正方形的性质经典ppt课件

合集下载

正方形的性质与判定ppt课件

正方形的性质与判定ppt课件

A
D
P
B
C
巩固训练
3. 如图,A,B,C,D四家工厂分别坐落在正方形城镇的四个角上.仓 库P和Q分别位于AD和DC上,且PD= QC.证明两条直路BP=AQ且 BP⊥AQ.
巩固训练
4.在一个正方形的花坛上,欲修建两条直的小路,使得两条直的小 路将花坛分成大小、形状完全相同的四部分(不考虑道路的宽 度).你有几种方法?(至少说出三种)
如图所示即为所求(答案不唯一).
BD 相交于点 O.
求证:AO = BO = CO = DO,AC⊥BD.
A
D
O
B
C
任务二
正方形的性质
定理 正方形的四个角都是直角,四条边相等. 定理 正方形的对角线相等且互相垂直平分.
平行四边形、矩形、菱形、正方形之间的关系:
韦恩图:
四边形 平行四边形
菱形 正方形 矩形
巩固训练
根据图形所具有的性质,在下表相应的空格中打“√”.
性质\图形
平行四边形 矩形 菱形 正方形
对边平行且相等 边
四边相等

√√ √
√√

四个角都是直角
对角线相互平分

对 角
对角线相互垂直
线
对角线相等
每条对角线平分一组对角


√√ √
√√


√√
巩固训练
例1 如图,在正方形 ABCD 中,E 为 CD 上一点,F 为 BC 边延长线 上一点,且 CE = CF. BE 与 DF 之间有怎样的关系?请说明理由.
A
D
E
B
CF
小结
正方形 的性质
定义 性质

3.正方形的性质与判定第1课时正方形的性质PPT课件(北师大版)

3.正方形的性质与判定第1课时正方形的性质PPT课件(北师大版)

第一章
特殊平行四边形 3.正方形的性质与判定
第1课时 正方形的性质
第1课时 正方形的性质
1 …知…识…回…顾…. 2 …新…知…导…航…. 3 …轻…松…过…招….
第1课时 正方形的性质
知识回顾
正方是轴对称图形,它有 4 条对称轴,即经 过对边中点的直线或两对角线所在直线:正方形又 是中心对称图形,两对角线交点是它的对称中心 (也是对边中点的直线的交点)。 .
第1课时 正方形的性质
新知导航
变式训练
1.已知正方形ABCD的对角线相交于点O. (1)若周长为8,则对角线长为 2 2 , 面积为 4 ; (2)图中共有 8 个等腰直角三角形.
第1课时 正方形的性质
新知导航
2.如图,过正方形ABCD的顶点B作直线l,过点A,C 作l的垂线,垂足分别为E,F,若 AE=1,CF=3.求AB的长.
第1课时 正方形的性质
轻松过招
3.如图,正方形ABCD中,E为CD边上一点,F为 BC延长线上一点,且CE=CF. (1)求证:△BCE≌△DCF;
(1)证明:∵四边形ABCD是正方形,
∴BC=DC,∠BCE=∠DCF=90°
CE=CF
在△BCE和△DCF中, ∠BCE=∠DCF ,
∴△BCE≌△DCF.
解:∵四边形ABCD是正方形, ∴∠CBF+∠FBA=90°,AB=BC, ∵CF⊥BE,∴∠CBF+∠BCF=90°, ∴∠BCF=∠ABE, ∵∠AEB=∠BFC=90°,AB=BC, ∴△ABE≌△BCF(AAS),∴AE=BF=1,BE=CF=3, ∴AB= AE2+BE2 = 1+9 = 10 .
第1课ห้องสมุดไป่ตู้ 正方形的性质
轻松过招

正方形的性质与判定ppt课件

正方形的性质与判定ppt课件

①有一组邻边相等的矩形是正方形 ②对角线互相垂直的矩形是正方形 ③有一个角是直角的菱形是正方形 ④对角线互相垂直的矩形是正方形
归纳总结
2. 四边形的中点四边形与原四边形的对角线有关
(1)当对角线不相等不垂直时,中点四边形是平行四边形 (2)当对角线相等时,中点四边形是菱形 (3)当对角线垂直时,中点四边形是矩形 (4)当对角线垂直且相等时,中点四边形是正方形
D
结论1 有一组邻边相等的矩形是正方形
几何语言: ∵ 四边形ABCD是矩形, ∴ AB四=B边C形ABCD是正方形
O
B
C
结论2 对角线互相垂直的矩形是正方形
几何语言: ∵ 四边形ABCD是矩形,AC⊥BD ∴ 四边形ABCD是正方形
探究一:正方形的判定
D
问题2:满足怎样条件的菱形是正方形? A
结论3 有一个角是直角的菱形是正方形
第一章 特殊平行四边形
1.3.2 正方形的性质与判定 第二课时
温故知新
菱形
平行四边形
① 有一组邻边相等 ②对角线互相垂直
矩形
①有一个角是直角 ②对角线相等
探索新知
如图,将一张长方形纸对折两次,然后剪下一个角,打开, 怎样剪才能剪出一个正方形?
探究一:正方形的判定
A
问题1:满足怎样条件的矩形是正方形?
B
E
C
基础练习
3. 如图,在平面直角坐标系中,四边形ABCD的顶点坐标分别是
A(-2,0),B(0,-2),C(2,0),D(0,2).
求证:四边形ABCD是正方形.
y D(0,2)
A(-2,0)
C(2,0) x
B(0,-2)
能力提升
1. 在▱ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是 正方形,还需添加一组条件. 下面给出了五组条件: ①AB=AD,且AC=BD;②AB⊥AD,且AC⊥BD; ③AB⊥AD,且AB=AD;④AB=BD,且AB⊥BD; ⑤OB=OC,且OB⊥OC. 其中符合条件的有

2024优质小班认识正方形ppt课件(2024)

2024优质小班认识正方形ppt课件(2024)

区域。
22
05 总结回顾与拓展 延伸
2024/1/30
23
关键知识点总结回顾
2024/1/30
正方形的定义和性质
正方形是四边相等、四个角都是直角的四边形,具有对称性、稳 定性等性质。
正方形的周长和面积计算
正方形的周长是其边长的四倍,面积是其边长的平方。
正方形的识别和应用
能够在生活中识别正方形,了解正方形在建筑设计、艺术创作等领 域的应用。
1 2
家具摆放
正方形家具摆放稳定,易于搭配,节省空间。
墙面装饰
正方形装饰画、照片墙等使墙面更加美观。
3
地面铺装
正方形地砖、地板等铺装材料易于施工,视觉效 果佳。
2024/1/30
20
手工制作中裁剪和拼接正方形材料
剪纸艺术
利用正方形纸张进行剪纸创作,可制作出各种精 美图案。
布艺制作
正方形布块易于裁剪和缝制,适合制作抱枕、桌 布等家居用品。
01
ቤተ መጻሕፍቲ ባይዱ02
03
练习题一
给定一个边长为5厘米的 正方形,计算其周长和面 积。
2024/1/30
练习题二
一个正方形地块的边长为 20米,计算该地块的面积 。
练习题三
一个正方形画布的边长为 1.5米,计算该画布的周长 。
12
03 绘制和识别正方 形图形技巧
2024/1/30
13
绘制标准正方形步骤示范
准备工具
计算正方形地块的面积,如地砖、画布等;计算正方形物体的表面积,如魔方的一个面。
2024/1/30
10
单位换算技巧与注意事项
单位换算技巧
掌握常见的长度单位换算关系,如1米=100厘米,1厘米=10 毫米等。

正方形的判定ppt课件

正方形的判定ppt课件
2. 选做题: 课本25页习题1.8第4题.
3.放飞题: 画一张思维导图,呈现本章节知识点
第一章《特殊的平行四边形》
1.3.2 正方形的判定
温故知新
1.菱形、矩形的判定
菱形
平行四边形
矩形
温故知新
2.正方形的定义及性质
正方形 有一个角是直角且一组邻边相等的平行四边形叫做
一个角是直角 平行四边形 且一组邻边相等
正方形
正方形的性质

正方形的对边平行且相等
角 正方形的四个角都是直角
正方形的两条对角线互相垂直平分且相等,
正方形、矩形、菱形以及平行四边形四者之间的关系:
(1)
平行四边形
矩 形
正 方 形
菱 形
(3)
有一组邻边相等且有一个角是直角
(4)
(2)
如图,在矩形ABCD中,BE平分∠ABC,CE平分∠DCB, BF∥CE,CF∥BE.求证:四边形BECF是正方形.
证明:∵BF∥CE,CF∥BE ∴四边形BECF是平行四边形
通过本节课的学习,你觉得正方形主要有哪些判定途径呢?
判定正方形的两条主要途径:
(1)
+
一组邻边相等
或对角线互相垂

先判定矩形
菱形条件
正方形
(2)
+ 一个直角 或对角线相等
先判定菱形
矩形条件
正方形
【佳作欣赏】
【佳作欣赏】
【佳作欣赏】
【学习巩固】
1. 必做题: 课本25页习题1.8第1、2、3题.
问题3:满足怎样条件的菱形是正方形?
菱形
一个角是直角 正方 或对角线相等 形
正方形的判定方法:

八年级数学下册教学课件《正方形的性质》

八年级数学下册教学课件《正方形的性质》
情境导入
仔细观察下列实际生活中的图片,你会发现这些都 是正方形的形象.
正方形是我们熟悉的图形,你还能列举出正方形在 生活中应用的其他例子吗?
情境导入
结合已有经验,类比菱形与矩形,正方形的概念是怎 样的呢?
正方形可以定义为有一组邻边相等并且有一个角 是直角的平行四边形.
下面我们一起来探讨一下正方形的性质吧!
解:有多种方法:只要两条小路 交于正方形对角线的交点且两条 小路互相垂直,则满足条件.
课后作业
5. 如图为某城市部分街道示意图,四边形ABCD为正方
形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,
小敏行走的路线为B A G E,小聪行走的路线为B A
D E F,若小敏行走的路程为3100m,则小聪行走的路程
∴C(b,d)
课后作业
2.(2)如图,四边形ABCD是菱形,C,D两点的
坐标分别是(c,0),(0,d).点A , B的在坐标轴上.求A ,
B两点的坐标.【选自教材P61,习题18.2第12题】
y
(2)∵四边形ABCD是菱形,
D
∴AO=CO,BO=DO.
A
O
Cx
Hale Waihona Puke ∵C(c,0),∴A(-c,0)
B
∵D(0,d),∴B(0,-d)
由勾股定理得BC= EC2 EB2 900 100 20 2 (m).
在Rt△ABC中,∠B=90°,AB=BC= 20 2 m,
A
D
由勾股定理得AC= AB2 BC 2 800 800 40(m).
2
S正方形ABCD BC 2 20 2 800
E
∴这块场地的面积为800m2,对角线长40m.

正方形ppt课件

正方形ppt课件
对角线互相垂直?

矩形:对角线相
等且互相平分
正方形:对角线相
等且互相垂直平分
已知:在矩形ABCD中,AC⊥BD.
求证:四边形ABCD是正方形.
证明: ∵四边形ABCD是矩形,
∴OA=OB=OC=OD,∠BAD=90〫
.
∵AC⊥BD,
A
D
O
∴AC是线段BD的垂直平分线.
同理:BD是线段AC的垂直平分线,
18.2.3 正方形
八年级下
人教版
学习目标
1. 理解正方形的概念,以及它与平行四边形、矩形、菱形之间的关系;
2. 能熟练运用正方形的性质和判定进行计算和证明.
难点
重点
新课引入
正方形是我们熟悉的几何图形,它的边、角有什么特点?
正方形的四条边都相等,四个角都是直角.
新知学习
一 正方形的定义及其性质
= − = − = m.
∴AB=BC=CD=DA= m,
∴场地的面积为 = ,
对角线的长为 + = .
4.如图,正方形 ABCD,直线l1过点A,直线l2过点C,且l1∥l2,过点D作
PN⊥l1垂足为N,交l2于点P,过点B作QM⊥l1垂足为M,交l2于点Q.
∴∠BAM =∠ADN.
∴△BAM ≌△ADN (AAS) .
∴AM = DN.
同理可证 AN = DP.
∴AM + AN = DN + DP,即 MN = PN.
∴矩形 PQMN 是正方形.
总结:先证出四边形
PQMN 是矩形,再证明
一组邻边相等 (MN = NP).
课堂小结
1. 有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.

正方形ppt课件

正方形ppt课件
18.2.3正方形
人教版八年级下册
教学目标
1.理解正方形的概念;
2.探索正方形的性质与判定,并了解平行四边形、矩形、菱形之间的联系和
区别;
3.会应用正方形的性质与判定解决相关证明及计算问题.
新知导入
在小学,什么样的四边形是正方形?
正方形与矩形和菱形分别有什么关系?
四个角都是直角,四条边都相等的四边形叫做正方形.
作 业 布 置 【知识技能类作业】必做题:
1.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是( D )
A.当AB=BC时,它是菱形
B.当AC⊥BD时,它是菱形
C.当∠ABC=90°时, 它是矩形
D.当AC=BD时,它是正方形
2.如图,在正方形ABCD中,AE平分∠BAC,交BC于点E,F是边AB上一点,连接
9
矩形
18



菱形
平行四边形
归纳总结
常用的正方形判定方法:
定义法
有一组邻边相等并且有一个角是直角的
平行四边形是正方形.
矩形法
有一组邻边相等的矩形是正方形.
918Βιβλιοθήκη 对角线相互垂直的矩形是正方形.
菱形法
有一个角是直角的菱形是正方形.
对角线相等的菱形是正方形.
新知讲解
平行四边形、矩形、菱形、正方形之间关系:
∴平行四边形AEBD是矩形.
作业布置
【综合拓展类作业】
(2)当∠BAC=90°时,矩形AEBD是正方形,理由如下:
∵∠BAC=90°,AB=AC,AD是△ABC的角平分线,
∴AD=BD=CD.
∵由(1)知四边形AEBD是矩形,
∴矩形AEBD是正方形.

人教版八年级数学下册第十八章《正方形》优课件(共17张PPT)

人教版八年级数学下册第十八章《正方形》优课件(共17张PPT)

(1) AB=AD;
A
(2) AC=BD;
(3) ∠BAD=90;
(4) AC⊥BD。
B
D O
C
判断对错
1. 四边相等的四边形是正方形 2.四角相等的四边形是正方形 3.四条边相等且有一个角是直角的四边 形是正方形 4.对角线互相垂直平分且相等的四边形 是正方形 5.对角线垂直的平行四边形是正方形
判断对错
6.对角线互相垂直且相等的四边形是正 方形。 7.对角线互相垂直的矩形是正方形。 8.对角线相等的菱形是正方形。
活动
1.从长方形木板中怎样截出最大的正方形木板?
2.怎样使菱形的衣帽架变成正方形的衣帽架?
3.昨天,我去超市买了一条方巾,现在想请同学们帮助检验 一下方巾是否是正方形的。
1.已知:正例方形题AB解CD中析,点E、F、G 、H
正方形
菱形
这一 样个 的人 人所 才受 有的 学教 问育 。超
过 了 自 己 的 智 力 ,
You made my day!
我们,还在路上……
每一条对角线平分一组对角
对称性---- 是轴对称图形.
D O
C
根据图形所具有的性质,在下表相应的空格中打 ”√”
对边平行且相 等
四边都相等
四个角都是直 角
对角线互相平 分
对角线互相垂 直
对角线相等
平行四边 形


矩形

√ √

菱形
√ √
√ √
正方形
√ √ √ √ √ √
你觉得什么样的四 边形是正方形呢?
分别是AB 、BC 、CD 、DA的中点,试判断四
边形EFGH是正方形吗?为什么?

3.正方形的性质与判定第2课时 正方形的判定PPT课件(北师大版)

3.正方形的性质与判定第2课时 正方形的判定PPT课件(北师大版)
证明:∵DE⊥BC,DF⊥AC,∠ACB=90° ∴∠CFD=∠DEC=∠FCE=90° ∴四边形CFDE是矩形 又∵CD平分∠ACB,DF⊥AC,DE⊥BC ∴DF=DE,∴矩形CFD松过招
第二招
3.在△ABC中,AB=AC,∠A=90°,D、E、F分 别是BC、AB、AC边上的中点. 求证:四边形AEDF是正方形.
第2课时 正方形的判定
新知导航
知识点3:四边相等且有1个角是直角 【例3】已知,如图,在△ABC中,∠ACB=90°,CD是∠ACB 的平分线,CD的垂直平分线分别交AC,CD,BC于点E,O,F. 求证:四边形CEDF是正方形.
证明:∵CD的垂直平分线分别交AC,CD, BC于点E,O,F,∴EC=ED,FC=FD, ∵∠ACB=90°,CD平分∠ACB, ∴∠ACD=∠BCD=45°,又CD⊥EF ∴△CEF为等腰直角三角形,∴CE=CF ∴ED=EC=CF=FD,∴四边形CEDF为菱形, ∵∠ACB=90°,∴四边形CEDF为正方形.
证明:如图,过点D作DN⊥AB于点N, ∵∠C=90°,DE⊥BC于点E,DF⊥AC于点F, ∴∠C=∠DEC=∠DFC=90°,∴四边形CFDE是矩形, ∵∠A、∠B的平分线交于点D,DE⊥BC于点E,DF⊥AC于 点F,DN⊥AB于点N, ∴DE=DN,DN=DF,∴DF=DE, ∴矩形CFDE是正方形.
证明:∵D,E,F分别是BC,
AB,AC的中点.∴AE∥DF,DE∥AF
∵∠BAC=90°,∴四边形AEDF是矩形
∵D,E,F分别是BC,AB,AC的中点
∴DE=12
AC,DF=
1 2
AB
又AB=AC,∴DE=DF.∴矩形AEDF是正方形.
第2课时 正方形的判定

正方形的性质与判定-ppt课件

正方形的性质与判定-ppt课件
∵AF=5,∴在 Rt△ABF 中,BF= AF2-AB2=
52-42=3.∵点 F 为 BC 的中点,∴BC=2BF=6.
∴在 Rt△BCE 中,CE= BC2+BE2= 62+22=2 10.
感悟新知
(2)若AF=CE,求证:四边形ABCD 是正方形.
知3-练
证明:在 Rt△ABF 中,AF2=AB2+BF2,
∴四边形ACED 是正方形(正方形的定义).
感悟新知
知3-练
3-1. 如图, 在矩形ABCD 中,点E,F 分别是AB,BC 的
中点,连接AF,CE.
感悟新知
知3-练
(1)若AE=2,AF=5,求CE 的长;
解:∵四边形 ABCD 是矩形,∴∠B=90°.
∵点 E 为 AB 的中点,AE=2,∴AB=4,BE=2.
数学表达式
∵在ABCD 中,AB=BC(或
AB=AD 或BC=CD 或
AD=CD),且∠ A=90°(或
∠ B=90°或∠ C=90°或
∠ D=90°),∴ ABCD 是
正方形
感悟新知
知1-讲
2. 图解
感悟新知
知1-讲
3. 四边形、平行四边形、菱形、矩形、正方形间的关系
感悟新知
知1-讲
特别提醒
2
四边形A2 024B2 024C2 024D2 024 的面
3
积为______ .
22 022
课堂小结
正方形的性质与判定
性质



正方形的面积公式
一组邻边相等
特殊的矩形
对角线互相垂直
一个角是直角
判定
特殊的菱形
对角线相等
∴四边形 ABCD 是正方形.

正方形的性质数学PPT课件

正方形的性质数学PPT课件

八年级下册
中学生
教学课件
又因为 AC=BD=8
所以OA=OB=OC=OD=4
在Rt△AOB中
B
D
o C
AB 4 2 4 2
AB 4 2
S AB2 4
2
2 32
矩形,菱形还有这 种求面积公式么?
2. AC为正方形ABCD的对角线 , E为AC上一点 , 且AB=AE , EF⊥AC交BC于F , 求证:EC=EF=FB .
02
正方形的定义
生活当中的正方形:
正方形是我们生活当中最随处可见的形状, 正方形的 闹钟 正方形的 纽扣 正方形的 小镜子 正方形的。。。。。。。。。。。等等。。
怎样用1个长方形纸片折出1个正方形?
正方形的定义:
矩形
一组邻边相等
正方形
菱形
一个角是直角
正方形
正方形:有一个角是直角且一组邻边相等的平行四边形
【第三单元 平行四边形】
3.5.1 正方形的性质
EIGHT GRADE MATHEMATICS COURSEWARE VOLUME II
八年级下册
中学生
教学课件
目录
学习目标 正方形的定义 正方形的性质
课堂练习 课堂小结
01
学习目标
学习目标:
1. 掌握正方形的定义 2. 掌握正方形的有关性质
正方形的边有什么性质呢? 同学们能不能证明呢?
A
D
O
B
C
证明:因为 正方形ABCD是特殊的菱形 所以 AB=BC=CD=AD AB∥DC,AD∥BC
正方形边的性质:
正方形的四个边都相等 正方形的对边平行
符号语言:
因为 四边形ABCD是正方形 所以 AB=BC=CD=AD

正方形的性质经典课件

正方形的性质经典课件

对角线相等的菱形是正方形
总结词
菱形如果对角线相等,则该菱形是正 方形。
详细描述
菱形的对角线互相垂直且平分对方, 如果菱形的对角线还相等,则这个菱 形的所有边都相等,因此它是一个正 方形。
对角线互相垂直的矩形是正方形
总结词
矩形如果对角线互相垂直,则该矩形是正方形。
详细描述
在矩形中,如果对角线互相垂直,则这个矩形的所有角都是直角,并且所有边都相等,因此它是一个正方形。
03
正方形的面积与周长
正方形的面积计算公式
总结词
正方形的面积计算公式是边长的平方。
详细描述
正方形的面积可以通过边长的平方来计算,即面积 = 边长^2。这个公式是正方形面积的标准计算方 法,适用于任何大小的正方形。
正方形的周长计算公式
总结词
正方形的周长计算公式是四倍的边长。
详细描述
正方形的周长是四个边的长度之和,即周长 = 4 × 边长。这个 公式是正方形周长的标准计算方法,适用于任何大小的正方形。
正方形的边长相等
总结词
正方形四条边的长度相等。
详细描述
正方形的一个基本性质是其四条边的长度相等。这意味着正方形的任意一边都 可以被等分,且等分点之间的线段也相等。这个性质是正方形与长方形、菱形 等其他平行四边形相区别的关键。
正方形的四个角都是直角
总结词
正方形每个角都是直角,即角度为90度。
详细描述
建筑美学的体现
空间利用与功能性
正方形在建筑设计中也有助于提高空 间利用率,特别是在有限的空间内, 通过合理的布局和规划,实现功能性 和美感的统一。
正方形在建筑设计中能够带来稳定、 平衡和和谐的美感,增强建筑的艺术 性和视觉效果。

正方形的性质与判定完整ppt课件

正方形的性质与判定完整ppt课件
A B
D C
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
A
D
B
C
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
A
D
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
拓展讨论:
正方形对角线把正方形分成多少个等腰直角三角形?
A
D
O
B
C
结论:
分成八个等腰直角三角形,分别是△ABC、 △ADC、 △ABD、 △BCD ; △AOB、 △BOC、 △COD、 △DOA.

A
B
O
D
C
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
12.正已方知形正具方有形而的菱一形条不边一长定为具2c有m的,则性这质个是正(方形C)的
周长A为.对8角c线m,对互角相线垂长直为B.对2角,面线2积c互m为相平分. 4cm2
性质 图形 平行四
分类
边形
矩形 (所特有)
菱形 (所特有)
正方形
边 对边平行
且相等
四条边相等
对边平行且 四条边相等

对角相等
四个角都 是直角
四个角都 是直角
对角线互
对角线 相平分
对角线 相等
对角线互相 垂直,每条 对角线平分 一组对角
对角线相等且互 相垂直平分,每 条对角线平分一 组对角
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AB=BC=CD=AD
∴∠A=∠B=∠C=∠ D=90°
∴AC⊥BD,AC=BD,O A=OB=OC=OD

25
(1)预习. (2)复习. (3)书面练习
26
结论:正方形的 两条对角线把正 方形分成四个全 等的等腰直角三 角形.
14
例:如图,正方形ABCD中,AC、BD相交于O, MN∥AB且MN分别交OA、OB于M、N. 求证:BM=CN.
15
1.正方形具有而菱形不具有的性质 是( ). A.对角线互相垂直; B.四条边都相等; C.对角线相等; D.对角线互相平分.
正方形
1
复习巩固
矩形的概念:有一个角是直角的平行四边 形是矩形.
矩形的性质: 1、矩形的四个内角都是直角. 2、矩形的对角线相等且互相平分.
矩形的识别方法: 1.有一个角是直角的平行四边形是矩形. 2.对角线相等的平行四边形是矩形. 3.有三个角是直角的四边形是矩形.
2
复习巩固
菱形的概念:一组邻边相等的平行四边
根据图形所具有的性质,在下表相应的空格中打 ”√”
平行四边形
对边平行且相等

四边都相等
四个角都是直角
对角线互相平分

对角线互相垂直
对角线相等
矩形 √
√ √

菱形 √ √
√ √
正方形 √ √ √ √ √ √
13
已知:如图正方形ABCD对角线AC、BD相 交于点O.
求证:△ABO≌△BCO≌△CDO≌△ADO.
16
2.一个正方形的面积等于8,则其对
角线的长为(
).
3.正方形ABCD的边长为2,对角线AC、
BD相交于点O,AE平分∠BAC交BD
于E,则DE的长为(
)
17
4.如图,已知正方形ABCD,以AB为边向
正方形外作等边三角形ABE,连结DE、 CE,则∠DEC=( )
D
A
E
C
B
18
6.如图,正方形ABCD内有一个△BEF,
形之间有何关系? • 3.正方形具有哪些性质?
4


问题一:怎样用一张矩形的纸片 折出一个正方形?
5
正方形矩形
6


问题二:怎样将一个菱形的木框 变成一个正方形的木框?
7
正方形 菱形
8
正方形的定义:
有一组邻边相等且有一个角是正方形既是有一组邻边相等的矩形,
又是有一个角为直角的菱形.
9
平行四边形、矩形、 菱形、正方形的关系!
10
平行四边形 正
矩形 方 菱形 形
11
讨论
正方形的边、角、对角线各具有什么性质
边:对边平行,
A
四条边都相等.
D O
角:四个角都等于90°. B
C
对角线:相等、垂直且互相平分,
每一条对角线平分一组对角.
对称性:中心对称图形、轴对称图形 12
形是菱形. 菱形的性质:
1.菱形的四条边都相等. 2.菱形的两条对角线互相垂直平分,
并且分别平分每一组对角. 菱形的识别方法: 1.四条边都相等的四边形是菱形. 2.有一组邻边相等的平行四边形是菱形. 3.对角线互相垂直的平行四边形是菱形.
3
预习提纲 • 1.什么叫正方形? • 2.正方形与平行四边形、菱形、矩
AB=6,AF:FD=1:2,E为DC的中点.
求:△BEF的面积.
A
F
D
E
B
C
19
7.如图,在正方形ABCD中,E是BC的
中点,点F在CD上,∠FAE=∠BAE.
求证:AF=BC+FC.
A
D
F B EC
20
思考题:在正方形ABCD中: (1)已知,如图①,点E、F分别在BC、CD
上,且AE⊥BF,垂足为M. 求证:AE=BF.
21
思考题:在正方形ABCD中: (2)如图②,如果点E、F、G分别在BC、CD、
DA上,且GE⊥BF,垂足M.
求证:GE=BF.
N
22
思考题:在正方形ABCD中: (3)如图③,如果点E、F、G、H分别在BC、
CD、DA、AB上,且GE⊥HF,垂足M.求 证:GE=HF.
Q
P
23
我的收获
◆正方形有哪些性质? ★从角上来谈; ●从边上来谈; ▲从对角线上来谈; ■从对称性上来谈.
24



质 对角线
对称性
图A
DA

∟D A
D
形 语 言B
CB



O

CB

C

文 对边平行
对角线互相垂 形
字 语 言
四条边都 相等
四个角都 是直角
直平分且相等 每条对角线平 分一组对角
中 心 对
符 号
∵四边形ABCD是 正方形
∵四边形ABCD是 正方形
∵四边形ABCD是正 方形
称 图
语 言
∴AB∥CD AD∥BC,
相关文档
最新文档