普通高校专升本考试高等数学模拟试题及答案

合集下载

高等数学 专升本考试 模拟题及答案

高等数学 专升本考试 模拟题及答案

高等数学(专升本)-学习指南一、选择题1.函数2222ln 24z xyxy 的定义域为【D 】A .222xyB .224x yC .222x yD .2224xy解:z 的定义域为:420402222222yxyxy x ,故而选D 。

2.设)(x f 在0x x 处间断,则有【D 】A .)(x f 在0x x 处一定没有意义;B .)0()0(0xf x f ; (即)(lim )(lim 0x f x f x x xx );C .)(lim 0x f x x 不存在,或)(lim 0x f xx ;D .若)(x f 在0x x 处有定义,则0x x时,)()(0x f x f 不是无穷小3.极限2222123lim n n nnnn【B 】A .14B .12C .1 D. 0解:有题意,设通项为:222212112121122n Sn nnnn nnn n n原极限等价于:22212111lim lim222nnn nnnn4.设2tan y x ,则dy【A 】A .22tan sec x xdxB .22sin cos x xdx C .22sec tan x xdx D.22cos sin x xdx解:对原式关于x 求导,并用导数乘以dx 项即可,注意三角函数求导规则。

22'tan tan 2tan 2tan sec y x d x xdxx x 所以,22tan sec dy x x dx,即22tan sec dyx xdx5.函数2(2)yx 在区间[0,4]上极小值是【D 】A .-1B .1 C.2D .0解:对y 关于x 求一阶导,并令其为0,得到220x ;解得x 有驻点:x=2,代入原方程验证0为其极小值点。

6.对于函数,f x y 的每一个驻点00,x y ,令00,xx A f x y ,00,xy B f x y ,00,yy Cf x y ,若20ACB,则函数【C 】A .有极大值B .有极小值C .没有极值D .不定7.多元函数,f x y 在点00,x y 处关于y 的偏导数00,y f x y 【C 】A .000,,limx f x x y f x y xB.000,,limx f x x y y f x y xC .00000,,limy f x y y f x y yD.0000,,limy f x x y yf x y y8.向量a 与向量b 平行,则条件:其向量积0a b 是【B 】A .充分非必要条件B .充分且必要条件C .必要非充分条件 D .既非充分又非必要条件9.向量a 、b 垂直,则条件:向量a 、b 的数量积0a b 是【B 】A .充分非必要条件B .充分且必要条件C .必要非充分条件 D .既非充分又非必要条件10.已知向量a 、b 、c 两两相互垂直,且1a ,2b ,3c ,求a b a b【C 】A .1 B.2 C .4 D.8解:因为向量a 与b 垂直,所以sin ,1a b ,故而有:22sin ,22114a a ba ba a -a b+b a -b b b ab a b 11.下列函数中,不是基本初等函数的是【B 】A .1xyeB .2ln yxC .sin cos x yxD .35yx解:因为2ln x y 是由u yln ,2x u复合组成的,所以它不是基本初等函数。

2024浙江专升本高数模拟卷2

2024浙江专升本高数模拟卷2

2024浙江•专升本高数•模拟卷2考试时间: 120分钟 班次: ____________姓名:___________一、单选题 (共5小题20分)1.x =0是f(x)={e x +1x <0,2x =0ln(1+x)x >0的( )A.可去间断点B.跳跃间断点C.连续点D.无穷间断点2.设a 1=x(cos √x −1),a 2=√xln(1+√x 3),a 3=√x +13−1, 当x →0+时,以上3个无穷小量按照从低阶到高阶的排序是( ) A.a 1,a 2,a 3 B.a 2,a 3,a 1 C.a 2,a 1,a 3D.a 3,a 2,a 13.设f(x)在(−∞,+∞)连续,下列说法正确的是( ) A.dd x [∫f(x)d x]=f(x)+C,C 为任意常数B.若f(x)在[a,b]上连续, 则f(x)在(a,b)上必有最大值和最小值C.对任意常数a,b , 总有∫a bf(x)d x =∫a bf(a +b −x)d x 成立 D.若f(x)为偶函数, 则f(x)的原函数一定是奇函数4.级数∑n=1∞(−1)n (1−cos βn )(β为常数且大于0)( )A.发散B.条件收敛C.绝对收玫D.收敛性与β有关5.设P =∫−1212cos 2x ∙ln 1−x1+x d x,N =∫−1212[cosx 2+ln 1−x1+x ]d x,M =∫−1212[xsin 2x −cos 2x ]d x , 则有( ) A.N <P <M B.M <P <N C.N <M <PD.P <M <N二、填空题 (共10小题40分)6.已知函数f(x)={x,x <0,0,x =0e x −2,x >0,则f[f(1)]=________.7.lim x→+∞x 3+x 2+12x+x 3sinx =_______ . 8.函数f(x)=13x 3−3x 2+9x 在区间[0,4]上的最大值为________.9.设y =f(x)由方程xy +2lnx =y 4确定,则曲线y =f(x)在点(1,1)处的切线方程为_______.10.极限lim n→∞1n (ln 2πn +ln 22πn +⋯+ln 2nπn )用定积分表示为________.11.lim x→0+(sinx x )11−cosx =_______.12.已知f(x)在x =1处可导, 且limΔx→0f(1+2Δx)−f(1)4Δx =2, 则f ′(1)=________.13.已知y =cos (x +lnx 2), 则d y =_______.14.设函数f(x)在(−∞,+∞)上连续, 且∫01f(x)d x =3, 则∫0π2cosxf(sinx)d x=__________.15.位于曲线y =1x (1+ln 2x )(e ⩽x <+∞)下方以及x 轴上方的无界区域的面积为_________.三、计算题 (共8小题60分)16.求极限limx→0e x2−e 2−2cosx x 4. 17.设f(x)={x1+e 1x,x ≠0,0,x =0,判断f(x)在x =0处的连续性与可导性.18.设y =(2x+3)4∙√x−6√x+13, 求y ′.19.求∫xtan 2x d x .20.∫−11(sin 3x +x 2)e −|x|d x . 21.一平面经过直线l:x+53=y−21=z4,且垂直于平面x +y −z +15=0, 求该平面的方程.22.求xy ′−y =2023x 2满足y |x=1=2024的特解.23.已知定义在(−∞,0)∪(0,+∞)上的可导函数f(x)满足方程f(x)−4x∫1xf(t)d t =x 2,试求: 该函数的单调区间、极值. 四、综合题 (共3小题20分)24.求∑n=1∞(−1)n−1n(2n−1)x2n 的收敛区间及其和函数. 25.设直线y =ax(0<a <1)与拋物线y =x 2围成图形D 1面积记作A 1;由直线y =ax(0<a <1)、抛物线y =x 2及直线x =1围成图形D 2面积记作A 2.26.设函数f(x)在[0,2]连续,(0,2)可导, 且f(0)=0,∫02f(x)d x =2, 试证明: 至少存在ξ∈(0,2), 使得f ′(ξ)=f(ξ)−ξ+1.。

最新专升本考试高等数学模拟题10套(含答案解析)

最新专升本考试高等数学模拟题10套(含答案解析)

1
1.若 f x
1 ex
1
,则 x 0 是 f x 的(
1
x 3n
10.幂级数
的收敛域为
n1 n
。 。
4 1y4
11.交换二次积分的积分次序 dy 2 f x, ydx = 0 4 y
y 12.函数 z ln 在点(2,2)处的全微分 dz =
x
三、计算题(本大题共 8 小题,每小题 8 分,满分 64 分)
sin x sin(sin x)
1 x , y , x 2及x 轴所围成的平面区域。
x
D
yx
20.求微分方程 y y 2x 1满足 lim 1的特解。 x0 x
四、证明题(本大题共 2 小题,每小题 9 分,共 18 分)
21.证明:当 x 0 时, ex x 2 cos x 。
2 x2
1
cos
x
x0
22.设函数
(1)求常数 k 的值,使 D1 与 D2 的面积相等; (2)当 D1 与 D2 的面积相等时,求 D1 绕 y 轴旋转一周所成的旋转体体积Vy 和 D2 绕 x 轴旋
转一周所成的旋转体体积Vx 。
全真模拟测试卷2
一、选择题(本大题共 6 小题,每小题 4 分,共 24 分。在每小题给出的四个选项中,只
ln1 x2
x0
2.设 f (x) x
,其中 (x) 是有界函数,则f (x)在x =0处( )。
x2x x 0
A.极限不存在 B.极限存在但不连续 C.连续但不可导 D.可导
3.设 f x 的导数为 ex ,且 f (0) 0 ,则 f xdx =( )。
A. ex x C B. ex x C C. ex x C D. ex x C

2024年专升本高数试题

2024年专升本高数试题

2024年专升本高数试题一、下列关于函数极限的说法,正确的是:A. 若函数在某点的左右极限相等,则该点处函数极限存在B. 无穷大是函数极限的一种,表示函数值可以无限增大或减小C. 有界函数的极限一定存在D. 函数在某点极限存在,则该函数在该点一定连续(答案:B)二、设函数f(x) = x2 - 3x + 2,则f(x)在区间[1,3]上的最小值为:A. -1B. 0C. 2D. 5(答案:B)三、下列关于导数的说法,错误的是:A. 导数描述了函数值随自变量变化的速率B. 常数的导数为0C. 函数的导数在其定义域内一定连续D. 直线斜率的数学表达就是导数(答案:C)四、设f(x) = ex,则f'(x) =A. exB. xexC. e(x+1)D. 1(答案:A)五、下列关于定积分的说法,正确的是:A. 定积分是函数在某一区间上所有函数值的和B. 定积分的值与积分变量的选取无关C. 定积分可以看作是由无穷多个小矩形面积的和逼近得到的D. 定积分只能用于计算面积(答案:C)六、设函数f(x) = x3 - x2,则f(x)在x=1处的切线斜率为:A. 1B. 2C. 3D. 0(答案:B)七、下列关于微分方程的说法,错误的是:A. 微分方程是含有未知函数及其导数的方程B. 微分方程的解是满足方程的函数C. 微分方程的阶数指的是方程中最高阶导数的阶数D. 所有微分方程都有唯一解(答案:D)八、设函数f(x) = sin(x) + cos(x),则f'(x) =A. sin(x) - cos(x)B. cos(x) - sin(x)C. -sin(x) + cos(x)D. sin(x) + cos(x)(答案:B)。

2022年河南省专升本高数模拟卷2及答案

2022年河南省专升本高数模拟卷2及答案

2022年河南省专升本模拟试卷(二)高等数学注意事项:1.考生领到试题后,须按规定在试题上填写姓名、准考证号和座位号,并在答题卡上填涂对应的试卷类型信息点。

2.所有答案必须按照答题号在答题卡上对应的答题卡区域内作答,超出各题答题区域的答案无效。

在草稿纸、试题上作答无效。

考试结束后,将试题和答题卡一并交回。

3.本试卷分为第I 卷和第II 卷,共10页,满分为150分,考试时间为120分钟。

第I 卷一、选择题(本大题共25小题,每小题2分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设()f x 是定义在(,)-∞+∞内的函数,且()f x C ≠,则下列必是奇函数的()A .3()f xB .[]3()f x C .()()f x f x ⋅-D .()()f x f x --2.已知当0→x 时,4cos 2x x 与1-a ax 是等价无穷小,则=a ()A .1B .2C .3D .43.=+--→)2()1()1(sin lim21x x x x ()A .31-B .32C .0D .314.0x =是函数21()x e f x x-=的()A .可去间断点B .振荡间断点C .无穷间断点D .跳跃间断点5.设1(2)f '=,则0(22)(2)lim ln(1)h f h f h →+-=+()A .12-B .1-C .12D .16.函数312)(+=x x f 在21-=x 处()A .极限不存在B .间断C .连续但不可导D .连续且可导7.设()ln 2f x x x =在0x 处可导,且0()2f x '=,则0()f x =()A .1B .2e C .2eD .2e 8.曲线⎩⎨⎧==ty tx 3sin cos 2在6π=t 对应点处的法线方程为()A .3=x B .33-=x y C .1y x =+D .1y =9.若函数()f x 在[],a b 上连续,在(,)a b 内可导,则()A .存在(0,1)θ∈,使得()()()()()f b f a f b a b a θ'-=--B .存在(0,1)θ∈,使得()()()()()f b f a f a b a b a θ'-=+--C .存在(0,1)θ∈,使得()()()()f b f a f b a θ'-=-D .存在(0,1)θ∈,使得()()()()f b f a f b a θ'-=-10.函数201)(1)y t t dt =-+⎰有()A .一个极值点B .二个极值点C .三个极值点D .零个极值点11.曲线32312y x x =-+的凹区间()A .)0,(-∞B .)1,(-∞C .⎪⎭⎫ ⎝⎛+∞,21D .),1(+∞12.曲线1|1|y x =-()A .只有水平渐近线B .既有水平渐近线,又有垂直渐近线C .只有垂直渐近线D .既无水平渐近线,又无垂直渐近线13.已知的一个原函数是,则等于()A .B .2222ln(1)1x x C x ++++C .2222ln(1)1x x x +++D .221(1)ln(1)2x x C+++14.若,则()A .Cx +31B .Cx +331C .D .15.下列各式正确的是()A .B .C .arcsin arcsin bad xdx x dx =⎰D .111dx x-=⎰16.设,则()A .B .4C .2D .017.设为上的连续函数,则与211f dx x ⎛⎫⎪⎝⎭⎰的值相等的定积分为()A .221()f x dx x ⎰B .122()f x dxx⎰C .1122()f x dx x ⎰D .1221()f x dx x ⎰18.平面1234x y z++=与平面的位置关系是()A .平行但不重合B .重合C .相交但不垂直D .垂直19.向量与轴、轴、轴正向夹角分别为4π,3π,3π,且模为2,则()A.}B .{}1,2,1C .{}2,1,1D .⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧21,21,2220.函数222222,0(,)0,0xy x y x y z f x y x y ⎧+≠⎪+==⎨⎪+=⎩,在点处()A .连续但不存在偏导数B .存在偏导数但不连续C .既不存在偏导数又不连续D .既存在偏导数又连续21.设,则在处()A .有极值B .无极值C .连续D .不能确定22.是顶点分别为,,,的四边形区域的正向边界,则曲线积分=-++-+=⎰dy x y dx y x I L)76(cos )3(sin ()A .0B .10C .5D .1623.微分方程的通解是()A .B .C .D .24.二阶常系数非齐次线性微分方程的特解的正确形式为()A .B .C .D .25.下列级数条件收敛的是()A .n n n21)1(1∑∞=-B .n n nn 31)1(1⋅-∑∞=C .∑∞=+-++1422532n n n n n D .nn n1)1(1∑∞=-第II 卷二、填空题(本大题共15小题,每小题2分,共30分)26.函数()ln(1)f x x =+-的连续区间是.27.极限0cos limsin x x x xx x→-=-.28.设函数⎪⎩⎪⎨⎧=≠--+=2,2,222)(x a x x x x f 在处连续,则.29.已知极限存在且,则.30.设ln(y x =+,则.31.若21()2xf x dx x C =+⎰,则⎰=dx x f )(1.32.=+⎰-dx x x dxd 51)cos (sin .33.设为由方程所确定的函数,则00x y z y==∂=∂.34.曲面在点处的切平面方程为.35.函数在区间上满足拉格朗日中值定理的.36.设22,xy z f x y e ⎛⎫=+ ⎪ ⎪⎝⎭可微,则=∂∂y z .37.设向量,,向量a +b 与a -b 的夹角为.38.交换积分次序,.39.微分方程21(1)yy x x x '+=+的通解为.40.若幂函数21(0)n n n a x a n∞=>∑的收敛半径为12,则常数.三、计算题(本大题共10小题,每小题5分,共50分)41.已知302sin sin2lim lim cos xx x x c x x x c x x →∞→+-⎛⎫= ⎪-⎝⎭,求常数c 的值.42.求函数的单调区间和极值.43.求不定积分.44.计算36sin cos dxx xππ⎰.45.已知向量{}1,0,2=a ,{}2,1,1-=b ,{}1,2,1-=c ,计算c a b a ⨯-⨯23.46.设函数,求22xz ∂∂,y x z ∂∂∂2.47.求二元函数的极值及极值点.48.设函数的一个原函数为,求微分方程的通解.49.求二重积分22Dxydxdy x y+⎰⎰,其中积分区域{}22(,),14z x y y x x y =≥≤+≤.50.求级数13(2)(1)n nn n x n ∞=+--∑的收敛半径与收敛域.四、应用题(本大题共2小题,每小题7分,共14分)51.求曲线,102x y π+--=以及轴所围成的平面图形的面积.52.某汽车运输公司在长期运营中发现每辆汽车的维修成本对汽车大修时间间隔的变化率等于2281y tt -,并且当大修时间间隔(年)时,维修成本(百元),求每辆汽车的最佳大修间隔时间.五、证明题(本大题共1小题,每小题6分,共6分)53.设函数在上可导,且,证明:在内至少存在一点,使.2022年河南省专升本模拟试卷(二)高等数学注意事项:1.考生领到试题后,须按规定在试题上填写姓名、准考证号和座位号,并在答题卡上填涂对应的试卷类型信息点。

高等数学八套题(黑龙江专升本考试专用)

高等数学八套题(黑龙江专升本考试专用)

黑龙江省专升本高等数学模拟试卷(一)一.单项选择题1.设y=211a x x x +--⎧⎪⎨⎪⎩11x x ≤>在点x=1处连续,则a=( )A -1B 0C 1D 22.设函数y=f (x )在点x 处的切线的斜率为1ln x x,则过点(,1)e -的曲线方程( ) A ln |ln |1y x =- B ln |ln |1y x =+Cln |ln |y x e =- D ln |ln |y x C =+3.设f (0)=0且0()lim x f x x →存在,则0()lim x f x x→=( )A ()f x 'B (0)f 'C f (0)D 12(0)f '4.设函数f (x )=20cos x tdt ⎰,则()2f 'π=( )A –πB πC 0D 15.如果alimf x x →∞()=,alimg x x →∞()= 下列各式成立的是( )Aalim[g x +f(x)]x →∞()= B alim[g x -f(x)]x →∞()=C 22a 1lim 0()()x f x g x →=- D 22a 1lim 0()()x f x g x →=+ 6.设在[0 , 1]上()0f x ''>,则(0)f ',(1)f ',(0)(1)f f -几个数大小顺序为( )A (1)(0)(1)(0)f f f f ''>>-B (1)(1)(0)(0)f f f f ''>->C (1)(0)(1)(0)f f f f ''->>D(1)(0)(1)(0)f f f f ''>->7.设函数00()0,()0f x f x '''=<则下列结论必定正确的是( )A 0x 为f (x )的极大值点B 0x 为f (x )的极小值点 C0x 不为f (x )的极值点 D 0x 可能不为f (x )的极值点二.填空题1.sin lim sin x x x x x→∞-+= 2.设()x φ是单调连续函数f (x )的反函数,且f (2)=4,(2)f '=则(4)φ'= 3.微分方程0x yey +'=的通解为4.232lim43x x x kx →-+=-,则k= 5.设(2)2()ln n f x x x -=+,则()()n f x =6.21x xedx =⎰7.arctan 2lim 1x xx→+∞-=π三.计算题1.计算22sin(4)lim x x →-2.求011lim()tan x x x→-3.已知1)x >-求y '4.计算⎰π5.设{232sin 2x a t y t t ==+求dydx6.求以212,x x y e y e ==为特解的二阶线性常系数齐次微分方程。

江苏省专转本(数学)模拟试题及参考答案(一)

江苏省专转本(数学)模拟试题及参考答案(一)

江苏省普通高校专转本模拟试题及参考答案高等数学 试题卷一、单项选择题(本大题共 8 小题,每小题 4 分,共 32 分.在下列每小题中选出一个正确答 案,请在答题卡上将所选项的字母标号涂黑)1. 要使函数21()(2)xx f x x −−=−在区间(0,2) 内连续,则应补充定义 f (1) =( )A. 2eB. 1e −C. eD. 2e − 2. 函数2sin ()(1)xf x x x =−的第一类间断点的个数为( )A. 0B. 2C. 3D. 1 3. 设'()1f x =,则0(22)(22)limh f h f h h→−−+=( )A. 2−B. 2C. 4D. 4−4.设()F x 是函数()f x 的一个原函数,且()f x 可导,则下列等式正确的是( ) A. ()()dF x f x c =+∫ B. ()()df x F x c =+∫ C.()()F x dx f x c =+∫ D.()()f x dx F x c =+∫5. 设2Dxdxdy =∫∫,其中222{(,)|,0}D x y x y R x =+≤>,则R 的值为( )A. 1B.D.6.下列级数中发散的是( )A 21sin n nn∞=∑. B. 11sin n n ∞=∑C. 1(1)nn ∞=−∑ D.211(1)sinnn n ∞=−∑ 7.若矩阵11312102A a −−= 的秩为2,则常数a 的值为( )A. 0B. 1C. 1−D. 28. 设1100001111111234D =−−,其中ij M 是D 中元素ij a 的余子式,则3132M M +=( ) A. 2− B. 2 C. 0 D. 1 二、填空题(本大题共6小题,每小题4分,满分24分) 9. 1lim sinn n n→∞=____________________________.10.设函数2sin ,0()10,0xx f x x x ≠ =+ =,则'(0)f =______________________________________.11.设函数()cos 2f x x =, 则(2023)(0)f =__________________________________________. 12.若21ax e dx −∞=∫,则常数a =___________________________________.13. 若幂级数1nnn a x +∞=∑的收敛半径为2,则幂级数11(1)nn n x a +∞=−∑的收敛区间为__________________. 14.若向量组1(1,0,2,0)α=,2(1,0,0,2)α=,3(0,1,1,1)α=,4(2,1,,2)k α=线性相关,则k =_____________________________________.三、计算题(本大题共8小题,每小题8分,满分64分) 15. 求极限22sin lim(cos 1)x x t tdtx x →−∫;16.求不定积分22x x e dx ∫;17.求定积分21sin 2x dx π−∫; 18.设函数(,)z z x y =由方程cos y x e xy yz xz =+++所确定的函数,求全微分dz . 19.求微分方程''4'5x y y y xe −−−=的通解; 20.求二重积分Bxydxdy ∫∫,其中D 为由曲线2(0)y x x ≥及直线2x y +=和y 轴所围成的平面闭区域;21.设矩阵A 与B 满足关系是2AB A B =+,其中301110014A= ,求矩阵B .22.求方程组12341234123436536222x x x x x x x x x x x x ++−=−++=− −+−= 的通解; 四、证明题(本大题10分)23.证明:当04x π−<<时,0sin xt e tdt x <∫.五、综合题(本大题共2小题,每小题10分,满分20分)24.求曲线x =及直线2y =与y 轴所围成的平面图形的面积并计算该图形绕y 轴旋转一周所得的旋转体的体积..25.设定义在(,)−∞+∞上的函数()f x 满足方程'()()f x f x x −=,且(0)0f =,求: (1)函数()f x 的解析式;(2)曲线()y f x =的单调区间和极值点.参考答案一、单项选择题1. B2. D3. D4. D5. B6. B7. A8. B9. C 二、填空题9. 1 10. 1 11. 0 12. 1ln 2213. (1,3)− 14. 4三、计算题15. 2232022250022sin sin 2sin()4lim lim 4lim (1cos )63()2x x x x x t tdt t tdt x x x x x x x →→→===−∫∫; 16. 2222222222222222222224x x x x x x x xxe e x e e e x e e e x e dx x x dx x dx x c =−=−+=−++∫∫∫;17.26206111sin (sin )(sin )22212x dx x dx x dx πππππ−=−+−−∫∫∫; 18. 因为sin sin ,,z zz x y zx y yz x x x x y x ∂∂∂−−−−=+++=∂∂∂+ 且0,y yz zz e x z e x z y x y yy y x∂∂∂−−−=++++=∂∂∂+ 所以可得sin y x y z e x zdzdx dy y x y x−−−−−−=+++. 19. 解:因为特征方程为2450r r −−=,特征值为125,1r r ==−,所以齐次微分方程''4'50y y y −−=的通解为5112x x y c e c e −=+; 设''4'5x y y y xe −−−=的一个特解为*()x y x ax b e −=+,可得11*()1236x y x x e −=−+,所以原方程的通解为:511211*()1236x x x y y y c e c e x x e −−=+=+−+.20. 由22y x x y =+= 可得交点坐标(11),, 可得21116xBxydxdydx xydy ==∫∫∫∫; 21. 因为2AB A B =+,所以可得(2)A E B A −=,从而可得:1(2)B A E A −=−;又因1211(2)221111A E −−−−=−−− ,所以可得1522(2)432223B A E A −−− =−=−− − ; 22.求方程组12341234123436536222x x x x x x x x x x x x ++−=−++=− −+−= 的通解; 解:111361113611136101241513601012010120101212212031240011200112100120101200112−−−−−−→−→−→− −−−−−−− →− − 一个特解为2220 ,齐次线性方程组12341234123430530220x x x x x x x x x x x x ++−=−++= −+−= 的一组基础解系为:11111η= ,所以原方程组的通解为:123412121210x x c x x=+. 四、证明题 23.证明:当04x π−<<时,0sin xt e tdt x <∫.证明:令0()sin xt f x x e tdt =−∫,则有'()1sin x f x e x =−,令:''()sin cos 0x x f x e x e x =−−=,可得4x π=−,当04x π−<<,''()0f x <,所以当04x π−<<时,'()1sin x f x e x =−为递减函数,可得'()1sin '(0)1x f x e x f =−>=,所以当04x π−<<时,0()sin xt f x x e tdt =−∫为递增函数,因此可得:0()sin (0)0xt f x x e tdt f =−>=∫,从而可证得:0sin x t e tdt x <∫; 五、综合题 24.求曲线x =及直线2y =与y 轴所围成的平面图形的面积并计算该图形绕y 轴旋转一周所得的旋转体的体积..解:x x y = ⇒ =,则图形面积为:20Aydx dx = 旋转体的体积:2222200022y V x dy ydy ππππ====∫∫; 25.设定义在(,)−∞+∞上的函数()f x 满足方程'()()f x f x x −=,且(0)0f =,求: (1)函数()f x 的解析式;(2)曲线()y f x =的单调区间和极值点. 解:(1)()()()1dxdxx x x f x e xe dx c e xe dx c x ce −−−−−∫∫=+=+=−++∫∫,又因为(0)0f =,所以可得:1c =−,即:()1x f x x e −=−+−; (2)令'()10x f x e −=−+=,可得0x =; x(,0)−∞ 0 (0,)+∞ '()f x −+因此可知:(,0)−∞为函数()1x f x x e −=−+−的递减区间,(0,)+∞为函数()1x f x x e −=−+−的递增区间,点(0,0)为函数()1x f x x e −=−+−的极小值点.。

湖北省专升本(高等数学)模拟试卷13(题后含答案及解析)

湖北省专升本(高等数学)模拟试卷13(题后含答案及解析)

湖北省专升本(高等数学)模拟试卷13(题后含答案及解析)题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.函数y=arcsin的定义域为( )A.[-1,1]B.[0,1]C.(-∞,1]D.[-2,1]正确答案:B解析:要使函数有意义,须,求解得:0≤x≤1,选项B正确.2.函数f(x)=2-xcosx在[0,+∞)内是( )A.偶函数B.单调函数C.有界函数D.奇函数正确答案:C解析:因f(-x)=2xcosx≠f(x),也不等于-f(x),即f(x)非奇非偶,选项A、D错误;事实上,x≥0时,0<2-x≤1,而cosx处处有界,进而2-xcosx是x ≥0区间内的有界函数,选项C正确.又f’(x)=2-x.(-1)ln2.cosx+2-x.(-sinx)=-2-x(ln2.cosx+sinx),在x≥0的区间内,f’(x)有正、有负,进而f(x)无一致的单调性.3.当x→0时,x-arctanx是x2的( )A.高阶无穷小B.低阶无穷小C.等价无穷小D.同阶无穷小,但非等价无穷小正确答案:A解析:因所以x→0时,x-arctanx是比x2高阶无穷小,选项A正确.4.对于函数y=,下列结论正确的是( )A.x=-1是第一类间断点,x=1是第二类间断点;B.x=-1是第二类间断点,x=1是第一类间断点;C.x=-1是第一类间断点,x=1是第一类间断点;D.x=-1是第二类间断点,x=1是第二类间断点;正确答案:C解析:首先肯定,x=±1皆为函数的间断点,因此两点处函数皆无定义.又x→1时,y→0,所以x=-1是函数的第一类间断点;又x→1+时,y→-π;x →1-时,y→π;故x=1也为函数的第一类间断点.故选项C正确.5.设f(x)在x=1处可导,且f’(1)=1,则= ( )A.B.1C.2D.4正确答案:A解析:因f’(1)=1.所以6.函数y=x4-4x上切线平行于x轴的点为( )A.(0,0)B.(1,1)C.(1,-3)D.(2,8)正确答案:C解析:令y’=4x3-4=0,得x=1,于是所求的点为(1,f(1)),即(1,-3).7.设f(u)可导,且y=f(ex),则dy= ( )A.f’(ex)dxB.f’(ex).exdxC.f’(ex)D.f(ex)dx正确答案:B解析:因y=f(ex),故dy=f’(ex).exdx,选项B正确.8.设f(x)=ln(x+1)在[0,1]上满足拉格朗日中值定理的条件,则定理结论中的ξ=( )A.ln2B.ln2-1C.D.正确答案:C解析:因定理结论为:f(b)-f(a)=f’(ξ)(b-a),(a<ξ<b)所以,对已知的函数及区间,应有:ln2-lnl=(1-0),进而ξ=-1;选项C正确.9.函数u=x+在[-5,1]上的最大值为( )A.B.C.D.正确答案:B解析:因y’=1-,于是得y’=0,得驻点x=,又有不可导点:x=1.进而计算点x=,x=1,x=-5处的函数值有:;f(1)=1,f(-5)=-5+,故函数在[-5,1]上的最大值为,选项B正确.10.函数f(x)=x-极值点的个数是( )A.1B.2C.3D.4正确答案:B解析:因f’(x)=,于是,f(x)有驻点x=1;有不可导点x=0.对于点x=0:当-∞<x<0,f’(x)>0;0<x<1时f’(x)<0,故x=0为f(x)的一个极大值点;f’’(x)>0,故x=1为f(x)的一个极小值点.对于点x=1:当0<x<1时,f’(x)<0;x>1时综上所述,故f(x)的极值点有2个.11.设∫f(x)dx=x2e2x+C,则f(x)= ( )A.2xe2xB.2x2e2xC.2x(1+x)e2xD.正确答案:C解析:由不定积分的概念知,f(x)=(x2.e2x+C)=2x.e2x+x2.e2x.2=2x(1+x)e2x,选项C正确.12.设f(x)=e-x,则= ( )A.+CB.-lnx+CC.+CD.lnx+C正确答案:C解析:因=∫f’(lnx)d(lnx)=f(lnx)+C,又f(x)=e-x,故=e-lnx+C++C,故选项C正确.13.= ( )A.arctanxB.C.arctanb-arctanaD.0正确答案:D解析:因为定积分∫abarctanxdx是一常数,所以其导数为0,选项D正确.14.设f(x)连续,F(x)=f(t2)dt,则F’(x)= ( )A.f(x4)B.x2f(x4)C.2xf(x4)D.2xf(x2)正确答案:C解析:F’(x)=f(x4).(x2)’=2xf(x4),故选项C正确.15.下列式子正确的是( )A.∫12lnxdx>∫12(lnx)2dxB.∫12lnxdx=∫34lnxdxC.∫34lnxdx>∫34(lnx)2dxD.∫12(lnx)2dx=∫34(lnx)dx正确答案:A解析:因当1<x<2时,0<lnx<1,进而,lnx>ln2x,于是由定积分的不等性有:∫12lnxdx>∫12ln2xdx,故选项A正确;而当3<x<4时,1<lnx<2,进而,lnx<ln2x,于是∫34lnxdx<∫34ln2xdx,选项C错误;而对于B选项,由于lnx为递增函数,且1<x<2时,0<lnx<1;3<x<4时,1<lnx<2,故∫12lnxdx<∫34lnxdx,所以B错误;D选项也错误,因∫12ln2xdx<∫12lnxdx<∫34lnxdx.16.设,则∫01f(x)dx= ( )A.B.1-ln2C.1D.ln2正确答案:D解析:因,从而,∫01f(x)dx==ln(1+x)|01=ln2.选项D正确.17.空间直线与平面4x+3y+3z+1=0的位置关系是( )A.互相垂直B.互相平行C.不平行也不垂直D.直线在平面上正确答案:B解析:因空间直线的方向向量s={3,1,-5};而平面4x+3y+3z+1=0的法向量n={4,3,3},于是s.n=3×4+1×3+(-5)×3=0,从而,s⊥n;又取直线上的点(-2,2,-1),代入平面方程验证可知,点(-2,2,-1)不在已知的平面内,故直线与平面平行,而不在平面内.选项B正确.18.方程z=x2+y2表示的二次曲面是( )A.椭球面B.柱面C.圆锥面D.抛物面正确答案:D解析:该曲面z=x2+y2可看做曲线绕z轴旋转形成的旋转抛物面.19.已知z=,n∈N+,则= ( )A.1B.nC.D.以上都不对正确答案:C解析:20.设z=exy,则dz= ( )A.exy(xdx+ydy)B.exy(xdx-ydy)C.exy(ydx+xdy)D.exy(ydx-xdy)正确答案:C解析:因z=exy,故dz=exy(ydx+xdy),选项C正确.21.设I=,交换积分次序后,I= ( )A.B.C.D.正确答案:A解析:因积分区域d为:,如图所示.区域D又可表示为:,故积分I交换积分次序后为I=∫04dy f(x,y)dx,选项A正确.22.二次积分∫01dx∫01ex+ydy= ( )A.e-1B.2(e-1)C.(e-1)2D.e2正确答案:C解析:∫01dx∫01ex+ydz=∫01exdx∫01eydy=(e-1)2.23.积分区域D为x2+y2≤1,则xdxdy= ( )A.0B.1C.D.正确答案:A解析:积分区域D:x2+y2≤1可用极坐标表示为:从而=0,选项A正确.24.设L为抛物线y=x2上从点A(0,0)到点B(2,4)的一段弧,则∫L(x-2xy2)dx+(y-2x2y)dy= ( )A.54B.-54C.45D.-45正确答案:B解析:将路径L的方程代入曲线积分的被积表达式中计算∫L(x-2xy2)dx+(y-2x2y)dy=∫02[(x-2x5)+2(x2-2x4)x]dx =∫02(x+2x3-6x5)dx==-54.25.下利级数中,收敛的是( )A.B.C.D.正确答案:C解析:对于选项A:un=,显然,于是级数具有相同的敛散性;而是p-级数,发散,故A选项中的级数发散;对于选项B:,故级数发散;对于选项C:,即选项C中的级数是公比大于0小于1的等比级数,收敛;对于选项D:,故级数发散.仅选项C正确.26.下列级数中,绝对收敛的是( )A.B.C.D.正确答案:A解析:对于选项A:其绝对值级数为,这是p=>1的p-级数,故收敛,即原级数绝对收敛,选项A为正确选项.对于选项B:un=,显然,un0,(n→∞),故该级数发散;对于选项C:其绝对值级数为,因发散,故绝对值级数也发散,即原级数不绝对收敛;对于选项D:其绝对值级数为,这是p=<1的p-级数,发散,即原级数不绝对收敛.27.幂级数的收敛区域为( )A.(0,2)B.(0,2]C.[0;2)D.[0,2]正确答案:D解析:这四个选项中,区间端点相同,故只须验证级数在区间端点是否收敛即可得答案.对于x=0,对应的数项级数为:,这是绝对收敛的级数,即幂级数在x=0处收敛;对于x=2,对应的数项级数为:,这是绝对收敛的级数,即幂级数在x=0处收敛;对于x=2,对应的数项级数为:,这是p=2>1的p-级数,收敛,故收敛域为闭区间[0,2],选项D正确.28.下列微分方程中,为一阶线性方程的是( )A.y’’=exB.y’+x2y=cosxC.y’=xeyD.yy’=x正确答案:B解析:选项A中的方程是二阶微分方程,不合要求;选项B中的方程,是一阶微分方程且x2y皆为一次的表达式,该方程符合要求;选项C中的方程中,含y的指数运算,不是线性运算,不合要求;选项D中,含yy’项,不是线性.29.微分方程yy’=x2满足初始条件y|x=0的特解为( )A.B.C.D.正确答案:A解析:原方程可化为:(y2)’=x2,于是方程的通解为:,将初始条件y|x=0=2代入通解中,得C=2,故特解为:.选项A正确.30.微分方程y’’+2y’+y=0的通解为( )A.y=Ce-xB.y=C1e-x+C2C.y=(C1+C2x)D.y=e-x(C1+C2x)正确答案:D解析:因微分方程的特征方程为:r2+2r+1=0,于是有特征根:r1.2=-1,故微分方程的通解为:y=(C1+C2x).e-x.选项D正确.填空题31.极限=________.正确答案:解析:32.设函数f(x)=在(-∞,+∞)上连续,则a=________.正确答案:-1解析:=1+2a,令1+2a=a,则a=-1,即当a=-1时,f(x)在x=0处连续,进而区间(-∞,+∞)上连续.33.若f(x)=且g(0)=g’(0)=0,则f’(0)=________.正确答案:0解析:f’(0)==0(根据无穷小量与有界变量乘积仍为无穷小量).34.已知函数f(x)=(x-1)(x-2)(x-3)(x-4),则方程f’(x)=0有________个根.正确答案:3解析:函数f(x)在闭区间[1,2]上满足罗尔定理的条件,则至少存在一点ξ1∈(1,2),使f’(ξ1)=0,即方程f’(x)=0在区间(1,2)上至少有一个根,同理f’(x)=0在区间(2,3),(3,4)上分别至少各存在一根,再由于f’(x)为三次多项式,即方程f’(x)=0至多有三个根.综上所述,方程f’(x)=0有三个根分别位于区间(1,2),(2,3),(3,4)内.35.设函数y=y(x)由方程ln(x2+y2)=x3y+sinx确定,则=________.正确答案:1解析:方程两端y对x求导(2x+y’)=3x2y+x3y’+cosx,当x=0时,y=1,代入可得y’|x=0=1.36.不定积分=________.正确答案:ln|sinx+cosx|+C解析:d(sinx+cosx)=ln|sinx+cosx|+C.37.设f(t)dt=x(x>0),f(x)连续,则f(2)=________.正确答案:解析:方程两端对x求导:f(x2+x3).(2x+3x2)=1,取x=1,则f(2)=38.曲线y=xe-x的单调增区间为________,凸区间为________.正确答案:(-∞,1),(-∞,2)解析:因y=xe-x,所以y’=e-x-xee-x=(1-x)e-x,y’’=e-x-(1一x)e-x=(x-2)e-x 令y’>0,得曲线的递增区间为(-∞,1);令y’’<0,得曲线的凸区间为(-∞,2).39.方程表示________.正确答案:两条平行直线解析:由于圆柱面x2+y2=4的母线平行z轴且被一平行z轴的平面y=1去截,显然截痕为两条平行直线。

专升本数学模拟试卷10套及答案

专升本数学模拟试卷10套及答案

11.如果当 x ® 0 时,无穷小量(1 - cos x )与 a sin 2 x 为等阶无穷小量,则a = 2
ò 12.设 f ¢(x) 的一个原函数为 sin ax ,则 xf ¢¢(x)dx =
ò 13. sin x + cos x dx =
3 sin x - cos x
14.已知
a,
b, c
三、解答题:本大题共 8 小题,共 86 分.解答应写出文字说明,证明过程或演算步骤。 得分 评卷人 17.(本小题满分 10 分)
确定常数 a 和 b 的值,使 lim [ x2 + x + 1 - (ax + b)] = 0 x®-¥ 96-4
得分 评卷人 18.(本小题满分 10 分)
ò求Leabharlann xe x dx .10.已知 y = x 是微分方程 y¢ = y + j ( x ) 的解,则j ( x ) 的表达式为
ln x
xy
y
A. - y 2 x2
B. y2 x2
C. - x 2 y2
D. x2 y2
96-3
天津市高等院校“高职升本科”招生统一考试
高等数学标准模拟试卷(一)
第Ⅱ卷 (选择题 共 110 分)
B.是 f (x)g(x) 的驻点,但不是极值点
C.是 f (x)g(x) 的极大点
D.是 f (x)g(x) 的极小点
3.已知 f ¢(e x ) = xe-x 且 f (1) = 0 则 f (x) =
A. f (x) = (ln x)2 2
B. ln x
C. f (x) = ln x2 2
D. ln x 2
x
f (t)dt +

专升本模拟试题高数及答案

专升本模拟试题高数及答案

专升本模拟试题高数及答案一、选择题(每题3分,共30分)1. 函数f(x)=x^2-4x+3在区间[0,5]上的最大值是:A. 1B. 2C. 3D. 42. 已知某函数的导数为f'(x)=3x^2-2x,那么f(x)的原函数是:A. x^3 - x^2 + CB. x^3 - x + CC. x^3 + x^2 + CD. x^3 + x + C3. 曲线y=x^3-2x^2+x在点(1,0)处的切线斜率是:A. -1B. 0B. 1D. 24. 定积分∫[0,1] x^2 dx的值是:A. 1/3B. 1/4C. 1/2D. 15. 函数y=sin(x)的周期是:A. πB. 2πC. 3πD. 4π6. 函数f(x)=|x-1|在x=1处的连续性是:A. 连续B. 可导C. 不连续D. 不可导7. 若f(x)=e^x,g(x)=ln(x),则f(g(x))=:A. e^(ln(x))B. ln(e^x)C. xD. 1/x8. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. ∞D. 不存在9. 级数∑[1/n^2](n从1到∞)是:A. 收敛B. 发散C. 条件收敛D. 无界10. 函数y=x^2在x=2处的泰勒展开式为:A. x^2 - 4x + 4B. x^2 - 4 + 4C. x^2 - 4x + 4 + O(x^3)D. x^2 - 4x + 4 + O(x^2)二、填空题(每题2分,共20分)11. 若函数f(x)=2x^3-3x^2+x-5,求f'(1)=________。

12. 定积分∫[1,2] (2x+1)dx=________。

13. 函数y=ln(x)在x=e处的导数值是________。

14. 函数y=x^2+3x+2在x=-1处的极小值是________。

15. 函数y=cos(x)的周期是________。

16. 函数y=x^3-6x^2+11x-6在x=2处的切线方程是________。

普通高等教育福建专升本考试《高等数学》模拟试题及答案

普通高等教育福建专升本考试《高等数学》模拟试题及答案

普通高等教育福建专升本考试《高等数学》模拟试题及答案一、选择题1、函数的定义域为A,且 B, C, D,且2、下列各对函数中相同的是:A, B,C, D,3、当时,下列是无穷小量的是:A, B, C, D,4、是的A、连续点B、跳跃间断点C、可去间断点D、第二类间断点5、若,则A、-3B、-6C、-9D、-126. 若可导,则下列各式错误的是A BC D7. 设函数具有2009阶导数,且,则A B C 1 D8. 设函数具有2009阶导数,且,则A 2 BC D9. 曲线A 只有垂直渐近线B 只有水平渐近线C 既有垂直又有水平渐近线 D既无垂直又无水平渐近线10、下列函数中是同一函数的原函数的是:A, B, C, D,11、设,且,则A, B, +1 C,3 D,12、设,则A, B, C, D,13、,则A, B, C,D,14. 若,则A B C D15. 下列积分不为0的是A B C D16. 设在上连续,则A BC D17. 下列广义积分收敛的是___________.A B C D18、过(0,2,4)且平行于平面的直线方程为A, B,C, D,无意义19、旋转曲面是A,面上的双曲线绕轴旋转所得 B,面上的双曲线绕轴旋转所得C,面上的椭圆绕轴旋转所得 D,面上的椭圆绕轴旋转所得20、设,则A,0 B, C,不存在 D,121、函数的极值点为A,(1,1) B,(—1,1) C,(1,1)和(—1,1) D,(0,0)22、设D:,则A, B, C, D,23、交换积分次序,A, B,C, D,24. 交换积分顺序后,__________。

A BC D25. 设为抛物线上从点到点的一段弧,则A B C D26. 幂级数的和函数为A B C D27、设,则级数A,与都收敛 B,与都发散C, 收敛,发散 D,发散,收敛28、的通解为A, B,C, D,29、的特解应设为:A, B,C, D,30. 方程的特解可设为A B C D二、填空题31. 设的定义域为,则的定义域为________.32.已知,则_________33. 设函数在内处处连续,则=________.34.函数在区间上的最大值为_________35函数的单调增加区间为________36.若,则________37. 函数的垂直渐进线为________38. 若,在连续,则________39. 设________40. 设,则41. 二重积分,变更积分次序后为42. L是从点(0,0)沿着的上半圆到(1,1)的圆弧,则=43. 将展开成的幂级数 .44. 是敛散性为_________的级数。

高等数学模拟试题及答案[1]

高等数学模拟试题及答案[1]

武汉大学网络教育入学考试 专升本 高等数学 模拟试题一、单项选择题1、在实数范围内,下列函数中为有界函数的是( b )A.xy e = B.1sin y x =+ C.ln y x =D.tan y x =2、函数23()32x f x x x -=-+的间断点是( c ) A.1,2,3x x x === B.3x = C.1,2x x == D.无间断点3、设()f x 在0x x =处不连续,则()f x 在0x x =处( b )A. 一定可导B. 必不可导C. 可能可导D. 无极限 4、当x →0时,下列变量中为无穷大量的是( D ) A.sin x x B.2x-C.sin x x D. 1sin xx+ 5、设函数()||f x x =,则()f x 在0x =处的导数'(0)f = ( d )A.1B.1-C.0D.不存在. 6、设0a >,则2(2)d aaf a x x -=⎰( a )A.0()d af x x -⎰B.0()d af x x ⎰ C.02()d af x x ⎰ D.02()d af x x -⎰7、曲线23x xy e--=的垂直渐近线方程是( d ) A.2x = B.3x = C.2x =或3x = D.不存在8、设()f x 为可导函数,且()()000lim22h f x h f x h→+-=,则0'()f x = ( c ) A. 1 B. 2 C. 4 D.0 9、微分方程''4'0y y -=的通解是( d )A. 4x y e =B. 4x y e -=C. 4xy Ce = D. 412x y C C e =+10、级数1(1)34nn nn ∞=--∑的收敛性结论是( a )A. 发散B. 条件收敛C. 绝对收敛D. 无法判定 11、函数()f x =( d )A. [1,)+∞B.(,0]-∞C. (,0][1,)-∞⋃+∞D.[0,1]12、函数()f x 在x a =处可导,则()f x 在x a =处( d )A.极限不一定存在B.不一定连续C.可微D.不一定可微 13、极限1lim(1)sin nn e n →∞-=( c)A.0B.1C.不存在D. ∞ 14、下列变量中,当x →0时与ln(12)x +等价的无穷小量是( )A.sin xB.sin 2xC.2sin xD. 2sin x15、设函数()f x 可导,则0(2)()limh f x h f x h →+-=( c )A.'()f x -B.1'()2f x C.2'()f x D.016、函数32ln 3x y x +=-的水平渐近线方程是( c )A.2y =B.1y =C.3y =-D.0y =17、定积分sin d x x π=⎰( c )A.0B.1C.πD.218、已知x y sin =,则高阶导数(100)y 在0x =处的值为( a )A. 0B. 1C. 1-D. 100. 19、设()y f x =为连续的偶函数,则定积分()d aaf x x-⎰等于( c )A. )(2x afB.⎰adxx f 0)(2C.0D. )()(a f a f --20、微分方程d 1sin d yx x =+满足初始条件(0)2y =的特解是( c )A. cos 1y x x =++B. cos 2y x x =++C. cos 2y x x =-+D. cos 3y x x =-+ 21、当x →∞时,下列函数中有极限的是( C )A.sin xB.1x eC.211x x +- D.arctan x22、设函数2()45f x x kx =++,若(1)()83f x f x x --=+,则常数k 等于 ( a ) A.1 B.1- C.2 D.2- 23、若0lim ()x x f x →=∞,lim ()x x g x →=∞,则下列极限成立的是( b )A. lim[()()]ox x f x g x →+=∞B.lim[()()]0x x f x g x →-=C.1lim()()x x f x g x →=∞+ D. 0lim ()()x x f x g x →=∞24、当x →∞时,若21sin x 与1k x 是等价无穷小,则k =( b )A.2B.12C.1D. 325、函数()f x =[0,3]上满足罗尔定理的ξ是( a )A.0B.3C. 32 D.2 26、设函数()y f x =-, 则'y =( c )A. '()f xB.'()f x -C. '()f x -D.'()f x --27、定积分()d baf x x⎰是( a )A.一个常数B.()f x 的一个原函数C.一个函数族D.一个非负常数 28、已知naxy x e =+,则高阶导数()n y=( c )A. n axa e B. !n C. !axn e + D. !n axn a e + 29、若()()f x dx F x c =+⎰,则sin (cos )d xf x x ⎰等于( b )A. (sin )F x c +B. (sin )F x c -+C. (cos )F x c +D. (cos )F x c -+ 30、微分方程'3xy y +=的通解是( b )A. 3c y x =- B. 3y c x =+ C. 3c y x =-- D. 3c y x =+31、函数21,y x =+(,0]x ∈-∞的反函数是( c )A. 1,[1,)y x =∈+∞B. 1,[0,)y x =∈+∞C. [1,)y =∈+∞D. [1,)y =∈+∞ 32、当0x →时,下列函数中为x 的高阶无穷小的是( a )A. 1cos x -B. 2x x + C. sin xD.33、若函数()f x 在点0x 处可导,则|()|f x 在点0x处( c )A. 可导B. 不可导C. 连续但未必可导D. 不连续 34、当x x →时,α和(0)β≠都是无穷小. 当0x x →时下列可能不是无穷小的是( d )A. αβ+B. αβ-C. αβ⋅D. αβ35、下列函数中不具有极值点的是( c ) A.y x= B. 2y x = C. 3y x = D. 23y x =36、已知()f x 在3x =处的导数值为'(3)2f =, 则0(3)(3)lim2h f h f h →--=( b )A.32B.32-C.1D.1-37、设()f x 是可导函数,则(())f x dx '⎰为( d )A.()f xB. ()f x c +C.()f x 'D.()f x c '+38、若函数()f x 和()g x 在区间(,)a b 内各点的导数相等,则这两个函数在该区间内( d ) A.()()f x g x x -= B.相等 C.仅相差一个常数 D.均为常数二、填空题 1、极限20cos d limxx t tx →⎰=2、已知 102lim()2ax x x e -→-=,则常数 =a .3、不定积分2d xx ex -⎰= .4、设()y f x =的一个原函数为x ,则微分d(()cos )f x x = .5、设2()d f x x x C x=+⎰,则()f x = . 6、导数12d cos d d x t t x-=⎰ . 7、曲线3(1)y x =-的拐点是 .8、由曲线2y x =,24y x =及直线1y =所围成的图形的面积是 .9、已知曲线()y f x =上任一点切线的斜率为2x , 并且曲线经过点(1,2)-, 则此曲线的方程为 .10、已知22(,)f xy x y x y xy +=++,则f f x y∂∂+=∂∂ . 11、设(1)cos f x x x +=+,则(1)f = .12、已知 112lim(1)x x a e x --→∞-=,则常数 =a .13、不定积分2ln d x x x =⎰.14、设()y f x =的一个原函数为sin 2x ,则微分d y = .15、极限22arcsin d limxx t t x →⎰ =.16、导数2d sin d d x a t t x =⎰ .17、设d xt e t e=⎰,则x = .18、在区间[0,]2π上, 由曲线cos y x =与直线2x π=,1y =所围成的图形的面是 .19、曲线sin y x =在点23x π=处的切线方程为 . 20、已知22(,)f x y x y x y -+=-,则f fx y ∂∂-=∂∂ .21、极限01limln(1)sinx x x →+⋅ =22、已知21lim()1axxxex-→∞-=+,则常数=a.23、不定积分x=⎰.24、设()y f x=的一个原函数为tan x,则微分d y=.25、若()f x在[,]a b上连续,且()d0baf x x=⎰, 则[()1]dbaf x x+=⎰.26、导数2dsin ddxxt tx=⎰.27、函数224(1)24xyx x+=++的水平渐近线方程是.28、由曲线1yx=与直线y x=2x=所围成的图形的面积是.29、已知(31)xf x e'-=,则()f x= .30、已知两向量(),2,3aλ→=,()2,4,bμ→=平行,则数量积a b⋅=.31、极限2lim(1sin)x xx→-=32、已知973250(1)(1)lim8(1)xx axx→∞++=+,则常数=a.33、不定积分sin dx x x=⎰.34、设函数y=则微分d y=.35、设函数()f x在实数域内连续, 则()d()dxf x x f t t-=⎰⎰.36、导数2dddx tate tx=⎰.37、曲线22345(3)x xyx-+=+的铅直渐近线的方程为.38、曲线2y x=与22y x=-所围成的图形的面积是.三、计算题1、求极限:lim x →+∞.解:lim x →+∞=lim x →+∞/2x=2、计算不定积分:2sin 2d 1sin xx x +⎰解:3、计算二重积分sin d d Dx x y x ⎰⎰, D 是由直线y x =及抛物线2y x =围成的区域. 解:4、设2ln z u v =, 而x u y =, 32v x y =-. 求z x ∂∂, zy∂∂. 解:5、求由方程221x y xy +-=确定的隐函数的导数d d yx. 解:6、计算定积分: 20|sin | d x x π⎰.解:7、求极限:xxx e x 20)(lim +→.解:8、计算不定积分:x.解:9、计算二重积分22()Dx y d σ+⎰⎰, 其中D 是由y x =,y x a =+,y a =, 3y a =(0a >)所围成的区域. 解:10、设2u vz e -=, 其中3sin ,u x v x ==,求dz d t .解:11、求由方程lny x y=+所确定的隐函数的导数ddyx.解:,12、设2,01,(),1 2.x xf xx x⎧≤≤=⎨<≤⎩. 求0()()dxx f t tϕ=⎰在[0, 2]上的表达式.解:13、求极限:2 0x→解:14、计算不定积分:dln ln lnxx x x⋅⋅⎰.解:15、计算二重积分(4)dDx yσ--⎰⎰,D是圆域222x y y+≤.解:16、设2x yzx y-=+,其中23y x=-,求dzd t.解:17、求由方程1yy xe=+所确定的隐函数的导数ddyx.解:18、设1sin,0,2()0,x xf xπ⎧≤≤⎪=⎨⎪⎩其它.求0()()dxx f t tϕ=⎰在(),-∞+∞内的表达式.解:19、求极限:x→解:20、计算不定积分:1d 1xx +解:21、计算二重积分2Dxy dσ⎰⎰,D是由抛物线22y px=和直线2px=(p>)围成的区域.解:22、设yzx=,而tx e=,21ty e=-,求dzd t.解:四、综合题与证明题1、函数21sin,0,()0,0x xf x xx⎧≠⎪=⎨⎪=⎩在点0x=处是否连续?是否可导?2、求函数(y x=-.解:3、证明:当0x >时, 221)1ln(1x x x x +>+++.证明:4、要造一圆柱形油罐, 体积为V , 问底半径r 和高h 等于多少时, 才能使表面积最小?这时底直径与高的比是多少?解:5、设ln(1),10,()01x x f x x +-<≤⎧⎪=<<, 讨论()f x 在0x =处的连续性与可导性. 解:,6、求函数32(1)x y x =-的极值.解:7、证明: 当20π<<x 时, sin tan 2x x x +>. 证明:8、某地区防空洞的截面拟建成矩形加半圆(如图), 截面的面积为5m 2, 问底宽x 为多少时才能使截面的周长最小, 从而使建造时所用的材料最省?解:9、讨论21, 0,21, 01,()2, 12,, 2x x x f x x x x x ≤⎧⎪+<≤⎪=⎨+<≤⎪⎪>⎩在0x =,1x =,2x =处的连续性与可导性.解:10、确定函数y =(其中0a >)的单调区间.解:;11、证明:当20π<<x 时, 331tan x x x +>. 证明:12、一房地产公司有50套公寓要出租. 当月租金定为1000元时, 公寓会全部租出去. 当月租金每增加50元时, 就会多一套公寓租不出去, 而租出去的公寓每月需花费100元的维修费. 试问房租定为多少可获最大收入?解:13、函数21, 01,()31, 1x x f x x x ⎧+≤<=⎨-≤⎩在点x =1处是否可导?为什么?解:14、确定函数x x x y 6941023+-=的单调区间. 解:。

2024年安徽普通专升本高等数学真题试卷及参考答案

2024年安徽普通专升本高等数学真题试卷及参考答案

2024年安徽省普通高校专升本招生考试试题高等数学考试真题还原(以下真题来自学生考试后的回忆,或有部分不准确)一、单项选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、当x →0+时,比sin x 更低阶的无穷小是()A、1-cos xB、3xD、In(1+x )参考答案:C 2、若函数sin ,0()2,=0ln(12),0x x ax f x x x x bx ⎧⎪⎪=⎨⎪+⎪⎩<>,在x =0处连续,其中a ,b 为常数,则()A、22a b ==,B、112a b ==,C、21a b ==,D、122a b ==,参考答案:B 3、已知21sin ()x xf x x x +=+,则()A、0()x f x =是的可去间断点,1()x f x =-是的无穷间断点B、0()x f x =是的可去间断点,1()x f x =-是的跳跃间断点C、0()x f x =是的跳跃间断点,1()x f x =-是的无穷间断点D、0()x f x =是的无穷间断点,1()x f x =-是的可去间断点参考答案:B4、设函数()f x 在[,b]a 上连续,在(,b)a 上可导,且()()f a f b >,则在(,b)a 内至少存在一点ξ,使得()A、'()f ξ<0B、'()f ξ>0C、'()=f ξ0D、'()f ξ不存在参考答案:A5、已知函数()x f x xe -=,则()A、()f x 在(1),-∞内单调减少B、()f x 在(1)+,∞内单调增加C、()f x 在1x =处取得极大值D、()f x 在1x =处取得极小值参考答案:C6、若函数4cos y x =,则dy =()A、3424sin x x dxB、3424sin x x dx -C、2422sin x x dx D、2422sin x x dx -参考答案:D7、已知2x 是()f x 的一个原函数,则2(1)fxf x dx -=()A、22x C -+B、-22x C-+C、222x C -+D、222x C--+参考答案;B8、下列广义积分收敛的是()A、143dx e xin x+⎰∞B、1dxe xinx +⎰∞C、123e xin x+⎰∞D、inx dxe x +⎰∞参考答案:A9、函数2ln z x y x =+在点(1,1)处的全微分(1,1)dz =()A、3dx dy +B、3dx dy+C、2dx dy +D、2dx dy+参考答案:A10、设n 阶方阵A 满足2,A A A E =且≠,其中E 为n 阶单位矩阵,则()A、A 是零矩阵B、齐次线性方程组0AX =只有零解C、A 是可逆矩阵D、A 的秩小于n参考答案:D 11、设随机事件A 与B 互不相容,则()A、(AB)0P =B、(A B)0P =C、(AUB)1P =D、(AB)1P =参考答案:D 12、设随机变量X 的概率密度函数2(1)4()x f x +-=其中()x -∞<<+∞,且{}{}P X c P X c ≥=≤,则常数C=()A、-2B、2C、-1D、1参考答案:C 二、填空题(本大题共6小题,每小题4分,共24分)13、函数323y x x =-在拐点处的切线方程为_____________参考答案:31y x =-+14、由曲线y e x =,直线1,0,0x x y =-==,所围成的封闭图形绕x 轴旋转所形成的旋转体体积参考答案:212)e --π(15、已知(,)z f x y =由方程221x t z Inz y e dt ++=⎰确定,则z x∂∂=_____________参考答案:21xze z +16、已知113122023x-=,则x =_____________参考答案:-117、同时投两个质地均匀的骰子,则两个骰子点数和为7的概率为_____________参考答案:1618、已知13X ~B(3,),则{x }p <D(X)=_____________参考答案:827三、计算题(本大题共7小题,共78分,计算应写出必要的计算步骤)19、2x →参考答案:120、求解不定积分2ln(1)d x x x +⎰参考答案:332111ln |1|c 33111ln()963x x x x x x ++++-+-21、求解:D xd σ⎰⎰,其中积分区域D 由曲线2y x =,直线2y x =-,和0y =所围成的封闭图形参考答案:111222、已知123,,a a a 线性无关,112321233123===a a a a a a a a a βββ+--+--,,,证明:向量组123βββ,,线性无关参考答案:存在一组常数123,,k k k ,使得1122330k k k βββ++=,证明:123,,k k k 全为零即可23、某工地拟建造截面为矩形加半圆的通风口,已知截面面积为2平方米时,则底长x 为多少米时,截面的周长最短。

专升本高等数学二(多元函数积分学)模拟试卷1(题后含答案及解析)

专升本高等数学二(多元函数积分学)模拟试卷1(题后含答案及解析)

专升本高等数学二(多元函数积分学)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.化二重积分f(x,y)dxdy为极坐标下的二次积分,其中D由y=x2及y=x围成,正确的是( )A.∫0dθ∫0tanθf(rcosθ,rsinθ)rdrB.∫0dθ∫0tanθsecθf(rcosθ,rsinθ)rdrC.∫0dθ∫0tanθsecθf(rcosθ,rsinθ)rdrD.∫0dθ∫0tanθcscθf(rcosθ,rsinθ)rdr正确答案:C解析:由题意可得直角坐标系下的D可表示为:0≤x≤1,x2≤y≤x,令x=rcos θ,y=rsinθ,则0≤θ≤,0≤r≤tanθsecθ,则二重积分可表示为f(rcosθ,rsinθ)rdr,故选C.知识模块:多元函数积分学2.若D={(x,y)|a2≤x2+y2≤4a2,(a>0)},则二重积分dxdy= ( )A.3πa2B.πa3C.πa2D.πa3正确答案:D解析:=∫02πdθ∫a2ar2dr=πa3.知识模块:多元函数积分学3.区域D为( )时,dxdy=2.A.|x|≤1,|y|≤1B.|x|+|y|≤1C.0≤x≤1,0≤y≤2xD.0≤x2+y2≤2正确答案:B解析:由二重积分的性质知=SD=2,可求得A的面积SD=4,B的面积SD=2×2×=2,C的面积SD=2×1×=1,D的面积SD==2π,故选B.知识模块:多元函数积分学4.设L为抛物线x一1=y2一2y上从点A(1,0)到点B(1,2)的一段弧,则∫L(ey+x)dx+(xey一2y)dy= ( )A.e一1B.e+1C.e2一5D.e2+5正确答案:C解析:=ey,所以积分与路径无关,原积分路径可以改为沿着x=1从A点到B点,则∫L(ey+x)dx+(xey-2y)dy=∫02(ey一2y)dy=(ey一y2)|02=e2一5,故选C.知识模块:多元函数积分学5.设L是y=x2上从点(0,0)到点(1,1)之间的有向弧,则∫L(x3一y)dx一(x+siny)dy= ( )A.B.C.D.正确答案:B解析:=一1,所以积分与路径无关,则可把积分看成先所以积分∫L(x3-y)dx—(x+siny)dy=∫01x3dx+∫01-(1+siny)dy=(-1+cos1)一(0+1)=cos1—.知识模块:多元函数积分学6.已知闭曲线L:x2+y2=4,则对弧长的曲线积分(4x2+4y2一6)ds= ( )A.40πB.12πC.6πD.4π正确答案:A解析:令x=2cost,y=2sint,则(4x2+4y2一6)ds=∫02π10dt=∫02π20dt=40π.知识模块:多元函数积分学填空题7.比较积分I1=(x+y)7dσ与I2=(x+y)8dσ的大小,其中D由Ox轴、Oy轴及直线x+y=1围成,则________.正确答案:I1≥I2解析:在区域D内可知x+y≤1,所以在区域D上(x+y)7≥(x+y)8(等号仅在x+y=1处取得),故(x+y)7dσ≥(x+y)8dσ,即I1≥I2.知识模块:多元函数积分学8.设=4π,这里a>0,则a=________.正确答案:a=4解析:=aπ=4π,所以a=4.知识模块:多元函数积分学9.设I=交换积分次序,则有I=________.正确答案:∫04dx∫x24xf(x,y)dy解析:I=∫016dy的积分区域为D={(x,y)|0≤y≤16,}={(x,y)|0≤x≤4,x2≤y≤4x},所以I=∫04dx∫x24xf(x,y)dy.知识模块:多元函数积分学10.化二次积分I=∫02dx为极坐标下的二次积分,则I=_______.正确答案:I=dθ∫02secθcosr.rdr解析:因积分区域D={(x,y)|0≤x≤2,x≤y≤}={(x,y)|1≤tan θ≤,0≤rcosθ≤2)}={(θ,r)|,0≤r≤2secθ},所以I=dθ∫02secθcosr.Rdr 知识模块:多元函数积分学11.设D:|x|≤1,|y|≤1,且[f(x,y)+2]dσ=________.正确答案:9解析:=1+2×2×2=9.知识模块:多元函数积分学12.设a>0,f(x)=g(x)=而D表示全平面,则I=f(x)g(y—x)dxdy=________.正确答案:a2解析:I=f(x)g(y—x)dxdy=a2dxdy=a2∫01dx∫xx+1dy=a2∫01[(x+1)一x]dx=a2.知识模块:多元函数积分学13.若L为圆周曲线x2+y2=a2,方向为逆时针方向,则曲线积分2xdy 一3ydx=_______.正确答案:5πa2解析:L围成的平面图形的面积SD=πa2,则5dxdy=5SD=5πa2.知识模块:多元函数积分学14.设L为x2+y2=1逆时针方向,则xy2dy-x2ydx=_______.正确答案:解析:xy2dy一x2ydx=y2一(-x2)dxdy=∫02πdθ∫01r2.rdr=.知识模块:多元函数积分学15.设L:y=x2(0≤x≤),则∫Lxds=_______.正确答案:解析:由于L由方程y=x2(0≤x≤)给出,因此∫Lxds=.知识模块:多元函数积分学解答题16.交换积分次序∫12dx∫xf(x,y)dy.正确答案:因积分区域D={(x,y)|1≤x≤2,≤y≤x}={(x,y)|≤x≤2}+{(x,y)|1≤y≤2,y≤x≤2},所以原式=+∫12dy∫y2f(x,y)dx.涉及知识点:多元函数积分学17.求(x3+y)dxdy,其中D是由曲线y=x2与直线y=1所围成的有界平面区域.正确答案:由于积分区域D关于y轴对称,因此x3dxdy=0.记D1为区域D在第一象限的部分,则=2∫01dx∫x21ydy=∫01(1-x4)dx=.所以(x3+y)dxdy=.涉及知识点:多元函数积分学18.计算|xy|dσ,其中D由x轴,y+x=1和y—x=1围成.正确答案:如图5—5所示,D:0≤y≤1,y一1≤x≤1一y,故|xy|d σ=∫01dy∫y-10(-xy)dx+∫01dy∫01-yxydx=∫01dy+∫01dy=∫01y(y-1)2dy=.涉及知识点:多元函数积分学19.计算(x2一y2)dxdy,D是闭合区域:0≤y≤sinx,0≤x≤π.正确答案:(x2一y2)dxdy=∫0πdx∫0sinx(x2一y2)dy=∫0π(x2sinx一sin3x)dx=(-x2cosx)|0π+2∫0πxcosxdx一∫0πsinxdx—∫0πcos2xdcosx=π2一.涉及知识点:多元函数积分学20.计算sin(x2+y2)dσ,其中D:≤x2+y2≤π.正确答案:涉及知识点:多元函数积分学21.计算(xey+x2y2)dxdy,其中D是由y=x2,y=4x2,y=1围成.正确答案:因D关于y轴对称,且xey是关于x的奇函数,x2y2是关于x 的偶函数,则I=xeydxdy+x2y2dxdy=0+x2y2dxdy,I=2∫01dy x2y2dx=2∫01y2dy=.涉及知识点:多元函数积分学22.计算二重积分,其中D是由y2=2x,x=1所围成的平面区域.正确答案:如图5—8所示,D={(x,y)|≤x≤1},所以,涉及知识点:多元函数积分学23.计算,其中D:x2+y2≤x.正确答案:改写积分区域D为:(x-)2+y2≤.如图5—11所示,因积分区域为圆,故选择极坐标系下计算二重积分.涉及知识点:多元函数积分学24.计算∫L(exsiny-2y)dx+(excosy-2)dy,其中L为上半圆周(x-a)2+y2=a2(y≥0)沿逆时针方向.正确答案:取L1为y=0(x:0→2a),则L+L1为封闭曲线,其所围区域D为半圆面,则由格林公式(exsiny一2y)dx+(excosy一2)dy=(excosy—excosy+2)dσ=πa2=πa2.因此,原积分=πa2一∫L1(exsiny一2y)dx+(excosy一2)dy=πa2一[∫02a(ex.sin0-2.0)dx+0]=πa2一0=πa2.涉及知识点:多元函数积分学25.计算对坐标的曲线积分I=∫L(x+y一1)dx+(x—y+1)dy,其中L是曲线y=sinx上由点0(0,0)到点A(,1)的一段弧.正确答案:令P(x,y)=x+y一1,Q(x,y)=x—y+1.因为,所以积分与路径无关.引入点B(,0),则I=(x+y一1)dx+(x—y+1)dy+(x+y一1)dx+(x—y+1)dy=.涉及知识点:多元函数积分学26.计算(x+y)ds,其中L为连接点O(0,0),A(1,0),B(0,1)的闭折线.正确答案:如图5-15,涉及知识点:多元函数积分学。

专升本高等数学一(多元函数微分学)模拟试卷1(题后含答案及解析)

专升本高等数学一(多元函数微分学)模拟试卷1(题后含答案及解析)

专升本高等数学一(多元函数微分学)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.= ( )A.0B.C.一D.+∞正确答案:B解析:.知识模块:多元函数积分学2.关于函数f(x,y)=下列表述错误的是( ) A.f(x,y)在点(0,0)处连续B.fx(0,0)=0C.fy(0,0)=0D.f(x,y)在点(0,0)处不可微正确答案:A解析:,随k取不同数值而有不同的结果,所以不存在,从而f(x,y)在(0,0)点不连续,因此选项A是错误的,故选A.知识模块:多元函数积分学3.设函数z=3x2y,则= ( )A.6yB.6xyC.3xD.3x2正确答案:D解析:因为z=3x2y,则=3x2.知识模块:多元函数积分学4.设二元函数z== ( )A.1B.2C.x2+y2D.正确答案:A解析:因为z==1.知识模块:多元函数积分学5.已知f(xy,x-y)=x2+y2,则= ( )A.2B.2xC.2yD.2x+2y正确答案:A解析:因f(xy,x—y)=x2+y2=(x—y)2+2xy,故f(x,y)=y2+2x,从而=2.知识模块:多元函数积分学6.设z=f(x,y)=则下列四个结论中,①f(x,y)在(0,0)处连续;②fx’(0,0),fy’(0,0)存在;③fx’(x,y),fy’(x,y)在(0,0)处连续;④f(x,y)在(0,0)处可微.正确结论的个数为( ) A.1B.2C.3D.4正确答案:C解析:对于结论①,=0=f(0,0)f(x,y)在(0,0)处连续,所以①成立;对于结论②,用定义法求fx’(0,0)==0.同理可得fy’(0,0)=00②成立;对于结论③,当(x,y)≠(0,0)时,用公式法求因为当(x,y)→(0,0)时,不存在,所以fx’(x,y)在(0,0)处不连续.同理,fy’(x,y)在(0,0)处也不连续,所以③不成立;对于结论④,fx’(0,0)=0,fy’(0,0)=0,△z=f(0+△x,0+△y)-f(0,0)=((△x)2+(△y)2).sin=ρ2故f(x,y)在(0,0)处可微,所以④成立,故选C.知识模块:多元函数积分学7.设函数z=μ2lnν,而μ=,ν=3x一2y,则= ( )A.B.C.D.正确答案:A解析:知识模块:多元函数积分学8.曲面z=F(x,y,z)的一个法向量为( )A.(Fx,Fy,Fz一1)B.(Fx一1,Fy一1,Fz一1)C.(Fx,Fy,Fz)D.(一Fx,一Fy,1)正确答案:A解析:令G(x,y,z)=F(x,y,z)一z,则Gx=Fx,Gy=Fy,Gz=Fz一1,故法向量为(Fx,Fy,Fz一1).知识模块:多元函数积分学9.曲面z=x2+y2 在点(1,2,5)处的切平面方程为( )A.2x+4y—z=5B.4x+2y—z=5C.z+2y一4z=5D.2x一4y+z=5正确答案:A解析:令F(x,y,z)=x2+y2一z,Fx(1,2,5)=2,Fy(1,2,5)=4,Fz(1,2,5)=一1切平面方程为2(x一1)+4(y一2)一(z一5)=02x+4y—z=5,也可以把点(1,2,5)代入方程验证,故选A.知识模块:多元函数积分学10.函数f(x,y)=x2+xy+y2+x—y+1的极小值点是( )A.(1,一1)B.(一1,1)C.(一1,一1)D.(1,1)正确答案:B解析:∵f(x,y)=x2+xy+y2+x—y+1,∴fx(x,y)=2x+y+1,fy(x,y)=x+2y一1,∴令得驻点(-1,1).又A=fxx(x,y)=2,B=fxy=1,C=fyy=2,∴B2一AC=1—4=一3<0,又A=2>0,∴驻点(一1,1)是函数的极小值点.知识模块:多元函数积分学11.函数z=x2一xy+y2+9x一6y+20有( )A.极大值f(4,1)=63B.极大值f(0,0)=20C.极大值f(一4,1)=一1D.极小值f(一4,1)=一1正确答案:D解析:因z=x2-xy+y2+9x-6y+20,于是=一x+2y-6,令=0,得驻点(-4,1),又因=2,故对于点(-4,1),A=2,B=一1,C=2,B2一AC=-3<0,且A>0,因此z=f(x,y)在点(一4,1)处取得极小值,且极小值为f(一4,1)=一1.知识模块:多元函数积分学填空题12.已知函数f(x+y,ex-y)=4xyex-y,则函数f(x,y)=________.正确答案:(x2一ln2y)y解析:由于f(x+y,ex-y)=[(x+y)2一ln2ex-y].ex-y,所以f(x,y)=(x2一ln2y)y.知识模块:多元函数积分学13.设z=xy,则dz=________.正确答案:yxy-1dx+xylnxdy解析:z=xy,则=yxy-1,=xylnx,所以dz=yxy-1dx+xylnxdy.知识模块:多元函数积分学14.设f(x,y)=sin(xy2),则df(x,y)=________.正确答案:y2cos(xy2)dx+2xycos(xy2)dy解析:df(x,y)=cos(xy2)d(xy2)=cos(xy2)(y2dx+2xydy)=y2cos(xy2)dx+2xycos(xy2)dy.知识模块:多元函数积分学15.已知z=(1+xy)y,则=________.正确答案:1+2ln2解析:由z=(1+xy)y,两边取对数得lnz=yln(1+xy),则,所以=1+2ln2.知识模块:多元函数积分学16.设f’’(x)连续,z=f(xy)+yf(x+y),则=________.正确答案:yf’’(xy)+f’(x+y)+yf’’(x+y)解析:f’(xy).y+yf’(x+y),f’f’’(xy).x+f’(x+y)+yf’’(x+y)=yf’’(xy)+f ’(x+y)+yf’’(x+y).知识模块:多元函数积分学17.设z==________.正确答案:解析:知识模块:多元函数积分学18.曲面x2+3z2=y在点(1,一2,2)的法线方程为________.正确答案:解析:记F(x,y,z)=x2+3z2一y,M0(1,一2,2),则取n=(2,一1,12),所求法线方程为.知识模块:多元函数积分学19.二元函数f(x,y)=x2(2+y2)+ylny的驻点为_______.正确答案:(0,)解析:fx’(x,y)=2x(2+y2),fy’(x,y)=2x2y+lny+1.令解得唯一驻点(0,).知识模块:多元函数积分学20.设f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处取得极值的必要条件是_______.正确答案:fx’(x0,y0)=fy’(x0,y0)=0解析:f(x,y)在点(x0,y0)处可微,则偏导数fx’(x0,y0),fy’(x0,y0)存在,f(x,y)在点(x0,y0)处取得极值,则有fx’(x0,y0)=fy’(x0,y0)=0;反之不成立.知识模块:多元函数积分学解答题21.求函数z=arcsin的定义域.正确答案:对于≤1,即x2+y2≤4;在中,应有x2+y2≥1,函数的定义域是以上两者的公共部分,即{(x,y)|1≤x2+y2≤4}.涉及知识点:多元函数积分学22.设函数z=x2siny+yex,求.正确答案:=2xsiny+yex,=2siny+yex,=2xcosy+ex.涉及知识点:多元函数积分学23.已知z=ylnxy,求.正确答案:涉及知识点:多元函数积分学24.设2sin(x+2y一3z)=x+2y一3z,确定了函数z=f(x,y),求.正确答案:在2sin(x+2y一3z)=x+2y一3z两边对x求导,则有2cos(x+2y —3z).,整理得.同理,由2cos(x+2y一3z),得=1.也可使用公式法求解:记F(x,y,z)=2sin(x+2y一3z)一x一2y+3z,则Fx=2cos(x+2y一3z).(一3)+3,Fy=2cos(x+2y一3z).2—2,Fx=2cos(x+2y一3z)一1,故=1.涉及知识点:多元函数积分学25.设μ=f(x,y,z)有连续偏导数,y=y(x)和z=z(x)分别由方程exy一y=0和ez一xz=0所确定,求.正确答案:.方程exy一y=0两边关于x求导,有exy,方程ez一xz=0两边关于x求导,有ez,由上式可得.涉及知识点:多元函数积分学26.设z=μ2ν一μν2,而μ=xcosy,ν=xsiny,求.正确答案:由于所以=(2μν一ν2)cosy+(μ2一2μν)siny=(2x2cosysiny—x2sin2y)cosy+(x2cos2y一2x2cosysiny)siny=2x2sinycos2y—x2sin2ycosy+x2sinycos2y一2x2sin2ycosy=3x2sinycosy(cosy—siny).=(2μν一ν2)(一xsiny)+(μ2一2μν)xcosy=(2x2cosysiny—x2sin2y)(一xsiny)+(x2cos2y一2x2cosysiny)xcosy=一2x3sinycosy(siny+cosy)+x3(siny+cosy)(sin2y—sinycosy+cos2y)=x3(siny+cosy)(1—3sinycosy).涉及知识点:多元函数积分学27.设f(x—y,x+y)=x2一y2,证明=x+y.正确答案:f(x—y,x+y)=x2一y2=(x+y)(x—y),故f(x,y)=xy.=x+y.涉及知识点:多元函数积分学28.设函数z(x,y)由方程=0所确定,证明:=z —xy.正确答案:涉及知识点:多元函数积分学29.求曲面ez一z+xy=3过点(2,1,0)的切平面及法线.正确答案:设F(x,y,z)=ez一z+xy一3则Fx=y,Fy=x,Fz=ez一1,所以切平面的法向量为n=(1,2,0).所求切平面为x一2+2(y一1)=0,即x+2y一4=0,法线为.涉及知识点:多元函数积分学30.求椭球面x2+2y2+3z2=21上某点M处的切平面π的方程,且π过已知直线L:.正确答案:令F(x,y,z)=x2+2y2+3z2一21,则Fx’=2x,Fy’=4y,Fz’=6z.椭球面的点M(x0,y0,z0)处的切平面π的方程为2x0(x—x0)+4y0(y—y0)+6z0(z—z0)=0,即x0x+2y0y+3z0z=21.因为平面π过直线L上任意两点,比如点应满足π的方程,代入有6x0+6y0+z0=21,z0=2.又因为x02+2y02+3z02=21,解上面方程有:x0=3,y0=0,z0=2及x0=1,y0=2,z0=2.故所求切平面的方程为x+2z=7和x+4y+6z=21.涉及知识点:多元函数积分学31.求旋转抛物面z=x2+y2一1在点(2,1,4)处的切平面及法线方程.正确答案:F(x,y,z)=x2+y2一z一1,n|(2,1,4)=(2x,2y,一1)|(2,1,4)=(4,2,一1).切平面方程为4(x一2)+2(y一1)一(z一4)=0,即4x+2y一z—6=0.法线方程为.涉及知识点:多元函数积分学32.确定函数f(x,y)=3axy—x3一y3(a>0)的极值点.正确答案:=0,联立有解得x=y=a或x=y=0,在(0,0)点,△>0,所以(0,0)不是极值点.在(a,a)点,△<0,且=-6a <0(a>0),故(a,a)是极大值点.涉及知识点:多元函数积分学33.某工厂建一排污无盖的长方体,其体积为V,底面每平方米造价为a 元,侧面每平方米造价为b元,为使其造价最低,其长、宽、高各应为多少?正确答案:设长方体的长、宽分别为x,y,则高为,又设造价为z,由题意可得z=axy+2b(x+y)(x>0,y>0),由于实际问题可知造价一定存在最小值,故x=y=就是使造价最小的取值,此时高为.所以,排污无盖的长方体的长、宽、高分别为时,工程造价最低.涉及知识点:多元函数积分学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

普通高等教育福建专升本考试
《高等数学》模拟试题及答案
一、选择题
1、函数的定义域为
A,且B, C, D,且
2、下列各对函数中相同的是:
A, B,
C,D,
3、当时,下列是无穷小量的是:
A, B, C, D,
4、是的
A、连续点
B、跳跃间断点
C、可去间断点
D、第二类间断点
5、若,则
A、-3
B、-6
C、
-9 D、-12
6. 若可导,则下列各式错误的是
A B
C D
7. 设函数具有2009阶导数,且,则
A B
C 1 D
8. 设函数具有2009阶导数,且,则
A 2 B
C D
9. 曲线
A 只有垂直渐近线
B 只有水平渐近线
C 既有垂直又有水平渐近线 D既无垂直又无水平渐近线
10、下列函数中是同一函数的原函数的是:
A, B, C, D,
11、设,且,则
A, B, +1 C,3 D,
12、设,则
A, B, C, D,13、,则
A,B,C,
D,
14. 若,则
A B C D
15.下列积分不为0的是
A B C D
16. 设在上连续,则
A B
C D
17.下列广义积分收敛的是___________.
A
B C
D
18、过(0,2,4)且平行于平面的直线方程为
A, B,
C, D,无意义
19、旋转曲面是
A,面上的双曲线绕轴旋转所得 B,面上的双曲线绕轴旋转所得
C,面上的椭圆绕轴旋转所得 D,面上的椭圆绕轴旋转所得
20、设,则
A,0 B, C,不存在 D,1
21、函数的极值点为
A,(1,1) B,(—1,1) C,(1,1)和(—1,1) D,(0,0)
22、设D:,则
A,B,C,
D,
23、交换积分次序,
A, B,
C, D,
24. 交换积分顺序后,__________。

A B
C D
25. 设为抛物线上从点到点的一段弧,则
A B C D
26. 幂级数的和函数为
A B C D
27、设,则级数
A,与都收敛B,与都发散
C, 收敛,发散 D,发散,收敛28、的通解为
A, B,
C, D,
29、的特解应设为:
A, B,
C, D,
30.方程的特解可设为
A B C D
二、填空题
31. 设的定义域为,则的定义域为________.
32.已知,则_________
33. 设函数在内处处连续,则=________.
34.函数在区间上的最大值为_________
35函数的单调增加区间为________
36.若,则________
37. 函数的垂直渐进线为________
38. 若,在连续,则________
39. 设________
40. 设,则
41. 二重积分,变更积分次序后为
42. L是从点(0,0)沿着的上半圆到(1,1)的圆弧,
则=
43. 将展开成的幂级数 .
44. 是敛散性为_________的级数。

45. 是微分方程的特解,则其通解为________.
三、计算题
46.求
47. 设,求及.
48. 求不定积分.
49. 设,求
50. 已知求
51. 计算,其中D由围成。

52. 将展开成麦克劳林级数
53. 求的通解
四、应用题
54. 设上任一点处的切线斜率为,且该曲线
过点
(1) 求
(2) 求由,所围成图像绕轴一周所围成
的旋转体体积。

55. 用定积分计算椭圆围成图形的面积,并求该图形绕轴旋转所得旋转体的体积。

五、证明题
56.设在区间上连续,在区间内可导,且
,证明在内至少存在一点,使。

第一套答案
一,选择题
DDDCD DDBCD ACDDC AACAD BCBCC BC CAD
二.填空题
31.32.33.1 34.5 35.x>0
36.
37.38.1/3 39.
40.
41.42.2
43.44.发散45.
三..计算题
46.
47.,
48.
49.
50.
51.=
52.分析:
=
53.
四.应用题
54.(1)(2)55.
五.证明题
在中对函数应用罗尔中值定理即可。

来源:
(青年人专升本考试网)。

相关文档
最新文档