEC+∠C=180°
∴∠A=1800- ∠AEC- ∠C =1800-1000-300=500
B
M
N
C
找出下列全等三角形的对应边、对应角
A
D △AOB≌△DOC
△ABC≌△DCB
O
B
C
如图, △ABD ≌ △EBC
1、请找出对应边和对应角。
AB 与 EB、BC BD、AD EC,
C
∠A ∠BEC、∠D ∠C、∠ABD ∠EBC
2、如果AB=3cm,BC=5cm,
求BE、BD的长.
DE
B
解:∵△ABD ≌ △EBC
如图,已知△ AOC ≌ △BOD 求证:AC∥BD
把四边形ABCD纸片沿EF折叠使点C落
在四边形ABCD内部,如图,则∠C与∠1+∠2