对称矩阵与反对称矩阵定义设A是n阶方阵

合集下载

关于对称矩阵与反对称矩阵的若干性质

关于对称矩阵与反对称矩阵的若干性质

INTELLIGENCE 人 文 论 坛162关于对称矩阵与反对称矩阵的若干性质华北电力大学科技学院 朱亚茹摘 要: 对称矩阵与反对称矩阵是矩阵论中经常用到的两个特殊矩阵,占有很重要的地位,但在高等代数和线性代数教材中只涉及到了两个矩阵的定义,而没有提到其性质。

本文针对对称矩阵和反对称矩阵给出了其主要性质并加以了证明。

关键词:对称矩阵 反对称矩阵 性质对称矩阵与反对称矩阵是矩阵论中经常用到的两个特殊矩阵,在高等代数和线性代数中占有重要地位。

教材中在讨论对称矩阵时只给出了定义,但对其性质的研究很少,对反对称矩阵的性质则研究更少。

本文围绕对称矩阵和反对称矩阵给出了其主要性质并加以证明,为广大读者学习矩阵时提供参考。

一、对称矩阵定义:设()ij n A a =为n 阶方阵,如果满足T A A =,即(,1,2,,)ij ji a a i j n ==⋅⋅⋅,那么称A 为对称矩阵。

由于对称矩阵形式的特殊性,使其具有一般矩阵没有的性质,下面列举出对称矩阵一系列的性质,并运用对称矩阵的定义和转置运算的性质对每个性质进行了证明。

性质1:A 为n 阶对称矩阵,则m A (m 为正整数)也是对称矩阵。

证明:因为A 为n 阶对称矩阵,所以T A A =。

则()()m T T m m A A A ==,所以由定义可知m A (m 为正整数)也是对称矩阵。

性质2:A 为n 阶对称矩阵,则T A A +也是对称矩阵。

证明:因为()()T T T T T T A A A A A A +=+=+,所以TA A +也是对称矩阵。

性质3:A 为n 阶对称矩阵且A 可逆,则1A −也是对称矩阵。

证明:因为111()()T T A A A −−−==,所以1A −也是对称矩阵。

性质4:A 为m n ×阶的矩阵,则T AA 为m 阶对称阵,T A A 为n 阶对称阵。

证明:显然T AA 为m 阶矩阵,T A A 为n 阶矩阵,又由于()()T T T T T T AA A A AA ==,()()T T T T T T A A A A A A ==,所以TAA 为m 阶对称阵,T A A 为n 阶对称阵。

《线性代数》知识点-归纳整理

《线性代数》知识点-归纳整理

《线性代数》知识点归纳整理诚毅学生编01、余子式与代数余子式 .................................................................. 2-02、主对角线............................................................................ 2-03、转置行列式.......................................................................... 2-04、行列式的性质........................................................................ 3-05、计算行列式.......................................................................... 3-06、矩阵中未写出的元素 .................................................................. 4-07、几类特殊的方阵...................................................................... 4-08、矩阵的运算规则...................................................................... 4-09、矩阵多项式.......................................................................... 6-10、对称矩阵............................................................................ 6-11、矩阵的分块.......................................................................... 6-12、矩阵的初等变换...................................................................... 6-13、矩阵等价............................................................................ 6-14、初等矩阵............................................................................ 7-15、行阶梯形矩阵与行最简形矩阵......................................................... 7-16、逆矩阵 ............................................................................. 7-17、充分性与必要性的证明题 .............................................................. 8-18、伴随矩阵............................................................................ 8-19、矩阵的标准形:........................................................................ 9-20、矩阵的秩:........................................................................... 9-21、矩阵的秩的一些定理、推论............................................................. 9-22、线性方程组概念..................................................................... 10-23、齐次线性方程组与非齐次线性方程组(不含向量) .......................................... 10-24、行向量、列向量、零向量、负向量的概念................................................ 11-25、线性方程组的向量形式 ............................................................... 11-26、线性相关与线性无关的概念......................................................... 12-27、向量个数大于向量维数的向量组必然线性相关 ........................................... 12-28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题................. 12-29、线性表示与线性组合的概念......................................................... 12-30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题........................... 12-31、线性相关(无关)与线性表示的3个定理................................................ 12-32、最大线性无关组与向量组的秩.......................................................... 12-33、线性方程组解的结构…………………………………………………………………………………………12-01、余子式与代数余子式(1)设三阶行列式, 则①元素an,ai,au的余子式分别为:对Mi的解释:划掉第1行、第1列,剩下的就是一个二阶行列式,这个行列式即元素au的余子式Mi。

对称矩阵和反对称矩阵

对称矩阵和反对称矩阵

对称矩阵和反对称矩阵本文主要介绍对称矩阵和反对称矩阵的定义、性质和应用。

1.定义对称矩阵是指矩阵的元素在镜像中心线两侧相等,即矩阵的转置等于它本身。

定义如下:设A为n阶矩阵,如果A的转置矩阵AT等于A本身,则称A为对称矩阵。

反对称矩阵是指矩阵的元素在镜像中心线两侧相反,满足A=-AT。

定义如下:设A为n阶矩阵,如果A的转置矩阵AT等于-A本身,则称A为反对称矩阵。

反对称矩阵中对角线元素都为0。

只有当n为奇数时,才有可能构造出反对称矩阵。

2.性质对称矩阵和反对称矩阵都是特殊的方阵,它们有以下性质:1)对称矩阵的特征值都是实数。

2)对称矩阵可以通过正交相似变换对角化。

3)对称矩阵的每个子矩阵都是对称矩阵。

4)反对称矩阵的行列式都是偶数次幂。

5)反对称矩阵的秩为偶数。

6)反对称矩阵的特征值都是纯虚数或0。

3.应用对称矩阵和反对称矩阵在物理学、工程、数学等领域都有广泛应用。

下面介绍其中一些应用。

3.1 对称矩阵对称矩阵与二次型有密切关系。

二次型是由一个n维向量x和一个n阶矩阵A的乘积xTAx表示的。

如果A是对称矩阵,则称该二次型为正定二次型。

正定二次型的特征值都是正数,表现出对向量的正面影响,常用于优化问题中。

在物理学中,对称矩阵常用于表示物理系统的对称性,如空间对称性和内禀对称性。

此外,在计算机科学领域中,对称矩阵可以用于计算图像处理中的中值滤波和边缘检测。

3.2 反对称矩阵反对称矩阵在物理学中也很有用,可以表示无旋场,如电磁场和磁场等。

在机器学习算法中,反对称矩阵可以用于求解矩阵奇异值、特征值和特征向量等问题,具有很高的计算效率。

同时,反对称矩阵也能表示多种对称性和不变性,例如动量和角动量的守恒,以及物理系统中的对称映射。

此外,反对称矩阵还被广泛应用于控制论和自动化领域。

4.总结对称矩阵和反对称矩阵分别具有不同的特性和应用。

由于其广泛的应用性和重要性,对称矩阵和反对称矩阵成为数学、物理学、工程学等领域中不可或缺的基本工具。

线性代数性质公式整理

线性代数性质公式整理

线性代数第一章行列式一、相关概念1.行列式——n阶行列式是所有取自不同行不同列的n个元素的乘积的代数和,这里 是1,2,·n的一个排列。

当 是偶排列时,该项的前面带正号;当 是奇排列时,该项的前面带负号,即(1.1)这里表示对所有n阶排列求和。

式(1.1)称为n阶行列式的完全展开式。

2.逆序与逆序数——一个排列中,如果一个大的数排列在小的数之前,就称这两个数构成一个逆序。

一个排列的逆序总是称为这个排列的逆序数。

用 表示排列 的逆序数。

3.偶排列与奇排列——如果一个排列的逆序数是偶数,则称这个排列为偶排列,否则称为奇排列。

4.2阶与3阶行列式的展开—— ,5.余子式与代数余子式——在n阶行列式中划去 所在的第i行,第j列的元素,剩下的元素按原来的位置排法构成的一个n-1阶的行列式称为 的余子式,记为 ;称为 的代数余子式,记为 ,即 。

6.伴随矩阵——由矩阵A的行列式|A|所有的代数余子式所构成的形如,称为A的伴随矩阵,记作 。

二、行列式的性质1.经过转置行列式的值不变,即→行列式行的性质与列的性质是对等的。

2.两行互换位置,行列式的值变号。

特别地,两行相同(或两行成比例),行列式的值为0.3.某行如有公因子k,则可把k提出行列式记号外。

4.如果行列式某行(或列)是两个元素之和,则可把行列式拆成两个行列式之和:5.把某行的k倍加到另一行,行列式的值不变:6.代数余子式的性质——行列式任一行元素与另一行元素的代数余子式乘积之和为0三、行列式展开公式n阶行列式的值等于它的任何一行(列)元素,与其对应的代数余子式乘积之和,即|A|按i行展开的展开式|A|按j列展开的展开式四、行列式的公式1.上(下)三角形行列式的值等于主对角线元素的乘积;2.关于副对角线的n阶行列式的值3.两个特殊的拉普拉斯展开式:如果A和B分别是m阶和n阶矩阵,则4.范德蒙行列式5.抽象n阶方阵行列式公式 (矩阵)若A、B都是n阶矩阵,是A的伴随矩阵,若A可逆,是A的特征值:;; |AB|=|A||B|;;;;若 ,则,且特征值相同。

10矩阵概念

10矩阵概念

12 + 1 3 + 8 − 5 + 9 13 11 4 = 1 + 6 − 9 + 5 0 + 4 = 7 − 4 4 . 6 8 9 3+ 3 6+ 2 8+1
2.性质 .
(1) A + B = B + A (2) 交换律 结合律
cij = ai 1b1 j + L + ainbnj = ∑ aik bkj
k =1
n
i = 1,2,L , s ,
j = 1,2,L , m
称为 A 与 B 的积,记为 C = AB .
注意 的列数= 的行数. ① 乘积 AB 有意义要求 A 的列数=B 的行数. ② 乘积 AB 中第 i 行第 j 列的元素由 A 的第 i 行 列相应元素相加得到. 乘 B 的第 j 列相应元素相加得到. 如
一、加法
1.定义 设 A = (aij )s×n , B = (bij )s×n , 则矩阵 .
C = (cij ) s×n = ( aij + bij ) s×n
称为矩阵 与B的和,记作 C = A+ B .即 称为矩阵A与 的 矩阵
a11 + b11 a12 + b12 a21 + b21 a22 + b22 A+ B = L L a +b a +b s2 s1 s1 s 2
2.矩阵乘法的运算规律 .
(1) (2) ( AB )C = A( BC ) A( B + C ) = AB + AC
(结合律) 结合律) (分配律) 分配律)
( B + C ) A = BA + CA (3) (4) As×n E n = E s As×n = As×n A0 = 0, 0 A = 0

《高等代数》OK-第五版-矩阵转置OK

《高等代数》OK-第五版-矩阵转置OK

0 14 3 , 17 13 10
解法2
AB BT AT
T
1 4 2 2 1 0 17 7 2 0 0 3 14 13 . 1 3 1 1 2 3 10
18 B . 6
T
直观来看,将A的所有元素绕着一条从第1行第1 列元素出发的右下方45度的射线作镜面反转,即得 到A的转置。
1 2 A 3 4 5 6
2.转置矩阵的运算性质
1 A
T T

A;
T
2 A B AT BT ; 3 AT AT ; 4 AB T BT AT .
命题得证.
例3 证明任一 n 阶矩阵 A 都可表示成对称阵 与反对称阵之和.
证明
T
设C A AT
T T
则C A A
A
T
A C,
T T
所以C为对称矩阵.
设B A A ,
T
则B A A
T

AT A B,
所以B为反对称矩阵.
A A A A C B A , 2 2 2 2
E 2 XX T H ,
H是对称矩阵.
HH H
T 2
E 4 XX T 4XX T XX T
E 4 XX T 4 XX T E .
E 2 XX
T 2
E 4 XX
结合律
T
4 X X T X X T
一道小学五年级数学题,你知道 ?处填多少吗 ?
1 1 1 1
1 7 5 13 25 7 25 ? 1 3 1 5

矩阵理论与应用(张跃辉)(上海交大)第二章参考答案

矩阵理论与应用(张跃辉)(上海交大)第二章参考答案

(0.0.3)
是 U + W 的一组基. 为此需要证明该向量组线性无关, 且 U + W 的任何向量均可由这些向量 线性表示.

k1α1 + k2α2 + · · · + krαr + br+1βr+1 + · · · + bsβs + cr+1γr+1 + · · · + ctγt = 0. (0.0.4)
0 = V0 ⊂ F α1 ⊂ (F α1 ⊕ F α2) · · · ⊂ (F α1 ⊕ · · · ⊕ F αm) ⊂ · · · ⊂ (F α1 ⊕ · · · ⊕ F αn) = V
显然是一个空间的真包含的链,其长度 m = n. 因此需证的等式成立。该等式说明线性空间的 维数是子空间按包含关系所形成的链的最大长度。
3. (1) 设 V 是线性空间, U 与 W 是 V 的两个子空间. 证明:
dim (U + W ) = (dim U + dim W ) − dim (U ∩ W ).
(2) 设 V 是有限维线性空间. 证明并解释下面的维数公式: dim V = max{m | 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vm−1 ⊂ Vm = V, Vi 是 Vi+1 的真子空间}
5. 设
112
A = 0 1 1 ,
134
求 A 的四个相关子空间. 解:
R(A) = [(1, 0, 1)T , (1, 1, 3)T ], R(AT ) = [(1, 0, 1)T , (0, 1, 1)T ], N (A) = [(−1, −1, 1)T ], N (AT ) = [(−1, −2, 1)T ]

对称矩阵与反对称矩阵

对称矩阵与反对称矩阵

实对称矩阵 实数域内<1> 定义:设A 为一n 阶实方阵,则A 称为是对称的如果A ˊ=A 。

<2> 性质:设A 为一n 阶实对称矩阵,令A=(ij a ), i=1,2,3,···,n ;j=1,2,3,···,n 。

则有:1) ;'A A =2) ji ij a a =, i=1,2,3,···,n ;j=1,2,3,···,n ;推论:1),'2AA A =A 2的主对角线上的元素为∑==nj ij n i a 12,...,2,1,全大于或等于0; 2)①若A 2的主对角线上的元素全为0,则A 为一零方阵; ②若,...3,2,1,0==n A n ,则A 为一零方阵;3)每一个n 阶实对称矩阵A 对应于唯一的二次型f(X)=X ˊAX , '*1321),...,,,(n n x x x x X =其中;4)存在一n 阶正交矩阵U(即UU ˊ=E),使得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛,..., ,0 0 0, 0,=-n AU U λλλ.................0,...,0,0,....,0,0,211,其中ιλ,i=1,2,···,n 为A 的全部特征根。

5)实对称矩阵的特征根都是实数;属于实对称矩阵的不同特征值的特征向量正交。

<3>对称矩阵的构造1)常见的对称矩阵:对角矩阵,单位矩阵,正定矩阵,半正定矩阵;2)设A为一n阶对称方阵,则以下的矩阵是对称的,k为任一常数k A,A k,A+k E,k A+E,3)设A为任一n阶方阵,则以下的矩阵是对称的,k为任一常数A+Aˊ;k(A+Aˊ);AAˊ,k AAˊ,(A-Aˊ)2;4)设B为任一反对称矩阵,则以下的矩阵是对称的,k为任一常数kB2,<4>相关例题1、n阶实方阵A为对称方阵的充要条件是'2AAA 。

线性代数4.3 实对称矩阵

线性代数4.3 实对称矩阵

A ( A A)
正交变换
1 2 PAP n
P (e1 e2 en )
I A 0
求出基础解系i 解出特征值i
Schimidt正交化过程
i I A x 0
单位化得
ei
2 2 2 例:用正交变换把下列对称矩阵对角化 2 5 4 2 4 5 解 (1)求方阵A的特征值 由 E A 0 得特征值 1 2 1, 3 10
根据th4.8,对应特征值
i
恰有 ri 个线性无关的特征向量 (i 1,2,, s)
用施密特正交化然后再单位化,得到 ri 个正交的单位特征向量. 由th4.7知对应于不同特征值所对应的特征向量正交的, 故这n个单位特征向量是两两正交的。若以它们为列向量构成正交 矩阵P, 则
AP P1 AP diag (1, 2 ,n ) P
(3) 非零的实反对称矩阵不可能相似于实对角矩阵.
补充:幂等矩阵 定义
设 A 为 n 阶方阵, 若满足
A2 A 则称 A 为幂等矩阵.
性质
(1) 幂等矩阵的特征值为0或1. (2)
Ir 幂等矩阵一定相似于形如 0
0 的对称阵. 0
补充:幂零矩阵 定义
m 设 A 为 n 阶方阵, 若满足 A 0 (m为正整数),则称
对称矩阵
AT A

ai j a j i
a11 a12 a 1n a11 T a12 A a 1n
i, j 1, 2,, n
a1n a2 n ann
a21 an1 a11 a12 a22 an 2 a21 a22 a a a2 n ann n1 n 2 a21 an1 a22 an 2 a2 n ann a11 a21 A a n1

线性代数(复旦大学出版社)第二章 矩阵

线性代数(复旦大学出版社)第二章   矩阵

第二章矩阵第一节矩阵的概念1、分类:行矩阵:只有一行的矩阵列矩阵:只有一列的矩阵零矩阵O:元素全为零的矩阵单位阵E:主对角线上元素为1,其他元素为0的方阵数量阵(纯量阵):λE对角阵:不在主对角线上的元素都为0的方阵上(下)三角阵:主对角线上以下(上)的元素全为0的方阵2、两矩阵同型:两个矩阵行数且列数都相等两矩阵相等:两矩阵同型,且对应元素相等。

记做A=B。

3、不同型的零矩阵是不相等的第二节矩阵的运算设A,B,C为m×n矩阵,λ, μ为数一、加法:只有同型矩阵才能进行加法运算(1)交换律:A+B=B+A(2)结合律:(A+B)+C=A+(B+C)(3)A+O=A二、减法:A-B=A+(-B) -B称为B的负矩阵三、乘法:1、只有当第一个矩阵(左矩阵)的列数等于第二个矩阵(行矩阵)的行数时,两个矩阵才能相乘。

简记为:(m×s)(s×n)=(m×n)例: A为2×3矩阵,B为3×2矩阵,则AB=C为2×2矩阵2、数与矩阵:(1)(λμ)A=λ(μA)=μ(λA)(2)(λ+μ)A=λA+μA(3)λ(A+B)=λA+λ B(4)1*A=A, (-1)*A=-A矩阵与矩阵:(1)结合律:(AB)C=A(BC)(2)分配律:A(B+C)=AB+AC(B+C)A=BA+CA(3)λ(AB)=(λA)B=A(λB)(4)EA=AE=A(5)A k A l=A k+l(6)(A k)l=A kl3、矩阵乘法不满足交换律,即(AB)C≠(AC)B另外:(1)一般有AB≠BA (A与B可交换时,等式成立)(2)AB=O,不能推出A=O或B=O(3)AB=AC,A≠O,不能推出B=C(4)(AB)k≠A k B k(A与B可交换时,等式成立)4、可交换的:对于两个n阶方阵A,B,有AB=BA,则称A与B是可交换的。

纯量阵与任意同行方阵都是可交换的。

线性代数第二章

线性代数第二章

课题:矩阵教学目的:理解矩阵的概念,熟练掌握矩阵运算;理解矩阵的初等变换及作用;理解矩阵的秩和逆的概念,熟练掌握矩阵的秩和逆的求解教学重点:矩阵运算、秩和逆的求解教学难点:矩阵的乘法、秩和逆的概念教学时数:10教学设计:§1、§2 矩阵的概念与运算一、矩阵的概念1 矩阵的定义①定义6P def1②矩阵的行、列③行标、列标④元素(元)⑤主对角线、主对角元2 特殊矩阵①矩阵的行、列数目特殊行矩阵(只有一行的矩阵) def列矩阵(只有一列的矩阵) defn阶方阵(行数等于列数) def 注:1阶方阵②矩阵的元素特殊零矩阵 def负矩阵 def单位阵 def3 矩阵的同型 def4 矩阵的相等 def二、矩阵的运算1 矩阵的加、减法①定义9P②性质a)满足交换律与结合律b)A+(-A)=O A+O=Ac)A+(-B)=A-B (减法也可用此式定义)注:可加(减)的条件是两矩阵同型,结果也同型2 矩阵的数乘 ① 定义 10P ② 性质a) ()()A A αβαβ= b) ()A B A B ααα+=+ c) ()A A A αβαβ+=+3 矩阵的乘法 ① 定义 12P注意:可乘条件:左矩阵的列数等于右矩阵的行数 相乘结果:为左矩阵的行数右矩阵的列数 ② 乘法举例例1 设21123,13010A B -⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦求AB 解:2112322613010153AB --⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦例2 2115003,20141A B ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦求AB 解 21410115003603201416201AB ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦③ 性质a) 结合律 ()()A BC AB C = b) 左、右分配律 ()A B CAC BC +=+()A B C AB AC +=+c) 不满足交换律主要有以下三方面的原因1) 若AB 有意义,BA 未必有意义如 2223A B ⨯⨯有意义而2322B A ⨯⨯则没有意义 2) 即使AB 、BA 都有意义,也不一定同型 如322333A B C ⨯⨯⨯=, 233222B A C ⨯⨯⨯=3) 即使AB 、BA 都有意义且同型,也不一定相等如24241236A B -⎡⎤⎡⎤==⎢⎥⎢⎥---⎣⎦⎣⎦ 16320081600AB BA --⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦d) 乘法消去律不满足即当AB AC =一般说来没有B C = 如000110010000A B C ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦虽有0000AB AC ⎡⎤==⎢⎥⎣⎦,但B C ≠ 以如512100603011A B C ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦虽有1100ACBC ⎡⎤==⎢⎥⎣⎦,但A B ≠ ④ 方阵的幂对于方阵A 与自然数k ,称k nA A A A =⋅⋅⋅为方阵A 的k 次幂,具有性质: a) 1212k k k k A A A +=, b) 1212()k k k k A A =例3已知1101A ⎛⎫= ⎪⎝⎭,求nA ⑤矩阵的行列式 AB A B=⋅4 矩阵的转置 ① 定义 16P② 性质1) ()T TAA =2) ()T T T A B A B +=+3) ()()T T A A λλ= 4) ()TT T AB B A =作业:P100 2,4,5(2)(3)(6),10,14((1)(5),17(1),18§3、§4 特殊矩阵与分块矩阵一、 特殊矩阵 1 对角矩阵如果n 阶方阵()ij A a =中的元素满足:0(,1,2,)ij a i j i j n =≠= ,则称A 为对角矩阵。

第四讲矩阵的运算与逆矩阵

第四讲矩阵的运算与逆矩阵

§2.2 矩阵的运算1.矩阵的加法定义:设有两个n m ⨯矩阵)(),(ij ij b B a A ==,那么矩阵A 与B 的和记作A +B ,规定为n m ij ij b a B A ⨯+=+)(设矩阵)(),(ij ij a A a A -=-=记,A -称为矩阵A 的负矩阵.显然有 0)(=-+A A . 规定矩阵的减法为)(B A B A -+=-.2.数与矩阵相乘定义:数λ与矩阵)(ij a A =的乘积记作A λ,规定为n m ij a A ⨯=)(λλ 由数λ与矩阵A 的每一个元素相乘。

数乘矩阵满足下列运算规律(设B A ,为同型矩阵,μλ,为数): )(i )()(A A μλλμ=)(ii A A A μλμλ+=+)()(iii B A B A λλλ+=+)(3.矩阵与矩阵相乘定义:设)(ij a A =是一个s m ⨯矩阵,)(ij b B =是一个n s ⨯矩 那么规定矩阵A 与矩阵B 的乘积是一个n m ⨯矩阵)(ij c C =,其中),,2,1;,,2,1(,12211n j m i b a b a b a b a c kj sk ik sj is j i j i ij ===+++=∑=并把此乘积记作AB C =,两矩阵相乘,要求左边距阵的列等于右边矩阵的行,乘积的矩阵的行与左边的行相同,列与右边的列相同。

例3:求矩阵⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=043211,012301B A 的乘积BA AB 及. 解 ⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--=1204638311,50113BA AB 从本例可以看出AB 不一定等于BA ,即矩阵乘法不满足交换律 注:若有两个矩阵B A 、满足0=AB ,不能得出00==B A 或的结论,即矩阵乘法不满足消去律.矩阵的乘法满足下列结合律与分配律)(i )()(BC A C AB =)(ii 为数)其中λλλλ(),()()(B A B A AB == )(iii CA BA A C B AC AB C B A +=++=+)(,)(对单位矩阵E ,易知n m n n m n m n m m A E A A A E ⨯⨯⨯⨯=⋅=,可简记为 A AE EA ==4.矩阵的转置的定义:把矩阵A 的行列交换得到一个新矩阵,叫做A 的转置矩阵,记作T A矩阵的转置运算满足下述运算规律(假设运算都是可行的) )(i A A T T =)()(ii T T T B A B A +=+)()(iii T T A A λλ=)()(iv T T T A B AB =)(5.对称矩阵与反对称矩阵的定义:设A 是n 阶方阵,如果满足A A T =,即),,2,1,(,n j i a a ji ij ==则称A 是对称矩阵.对称矩阵的特点是:它的元素以对角线为对称轴对应相等. 如果满足A A T-=,即⎩⎨⎧=≠-=0)(ii ji ij a j i a a 则称A 是反对称矩阵.反对称矩阵的特点是:它的元素以对角线为对称轴对应相反6.方阵的行列式:由n 阶矩阵A 的元素构成的行列式(各元素位置不变),称为矩阵A 的行列式,记作A 或A det设A ,B 为n 阶方阵,λ为数,则有下列等式成立:B A AB A A A A n T ===;;λλ例4:设A 是n 阶反对称矩阵,B 是n 阶对称矩阵,证明:BA AB +是n 阶反对称矩阵证明:)()()()()()(,BA AB B A A B B A A B BA AB BA AB BB A A T T T T T T T T T +-=-+-=+=+=+∴=-=所以结论成立例5:设A 是n 阶方阵,满足E AA T =,且1-=A ,求E A + 解:由于A E A E A E A A E A AA A E A T T T T +-=+-=+=+=+=+)( 所以02=+E A ,即E A +=0§2.3矩阵的逆7.逆矩阵:对于n 阶矩阵A ,如果有一个n 阶矩阵B ,使E BA AB ==,则称矩阵A 是可逆的,并把B 称为A 的逆矩阵。

线性代数自考知识点汇总各章重点

线性代数自考知识点汇总各章重点

行列式1. 行列式的性质性质1 行列式与它的转置行列式相等T D D =.性质2 互换行列式的两行〔列〕,行列式变号.推论1 如果行列式有两行〔列〕的对应元素完全相同,则此行列式的值为零.如a b ca b c 0a b c'''= 性质3 行列式的某一行〔列〕中全部的元素都乘以同一数k ,等于用数k 乘此行列式.如111213111213212223212223313233313233a a a a a a ka ka ka k a a a a a a a a a = 推论2 如果行列式中有两行〔列〕元素成比例,则此行列式的值为零.如a b ca b c 0ka kb kc'''= 性质4 假设行列式的某一行〔列〕的元素都是两数之和,则这个行列式等于两个行列式之和.如111213111213111213212122222323212223212223313233313233313233a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ''''''+++=+ 性质5 把行列式的某一行〔列〕的各元素乘以同一数然后加到另一行(列)对应的元素上去,行列式的值不变.如111213111213212223212223313233311132123313a a a a a a a a a a a a a a a a ka a ka a ka =+++2. 余子式与代数余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素ij a 的余子式,记作ij M ,i jij ij A (1)M +=-叫做元素ij a 的代数余子式.如111213212223313233a a a a a a a a a ,元素23a 的余子式为1112233132a a M a a =,元素23a 的代数余子式为11122323233132a a A (1)M a a +=-=-.3. 行列式按行〔列〕展开法则定理1 行列式的值等于它的任一行〔列〕的各元素与其对应的代数余子式乘积之和,即1122i i i i in in D a A a A a A =+++或 1122j j j j nj nj D a A a A a A =+++如111213212223313233a a a a a a a a a 111112121313a A a A a A =++ 定理2 行列式任一行〔列〕的元素与另一行〔列〕的对应元素的代数余子式乘积之和等于零,即12120,j j i i jn i n a A a A a A +++=或,11220.j j j j nj nj a A a A a A i j +++=≠4. 行列式的计算〔1〕二阶行列式1112112212212122a a a a a a a a =- 〔2〕三阶行列式〔3〕对角行列式1212n nλλλλλλ=,n(m 1)21212n n(1)λλλλλλ-=-〔4〕三角行列式1111121n 2122222n 1122nn n1n2nnnna a a a a a a a a a a a a a a ==〔5〕消元法:利用行列式的性质,将行列式化成三角行列式,从而求出行列式的值.〔6〕降阶法:利用行列式的性质,化某行〔列〕只有一个非零元素,再按该行〔列〕展开,通过降低行列式的阶数求出行列式的值.〔7〕加边法:行列式每行〔列〕全部元素的和相等,将各行〔列〕元素加到第一列〔行〕,再提出公因式,进而求出行列式的值.矩阵1. 常见矩阵1〕对角矩阵:主对角线以外的元素全为0的方阵,称为对角矩阵.记作Λ. 2〕单位矩阵:主对角线上的元素全为1的对角矩阵,称为单位矩阵.记作 E.3〕上三角矩阵:对角线以下的元素全为0的方阵.如11121n 222n nn a a a a a a ⎛⎫⎪⎪⎪ ⎪⎝⎭4〕下三角矩阵:对角线以上的元素全为0的方阵.如112122n1n2nn a a a a a a ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭5〕对称矩阵:设A 为n阶方阵,假设T A A =,即ij ji a a =,则称A 为对称矩阵. 6〕反对称矩阵:设A 为n阶方阵,假设T A A =-,即ij ji a a =- ,则称A 为反对称矩阵. 7〕正交矩阵:设A 为n阶方阵,如果T AA E =或T A A E =,则称A 为正交矩阵. 2. 矩阵的加法、数乘、乘法运算 〔1〕矩阵的加法 如a b c a b c a a b b c c d e f d e f d d e e f f ''''''+++⎛⎫⎛⎫⎛⎫+=⎪⎪⎪''''''+++⎝⎭⎝⎭⎝⎭注:① 只有同型矩阵才能进行加减运算;② 矩阵相加减就是对应元素相加减. 〔2〕数乘矩阵如a b c ka kb kc k d e f kd ke kf ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭注:数乘矩阵就是数乘矩阵中的每个元素.〔3〕矩阵的乘法:设ij m ij n s s A (a ),B (b )⨯⨯==,规定ij m n AB C (c ),⨯== 其中sij i11j i22j is sj ik kj k 1c a b a b a b a b ==+++=∑(i 1,2,,m,j 1,2,,n.)==注:①左矩阵A 的列数等于右矩阵B 的行数;②左矩阵A 的第i 行与右矩阵B 的第j 列对应元素乘积的和是矩阵乘积C 的元素ij c . ③左矩阵A 的行数为乘积C 的行数,右矩阵B 的列数为乘积C 的列数. 如行矩阵乘列矩阵是一阶方阵〔即一个数〕,即 列矩阵乘行矩阵是s 阶方阵,即 3. 逆矩阵设n 阶方阵A 、B ,假设AB=E 或BA=E ,则A ,B 都可逆,且11AB,B A --==.〔1〕二阶方阵求逆,设a b A c d ⎛⎫= ⎪⎝⎭,则1*d b 11A A c a A ad bc --⎛⎫== ⎪--⎝⎭〔两调一除法〕.〔2〕对角矩阵的逆11111221n n a a a a a a ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭, 111n 2121n1a a a a a a ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭.〔3〕分块对角阵的逆11111221s s A A A A ;A A ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭111s 2121s1A A A A A A ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭. 〔4〕一般矩阵求逆,初等行变换的方法:()()ERT1A E E A -−−−→.4. 方阵的行列式由n阶方阵A 的元素所构成的行列式〔各元素的位置不变〕叫做方阵A 的行列式.记作A 或det 〔A 〕. 5. 矩阵的初等变换下面三种变换称为矩阵的初等行〔列〕变换: 〔1〕互换两行〔列〕;〔2〕数乘某行〔列〕;〔3〕某行〔列〕的倍数加到另一行〔列〕. 6. 初等矩阵单位矩阵经过一次初等变换得到的矩阵,称为初等矩阵.如001100100010,0k 0,010100001k 01⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭都是初等矩阵. 7. 矩阵的秩矩阵A 的非零子式的最高阶数,称为矩阵A 的秩.记作R 〔A 〕或r 〔A 〕. 求矩阵的秩的方法:〔1〕定义法:找出A 中最高阶的非零子式, 它的阶数即为A 的秩.〔2〕初等行变换法:ERTA −−−→行阶梯形矩阵,R 〔A 〕=R 〔行阶梯形矩阵〕=非零行的行数. 8. 重要公式及结论〔1〕矩阵运算的公式及结论矩阵乘法不满足交换律,即一般地A B ≠AB;矩阵乘法不满足消去律,即一般地假设AB=AC ,无B=C ;只有当A 可逆时,有B=C.一般地假设AB=O ,则无A=O 或B=O.()222A B ?A 2AB B +++.〔2〕逆矩阵的公式及定理A 可逆⇔|A |≠0⇔A ~E 〔即A 与单位矩阵E 等价〕 〔3〕矩阵秩的公式及结论R ( AB ) ≤R ( A ), R ( AB ) ≤R ( B ).特别地,当A 可逆时,R(AB)=R(B);当B 可逆时,R(AB)=R(A).()()ET A B A ~B R A R B −−→⇔⇒= 即等价矩阵的秩相等或初等变换不改变矩阵的秩.9. 矩阵方程〔1〕设 A 为n 阶可逆矩阵,B 为n ×m 矩阵,则矩阵方程AX=B 的解为1X A B -=;解法:① 求出1A -,再计算1A B -; ② ()()ERTAB E X −−−→ .〔2〕设 A 为n 阶可逆矩阵,B 为m ×n 矩阵,则矩阵方程XA=B 的解为1X BA -=;解法:① 求出1A -,再计算1BA -; ② ECT A E B X ⎛⎫⎛⎫−−−→⎪ ⎪⎝⎭⎝⎭. 10. 矩阵间的关系〔1〕等价矩阵:如果矩阵A 经过有限次初等变换变成矩阵B ,那么称矩阵A 与B 等价.即存在可逆矩阵P ,Q ,使得PAQ=B.性质:等价矩阵的秩相等.〔2〕相似矩阵:如果存在可逆矩阵P ,使得1P AP B -=,那么称A 与B 相似. 性质:相似矩阵有相同的特征多项式,相同的特征值,相同的行列式,相同的迹. 〔3〕合约矩阵:如果存在可逆矩阵P ,使得T P AP B =,那么称A 与B 合约. 性质:合约矩阵的秩相等.向量空间1. 线性组合〔1〕假设α=k β,则称向量α与β成比例. 〔2〕零向量O是任一向量组的线性组合.〔3〕向量组中每一向量都可由该向量组线性表示. 2. 线性相关与线性无关〔1〕 单独一个向量线性相关当且仅当它是零向量. 〔2〕 单独一个向量线性无关当且仅当它是非零向量. 〔3〕 两向量线性相关当且仅当两向量对应成比例.〔4〕 两向量线性无关当且仅当两向量不对应成比例. 〔5〕 含有O向量的向量组肯定线性相关. 〔6〕 向量组12m ,,,ααα线性相关的充分必要条件是① 齐次线性方程组22m m 11k k 0k ααα+++=有非零解.② 以向量组为列作的矩阵()12m ,,,ααα的秩<向量的个数m.〔7〕n 个n 维向量12n ,,,ααα线性相关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα=0.〔8〕 向量组12m ,,,ααα线性无关的充分必要条件是① 齐次线性方程组22m m 11k k 0k ααα+++=只有零解.② 以向量组为列作的矩阵()12m ,,,ααα的秩=向量的个数m.〔9〕 n 个n 维向量12n ,,,ααα线性无关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα≠0.〔10〕当m>n 时,m 个n 维向量肯定线性相关.定理1:向量组 a 1 , a 2 ,……, a m 〔m ≥2〕线性相关的充分必要条件是向量组中至少有一个向量可由其余m-1个向量线性表示.向量组线性无关的充分必要条件是向量组中任何一个向量都不能由其余向量线性表示. 定理2:如果向量组A :a 1 , a 2 ,……, a r 线性无关,而向量组 a 1 , a 2 ,……, a r ,α线性相关,则α可由A 线性表示,且表示式唯一.定理3:设向量组2r 1A :,,,ααα,12r r 1m B :,,,,,,ααααα+假设A 线性相关,则向量组B 也线性相关;反之,假设向量组B 线性无关,则向量组A 也线性无关.〔即局部相关,则整体相关;整体无关,则局部无关〕. 定理4:无关组的截短组无关,相关组的接长组相关. 3. 极大无关组与向量组的秩定义1 如果在向量组 T 中有 r 个向量 a 1 , a 2 ,……, a r ,满足条件: ⑴ 向量组 a 1 , a 2 ,……, a r 线性无关, ⑵ T α∀∈,2r 1,,,,αααα线性相关.那么称向量 a 1 , a 2 ,……, a r 是向量组 T 的一个极大无关组.定义2 向量组的极大无关组中所含向量的个数,称为向量组的秩.定义3 矩阵的行向量组的秩称为矩阵的行秩;矩阵的列向量组的秩称为矩阵的列秩。

矩阵相关知识点

矩阵相关知识点

矩阵的概念:由m ×n 个数排列成m 行n 列的数表叫做m ×n 矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mnm2m12n22211n1211a ...a a............a ...aa a ...a a 其中A 的元素,简称为元.◎元素是实数的矩阵称为实矩阵. ◎元素是复数的矩阵称为复矩阵.几种特殊的矩阵1.如果A m ×n 矩阵的所有的元都是零的矩阵称为 零矩阵,记为 0mxn .2.如果A, B 都是m ×n 矩阵, 就说A 与B 是同型的.3.在m ×n 矩阵A=(a ij )中, 当m=n 时称为n 阶方阵.4.只有一行或者一列的矩阵称为行(列)矩阵/行(列)向量.5.⎥⎥⎦⎤对角矩阵 若全为k ,则为数量矩阵.6.上下三角矩阵矩阵的线性计算说明 只有当两个矩阵是同型矩阵时,才能进行加法运算.设A,B,C 均为数域P 上的m ×n 矩阵,k,l ∈P,不难验证,矩阵的加法和数乘满足如下运算规律: (1) A+B=B+A; 加法交换律(2) (A+B)+C=A+(B+C); 加法结合律(3) A+0=0+A=A,这里0是与A 同型的零矩阵; (4) A+(-A)=(-A)+A=0; (5) k(A+B)=kA+kB ; (6) (k+l)A=kA+lA ;(7) (kl)A=k(lA)=l(kA); (8) 1A=A, 0A=0.矩阵的乘法注意:当矩阵A 的列数等于B 矩阵的行数时,AB 才有意义.矩阵的乘法不满足交换律矩阵乘法的运算规律1).(AB)C=A(BC)2).A(B+C)=AB+AC ,(B+C)A=BA+CA 3).k(AB)=(kA)B=A(kB)A=4).A m ×n E n =E m A m ×n =A m ×n ● 方阵的幂定义若A 是n 阶矩阵,则A k 为A 的k 次幂,即A k =A A A, A m A k =A m+k 并且(A m ) k =A mk . (m,k 为正整数)注意: (AB)k ≠A k B k● 方阵行列式的性质 (1) |kA n |=k n |A n |≠k |A n |; (2) |AB |=|A ||B |转置矩阵将矩阵A 的行与列互换,且保持它们的先后次序不改变,得到的n ×m ,称为矩阵A 的转置矩阵,记为A T.转置矩阵的运算性质● 对称矩阵定义设A=(aij)为n 阶方阵,如果有A T=A,即aij=aji (i, j=1, 2,…,n),则称A 是对称矩阵. ● 反对称矩阵定义 如果有A T=–A,即aij=–aji(i,j=1,2, …,n),则称A 是反对称矩阵. 注:反对称矩阵其主对角元素为0逆矩阵定义 对于n 阶矩阵 A,如果有一个n 阶矩阵B ,使得AB=BA=E,则说矩阵A 是可逆的,并把矩阵B 称为A 的逆矩阵.A 的逆矩阵记作.(若A 是可逆矩阵, 则A 的逆矩阵是唯一的.) ● 逆矩阵的充要条件 定理1 矩阵 A 可逆的充要条件是A ≠0,且A-1=A1A *其中A *为矩阵 A 的伴随矩阵. 逆否命题 :矩阵 A 不可逆的充要条件是|A|=0.证明:矩阵 A 可逆 ∴AA -1=A=E 即|A||A -1|=1 ∴|A|≠0又AA *=A *A=|A|E....推论. 若A n B n =E (或BA=E ),则B=A -1。

线性代数网络教学阶段测试二

线性代数网络教学阶段测试二

一、单项选择题(共20题)1.设矩阵,则()A.a=3,b=-1,c=1,d=3B.a=-1,b=3,c=1,d=3C.a=3,b=-1,c=0,d=3D.a=-1,b=3,c=0,d=3【正确答案】C【您的答案】A【答案解析】2.设A为反对称矩阵,下列说法正确的是()【正确答案】B【您的答案】A【答案解析】矩阵运算的性质:反对称阵的概念3.设,则下列各式中恒正确的是().【正确答案】C【您的答案】A【答案解析】4.设A为n阶方阵,n≥2,则︱-5A︱=()A.(-5)n︱A︱B.-5︱A︱C.5︱A︱D.5n︱A︱【正确答案】A【您的答案】A【答案正确】【答案解析】矩阵运算的定义;行列式的性质,特别是︱λA︱=λn︱A︱.5.设矩阵()【正确答案】B【您的答案】A【答案解析】6.设有意义,则C是()矩阵.【正确答案】D【您的答案】A【答案解析】7.设A是4×5矩阵,秩(A)=3,则()A.A中的4阶子式都不为0B.A中存在不为0的4阶子式C.A中的3阶子式都不为0D.A中存在不为0的3阶子式【正确答案】D【您的答案】A【答案解析】矩阵秩的概念,请参看教材P70.8.设A、B是同阶对称矩阵,则AB是()A.对称矩阵B.非对称矩阵C.反对称矩阵D.不一定是对称矩阵【正确答案】D【您的答案】A【答案解析】因为A,B为对称矩阵,即A T=A,B T=B。

又(AB)T=B T A T=BA,若A与B乘积可交换,即AB=BA,则(AB)T=BA=AB,即AB为对称矩阵。

所以AB与BA不一定相等,所以AB不一定是对称矩阵。

9.下列结论正确的是()【正确答案】C【您的答案】A【答案解析】10.设A为2阶可逆矩阵,且已知,则A= ()【正确答案】D【您的答案】A【答案解析】11.设A,B是两个同阶的上三角矩阵,那么A T·B T是()矩阵。

A.上三角B.下三角C.对角形D.既非上三角也非下三角【正确答案】B【您的答案】A【答案解析】A T、B T均为下三角矩阵,因此A T B T也是下三角矩阵12.【正确答案】D【您的答案】A【答案解析】13.设A=,则A*=()。

矩阵的转置、对称矩阵和可逆矩阵

矩阵的转置、对称矩阵和可逆矩阵

不同.
称为矩阵 的伴随矩阵.
性质
证明

故 同理可得
逆矩阵的概念和性质 定义 对于 阶矩阵 ,如果有一个 阶矩阵 , 使得 则说矩阵 是可逆的,并把矩阵 称为 的逆矩阵.
例设
说明 若 是可逆矩阵,则 的逆矩阵是唯一的. 若设 和 是 的可逆矩阵, 则有
可得 所以 的逆矩阵是唯一的,即
定理1 矩阵 可逆的充要条件是
,且
证明 若 可逆,
按逆矩阵的定义得 证毕
奇异矩阵与非奇异矩阵的定义
推论 证明
逆矩阵的运算性质 证明
证明
逆矩阵的求法
例4 求方阵
的逆矩阵.

同理可得 故
例5 解
例6 设 解
于是
例7
例8
解 给方程两端左乘矩阵
给方程两端右乘矩阵 得
给方程两端左乘矩阵
给方程两端右乘矩阵 得
主要内容
1. 转置矩阵 2. 对称矩阵与反对称矩阵 3. 可逆矩阵
1、转置矩阵

转置矩阵的运算性质
例1 已知 解法1
解法2
2. 对称矩阵与反对称矩阵
对称阵: 设 A 为 n 阶方阵,如果满足
,即
那末 A 称为对称矩阵.
对称矩阵的元素以主对角线为对称轴.
反对称阵: 设 A 为 n 阶方阵,若满足 则称 A 为反对称矩阵.
,即
显然,反对称矩阵的主对角元都是零.
例2 注:对称矩阵的乘积不一定是对称矩阵.
例3 设列矩阵 证明
满足
思考题
成立的充要条件是什么?


成立的充要条件为
3. 可逆矩阵
定义 由 阶方阵 的元素所构成的行列式, 叫做方阵 的行列式,记作 或

矩阵转置的运算法则(7篇)

矩阵转置的运算法则(7篇)

矩阵转置的运算法则(7篇)以下是网友分享的关于矩阵转置的运算法则的资料7篇,希望对您有所帮助,就爱阅读感谢您的支持。

篇一第二节矩阵的转置• • • 一、定义二、运算规律三、特殊矩阵一、定义把矩阵A的行换成同序数的列得到的新矩阵,叫做A 的转置矩阵,记作AT 或A′ . B = ( 9 6), ⎛ 1 4⎞⎛ 1 2 2⎞ T ⎜⎛9⎞ A = 2 5⎟. 例A=⎜⎟, T ⎜⎟ B = ⎜⎟. 4 5 8⎠⎜ 2 8⎟⎝⎝ 6⎠⎝⎠λ 二、运算规律(假定运算合法, A,B是矩阵,∈R ) (1) A( )TT=AT( A + B )T = AT + BT (2)(3)( λ A ) = λ AT(4)( AB ) = B AT TT特别( A1 A2 L An−1 An ) = AnT An−1T L A2T A1TT下面证明( AB )T = BT AT . 证明:思路:先证两矩阵行数和列数相同,再证每个元素对应相等. 设A是s ×n矩阵, B是n × m 矩阵, 则AB 是s × m 矩阵,( AB )T 是m × s矩阵; B T 为m × n矩阵, AT 为n × s 矩阵, 故 B T AT 为m × s矩阵; ∴( AB )T 与B T AT 是同型矩阵 .( AB )T 的i行j列元素= ( AB )的j行i列元素=( A 的j 行) ( B 的i 列) = ∑ a jk bkik =1nB A 的i行j列元素= ( B 的i行)( A 的j列)T T T T⎡ a j1 ⎤⎢a ⎥ T T ⎢ j2 ⎥ = ( B的i列) ( A的j行) = ( b 1 i , b 2 i , L , b ni ) ⎢ M ⎥⎢a ⎥⎣ jn ⎦= ∑ bki a jk = ∑ a jk bki , ( i = 1, 2 , L , m , j = 1, 2 , L , s )k =1 k =1nn= ( AB )T 的i行j列元素∴( AB)T = BT AT .⎛ 1 0⎞⎜ 2 3⎟, B = ⎛ 2 例1 已知A = ⎜⎜4 ⎟⎝⎜ 4 5⎟⎝⎠⎛ 2 ⎛ 1 0⎞⎜ 2 3 ⎟⎛ 2 1 ⎞ = ⎜ 16 解AB = ⎜⎟⎜ 4 3⎟⎜⎠⎜⎜ 4 5⎟⎝⎝⎠⎝ 28 ⎛ 2 16 28 ⎞∴AB = ⎜()1 11 19 ⎟⎝⎠T1⎞ , 求( AB )T , BT AT . ⎟ 3⎠ 1⎞ 11 ⎟⎟ 19 ⎟⎠而⎛ 2 4 ⎞⎛ 1 2 4 ⎞⎛ 2 16 28 ⎞ B A =⎜⎟⎜ 0 3 5 ⎟ = ⎜ 1 11 19 ⎟⎝ 1 3 ⎠⎝⎠⎝⎠T TT T T 显然( AB ) = B A3.特殊矩阵1) 对称矩阵定义设A为n阶方阵,若AT = A ,即aij = a ji,那么称A 为对称矩阵. 如特点:它的元素以主对角线为对称轴对应相等.注意两个同阶的对称矩阵的和还是对称矩阵,对称矩阵的数乘也是对称矩阵.但两个对称矩阵的乘积不一定是对称矩阵.⎛ 1 0 1 −1⎞⎜⎟⎜ 0 − 1 3 1⎟⎜ 1 3 2 2⎟⎜⎜ − 1 1 2 0⎟⎟⎠⎝2) 反对称矩阵定义设A 为n 阶方阵,若AT = − A,即aij = − a ji , 那么称A 为反对称矩阵. 如⎛⎜反对称矩阵的特点是:主对⎜⎜角线上的元素为0,其余的元⎜素关于主对角线互为相反数. ⎝1⎞ 1 0 5 −2 ⎟⎟ −2 −5 0 1 ⎟⎟ −1 2 −1 0 ⎠ 0 2 −1注意两个同阶的反对称矩阵的和还是反对称矩阵, 反对称矩阵的数乘也是反对称矩阵.但两个反对称矩阵的乘积不一定是反对称矩阵.例2 设A = ( aij ) 3 为一个3阶实矩阵, 若A ≠ 0, 证明: AAT 为对称矩阵且AAT ≠ O .证明Q (AA ) = ( A ) ⎡ a11 a12 令B = AAT = ⎢ a21 a22 ⎢⎢ a31 a32 ⎣T TT TA = AA , 故AA 为对称矩阵.T T Ta13 ⎤⎡ a11 a23 ⎥⎢ a12 ⎥⎢ a33 ⎥⎢ a13 ⎦⎣a21 a22 a23a31 ⎤ a32 ⎥ , ⎥ a33 ⎥⎦则bij = ai 1a j 1 + ai 2 a j 2 + ai 3 a j 3 ( i , j = 1, 2, 3).上式取j = i , 得bii = ai21 + ai22 + ai23 ≥ 0( i = 1, 2, 3).由题设A ≠ 0知, A至少有一个元素akl ≠ 0, 则bkk > 0, 于是B = AAT ≠ O .例3 证明任一n阶矩阵A都可表示成对称阵与反对称阵之和.(p.16习题1.2 5) 证明令 C = A + AT,则C T = ( A + AT )T = AT + A = C ,所以C为对称矩阵.令B = A − AT , 则BT = ( A − AT )T = AT − A = − B,所以B为反对称矩阵.C B A+ A A− A ∴A= + = + , 命题得证. 2 2 2 2T T第三节矩阵的分块• 一、矩阵的分块• 二、分块矩阵的运算规则一、矩阵的分块具体做法:将矩阵用若干条纵线和横线分成许多个小矩阵,每一个小矩阵称为子块,以子块为元素的形式上的矩阵称为分块矩阵. ⎛ a 1 0 0⎞⎛ a 1 0 0⎞⎛ B ⎞例⎜⎟⎜⎟⎜ 1⎟⎞⎜ 0 a 0 0 ⎟ = B , A = ⎜ 0 a 0 0 ⎟ = ⎛ A O ⎟, A=⎜⎜ 1 0 b 1⎟⎜ E B ⎠⎟⎜ 2⎟ 1 0 b 1 ⎜⎟⎝ B3 ⎠⎜⎜⎜ 0 1 1 b⎟⎝⎟⎟⎜ 0 1 1 b⎟⎝⎠⎝⎠注:分块时首先满足E,再考虑对角或三角矩阵,然后考虑O以及其它的特殊矩阵. 按行分块或按列分块是两种特殊的分块形式.二、分块矩阵的运算规则分块矩阵的运算规律与普通矩阵规律运算相类似.1.矩阵的加法设A与B为同型矩阵,采用相同的分块法,有⎛ A11 ⎜ A=⎜ M ⎜A ⎝ s1 L L A1 r ⎞⎛ B11 ⎟⎜ M ⎟, B = ⎜ M ⎜B A sr ⎟⎠⎝ s1 L L B1 r ⎞⎟ M ⎟ B sr ⎟⎠其中Aij 与Bij 为同型矩阵,则⎛ A11 + B 11 ⎜ M A+ B =⎜⎜A +B s1 ⎝ s1 L L A1 r + B 1 r ⎞⎟ M ⎟. A sr + B sr ⎟⎠2.数乘⎛ A11 L A1r ⎞⎛ λA11 L λA1r ⎞⎟⎜⎟⎜ A=⎜ M M ⎟, λ ∈R, 则λA = ⎜ M M ⎟. ⎜A L A ⎟⎜ λA L λA ⎟⎝ s1 sr ⎠⎝ s1 sr ⎠3.乘法设矩阵Am×l , Bl×n 分块成⎛ A11 L A1t ⎞⎛ B11 L B1r ⎞⎜⎟⎜⎟ A=⎜M M ⎟ ,B=⎜ M M ⎟, ⎜A L A ⎟⎜B L B ⎟ st ⎠ tr ⎠⎝ s1 ⎝ t1其中分块矩阵Ai 1 , Ai 2 ,L , Ait 的列数分别等于B1 j , B2 j ,L , Btj 的行数.⎛ C11 L C1r ⎞⎟那么AB = ⎜ M M ⎟⎜⎜C L C sr ⎟⎝s1 ⎠其中 C ij = ∑ Aik Bkj ( i = 1,L , s; j = 1,L , r ) .k =1t4.转置⎛ A11 ⎜ A=⎜ M ⎜A ⎝ s1T ⎛ A11 L AsT1 ⎞ L A1r ⎞⎟⎟则AT = ⎜ M M ⎟. M ⎟, ⎜⎟⎜ AT L AT ⎟ L Asr ⎠ sr ⎠⎝ 1r分块矩阵的转置为先大转置,而后小转置.5.分块对角矩阵设A为n阶方阵,若A的分块矩阵只有在主对角线上有非零子块(这些非零子块必须为方阵),其余子块全为零, 那么方阵A就称为分块对角阵.⎛ A1 即如⎜ A=⎜⎜⎜⎝ A2 ⎞⎟⎟⎟ O ⎟ As ⎠Ai ( i = 1,2,L s )都是方阵.⎛1 ⎜0 ⎜⎜0 ⎜⎜0 ⎜0 ⎝0 1 1 0 00 2 3 0 00 0 0 2 10⎞ 0⎟⎟ 0⎟⎟ 1⎟ 5⎟⎠是分块对角阵.⎡ A1 A2 ⎤⎡ B1 例3 设A = ⎢⎥的列分块法与B ⎢ 0 ⎣0 A4 ⎦⎣的行分块法一致, 求AB .rn− rB2 ⎤ r B4 ⎥ n − r ⎦解根据分块矩阵的乘法规则,有⎡⎤⎡ A1 A2 ⎤⎡ B1 B2 ⎤⎢A1 B1 A1 B2 + A2 B4 ⎥ AB = ⎢ . ⎥⎢0 B ⎥= ⎢⎥ A4 B4 ⎣ 0 A4 ⎦⎣ 4⎦ 0 ⎦⎣例4 设A,B都是n阶上三角阵,证明:AB是上三角阵. 证一A , B 为上三角阵, 故当n ≥ i > j ≥ 1时, a ij = 0 , bij = 0 . ⎛ a11 a12 L a1n ⎞⎜ a22 L a2 n ⎟设C = ( c ij ) n× n = AB . ⎜⎟⎜ O M ⎟则当n ≥ i > j ≥ 1时, ⎜⎟ ann ⎠⎝ n i −1 nc ij = ∑ a ik b kj = ∑ a ik b kj + ∑ a ik b kjk =1 k =1 k=i= ∑ 0 × bkj + ∑ aij × 0 = 0.k =1 k =ii −1n故AB为上三角阵.证二:数学归纳法. n = 1时, A = a, B = b, AB = ab, 成立.设两个n − 1阶上三角阵的乘积是上三角阵 .下面考虑n阶的情况, 对A, B做如下分块:⎡ a11 A=⎢⎣0A2 ⎤⎡ b11 ⎥, B = ⎢ 0 A4 ⎦⎣B2 ⎤ B4 ⎥⎦A4 , B4 都是n − 1 阶上三角阵 .由归纳假设, A4 B4是n − 1阶上三角阵, 则⎡ a11b11 则AB = ⎢⎣ 0a11 B2 + A2 B4 ⎤⎥ A4 B4 ⎦于是, AB 是上三角阵 .由归纳法 .命题结论成立 .小结1.矩阵的转置与运算规律2.对称阵与反对称阵3.矩阵的分块4.分块矩阵的运算篇二南京信息工程大学实验(实习)报告实验(实习)名称矩阵的转置日期11.15得分指导老师崔萌萌系计软院专业软嵌年级大二班次1姓名张越学号[1**********]一、实验目的矩阵的转置c语言实现二、实验内容矩阵的转置三、实验步骤#include “malloc.h”#include “stdio.h”#define MAXSIZE 11#define ROW_ 11#define COL_ 11typedef struct{int row,col;int e;}Triple;typedef struct{Triple data[MAXSIZE+1]; int m,n,len;}TSMatrix;void FastTransposeTSMatrix(TSMatrix A,TSMatrix *B){ int num[MAXSIZE],pos[MAXSIZE];int i,col,p;B->n=A.m;B->m=A.n;B->len=A.len;if(B->len){for(col=1;colnum[col]=0;}for(i=1;inum[A.data[i].col]++;}pos[1]=1;for(i=2;ipos[i]=pos[i-1]+num[i-1];}for(i=1;icol=A.data[i].col;p=pos[col];B->data[p].col=A.data[i].row; B->data[p].row=A.data[i].col; B->data[p].e=A.data[i].e;pos[col]++;}}}void main(){int i,j;int num[ROW_][COL_]={0}; int a[8]={1,4,3,3,7,8,6,1};int b[8]={2,7,2,8,3,2,7,4};int c[8]={12,9,-3,14,24,18,15,-7}; TSMatrix A,*B;A.m=ROW_-1;A.n=COL_-1;A.len=8;for(i=1;iA.data[i].row=a[i-1];A.data[i].col=b[i-1];A.data[i].e=c[i-1];num[a[i-1]][b[i-1]]=c[i-1];}printf(“\n”);printf(“转换之前:\n\n”);for(i=1;ifor(j=1;jprintf(“%-3d”,num[i][j]);}printf(“\n”);}printf(“\n三元组表:\n\nrow col E\n”);for(i=1;i{printf(“ %d %d %d\n”,A.data[i].row,A.data[i].col,A.data[i].e); }B=(TSMatrix *)malloc(sizeof(TSMatrix)); FastTransposeTSMatrix(A,B);for(i=1;ifor(j=1;jnum[i][j]=0;}}for(i=1;ilen;i++){num[B->data[i].row][B->data[i].col]=B->data[i].e; }printf(“转换之后:\n\n”);for(i=1;ifor(j=1;jprintf(“%-3d”,num[i][j]);}printf(“\n”);}printf(“\n三元组表:\n\nrow col E\n”);for(i=1;ilen;i++){printf(“ %d %d %d\n\n”,B->data[i].row,B->data[i].col,B->data[i].e); }}四、实验结果五、实验小结输入数据可以用文件输入提高测试效率篇三矩阵的转置把一矩阵A的行列互换,所得到的矩阵称为A的转置,记为A .可确切地定义如下:定义5 设a11a12 a1nA aa2122 a2n,as1as2 asn 所谓的转置就是指矩阵a11a21 as1A a12a22 as2.a1na a2nsn显然,s n矩阵的转置是n s矩阵.矩阵的转置适合以下的规律:(A ) A, (A B) A B , (AB) B A , (kA) kA . (16)表示两次转置就还原,这是显然的.练习:A 112 ,B 2 10 113421求(AB) ,B A .(16) (17) (18) (19)1TTT对称矩阵反对称矩阵定义:设A为n级方阵,若A满足1)A A,则称A 为对称矩阵.2)A A,则称A为反对称矩阵.对称阵的元素以主对角线为对称轴对应相等.例3:证明任一n阶矩阵A都可以表示成对称矩阵与反对称矩阵之和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( I AB )
也是对称矩阵。 证明 只需证
1
A
[( I AB ) 1 A]T ( I AB ) 1 A
因为
[( I AB ) A] A [( I AB ) ]
A[( I AB )T ]11T NhomakorabeaT
1 T
A( I B A )
T
T
T 1
( A ) ( I BA)
1 2 0 9 15 R1 ( 3 ) R3 0 3 0 12 27 0 0 1 4 5 1 0 0 1 3 2 R1 R2 3 0 3 0 12 27 0 0 1 4 5
解的判别、求解
例 解矩阵方程的初等变换法:
(1)已知已知矩阵方程 AX=B,其中A可逆
[A,B] [I,A–1B]=[I,X] (2)已知已知矩阵方程 XA=B,其中A可逆。
初等 行变换
A I I 初 1 等列变换 B BA X
a11 0 A 0 0 a12 a22 0 0 a13 a14 b11 b a23 a2n 21 a33 a3n , B b31 0 ann bn1 0 b22 b32 bn2 0 0 b33 bn3 0 0 0 bnn
k k kI k
称之为数量矩阵。若k = 1,则数量矩阵即是单位矩阵。
例 对角矩阵的秩等于其非零主对角元的个数。 例 对角矩阵的和、差、积也是对角矩阵。 例 对角矩阵 A = diag(a1 , a2 ,, an )可逆的充分
必要条件是 a1, a2 ,, an 全不为零。
3 3 0 1 2 R3 ( 7 ) R1 0 3 6 12 3 0 6 11 20 1
R2 ( 4 ) R1
3 3 0 1 2 R3 ( 2 ) R2 0 3 6 12 3 0 0 1 4 5
4 2 1 3 0 3 3 2 11 2 0 3 X A1 B 3 3 1 1 1 2 1
1 3 4 9 4 5
(法二)
1 2 3 3 0 [ A,B] = 4 5 6 0 3 7 8 10 1 1
则称 A是上三角矩阵,B是下三角矩阵。
例 三角矩阵可逆的充分必要条件是其主对角元全 不为零。
小结:
1. 熟练掌握矩阵的基本运算与性质
加法、数乘、乘法、幂、转置
2. 熟练掌握用初等行变换把矩阵化为阶梯形 3. 熟练掌握方阵可逆的有关结论
可逆性的判别、逆矩阵的计算、解矩阵方程
4. 熟练掌握Gauss消元法
当 A可逆时,
A
1

1 1 1 diag ( a1 , a2 , , an )
定义 设 A 是分块矩阵
A1 0 A 0
0 A2 0 0 Al 0
若子块 A1 , A2 ,, Al 全是方阵,则称 A是准对角矩 阵,可简写为 A1 A2 A A t
R2 6 R3
1 1 ( ) R2 3 0
由此得
0 0 1 3 1 0 4 9 0 0 1 4 5
a1 0 0 a 2 0 0
称为n阶对角矩阵。
0 0 an
对角矩阵通常简记为
a1
a2
或 diag(a1 , a2 , , an ) an
当 a1 a2 an k 时
1 1
1
[( I BA) A1 ]1
(A
(A
1
B)
1
(A
1
1
IB)
1
1
1
1
A AB)
1
1
[ A ( I AB)]
( I AB ) ( A )
1 1
( I AB ) A
1

二、对角矩阵
定义 主对角元以外的元素全为零的n阶方阵
例 设 A是准对角矩阵 A1 A2 A A t 则 A可逆的充分必要条件是子块 A1 , A2 , , At 均可逆。 当 A可逆时,
A1
1 A1
1 A2
1 At
三、三角矩阵
定义 设A与B是两个n阶方阵
例 已知矩阵 A与矩阵 B
1 2 3 A 4 5 6 , 7 8 10
满足 AX=B,求 X。 解 (法一)由前例已得
3 0 B 0 3 1 1
A
1

4 2 1 3 3 2 11 2 3 3 1 2 1
一、对称矩阵与反对称矩阵
T A A,则称A是对 定义 设A是n阶方阵。若 T 称矩阵;若 A A,则称 A是反对称矩阵。
例 设A是任一n阶方阵,则 A AT 是对称矩阵,
A AT 是反对称矩阵。
例 设A是任一方阵,则 A可表示成一个对称矩阵
与一个反对称矩阵的和。
例 设 A与B是两个 n阶对称矩阵,I是 n阶单位矩阵。 证明:若A与 I AB 均可逆,则
相关文档
最新文档