【教学设计】《等边三角形》(数学人教八上)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《等边三角形》
◆教材分析
本节课是人教版八年级上册第13章第3节内容,课标对本节课的要求是探索等边三角形的性质定理(等边三角形的各角都等于60°)及等边三角形的判定定理(三个角都相等的三角形或有一个角是60°的等腰三角形是等边三角形).本节内容是延续了从一般三角形到等腰三角形再到等边三角形的学习,进一步认识特殊的轴对称图形——等边三角形,继续探究等边三角形的特殊性质和判定方法,更是今后证明角相等、线段相等的重要工具,在教材中处于重要的地位,起着承前启后的作用.
◆教学目标
【知识与能力目标】
1、经历探索等腰三角形成为等边三角形的条件及其推理证明过程。
2、探索──发现──猜想──证明直角三角形中有一个角为30°的性质.
3、有一个角为30°的直角三角形的性质的简单应用
【过程与方法目标】
1.经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维
2.经历观察、实验、猜想、证明的数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.
3、经历“探索──发现──猜想──证明”的过程,引导学生体会合情推理与演绎推理的相互依赖和相互补充的辩证关系
4、培养学生用规范的数学语言进行表达的习惯和能力
【情感态度价值观目标】
1.积极参与数学学习活动,对数学有好奇心和求知欲
2.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.
【教学重点】
1、等边三角形判定定理的发现与证明。
2、等腰三角形的判定定理及其应用
3、含30°角的直角三角形的性质定理的发现与证明.
【教学难点】
1.等边三角形判定定理的发现与证明
2.引导学生全面、周到地思考问题.
3、含30°角的直角三角形性质定理的探索与证明
◆教学过程
一、情景导入:
师:我们在前两节课研究证明了等腰三角形的性质和判定定理,我们知道,在等腰三角形中有一种特殊的等腰三角形——三条边都相等的三角形,叫等边三角形.回答下面的三个问题.
1.把等腰三角形的性质用到等边三角形,能得到什么结论?
2.一个三角形满足什么条件就是等边三角形?
3.你认为有一个角等于60°的等腰三角形是等边三角形吗?你能证明你的结论吗?把你的证明思路与同伴交流.
(教师应给学生自主探索、思考的时间)
[生甲]由等边对等角的性质可知,等边三角形的三个角相等,又由三角形三内角和定理可知,等边三角形的三个角相等,并且都等于60°.
[生乙]等腰三角形已有两边分别相等,所以我认为只要腰和底边相等,等腰三角形就是等边三角形了.
[生丙]等边三角形的三个内角都相等,且分别都等于60°,我认为等腰三角形的三个内角都等于60°,也就是说这个等腰三角形就是等边三角形了.
(此时,部分同学同意上面的看法,部分同学不同意上面的看法,引起激烈的争论,教师可让同学代表发表自己的看法)
[生丁]我不同意这个同学的看法,因为任何一个三角形满足这个条件都是等边三角形.根据等角对等边,三个内角都是60°,所以它们所对的边一定相等,但这一问题中“已知是等腰三角形,满足什么条件时便是等边三角形”,我觉得他给的条件太多,浪费!
师:给三个角都是60°,这个条件确实有点浪费,那么给什么条件不浪费呢?下面同学们可以在小组内交流自己的看法.
二、学习新知
探索等腰三角形成等边三角形的条件.
[生]如果等腰三角形的顶角是60°,那么这个三角形是等边三角形.
师:你能给大家陈述一下理由吗?
[生]根据三角形的内角和定理,顶角是60°,等腰三角形的两个底角的和就是180°-60°=120°,再根据等腰三角形两个底角是相等的,所以每个底角分别是120°÷2=60°,则三个内角分别相等,根据等角对等边,则此时等腰三角形的三条边是相等的,即顶角为60°的等腰三角形为等边三角形.
[生]等腰三角形的底角是60°,那么这个三角形也是等边三角形,同样根据三角形内角和定理和等角对等边、等边对等角的性质.
师:从同学们自主探索和讨论的结果可以发现:在等腰三角形中,不论底角是60°,还是顶角是60°,那么这个等腰三角形都是等边三角形.你能用更简洁的语言描述这个结论吗?
[生]有一个角是60°的等腰三角形是等边三角形.
(这个结论的证明对学生来说可能有一定的难点,难点是意识到分别讨论60°的角是底角和顶角两种情况.这是一种分类讨论的思想,教师要关注学生得出证明思路的过程,引导学生全面、周到地思考问题,并有意识地向学生渗透分类的思想方法)
师:你在与同伴的交流过程中,发现了什么或受到了何种启示?
[生]我发现我的证明过程没有意识到“有一个角是60°”,在等腰三角形中有两种情况:(1)这个角是底角;(2)这个角是顶角.也就是说我们思考问题要全面、周到.
师:我们来看有多少同学意识到分别讨论60°的角是底角和顶角的情况,我们鼓掌表示对他们的鼓励.
今天,我们探索、发现并证明了等边三角形的判定定理;有一个角等于60°的等腰三角形是等边三角形,我们在证明这个定理的过程中,还得出了三角形为等边三角形的条件,是什么呢?
[生]三个角都相等的三角形是等边三角形.
师:下面就请同学们来证明这个结论.课件展示
已知:如图,在△ABC中,∠A=∠B=∠C.
求证:△ABC是等边三角形.
证明:∵∠A=∠B,
∴BC=AC(等角对等边).
又∵∠A=∠C,
∴BC=AB(等角对等边).
∴AB=BC=AC,即△ABC是等边三角形.
师:这样,我们由等腰三角形的性质和判定方法就可以得到.
等边三角形的三个内角都相等,并且每一个角都等于60°;
三个角都相等的三角形是等边三角形.
有一个角是60°的等腰三角形是等边三角形.
师:有了上述结论,我们来学习下面的例题,体会上述定理.
例:如图,课外兴趣小组在一次测量活动中,测得∠APB=60°,AP=BP=200 m,他们便得出一个结论:A、B之间距离不少于200 m,他们的结论对吗?
【分析】我们从该问题中抽象出△APB,由已知条件∠APB=60°且AP=BP,由本节课探究结论知△APB为等边三角形.
解:在△APB中,AP=BP,∠APB=60°,
所以∠PAB=∠PBA=(180°-∠APB)=(180°-60°)=60°.
于是∠PAB=∠PBA=∠APB.
从而△APB为等边三角形,AB的长是200 m,由此可以得出兴趣小组的结论是正确的.
师:我们学习过直角三角形,今天我们先来看一个特殊的直角三角形,看它具有什么性质.大家可能已猜到,我让大家准备好的含30°角的直角三角形,它有什么不同于一般的直角三角形的性质呢?
问题:用两个全等的含30°角的直角三角尺,你能拼出一个怎样的三角形?能拼出一个等边三角形吗?说说你的理由.课件展示
由此你能想到,在直角三角形中,30°角所对的直角边与斜边有怎样的大小关系?你能证明你的结论吗?
(让学生经历拼摆三角尺的活动,发现结论,同时引导学生意识到,通过实际操作探索出来的结论,还需要给予证明)
[生]用含30°角的直角三角尺摆出了如下两个三角形.
(1)(2)
其中,图(1)是等边三角形,因为△ABD≌△ACD,所以AB=AC,又因为Rt△ABD中,∠
BAD=60°,所以∠ABD=60°,有一个角是60°的等腰三角形是等边三角形.
[生]图(1)中,∠B=∠C=60°,∠BAC=∠BAD+∠CAD=30°+30°=60°,所以∠B=∠C=∠BAC=60°,即△ABC是等边三角形.
师:同学们从不同的角度说明了自己拼成的图(1)是等边三角形.由此你能得出在直角三角形中,30°角所对的直角边与斜边的关系吗?
[生]在直角三角形中,30°角所对直角边是斜边的一半.