离散系统z域分析

合集下载

离散系统的Z域分析法

离散系统的Z域分析法
X(z)
D z-1
X(k-1)
z-1X(z)
X
注意:z域框图只能求系统零状态响应 注意 域框图只能求系统零状态响应

例题
1.求如图系统的单位响应 求如图系统的单位响应h(k)和单位阶跃响应 和单位阶跃响应g(k) 求如图系统的单位响应 和单位阶跃响应
8 页
2. 知 阶 散 统 初 条 为 zi (0) = 2, yzi (1) =1 已 二 离 系 的 始 件 y , 当 入 (k) = ε (k)时 输 f , 1 5 k k 输 全 应 (k) =[ + 4⋅ 2 − ⋅ 3 ]ε (k), 出 响 y 2 2 求 差 方 ., 画 系 框 。 此 分 程 并 出 统 图
求解线性时不变离散系统的差分方程有两种方法: 求解线性时不变离散系统的差分方程有两种方法: •时域方法: y(k) =y zi (k) + yzs (k) yzs (k) = h(k) ∗ x(k) 时域方法: 时域方法 •z变换方法: 变换方法: 变换方法 Yzs (z) = H(z) ⋅ X(z)
X

二.系统框图的z域分析法
基本思路: 基本思路 时域框图 z域框图 域框图 z域代数方程 域代数方程 Yzs(z)
7 页
yzs(k)
x(k) ⇒ X (z) yzs (k) ⇒ Yzs (z) 延迟单元 x(k)
x(k)ε (k) ↔ X(z) x(k −1)ε (k) ↔ z−1X(z) + x(−1)
y(k)
X
第 5 页
优点: 优点:
•差分方程经 变换→代数方程; 差分方程经z变换 代数方程; 差分方程经 变换→ •将时域卷积→z域乘积; 将时域卷积→ 域乘积; 将时域卷积 域乘积 •部分分式展开后求解z逆变换较容易; 部分分式展开后求解z 部分分式展开后求解 逆变换较容易; •z变换过程自动引入了系统初始状态(相当于0变换过程自动引入了系统初始状态(相当于0 变换过程自动引入了系统初始状态 的条件) 可同时求出零输入和零状态响应。 的条件),可同时求出零输入和零状态响应。 , 注意:z域求解系统只需 -状态[y(-1),y(-2), …,] 注意: 域求解系统只需0 状态 域求解系统只需 时域求解系统要递推出0 状态确定待定系数。 时域求解系统要递推出 +状态确定待定系数。

离散系统Z域分析

离散系统Z域分析

离散系统Z域分析一、零输入响应的z域求解对于线性时不变离散时间系统,在零输入,即激励时,其差分方程为(8-45) 考虑响应为时的值,则初始条件为。

将式(8-45)两边取单边z变换,并根据z变换的移位性式(8-14),可得故(8-46)对应式(8-46)响应的序列可由z反变换求得例8-19若已知描述某离散时间系统的差分方程为初始条件为,求零输入响应。

解零输入时,,有若记,则对上式两边取单边z变换,有可得因故零输入响应为二、零状态响应的z域求解阶线性时不变离散时间系统的差分方程为(8-47)在零状态,即时,将等式(8-47)两边取单边z变换,可得( 8-48)其中设激励序列为因果序列,即当时, ,且。

有(8-49)故零状态响应为例8-20若已知且,求零状态响应。

解设,则有故所求零状态响应为三、全响应的z域求解对于线性时不变离散时间系统,若激励和初始状态均不为零,则对应的响应称为全响应。

根据线性时不变特性,全响应可按(8-50)计算,其中分别表示零输入和零状态响应,求解方法如上所述。

也可直接由时域差分方程求z变换而进行计算,即在激励为,初始条件不全为零时,对方程式(8-47)进行单边z变换,有(8-51)可见式(8-51)为一个代数方程,由此可解得全响应的像函数,从而求得全响应。

例8-21已知且,求全响应。

解设,对差分方程两边取单边z变换,有得有故全响应为可见这与例8-19和例8-20结果之和相同。

实验十一z变换及离散时间系统z域分析分析解析

实验十一z变换及离散时间系统z域分析分析解析

南昌大学实验报告学生姓名: 周倩文 学 号: 6301712010 班级: 通信121班实验类型: ■验证□综合□设计□创新 实验日期: 5月30号 实验成绩:z 变换及离散时间系统的Z 域分析一、目的(1)掌握利用MATLAB 绘制系统零极点图的方法 (2)掌握离散时间系统的零极点分析方法(3)掌握用MATALB 实现离散系统频率特性分析的方法 (4)掌握逆Z 变换概念及MATLAB 实现方法二、离散系统零极点线性时不变离散系统可用线性常系数差分方程描述,即()()N Miji j a y n i b x n j ==-=-∑∑ (8-1)其中()y k 为系统的输出序列,()x k 为输入序列。

将式(8-1)两边进行Z 变换的00()()()()()Mjjj Nii i b zY z B z H z X z A z a z-=-====∑∑ (8-2) 将式(8-2)因式分解后有:11()()()Mjj Nii z q H z Cz p ==-=-∏∏ (8-3)其中C 为常数,(1,2,,)j q j M =为()H z 的M 个零点,(1,2,,)i p i N =为()H z 的N 个极点。

系统函数()H z 的零极点分布完全决定了系统的特性,若某系统函数的零极点已知,则系统函数便可确定下来。

因此,系统函数的零极点分布对离散系统特性的分析具有非常重要意义。

通过对系统函数零极点的分析,可以分析离散系统以下几个方面的特性:● 系统单位样值响应()h n 的时域特性; ● 离散系统的稳定性; ● 离散系统的频率特性;三、离散系统零极点图及零极点分析 1.零极点图的绘制设离散系统的系统函数为()()()B z H z A z =则系统的零极点可用MATLAB 的多项式求根函数roots()来实现,调用格式为:p=roots(A)其中A 为待根求多项式的系数构成的行矩阵,返回向量p 则是包含多项式所有根的列向量。

信号与系统第8章 离散时间系统的z域分析

信号与系统第8章 离散时间系统的z域分析

零状态响应为
Yf
(z)
(1 z 1 z 2 ) 2 3z 1 z 2
1 1 z 1
1/ 6 0.5 5 / 6 1 z1 1 z1 1 0.5z1
yf [k] Z 1{Yf (z)}{1/ 6 0.5(1)k (5/ 6)(0.5)k}u[k]
y[k] yx[k] yf [k] {1/ 6 3.5(1)k (4 / 3)(0.5)k}u[k]
离散时间信号与系统的Z域分析
• 离散时间信号的Z域分析 • 离散时间系统的Z域分析 • 离散时间系统函数与系统特

离散时间信号的Z域分析
• 理想取样信号的拉普拉斯变换 • 单边Z变换定义 • 单边Z变换的收敛域 • 常用序列的Z变换 • 单边Z变换的性质 • Z反变换
理想取样信号的拉普拉斯变换
fs (t) f (t) (t kT) f (kT) (t kT)
Re(z)
三、常用序列的Z变换
1) Z{ (k)} 1, z 0
2) 3)
Z{u(k)} 1 1 z
Z{aku(k)}
1 , 1
1 a
z
z
1
1 z
a
4)
Z{e
j0k
u(k
)}
1
e
1
j0
z
1
z z e j0
5)
Z{e-
j0k u (k
)}
1
1 e- j0
z
1
z z e- j0
z e j0 z e j0
解代数方程
二阶系统响应的z域求解
y[k] a1 y[k 1] a2 y[k 2] b0 f [k] b1 f [k 1] k 0
初始状态为y[1], y[2] 对差分方程两边做Z变换,利用

信号与系统实验(MATLAB 西电版)实验17 离散系统的Z域分析

信号与系统实验(MATLAB 西电版)实验17  离散系统的Z域分析
(4)
实验17 离散系统的Z域分析
离散系统的分析方法可分为时域解法和变换域解法两大 类。其中离散系统变换域解法只有一种,即Z变换域解法。Z 变换域没有物理性质,它只是一种数学手段,之所以在离散 系统的分析中引入Z变换的概念,就是要像在连续系统分析 时引入拉氏变换一样,简化分析方法和过程,为系统的分析 研究提供一条新的途径。
F=ztrans(f): 实现函数f(n)的Z变换,默认返回函数F是 关于z
F=ztrans(f,w):实现函数f(n)的Z变换,返回函数F是关 于w
F=ztrans(f,k,w):实现函数f(k)的Z变换,返回函数F是 关于w的函数。
实验17 离散系统的Z域分析
2. 单边逆Z变换函数iztrans 功能:iztrans可以实现信号F(z)的逆Z
实验17 离散系统的Z域分析
3) 一个离散LTI系统,差分方程为y(k)-0.81y(k-2)=f(k)-f(k-2),
(1) 系统函数H(z); (2) 单位序列响应h(k)的数学表达式,并画出波形; (3) 单位阶跃响应的波形g(k); (4) 绘出频率响应函数H(ejθ)
实验17 离散系统的Z域分析
实验17 离散系统的Z域分析
MATLAB %确定信号的Z syms n z% f1=3^n f1_z=ztrans(f1) f2=cos(2*n) f2_z=ztrans(f2);
实验17 离散系统的Z域分析
f1 = 3^n f1_z = 1/3*z/(1/3*z-1) f2 = cos(2*n) f2_z = (z+1-2*cos(1)^2)*z/(1+2*z+z^2-4*z*cos(1)^2)
极点图见图17.3
实验17 离散系统的Z域分析

7.离散时间信号与系统的z域分析

7.离散时间信号与系统的z域分析

第七章离散时间系统的Z域分析7.1 学习要求1.熟练掌握信号的Z域分析方法:Z变换的定义、收敛区及基本性质,能够应用长除法和部分分式分解法求Z反变换。

2.掌握序列的傅里叶变换的定义和基本性质,并了解Z变换与拉普拉斯变换、傅里叶变换的关系。

3.掌握离散系统响应的Z变换分析方法:深刻理解离散系统的系统函数的概念,掌握离散时间系统的时域和Z域框图与流图描述形式。

7.2 学习重点1.z变换,z反变换定义、基本性质、计算方法。

2.离散时间系统的z域分析。

3.离散时间系统的频率响应特性。

7.3知识结构7.4内容摘要7.4.1 Z变换1.定义∑∞-∞=-=n nz n x z X )()( 表示为:)()]([z X n x Z =。

2. 收敛域 (1) 有限长序列12(),()0,x n n n n x n n ≤≤⎧=⎨⎩其他当0,021>>n n 时,收敛条件为0>z ;当0,021<<n n 时,收敛条件为∞<z ;当0,021><n n 时,收敛条件为∞<<z 0。

(2) 右边序列11(),()0,x n n n x n n n ≥⎧=⎨<⎩当01>n 时,收敛域为1x R z >,1x R 为最小收敛半径;当01<n 时,收敛域为∞<<z R x 1。

(3) 左边序列2(),()0,x n n n x n n ≤⎧=⎨⎩其他 当02<n ,收敛域为2x R z <,2x R 为最大收敛半径; 当02>n ,收敛域为20x R z <<。

(4) 双边序列双边序列指n 为任意值时,)(n x 皆有值的序列,即左边序列和右边序列之和。

其z 变换:∑∑∑∞=--∞=--∞-∞=-+==1)()()()(n n nnn nzn x zn x zn x z X双边序列的收敛域为一环形区域21x x R z R <<。

第6章 离散时间系统的z域分析

第6章 离散时间系统的z域分析

1 | z | 1 2 | z | 2
例 求序列f (k ) cosh (2k ) (k )的z变换。
1 2k 由于 cosh ( k ) (e e 2 k ) 2 2 在单边指数序列a k ( k )的z变换中令a e 2 , 可得 z e (k ) , | z || e 2 | z e2 根据z变换的线性性质可得
f (k )
3
f ( k ) ( k ) 3
2
2
1
1 o 1 2
f ( k 1) 3 2
k
1 o 1 2
f ( k 1) ( k ) 3 2
1
k
1
1 o 1 2
f ( k 1)
k
1 o 1 2
f ( k 1) ( k )
3
k
3
2 1
1 o 1 2
k
1 o 1 2
k
(1)双边Z变换的移位 若 f (k ) F ( z )
k 0
该式称为单边Z变换。
将f ( k )的Z变换简记为Z [ f ( k )] ,象函数F ( z )的逆z变换 简记为Z
1
[ F ( z )] f ( k )与F ( z )两者间的关系简记为 ,
f (k ) F ( z )


在拉普拉斯变换分析中重点讨论了单边拉普拉斯 变换,这是由于在连续时间系统中,非因果信号 的应用较少。 对于离散系统,非因果信号也有一定的应用范围, 因此对单、双边z变换都进行讨论。
a
b
O
Re(z )
6.1.3 常见序列的Z变换
(k )
1
O
k
(k ) 1

离散系统的Z域分析

离散系统的Z域分析
z
k
cos(
0
k
)
k
z
z2 z2 z cos 2z2 2z cos 0
0
1
2
..........
k
sin 0k
k
z
2z2
z 2
sin 0 z cos 0
1 2
.........
k k
k
z (z )2k kk Nhomakorabea1
五、ZT & DTFT
求和收敛
设f(k)
为因果序列、则
F (e j ) f k e jk
Z eS Ts e e Ts jTs e j
k
F (z) f (k)zk k 0
e Ts
Ts
2 s
S 域中的一点→ → Z 域中的一点;Z 域中的一点→ → S 域中的无穷个点。
S 1 Ln z 1 Ln(e j ) 1 Ln j
Ts
Ts
Ts
Ts
三、收敛域: F (z) f k zk
ak (k) bk (k 1) z z ∣a∣< |z|< |b|
za zb
jIm[z]
|b|
|a|
o
Re[z]
四、常用 z 变换
(k+1) ←→z; (k-1) ←→z-1;……
(k) ←→1 (k) ←→z/(z-1) ←→ - (- k-1)
零、极 点分布
k k z k k 1
F(z)
K1 e j z
z e j
K1 e j z
z e j
若z> , f(k)=2K1kcos(k+)(k),… …
(3) F(z)有重极点 推导记忆:

第六章 离散系统的z域分析

第六章 离散系统的z域分析
3z 例: 2δ(k)+ 3ε(k) ←→ 2 + δ ε z −1
第1-12页 12页
z > 1
青岛科技大学信息科学技术学院
信号与系统 电子教案
6.2
z变换的性质 z变换的性质
二、移位特性
双边z 双边z变换
若: f (k) ←→F (z) , α<z<β,且有整数 β 且有整数m>0, , 则: f(k±m) ←→ z±mF(z), α<z<β ± , β
2 2
z > a
青岛科技大学信息科学技术学院
信号与系统 电子教案
6.2
z变换的性质 z变换的性质
四、卷积定理
若: f1 (k) ←→F1(z) , α1<z<β1 β f2 (k) ←→F2(z) , α2<z<β2 β 则: f1(k) * f2(k) ←→ F1(z)F2(z), , 例 收敛域至少为 相交部分 求单边序列 (k+1)akε(k)的z变换,(0<a<1)。 的 变换, 。 变换
三、z域尺度变换(序列乘ak) 域尺度变换(序列乘a
若: f (k) ←→F (z) , α<z<β,且对整数m>0, β 且对整数 , 则: ak f(k) ←→ F(z/a), αa<z<βa , β 变换。 例:求指数衰减正弦序列 aksin(βk)ε(k) 的z变换。 β 解:
6.1 z 变 换
b k , k < 0 f 2 (k ) = b k ε (−k − 1) = 0, k ≥ 0
解: 反因果序列的 变换为: 反因果序列的z变换为 变换为:

离散信号与系统的Z域分析

离散信号与系统的Z域分析
序列相加减(线性加权)后,所得序列z变换的ROC,有 可能比原序列z变换的ROC大。位移特性常用来分析单边 周期信号,单边周期信号总具有相似的形式。
8 离散信号与系统的 Z 域分析 p 16
例: F(z) = 1/(za) |z| a 求f [k]。 解:
1 F ( z) z 1 1 az
z 例: (3) u[k ] , z 3 z 3
k
类似于傅氏、拉氏变换的尺度变换特性。
1 1 s L f (at ) F ( j ) f (at ) F ( ), a a a a
F
8 离散信号与系统的 Z 域分析 p 18
a 0, a 0
例*:求aksin(0k) u[k] 的z变换及收敛域
1 cos 0 z 1 1 2 z 1 cos 0 z 2 sin 0 z 1 1 2 z 1 cos 0 z 2
五、单边z变换的主要性质
f [k ] F ( z), z R f
f1[k ] F1 ( z), z R f 1
1 2
sin 0 z 1 za 2 2 z 1 cos 0 z 2
8 离散信号与系统的 Z 域分析 p 19
五、单边z变换的主要性质
4. z域微分特性(时域线性加权)
dF ( z ) kf [k ] z dz
Z
Z Rf
m d m d F ( z) Z m m 或写成 : ( z ) F ( z ) k f [k ] ( z ) m dz dz
2 2
8 离散信号与系统的 Z 域分析 p 13
五、单边z变换的主要性质
2. 位移特性(记忆)
因果序列的位移

离散信号与系统的 Z 域分析

离散信号与系统的 Z 域分析

第 六 章 离散信号与系统的 Z 域分析引言与线性连续系统的频域分析和复频域分析类似,线性离散系统的频域分析是输入信号分解为基本信号e jΩk 之和,则系统的响应为基本信号的响应之和。

这种方法的数学描述是离散时间傅里叶变换和逆变换。

如果把复指数信号e jΩk 扩展为复指数信号Z k ,Z=re jΩ ,并以Zk 为基本信号, 把输入信号分解为基本信号Z k 之和, 则响应为基本信号Z k 的响应之和。

这种方法的数学描述为Z 变换及其逆变换,这种方法称为离散信号与系统的Z 域分析法.如果把离散信号看成连续时间信号的 抽样值序列,则Z 变换可由拉普拉斯变换引入.因此离散信号与系统的Z 域分析 和连续时间信号与系统的复频域分析有许多相似之处.通过Z 变换,离散时间信 号的卷积运算变成代算,离散时间系统的差分方程变成Z 域的代数方程,因此可 以比较方便的分析系统的响应。

Z 变换从拉普拉斯变换到Z 变换对连续信号f(t)进行理想抽样,即f(t)乘以单位冲击序列δT (t),T 为 抽样间隔,得到抽样信号为f s (t)=f(t)δT (t)= =对fs(t)取双边拉普拉斯变换,得F s (s)=£[fs(t)]=令z=e sT , 则Fs(s)=F(z) ,得F(z)=因为T为常数,所以通常用f(k)表示f(kT),于是变为F(z)=称为f(k)的双边Z变换,z为复变量。

z和s的关系为:z=e sTs=(1/T)㏑z由复变函数理论,可以得到f(k)= ∮cF(z)z k-1 dz式(7.1-5)称为F(z)的双边Z逆变换(后面讨论).双边Z变换的定义和收敛域§双边 Z 变换的定义对于离散序列f(k)(k=0,±1,±2,┄),函数(z的幂级数)F(z)=称为f(k)的双边Z变换,记为F(z)=Z[f(k)].F(z)又称为f(k)的象函数,f(k)又 称为F(z)的原函数.为了表示方便,f(k)与F(z)之间的对应关系可表示为 f(k) F(z)§双边 Z 变换的收敛域f(k)的双边Z变换为一无穷级数,因此存在级数是否收敛的问题.只有当 (7.1-6)式的级数收敛,F(z)才存在.F(z)存在或级数收敛的充分条件是 ∞在f(k)给定的条件下,式(7.1-6)级数是否收敛取决于z的取值.在z复平面上, 使级数收敛的z取值区域称为F(Z)的收敛域。

北京理工大学信号与系统实验报告6离散时间系统的z域分析

北京理工大学信号与系统实验报告6离散时间系统的z域分析

北京理工大学信号与系统实验报告6-离散时间系统的z域分析————————————————————————————————作者:————————————————————————————————日期:实验6 离散时间系统的z 域分析(综合型实验)一、 实验目的1) 掌握z 变换及其反变换的定义,并掌握MAT LAB实现方法。

2) 学习和掌握离散时间系统系统函数的定义及z 域分析方法。

3) 掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。

二、 实验原理与方法 1. z 变换序列(n)x 的z 变换定义为(z)(n)znn X x +∞-=-∞=∑ (1)Z 反变换定义为11(n)(z)z 2n rx X dz jπ-=⎰(2)MA TLA B中可采用符号数学工具箱z trans 函数和iz trans 函数计算z 变换和z 反变换: Z=ztran s(F)求符号表达式F的z 变换。

F=iztra ns(Z)求符号表达式Z 的z 反变换 2. 离散时间系统的系统函数离散时间系统的系统函数H(z)定义为单位抽样响应h(n)的z 变换(z)(n)znn H h +∞-=-∞=∑ (3)此外连续时间系统的系统函数还可由系统输入与输出信号z 变换之比得到(z)(z)/X(z)H Y = (4)由(4)式描述的离散时间系统的系统时间函数可以表示为101101...(z)...MM NN b b z b z H a a z a z----+++=+++ (5) 3. 离散时间系统的零极点分析MATLAB 中可采用roots 来求系统函数分子多项式和分母多项式的根,从而得到系统的零极点。

此外还可采用MATL AB 中zpl ane 函数来求解和绘制离散系统的零极点分布图,zp lane 函数的调用格式为:zplane(b,a) b、a 为系统函数分子分母多项式的系数向量(行向量) zplane (z,p) z 、p为零极点序列(列向量) 系统函数是描述系统的重要物理量,研究系统函数的零极点分布不仅可以了解系统单位抽样响应的变化,还可以了解系统频率特性响应以及判断系统的稳定性; 系统函数的极点位置决定了系统的单位抽样响应的波形,系统函数零点位置只影响冲激响应的幅度和相位,不影响波形。

《信号与系统》课件第6章离散系统的Z域分析

《信号与系统》课件第6章离散系统的Z域分析

由冲击函数的性质可得:
x(n) x(t) (t nT ) n
x(n) x(nT ) (t nT )

n

第3页
6.1.1 z变换的定义
根据拉普拉斯变换的基本定义式:
X (s) x(t)est dt
对离散时域信号 x(n) 进行双边变换:
X (s)
nx(nT
)
(t
nT
)est
dt
利用积分与冲击函数的性质可得:
X (s) x(nT )esnT n
令 z esT ,上式将成为复变量 z 的函数,用 X (z) 表示, x(nT ) x(n) ,则离散时间
序列转变成复变域即为 Z 域变换,得
X (z) x(n)zn n
(6.1.1)
X (z) x(n)zn n0
x(n)zn
n
(6.1.3)
时,其 z 变换才存在。上式称为绝对可和条件,它是序列 x(n) 的 z 变换存在的充分且
必要条件。
Z 变换收敛域的定义:对于序列 x(n) ,满足(6.13)式,即使得其 Z 变换存在的所有 z 值组成的集合称为 z 变换 X (z) 的收敛域。


第5页
6.1.1 z变换的定义
证明: Z[ak f (k)]
ak f (k)zk
f
(k )
z
k
F( z )
k
k
a
a
例 6-2-4: 求 ak (k ) 的 Z 变换。
解:已知 (k)
z ,则根据
z 1
Z
变换的尺度性质可知: ak (k)
z
z a


第 18 页

第五章 Z域分析

第五章 Z域分析
m

m 1
x(k ) z
max( R 11 , R 21 ) z
2. 位移性
a. 双边Z变换

x(n) X ( z )
m
x(n m ) z
X ( z ), m 为整数
收敛域:1)不包括
0,
处,收敛域不变 处,需重新判断
2) 包括 0,
证明: z [ x ( n m )] 令k=n+m
z [ x ( n m )] z
x ( n )u ( n ) x ( z )
m

x ( n m )u ( n ) z [ X ( z )

m 1
x(k ) z
k
]
k 0
证明:
z [ x ( n m ) u ( n )]


x(n m ) z
n
n0
令k=n+m 则:
z [ x ( n m ) u ( n )] z [ X ( z )

a. X(z)/z 有N个单极点
则:
Z1 Z N
X z

N
Ai z z zi
i0
Ai
X (z) z
( z zi )
z zi
b X(z)有一个r阶重极点
X z A0
Z1
j

d
r
Ajz ( z z1 )
(r j) (r j)

j 1
z
1<|z|<2
k2
k 1
( k 1)
z ( z 2)
2
|z|<2
2 ( k 1)

信号与系统 第六章离散系统的Z域分析

信号与系统  第六章离散系统的Z域分析
j
Z平面

k 1 k (1 z ) ( 3z ) 3 k 1 k 0


0
|z|<3时,第一项收敛于
z ,对应于左边序列。 z 3 z |z|>1/3时,第二项收敛于 ,对应于右边序列。 1 收敛域 z3
1 3
3
1 当 | z | 3 时, 3
8 z z 3 z F ( z) 1 z 3 z 3 ( z 3)( z 1 3)
应用尺度变换:
k

sin k (k )
z a
z sin z 2 2 z cos 1
0< a <1
sin a z sin a sin k (k ) z 2 z ( a ) 2( a ) cos 1 z 2 2 a z cos a 2
§6.2
Z变换的性质
| k-3|(k)
解:(1) F z
k k k z 1
k 1
(2) 双边z变换: F z
k
f k z


k
2 1 z 2z 3 2 z z
2
0 z
单边z变换: F z f k z
k 0
长春理工大学
零点:0 极点:3,1/3
§6.1
Z 变换
Z变换的收敛域
收敛域内不包含任何极点,在极点处,F(z)为无穷大, Z变换不收敛。 有限长序列的收敛域为整个Z平面, 可能不含z=0, z=。 因果有限长序列: F(z)=f (1)z -1+ f (2)z -2+· · · · |z|>0 反因果有限长序列: F(z)=f (-1)z 1+ f (-2)z2+· · · · |z|< 如果是因果序列,收敛域为|z|>0圆的外部。 如果是左边序列,收敛域为|z|<0 。 如果是双边序列,收敛域由圆环组成。

第七章 离散信号与系统的Z域分析

第七章 离散信号与系统的Z域分析

f (k ) 3k (k 1) 3k (k 2)
31 3k 1 (k 1) 32 3k 2 (k 2)
由表7.1
根据双边Z变换位移性质,得: z z2 3k 1 (k 1) z z 3 z 3
z 3 (k ) z 3
(2) 无限长因果序列双边Z变换的收敛域为|z|>|z0|,z0为复数、虚数或实数, 即收敛域为半径为|z0|的圆外区域。 (3) 无限长反因果序列双边Z变换的收敛域为|z|<|z0|,即收敛域为以|z0|为 半径的圆内区域。
(4) 无限长双边序列双边Z变换的收敛域为|z1|<|z|<|z2|,即收敛域位于以|z1| 为半径和以|z2|为半径的两个圆之间的环状区域。
k 0
f (i) z
( i m )
z
1
m
i m
f (i) z

i
z [ f (i) z
m i i 0

i m
f (i) z
1
i
]
z m [ F ( z )
i m

f (i) z i ]
z
7.2 Z变换的性质
例 7.2-3 已知f(k)=3k[ε(k+1)-ε(k-2)],求f(k)的双边Z变换 及其收敛域。 解: f(k)可以表示为
(5) 不同序列的双边Z变换可能相同,即序列与其双边Z变换不是一一对 应的。序列的双边Z变换连同收敛域一起与序列才是一一对应的。
7.1 Z 变 换
7.1.3 常用序列的双边Z变换
(1) f (k ) (k )
F ( z)
k
(k ) z k (0) z 0 1

第六章离散系统的Z域分析

第六章离散系统的Z域分析

z z F (z) ( a z b ) za zb
a z 当 1且 1即a z b 收敛 z b
j Im [z ]
b
0
a
Re [ z ]
5
由上可知 (1) z变换的收敛域与f(k) 与z值的范围有关,两 个不同的序列由于收敛域不同可能对应于同一个z 变换,为了单值的确定z变换对应的序列,在给出 序列的z变换式的同时,必须明确其收敛域。
m
n m
f (n)z
1
n m
f (n)z
n
1
n
]
]
14
z f ( k m ) ( k ) f ( k m )z
k 0

k
z
m
f (k m )z
k 0

( k m )
z
m
z [ f ( n)z
n 0
m m 1 n 0
据定义
zkf ( k )
k 1
z ( kz
k
d k d z z f (k ) z F ( z ) dz k dz
时域序列线性加权的z变换为原序列象函数微 20 分后乘以(z)
kf (k )z dz ) f ( k ) z [ dz
k k
k

k
] f (k )
推广:
m
d m k f ( k ) ( z ) F ( z ) ( 1 z 2 ) dz
d m ( z ) F ( z )表示对F ( z )求导并乘以 ( z )共m次 dz
z 例4、 若 已 知 z[ ( k )] ,求 斜 变 序 列 k ( k )的z变 换 z 1

数字信号处理 实验 离散系统的Z域分析

数字信号处理 实验 离散系统的Z域分析

数字信号处理实验报告实验名称:离散系统的Z 域分析 学号: 姓名:评语: 成绩:一、实验目的1、掌握离散序列z 变换的计算方法。

2、掌握离散系统系统函数零极点的计算方法和零极点图的绘制方法,并能根据零极点图分析系统的因果性和稳定性。

3、掌握利用MATLAB 进行z 反变换的计算方法。

二、实验原理与计算方法1、z 变换离散序列x (n )的z 变换定义为:∑∞-∞=-=n nzn x Z X )()(。

在MA TLAB 中可以利用符号表达式计算一个因果序列的z 变换。

其命令格式为: syms n;f=(1/2)^n+(1/3)^n; ztrans(f)2、离散系统的系统函数及因果稳定的系统应满足的条件一个线性移不变离散系统可以用它的单位抽样响应h (n )来表示其输入与输出关系,即y (n )= x (n )*h (n )对该式两边取z 变换,得: Y (z )= X (z )· H (z )则: )()()(z X z Y z H =将H (z )定义为系统函数,它是单位抽样响应h (n )的z 变换,即∑∞-∞=-==n nzn h n h Z z H )()]([)(对于线性移不变系统,若n <0时,h (n )=0,则系统为因果系统;若∞<∑∞-∞=n n h |)(|,则系统稳定。

由于h (n )为因果序列,所以H (z )的收敛域为收敛圆外部区域,因此H (z )的收敛域为收敛圆外部区域时,系统为因果系统。

因为∑∞-∞=-=n nzn h z H )()(,若z =1时H (z )收敛,即∞<=∑∞-∞==n z n h z H |)(||)(1,则系统稳定,即H(z)的收敛域包括单位圆时,系统稳定。

因此因果稳定系统应满足的条件为:1,||<∞≤<ααz ,即系统函数H (z )的所有极点全部落在z 平面的单位圆之内。

3、MA TLAB 中系统函数零极点的求法及零极点图的绘制方法MATLAB 中系统函数的零点和极点可以用多项式求根函数roots ()来实现,调用该函数的命令格式为:p=roots(A)。

第五章 离散系统的z域分析

第五章 离散系统的z域分析

(3) ZT[δ (n +1)] = ∑δ (n +1)z + ∑δ (n +1)z
n=−∞ n=0
= z1 + 0 = z
(0 ≤ z < ∞)
Lanzhou University of Technology
ZT [u (n)] = ∑ u (n) z
单位阶跃序列 ∞
n =0
−n
斜变序列
1 z = = −1 1− z z −1
k
(k )
2k k p 0 = 1 k k ≥ 0 2
变换。 求 f (k ) = f1 ( k ) − f2 ( k ) 的Z变换。 变换
Lanzhou University of Technology
z f 1 (k ) = ε (k ) ↔ z −1 z 1 ε (k ) ↔ z− 2
*即满足均匀性与叠加性; 即满足均匀性与叠加性; 均匀性 收敛域为两者重叠部分。 重叠部分 *收敛域为两者重叠部分。
Lanzhou University of Technology
例: 设有阶跃序列 f 1 ( k ) = ε ( k ) 和双边指数衰 减序列
f2
(k ) = (2 )
k
1 ε (− k − 1 ) + ε 2
k k 1 2
z f1 1 z f 2 z p 2
−z (2 ) ε (− k − 1 ) ↔ z−2 利用线性性质
k
z −z 1 k f 2 (k ) = ε (k ) + (2 ) ε (− k − 1 ) ↔ + 1 z− 2 z−2 2 − 3z 2 = (z − 1 )(z − 2 ) 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f S (t) f (t) T (t) f (kT) (t kT)
k
两边取双边拉普拉斯变换,得
第6-1页

©盐城工学院电工电子课程组
信号与系统 电子教案
FSb (s) f (kT) ekTs k
令z = esT,上式将成为复变量z的函数,用F(z)表示;
f(kT) →f(k) ,得
第6-2页

©盐城工学院电工电子课程组
信号与系统 电子教案
6.1 z变换
6.3.3 收敛域
z变换定义为一无穷幂级数之和,显然只有当该幂级
数收敛,即
f (k)zk
k
时,其z变换才存在。上式称为绝对可和条件,它是 序列f(k)的z变换存在的充分必要条件。
收敛域的定义:
对于序列f(k),满足 f (k)z k k
6.1 z变换
注意:对双边z变换必须表明收敛域,否则其对应的原 序列将不唯一。

f1(k)=2k(k)←→F1(z)=
z z2
, z>2
f2(k)= –2k(– k –1)←→F2(z)=
z z2
, z<2
对单边z变换,其收敛域比较简单,一定是某个圆以
外的区域。可以省略。
常用序列的z变换: (k) ←→ 1 ,z>0
1 (az 1 ) N 1 lim
N 1 az 1
可见,仅当az-1<1,即
jIm[z]
z >a =时,其z变换存在。
Fy (z)
z
z
a
收敛域为|z|>|a|
|a|
o
Re[z]
第6-5页

©盐城工学院电工电子课程组
信号与系统 电子教案
6.1 z变换
例3 求反因果序列 的z变换。
bk ,
f
信号与系统 电子教案
第六章 离散系统z域分析
在连续系统中,为了避开解微分方程的困难,可以
通过拉氏变换把微分方程转换为代数方程。出于同样的 动机,也可以通过一种称为z变换的数学工具,把差分方 程转换为代数方程。
6.1 z变换
6.1.1 从拉氏变换到z变换
对连续信号进行均匀冲激取样后,就得到离散信号:
取样信号
f(k-1) ←→ z-1F(z) + f(-1) f(k-2) ←→ z-2F(z) + f(-2) + f(-1)z-1
m1
f (k m) z m F (z) f (k m)z k k 0
第6-10页

©盐城工学院电工电子课程组
信号与系统 电子教案
6.2 z变换的性质
f(k+1) ←→ zF(z) – f(0)z
对任意常数a1、a2,则 a1f1(k)+a2f2(k) ←→ a1F1(z)+a2F2(z)
其收敛域至少是F1(z) )与F2(z)收敛域的相交部分。
例: 2(k)+ 3(k) ←→ 2 + 3z
z 1
,z>1
第6-9页

©盐城工学院电工电子课程组
信号与系统 电子教案
6.2 z变换的性质
二、移位(移序)特性 单边、双边差别大!
所有z值组成的集合称为z变换F(z)的收敛域。
第6-3页

©盐城工学院电工电子课程组
信号与系统 电子教案
6.1 z变换
例1求以下有限序列的z变换(1) f1(k)=(k) ↓k=0

(2) f2(k)={1 , 2 , 3 , 2,1}
(1) F1 (z) (k)z k (k)z k 1

©盐城工学院电工电子课程组
信号与系统 电子教案
6.1 z变换
例4 双边序列f(k)=fy(k)+ff(k)= 的z变换。
bk , a k ,
k 0 k 0

F(z)
Fy (z)
Ff
(z)
z z b
z
z a
|b|
jIm[z]
可见,其收敛域为a<z<b (显然要求a<b,否则无共 同收敛域)
|a|
双边z变换的移位: 若 f(k) ←→ F(z) , <z<,且对整数m>0,则
f(km) ←→ zmF(z), <z<
证明:Z[f(k+m)]=
nkm
f (k m)z k
f (n)z n z m z m F (z)
k
n
单边z变换的移位:
若 f(k) ←→ F(z), |z| > ,且有整数m>0, 则
F (z) f (k)z k
称为序列f(k)的 双边z变换
k
F (z) f (k)z k k 0
称为序列f(k)的 单边z变换
若f(k)为因果序列,则单边、双边z 变换相等,否则不 等。今后在不致混淆的情况下,统称它们为z变换。
F(z) = Z[f(k)] ,f(k)= Z-1[F(z)] ;f(k)←→F(z)
f
(k)
0,
k 0 bk (k 1)
k 0

Ff
Байду номын сангаас
(z)
1
(bz 1 ) k
k
(b 1 z) m
m1
b 1 z (b 1 z) N 1
lim
N
1 b 1z
可见,b-1z<1,即z<b时,其z变换存在,
Ff
(z)
z zb
收敛域为|z|< |b|
jIm[z]
|b|
o
Re[z]
第6-6页
对有限序列的z变换的收敛域一般为0<z<∞,有时
它在0或/和∞也收敛。
第6-4页

©盐城工学院电工电子课程组
信号与系统 电子教案
6.1 z变换
例2
求因果序列f
y
(k)
a
k
(k)
0, a k ,
k 0 k 0
的z变换(式中a为常数)。
解:代入定义
Fy (z)
ak z k
k 0
N
lim (az 1 )k N k0
o
Re[z]
序列的收敛域大致有一下几种情况:
(1)对于有限长的序列,其双边z变换在整个平面; (2)对因果序列,其z变换的收敛域为某个圆外区域; (3)对反因果序列,其z变换的收敛域为某个圆内区域; (4)对双边序列,其z变换的收敛域为环状区域;
第6-7页

©盐城工学院电工电子课程组
信号与系统 电子教案
k
k
可见,其单边、双边z变换相等。与z 无关,
所以其收敛域为整个z 平面。
(2) f2(k)的双边z 变换为
F2(z) = z2 + 2z + 3 + 2z-1 + z-2 收敛域为0<z< ∞ f2 (k)的单边z 变换为
F2 (z) f2 (k)zk 3 2z1 z2 收敛域为z > 0 k 0
(k) –(– k –1)
z ,z>1 z 1 ,z<1
第6-8页

©盐城工学院电工电子课程组
信号与系统 电子教案
6.2 z变换的性质
6.2 z变换的性质
本节讨论z变换的性质,若无特殊说明,它既适 用于单边也适用于双边z变换。
一、线性
若 f1(k)←→F1(z) 1<z<1, f2(k) ←→ F2(k) 2<z<2
相关文档
最新文档