材料加工组织性能控制(第五章)
大连理工大学 材料科学基础 第五章 回复与再结晶
![大连理工大学 材料科学基础 第五章 回复与再结晶](https://img.taocdn.com/s3/m/0e335ea95ef7ba0d4a733be3.png)
粒长大后趋于缓慢。
8
B:电阻率resistivity:其大小与点阵 中的点缺陷密切相关,随温度升高, 空位浓度下降,故电阻率呈现连续 下降趋势。
C:内应力inner stress:回复之后, 宏观内应力基本消除,微观内应力 部分消除;再结晶后,冷变形造成 的内应力全部消除。
D:密度density:密度在再结晶阶段急剧增加,主要是 由于此时位错密度显著降低造成的。
4th
冷加工变形:加工硬化,可使位错数量增加, 金属的强度和硬度增加
冷加工缺点:内应力,这种残余应力在金属零 件进一步加工和使用过程中往往会产生不应有的变 形,使用中也会由于大气环境与内应力的共同作用, 造成零件的应力腐蚀;冷加工也可能使电阻率增加 等。这时金属处于一种不稳定状态。
1
体发
不生
应
锈应
• 再结晶不是一个恒温过程,它是自某一温度开始, 在一个温度范围内连续进行的过程,发生再结晶 的最低温度称再结晶温度。
31
影响再结晶温度的因素:
• 1、金属的预先变形度:金属预先变形程度越大, 再结晶温度 越低。当变形度达到一定值后,再结晶温度趋于某一最低值, 称最低再结晶温度。
• 纯金属的最低再结晶温度与其熔点之 间的近似关系: T再≈(0.35-0.4)T熔, 其 中T再、T熔为绝对温度K.
R m r m 0
R — 屈服强度回复率
m — 变形后屈服强度 r — 回复后屈服强度 0 — 原始态的屈服强度
1.0
同一变形度的Fe在不同温度下的回复
0.8
300oC
350oC
0.6
400oC
0.4
450oC
0.2
500oC
0 100 200 300 400
第五章 金属基复合材料成型技术
![第五章 金属基复合材料成型技术](https://img.taocdn.com/s3/m/046ace32227916888486d7da.png)
• 5.1概述 • 金属基复合材料制造技术是影响金属基复合 材料迅速发展和广泛应用的关键问题。金属基复 合材料的性能、应用、成本等在很大程度上取决 于其制造方法和工艺。然而,金属基复合材料的 制造相对其他基复合材料还是比较复杂和困难。 这是由于金属熔点较高,需要在高温下操作;同 时不少金属对增强体表面润湿性很差,甚至不润 湿,加上金属在高温下很活泼,易与多种增强体 发生反应。目前虽然已经研制出不少制造方法和 工艺,但仍存在一系列问题。所以开发有效的制 造方法一直是金属基复合材料研究中最重要的课 题之一。
PVD法纤维/基体复合丝原理图
5.3.5共喷沉积技术
• 共喷沉积法是制造各种颗粒增强金属基复合材料 的有效方法,1969年由A.R.E.siager发明, 随后由Ospmy金属有限公司发展成工业生产规模 的制造技术,现可以用来制造铝、铜、镍、铁、 金属间化合物基复合材料。 • 共喷沉积工艺过程,包括基体金属熔化、液态金 属雾化、颗粒加入及与金属雾化流的混合、沉积 和凝固等工序。主要工艺参数有:熔融金属温度, 惰性气体压力、流量、速度,颗粒加入速度,沉 积底板温度等。这些参数都对复合材料的质量有 重要的影响。不同的金属基复合材料有各自的最 佳工艺参数组合,必须十分严格地加以控制。
压铸工艺中,影响金属基复合材料性能的工艺因素主要有四个: ①熔融金属的温度 ②模具预热温度 ③使用的最大压力 ④加压速度 在采用预制增强材料块时,为了获得无孔隙的复合材料,一般压力不低于 50MPa,加压速度以使预制件不变形为宜,一般为1~3cm/s。对于铝基复合材 料,熔融金属温度一般为700~800℃,预制件和模具预热温度一般可控制在 500~800℃,并可相互补偿,如前者高些,后者可以低些,反之亦然。采用压 铸法生产的铝基复合材料的零部件,其组织细化、无气孔,可以获得比一般金 属模铸件性能优良的压铸件。与其他金属基复合材料制备方法相比,压铸工艺 设备简单,成本低,材料的质量高且稳定,易于工业化生产。
材料加工工艺习题【考研】【复习】
![材料加工工艺习题【考研】【复习】](https://img.taocdn.com/s3/m/68a690acad51f01dc381f133.png)
《材料加工工艺》考研习题第一章绪论第二章液态金属成形1.金属及合金的结晶包括哪两个基本过程?什么是均质形核和非均质形核?在实际铸造生产中铸造合金结晶的形核是以哪种形核为主,为什么?2.什么是液态金属的充型性能,它与哪些因素有关?铸造合金流动性的好与差对铸件质量有何影响?影响铸造合金流动性的主要因素有哪些?生产中如何采取措施提高铸造合金的流动性?3.铸造合金由液态冷却到室温时要经过哪三个收缩阶段?收缩对铸件质量有什么影响?其收缩大小与哪些因素有关?4.缩孔、缩松是铸件中的常见缺陷之一,哪些因素影响其形成?生产中如何采取措施进行防止?5.什么是铸造应力?铸造应力大小对铸件质量有什么影响?热应力是如何形成的?哪些因素影响其大小?生产中常采取哪些措施来防止和减小应力对铸件的危害?6.铸造合金中的气体主要来源于哪些方面?又以哪些形式存在于铸造合金中?对铸件质量有什么影响?7.铸造合金中的夹杂物是如何分类的?对铸件质有什么影响?如何防止和减小其对铸件的危害?8.湿型粘土砂的主要成分是什么?它有哪些优缺点?适合生产哪些铸件?9.湿型粘土砂的造型方法有哪些?试比较应用震击、压实、射压、高压、气冲和静压等各种造型方法的紧实的砂型紧实度分布(沿砂箱高度方向)。
为什么需要用高密度湿粘土砂型生产铸件?10.树脂自硬砂、水玻璃砂与粘土砂比较有哪些优点?各适用于哪些铸件的生产?11.砂芯的作用是什么?经常使用哪些粘结剂来制芯?常用的制芯工艺有哪些?12.砂型和砂芯涂料的作用是什么?其主要组成有哪些?13.什么是顺序凝固原则?什么是同时凝固原则?各需采用什么措施来实现?上述两种凝固原则各适用于哪些场合?14.铸件的壁厚为什么不能太薄,也不能太厚,而且应尽可能厚薄均匀?为什么要规定铸件的最小壁厚?不同铸造合金要求一样吗?为什么?。
15.为便于生产和保证铸件质量,通常对铸件结构有哪些要求?16.何谓铸件的浇注位置?它是否指铸件上的内绕道位置?铸件的浇注位置对铸件的质量有什么影响?应按何原则来选择?17.试述分型面与分模面的概念?分模造型时,其分型面是否就是其分模面?从保证质量与简化操作两方面考虑,确定分型面的主要原则有哪些?18.试确定图2-116所示铸件的浇注位置及分型面。
材料合成与制备 第5章 定向凝固技术
![材料合成与制备 第5章 定向凝固技术](https://img.taocdn.com/s3/m/42e7c84d3169a4517623a31a.png)
4、磁性材料
稀土超磁致伸缩材料RFe(R-Tb、Dy)作为一种电-磁-机械能量或信 息转换的新型功能材料,从20世纪70年代以来得到了迅速发展,它具有 很高的磁致伸缩值(1500~2000×10 )和能量密度(14000~25000J/m ),而 且还具有低频响应速度快、机电耦舍系数大等特点,故在大功率声纳换 能器、磁弹性波器件、液压阀门控制、精密加工徽定位、精度高速线性 马达、伺服系统和特殊兵器等高新技术领域展示出广阔的应用前景。对 于Tb-Dy-Fe材料,人们一直希望得到具有<111>方向择优取向的样品。 通过改变材料的定向凝固条件、控制材料的取向度、以及对材料进行热 处理消除晶界提高材料磁致伸缩性能。
(4)激光超高温梯度快速凝固
利用激光器作为热源来实现定向凝固。 激光具有能量高度集中的特性,在作为定向凝固热源时可能获得 比现有定向凝固方法高得多的温度梯度。利用激光表面熔凝技术实现 超高温度梯度快速定向凝固的关键在于:在激光熔池内获得与激光扫 描方向一致的温度梯度;根据合金凝固特性选择适当的工艺参数以获 得胞晶组织。
定向凝固过程工艺参数分别为: 合金熔融温度1450℃,温度梯度140℃/cm,牵引速度0.5-0.8 mm/min。
2、柱状晶生长
控制热流方向和温度梯度。
3、高温合金制备
定向凝固制备Fe-Cr-C过共晶原位生长复合材料
高铬铸铁是一种优良的耐磨材料,普通条件下凝固的高铬铸铁碳 化物呈网状,在实际磨损中往往会因为碳化物脆裂或折断而失效。 为此,通过定向凝固的方法,使碳化物纤维定向排列,即将Fe-C-Cr 合金制备成碳化物呈定向分布的原位生长复合材料,使高硬度的碳 化物垂直于磨面的方向定向生长,可以显著提高其性能。
1第五章 材料加工力学基础--简_430108089
![1第五章 材料加工力学基础--简_430108089](https://img.taocdn.com/s3/m/81410cde26fff705cc170a77.png)
2015年春季
2015/5/17
材料加工原理
1
题外话
• 2011年诺贝尔化学奖获奖项目是什么? • 什么是准晶?晶体?非晶体?Amorphous A h state t t
– 晶体:三维周期性有序重复的原子排列,出现1、2、3、4、6次 旋转对称性,不可能出现5次及6次以上的旋转对称性。 – 非晶体:近程有序、无长程序对称性。分玻璃和其他非晶态 – 准晶:具有长程准周期性平移序和非晶体学旋转对称的固态有序 相
2015/5/17
材料加工原理
20
平板对接产生的焊接变形
2015/5/17
材料加工原理
21
金属塑性成形的物理基础
• • • • • • • 金属塑性成形的特点 塑性成形工艺的分类 塑性加工时变形的分类 塑性加工时的附加应力和残余应力 金属的塑性和变形抗力 变形体的模型 塑性变形机制、加工硬化、回复、再结晶、摩擦 和润滑
2015/5/17 材料加工原理
27
变形体的模型 (应力-应变曲线的简化形式)
• • • • • 理想弹塑性模型 弹塑性线性强化模型 幂强化模型 理想刚塑性模型 刚塑性线性强化模型
2015/5/17
材料加工原理
28
塑性变形机制、加工硬化
• 塑性变形机制:单晶体、多晶体 – 单晶体塑性变形的主要机制是滑移和孪生。 单晶体塑性变形的主要机制是滑移和孪生 – 多晶体的塑性变形包括晶内变形和晶间变形两 种方式。除了滑移和孪生外,还有晶界滑动和 除 孪生 有 迁移,以及点缺陷的定向扩散(扩散蠕变)。 • 加工硬化 – 塑性变形造成组织上的变化,组织变化产生性 能上的变化:屈服极限、强度极限、硬度等均 提高,延伸率、截面收缩率、冲击韧性均降低 ;导电性、导热性、抗腐蚀性能均降低,铁磁 金属的磁性也会发生变化。
西华大学《材料性能学》总复习题
![西华大学《材料性能学》总复习题](https://img.taocdn.com/s3/m/14c65e9f6aec0975f46527d3240c844769eaa0de.png)
绪论二、单项选择题1、下列不是材料力学性能的是()A、强度B、硬度C、韧性D、压力加工性能2、属于材料物理性能的是()A、强度B、硬度C、热膨胀性D、耐腐蚀性三、填空题1、材料的性能可分为两大类:一类叫_ _,反映材料在使用过程中表现出来的特性,另一类叫_ _,反映材料在加工过程中表现出来的特性。
2、材料在外加载荷(外力)作用下或载荷与环境因素(温度、介质和加载速率)联合作用下所表现的行为,叫做材料_ 。
四、简答题1、材料的性能包括哪些方面?2、什么叫材料的力学性能?常用的金属力学性能有哪些?第一章材料单向静拉伸的力学性能一、名词解释弹性极限:强度:屈服强度:抗拉强度:塑性变形:韧性:二、单项选择题1、根据拉伸实验过程中拉伸实验力和伸长量关系,画出的力——伸长曲线(拉伸图)可以确定出金属的()A、强度和硬度B、强度和塑性C、强度和韧性D、塑性和韧性2、试样拉断前所承受的最大标称拉应力为()A、抗压强度B、屈服强度C、疲劳强度D、抗拉强度3、拉伸实验中,试样所受的力为()A、冲击B、多次冲击C、交变载荷D、静态力4、常用的塑性判断依据是()A、断后伸长率和断面收缩率B、塑性和韧性C、断面收缩率和塑性D、断后伸长率和塑性5、工程上所用的材料,一般要求其屈强比()A、越大越好B、越小越好C、大些,但不可过大D、小些,但不可过小6、工程上一般规定,塑性材料的δ为()A、≥1%B、≥5%C、≥10%D、≥15%7、形变强化是材料的一种特性,是下列()阶段产生的现象。
A、弹性变形;B、冲击变形;C、均匀塑性变形;D、屈服变形。
8、在拉伸过程中,在工程应用中非常重要的曲线是()。
A、力—伸长曲线;B、工程应力—应变曲线;C、真应力—真应变曲线。
9、空间飞行器用的材料,既要保证结构的刚度,又要求有较轻的质量,一般情况下使用()的概念来作为衡量材料弹性性能的指标。
A、杨氏模数;B、切变模数;C、弹性比功;D、比弹性模数。
特殊过程控制管理规定(3篇)
![特殊过程控制管理规定(3篇)](https://img.taocdn.com/s3/m/d6151ba488eb172ded630b1c59eef8c75fbf95f2.png)
第1篇第一章总则第一条为确保产品质量,加强特殊过程的管理,根据《中华人民共和国产品质量法》及相关法律法规,结合本单位的实际情况,特制定本规定。
第二条本规定适用于本单位所有涉及特殊过程的生产、加工、检验等环节。
第三条特殊过程是指那些对产品质量有显著影响,难以通过常规检验手段进行控制的过程。
主要包括:1. 高精度加工过程;2. 特种合金熔炼过程;3. 高温、高压、高真空等特殊环境下的加工过程;4. 高分子材料成型过程;5. 精密计量过程;6. 特种表面处理过程;7. 其他对产品质量有重大影响的过程。
第四条特殊过程控制管理的目标是:1. 确保产品质量符合国家标准和客户要求;2. 提高生产效率和产品质量稳定性;3. 保障员工安全和环境保护。
第二章组织机构与职责第五条本单位成立特殊过程控制管理小组,负责特殊过程控制的全面管理工作。
第六条特殊过程控制管理小组的职责:1. 制定特殊过程控制管理制度和操作规程;2. 组织特殊过程能力验证;3. 监督特殊过程执行情况;4. 对特殊过程进行定期评审;5. 处理特殊过程发生的质量问题。
第七条各部门负责人对本部门特殊过程控制工作负直接责任,应确保本部门特殊过程控制工作的有效实施。
第八条各岗位操作人员应按照特殊过程控制管理制度和操作规程进行操作,确保产品质量。
第三章特殊过程识别与评审第九条各部门应识别本部门涉及的特殊过程,并填写《特殊过程识别表》。
第十条特殊过程控制管理小组对各部门提交的特殊过程进行评审,确认其特殊性质和风险等级。
第十一条评审内容包括:1. 特殊过程对产品质量的影响程度;2. 特殊过程的操作难度;3. 特殊过程的设备、材料、环境要求;4. 特殊过程的检验方法和手段;5. 特殊过程的控制措施。
第十二条评审结果分为“必须控制”、“需要控制”和“可接受”三个等级。
第四章特殊过程控制措施第十三条对必须控制的特殊过程,应制定详细的操作规程和控制计划。
第十四条操作规程和控制计划应包括以下内容:1. 操作步骤;2. 设备、材料、环境要求;3. 操作人员要求;4. 检验方法和手段;6. 异常情况处理。
机械工程材料第五章 铁碳合金
![机械工程材料第五章 铁碳合金](https://img.taocdn.com/s3/m/0ee1801b0b4e767f5acfcebf.png)
4、共晶白口铁
L
L→ Ld( A+Fe3C) A→ (Fe3C)Ⅱ
A→P(α+Fe3C)
室温组织:Ld′ 即 P+(Fe3C)Ⅱ+Fe3C 室温相:α+Fe3C
5、亚共晶白口铁
L L→A L→ Ld (A+Fe3C) A→ (Fe3C)Ⅱ
A→P(α+Fe3C)
室温组织: Ld′+P+(Fe3C)Ⅱ 即(P+(Fe3C)Ⅱ+Fe3C)+P+Fe3CⅡ 室温相:α+Fe3C
四、 Fe-Fe3C相图的应用
1.为选材提供成分依据
低碳钢(0.10-0.25%C):建筑结构和容器等 中碳钢(0.25-0.60%C):如轴等 高碳钢(0.6-1.3%C):如工具等 白口铁:如拔丝模、轧辊和球磨机的铁球等
34
2.为制定热加工工艺提供依据
(1)在铸造生产方面的应用 根据Fe-Fe3C相图可以确定铁碳合金的浇注温度, 浇注温度一般在液相线以上50℃~100℃。 共晶成分的铸铁凝固区间最小(为零),流动性 好,分散缩孔少,可使缩孔集中在冒口内,有可 能得到致密的铸件得到较广泛的应用。
其性能特点是强度低,硬度不高,易于塑性变形。
⑸ Fe3C相(又称渗碳体):根据其生成条件不同有条状、网状、
片状、粒状等形态,对铁碳合金的力学性能有很大影响。
1600 A 1400 N 1200 1000
+L
B 0.53 J 0.17 H 0.09 1495
L
2.11 E
4.3 1148 C
+
注意:由于不保证化学成分,所以热处理时不能 依甲类钢来选材,应依乙类钢选,才能根据相图 制定热处理工艺。
第五章6应力开裂腐蚀
![第五章6应力开裂腐蚀](https://img.taocdn.com/s3/m/e08dae270a1c59eef8c75fbfc77da26925c596b4.png)
饱和期:裂纹互相连接,内部脱碳直到碳耗尽。 体积不再膨胀
38
氢腐蚀的影响因素
• 温度 • 氢分压 • 冷加工变形:加速腐蚀(应变易集中在铁素体和碳化物界
面上,在晶界形成高密度微孔,增加了组织和应力的不均 匀性,增加气泡形核位置,并有利于裂纹的扩展。) • 碳化物的球化处理:使界面能降低而有利于孕育期的延长。 • 稳定化元素
机理:C+2H2 → CH4
Fe3C+2H2 → 3Fe+CH4
或4H + Fe3C → 3Fe+CH4
反应生成的高压气体,在高压、高温、含氢条件下氢
分子扩散到钢中,并生成甲烷,甲烷在钢中的扩散能力很
低,这样甲烷量不断增多,形成局部高压,造成应力集中
使该处发展为裂纹。(脱碳)
37
氢腐蚀过程
孕育期:晶界碳化物及其附近有大量亚微型充满甲烷的 鼓泡形核。 力学性能和显微组织均无变化
39
2、氢鼓泡(Hydrogen Blistering) 氢鼓泡是指过饱和的氢原子在缺陷位置(如夹杂、气孔、
微缝隙处)析出后,形成氢分子,在局部区域造成高氢压 (106MPa),引起表面鼓泡或形成内部裂纹,使钢材撕裂 开来的现象,称氢诱发开裂(HIC)或氢鼓泡(HB)。
40
3、氢化物脆裂 ( Hydrogen Embrittlement) 氢化物脆裂脆(HE)是指由于氢扩散到金属中以固溶态
材料因素 力学因素
SCC
环境因素
2、发生应力腐蚀断裂的主要是合金,几乎所有金属的 合金在特定的环境中都有一定的应力腐蚀敏感性。例如, 纯度达9999%的铜在含氨介质中不会腐蚀断裂,但含有 004%磷或001%锑时,则发生开裂。
第5章-挤压
![第5章-挤压](https://img.taocdn.com/s3/m/c7ec056258fafab069dc02fb.png)
7、合金可挤压性能 A公司:Kaiser铝和化学公司;B学会:ASM,美国金属学会; 合金牌号 1060 1100 2011 A公司 150 150 15 B学会 125 125 35 合金牌号 5456 6351 6061 A公司 20 60 60 B学会 ----60
2014
铝合金材料基础知识培训
开发部/王海东 2009年07月
第五章
挤压
1、挤压:就是对放在挤压筒中的铝锭施加以压力,使之通过模孔成型 的一种压力加工方法。最基本的挤压方法有正向挤压与反向挤压,它们的 区别在于金属流动的方向与挤压杆的运动方向是否相同,是则为正向挤压, 反则为反向挤压。特点区别在于金属与挤压筒内壁间有无相对运动,或者 说有无外摩擦。除此之外,工业上常用的挤压方法还有:侧向挤压、玻璃 润滑挤压、静液挤压、连续挤压。 2、挤压过程可分为三个阶段:首先是填充阶段,在此阶段铝棒受到挤 压杆的作用,首先充满挤压筒和模孔,此时压力急剧上升到100Kg/mm2 左右,即从进料到脱气结束。其次是挤压平流阶段,挤压筒充满铝后,挤 压力迅速上升到210Kg/mm2左右,开始出料。此阶段压力随着铝棒与挤 压筒接触长度的缩短,外摩擦力不断减小,挤压力几乎呈直线下降。再次 是挤压终了阶段,即挤压筒内铝棒长度减小到变形区压缩锥高度时到挤压 完成。
6、6063合金Mg、Si、Mg2Si、AlFeSi在过程中的变化
过程 熔 解 图 示 说 明
Si或Al-12Si,Mg溶解到铝液中
熔 铸
铸 造
Si 、 Mg2Si 、 AlFeSi 等合金或单体主要集 中在铝基体晶间、晶界,也有少量在晶内, 形成粗大化合物 ①针状的 β -AlFeSi 转化为球状的 α -AlFeSi , 使挤出品表面更好;②晶界溶解,晶间化 合物溶解,均匀细小的 β′、 β″ Mg2Si 大量 成核,极易在挤压时溶解;③化学元素分 布更均匀 β′、 β″ Mg2Si 大量溶解成游离质点均匀分 布在铝基体中,α-AlFeSi均匀分布在铝基 体中(称为固溶过程) β′针状的 Mg2Si 在铝原子间形成网状结构, 能有效阻止铝原子互错,使铝变形困难, 从而产生强度
第五章 机械加工表面质量讲解
![第五章 机械加工表面质量讲解](https://img.taocdn.com/s3/m/26797cd6551810a6f52486b6.png)
影响零件的耐磨性。
15
5.2 加工表面质量对零件使用性能的影响 (二)表面质量对零件疲劳强度的影响
1. 表面粗糙度对疲劳强度的影响
表面粗糙度越大,抗疲劳破坏的能力越差。 对承受交变载荷零件的疲劳强度影响很大。
(一)加工 表面层的冷作硬化
1.表面层冷作硬化的产生
冷作硬化:机械加工时,工件表面层金属受到切 削力的作用产生强烈的塑性变形,使晶格扭曲,晶 粒间产生剪切滑移,晶粒被拉长、纤维化甚至碎化, 从而使表面层的强度和硬度增加,这种现象称为加 工硬化,又称冷作硬化和强化。
34
5.4 影响加工表面层物理机械性能的因素
机械加工中,表面粗糙度形成的原因大致可归纳为几 何因素和物理力学因素两个方面。
(一)切削加工时表面粗糙度的影响因素
1. 几何因素
••刀主尖偏圆角弧kr、半副径偏rε 角kr′ •进给量f
22
残留面积高度H的计算:
当刀尖圆弧半径rε=0时,残留面积高度H为
H
f
cotkr cotkr
f: 进 给 量 , Kr主 偏 角 , Kr'副 偏 角
(一)表面质量对零件耐磨性的影响 1. 表面粗糙度对耐磨性的影响
零件耐磨性的影响因素: 摩擦副的材料;润滑条件;表面质量(接触面积)。
零件磨损三个阶段:初期磨损阶段;正常磨损阶段;剧烈磨损阶段
图5-1 磨损过程的基本规律
11
5.2 加工表面质量对零件使用性能的影响
(一)表面质量对零件耐磨性的影响
1. 表面粗糙度对耐磨性的影响
表面粗糙度太大和太小都不耐磨 表面粗糙度太大,接触表面的实际压强增大,粗
材料成形工艺基础最新精品课件第五章金属塑性成形理论基础
![材料成形工艺基础最新精品课件第五章金属塑性成形理论基础](https://img.taocdn.com/s3/m/ed19e72cfe4733687e21aa6c.png)
2. 多晶体的塑性变形
多晶体的塑性变形是由于晶界的存在和 各晶粒晶格位向的不同,其塑性变形过程比 单晶体的塑性变形复杂得多。在外力作用下, 多晶体的塑性变形首先在晶格方向有利于滑 移的晶粒A内开始,然后,才在晶格方向较 为不利的晶粒B、C内滑移。由于多晶体中 各晶粒的晶格位向不同,滑移方向不一致, 各晶粒间势必相互牵制阻扰。为了协调相邻 晶粒之间的变形,使滑移得以继续进行,便 图5-4 多晶体塑性变形过程示意图 会出现晶粒彼此间相对的移动和转动。因此, 多晶体的塑性变形,除晶粒内部的滑移和转 动外,晶粒与晶粒之间也存在滑移和转动。
图5-6 回复和再结晶示意图
(3)晶粒长大 在结晶退火后的金属组织一般为细小均匀的等 轴晶。如果温度继续升高,或延长保温时间,则在结晶后的晶粒 又会长大而形成粗大晶粒,从而使金属的强度、硬度和塑性降低。 所以要正确选择再结晶温度和加热时间的长短。
5.2.2 冷变形和热变形后金属的组织与性能
金属在再结晶温度以下进行的塑性变形称为冷变形,在再结晶以 上进行的塑性变形称为热变形。
图5-7 冲压件的制耳
(4)残余内应力 残余内应力是指去除外力后,残留在金属内 部的应力,它主要是由于金属在外力作用下变形不均匀而造成的。 残余内应力的存在,使金属原子处于一种高能状态,具有自发恢 复到平衡状态的倾向。在低温下,原子活动能力较低,这种恢复 现象难以觉察,但是,当温度升高到某一程度后,金属原子获得 热能而加剧运动。金属组织和性能将会发生一系列变化。
1. 锻造比 锻造比是锻造生产中代表金属变形程度大小的一个参数,一 般是用锻造过程中的典型工序的变形程度来表示(Y)。如拔长时, 锻造比Y拔=F0/F;镦粗时,锻造比Y镦=H0/H。(式中,H0、F0分别为坯 料变形前的高度和横截面积,H、F分别为坯料变形后的高度和横截面 积)。
工程材料与热处理第5章作业题参考答案
![工程材料与热处理第5章作业题参考答案](https://img.taocdn.com/s3/m/140f5af2ce2f0066f5332232.png)
1.奥氏体晶粒大小与哪些因素有关?为什么说奥氏体晶粒大小直接影响冷却后钢的组织和性能?奥氏体晶粒大小是影响使用性能的重要指标,主要有下列因素影响奥氏体晶粒大小。
(1)加热温度和保温时间。
加热温度越高,保温时间越长,奥氏体晶粒越粗大。
(2)加热速度。
加热速度越快,过热度越大,奥氏体的实际形成温度越高,形核率和长大速度的比值增大,则奥氏体的起始晶粒越细小,但快速加热时,保温时间不能过长,否则晶粒反而更加粗大。
(3)钢的化学成分。
在一定含碳量范围内,随着奥氏体中含碳量的增加,碳在奥氏体中的扩散速度及铁的自扩散速度增大,晶粒长大倾向增加,但当含碳量超过一定限度后,碳能以未溶碳化物的形式存在,阻碍奥氏体晶粒长大,使奥氏体晶粒长大倾向减小。
(4)钢的原始组织。
钢的原始组织越细,碳化物弥散速度越大,奥氏体的起始晶粒越细小,相同的加热条件下奥氏体晶粒越细小。
传统多晶金属材料的强度与晶粒尺寸的关系符合Hall-Petch关系,即σs=σ0+kd-1/2,其中σ0和k是细晶强化常数,σs是屈服强度,d是平均晶粒直径。
显然,晶粒尺寸与强度成反比关系,晶粒越细小,强度越高。
然而常温下金属材料的晶粒是和奥氏体晶粒度相关的,通俗地说常温下的晶粒度遗传了奥氏体晶粒度。
所以奥氏体晶粒度大小对钢冷却后的组织和性能有很大影响。
奥氏体晶粒度越细小,冷却后的组织转变产物的也越细小,其强度也越高,此外塑性,韧性也较好。
2.过冷奥氏体在不同的温度等温转变时,可得到哪些转变产物?试列表比较它们的组织和性能。
3.共析钢过冷奥氏体在不同温度的等温过程中,为什么550℃的孕育期最短,转变速度最快?因为过冷奥氏体的稳定性同时由两个因素控制:一个是旧与新相之间的自由能差ΔG;另一个是原子的扩散系数D。
等温温度越低,过冷度越大,自由能差ΔG也越大,则加快过冷奥氏体的转变速度;但原子扩散系数却随等温温度降低而减小,从而减慢过冷奥氏体的转变速度。
高温时,自由能差ΔG起主导作用;低温时,原子扩散系数起主导作用。
机械工程材料 第五章 钢的热处理.答案
![机械工程材料 第五章 钢的热处理.答案](https://img.taocdn.com/s3/m/d02612dcaa00b52acec7ca00.png)
30s
650 550
2s
40s
2s 5s
10s
2、C 曲线的分析 ⑴ 转变开始线与纵
坐标之间的距离为
孕育期。
孕育期越小,过冷
奥氏体稳定性越小.
孕育期最小处称C
曲线的“鼻尖”。
碳钢鼻尖处的温度
为550℃。
在鼻尖以上, 温度较 高,相变驱动力小.
在鼻尖以下,温度
较低,扩散困难。
从而使奥氏体稳定
为板条与针状的混合
组织。
0.2%C 0.45%C 1..2%C
3、马氏体的性能 高硬度是马氏体性 能的主要特点。 马氏体的硬度主要 取决于其含碳量。 含碳量增加,其硬
C%
马氏体硬度、韧性与含碳量的关系
度增加。
当含碳量大于0.6%时,其硬度趋于平缓。
合金元素对马氏体硬度的影响不大。
℃
温 度 ,
共析钢奥氏体化曲线(875℃退火)
体成分趋于均匀。
共析钢奥氏体化过程
亚共析钢和过共析钢的奥 氏体化过程与共析钢基本
相同。但由于先共析 或
二次Fe3C的存在,要获得
全部奥氏体组织,必须相
应加热到Ac3或Accm以上.
二、奥氏体晶粒长大及其影响因素
1、奥氏体晶粒长大 奥氏体化刚结束时的 晶粒度称起始晶粒度, 此时晶粒细小均匀。
(a)940淬火+220回火(板条M回+A‘少)(b)(c)(d)940淬火+820、780、750淬火(板条M+条状F+A’少) (e)940淬火+780淬火+220回火(板条M回+条状F+A‘少)(f)780淬火+220回火(板条M回+块状F)
第五章 减摩、耐磨及摩阻材料解读
![第五章 减摩、耐磨及摩阻材料解读](https://img.taocdn.com/s3/m/ea63692c844769eae009edd4.png)
(3) 耐磨性E:耐磨性E为磨损率的倒数。 对于线磨损率,耐磨性表示为: 对于体积磨损率,耐磨性表示为: 对于重量磨损率,耐磨性表示为: (4) 相对耐磨系数ε: 在同一试验条件下,标准材料试样的体积或线磨 损量hs (或磨损率) 与被测材料试样的体积或线磨损 量h (或磨损率) 之比:
(2) 低合金耐磨钢 高锰钢在冲击载荷不大的情况下,由于其加 工硬化不够,耐磨性并不高。而低合金钢在这种 情况下,显示出更高的耐磨性。 低合金钢具有仅次于高锰钢的高韧性,如果 合理选择合金成分和热处理方法,能够获得比高 锰钢还高的强度和比较深的表面硬化层,其适用 范围较广泛。 在耐磨粒磨损方面使用的低合金钢有中碳铬 锰硅钢和高碳铬锰硅钢,其化学成分一般为 Cr 1-3%, Mn 1%, Si 1-3%。
在农业机械、工程机械、矿山设备,摩擦副材 料应有高的耐磨性。
各类轴承、齿轮、蜗轮运动副、机床导轨等要 求摩擦副材料有低的摩擦系数和高的耐磨性。
运输和工程机械(如汽车、火车、拖拉机、飞机、 起重机、提升和卷扬机等),制动摩擦副材料应 有高而稳定的摩擦系数和耐磨性。
二、耐磨材料
1、材料耐磨性的定义 材料的耐磨性通常是指在一定的工况条件下,摩擦副材 料在摩擦过程中抵抗磨损的能力。 材料的耐磨性离不开工况条件(速度、载荷、温度、介 质等)。同一种材料,在不同的工况条件下其耐磨性相 差很大。 如,高锰钢。 高硬度的材料具有好的抗磨料磨损性能,而在交变 接触应力作用下抗疲劳磨损的能力却不好。 材料的配对、摩擦副的结构形状、磨损的形式、维护条 件等的不同,其耐磨性也不相同。 **因此,可以说并不存在一种材料,它在各种情况下都是耐 磨(或减摩)的。材料的耐磨性是有条件的,也是相对的。
塑胶模具开发管理规定(3篇)
![塑胶模具开发管理规定(3篇)](https://img.taocdn.com/s3/m/2d60516ff68a6529647d27284b73f242336c31ae.png)
第1篇第一章总则第一条为规范塑胶模具开发过程,确保模具质量,提高开发效率,降低开发成本,特制定本规定。
第二条本规定适用于公司内部所有塑胶模具的开发工作。
第三条模具开发应遵循以下原则:1. 符合国家标准和行业标准;2. 适应产品设计和生产要求;3. 确保模具结构合理、工艺可靠、质量稳定;4. 优化设计,提高模具寿命;5. 注重环境保护和资源节约。
第二章组织机构与职责第四条成立塑胶模具开发管理小组,负责模具开发全过程的监督和管理。
第五条模具开发管理小组职责:1. 制定模具开发计划;2. 审核模具设计方案;3. 组织模具评审;4. 监督模具试制和生产;5. 负责模具技术文件的编制和管理;6. 落实模具开发过程中的质量控制和成本控制;7. 定期组织模具技术交流和培训。
第六条模具设计部门职责:1. 根据产品设计和生产要求,进行模具结构设计;2. 编制模具设计文件;3. 参与模具评审;4. 负责模具设计变更的审批;5. 协助模具试制和生产。
第七条模具制造部门职责:1. 按照模具设计文件进行模具加工;2. 负责模具加工过程中的质量控制;3. 参与模具试制;4. 负责模具的装配和调试。
第八条质量管理部门职责:1. 负责模具开发过程中的质量监督;2. 参与模具评审;3. 负责模具质量问题的处理;4. 负责模具质量记录的整理和分析。
第三章模具开发流程第九条模具开发流程分为以下阶段:1. 前期准备- 收集产品图纸和相关技术资料; - 确定模具开发目标和要求;- 进行模具设计可行性分析。
2. 模具设计- 进行模具结构设计;- 编制模具设计文件;- 召开模具设计评审会议。
3. 模具加工- 根据模具设计文件进行模具加工;- 进行模具加工过程中的质量控制。
4. 模具试制- 模具加工完成后,进行模具试制;- 对试制模具进行性能测试和调试。
5. 模具评审- 组织模具评审会议;- 审核模具设计、加工和试制情况;- 对模具进行评估和改进。
(首饰贵金属材料及工艺学)第五章首饰贵金属材料的加工工艺
![(首饰贵金属材料及工艺学)第五章首饰贵金属材料的加工工艺](https://img.taocdn.com/s3/m/bd2d0e2af61fb7360a4c65cc.png)
化时吸附的气体。如果铸型的排气能力差,如离心浇铸工艺,浇铸速度快,
腔内气体压力可迅速提高阻碍液态金属的充型,使铸件产生大量的气泡、缩
松和缩孔。
(2)浇注条件:包括浇注温度、充型压力等。
浇注温度:浇铸温度越高,合金的粘度降低,
在铸型中保持液态的时间长,故充型能力强,反
之,充型能力差。
但浇铸温度过高,贵金属材料往往在高温下
方式有喷枪熔解、金属釜熔解和高频熔解。铂用喷枪和高 频式,需测温时用高频熔解。金、银在需测温时用釜和高 频方式。 高频加热方式:可在真空中和气体中熔解,可测温,且铂 的熔解很容易,故是最佳的方式,不过造价较高。 釜式:该方式通过加热器的发热来熔解,对金银的熔解 效果较好,但不适于铂的熔解。 喷枪式:对所有贵金属都有效,但气氛熔解困难,也不 能测温,故特别需要经验。操作者个性差异较大,金属的 损耗也较其他方式大。
真空离心铸造是结合了正压铸造和负压铸造的优点的一种 铸造方法,就其本质而言,真空离心铸造是属于负压铸造。 虽然这里的“真空”不只是指铸模内部,熔融金属及其容 器——坩埚也是处于真空状态,但按照我们上面对“负压 铸造”的定义,在铸造过程中,铸模内部的压力小于大气 压,因此将“真空离心铸造”归于“负压铸造”一类是合 理的。
铸造量
一次能熔的金属量,根据铸造的产量确定铸型的大小,产 量大时使用大的铸型,一次可产出大量的铸件。产量小时 用小的铸型。
据铸造金属量划分的铸造机的大致分类
铂合金 大型250g以上, 中型80~150g, 小型50g以下 金合金 大型250g以上, 中型80~200g, 小型80g以下 由于铂金会在加热停止后7秒钟内凝固,因此铸造量太多,
具有强力吸收气体的特性,铸件容易产生缩孔、
粗晶等缺陷,在保证充型能力足够的前提下,烧
华南农业大学工艺学第五章 机械加工表面质量及其控制练习题
![华南农业大学工艺学第五章 机械加工表面质量及其控制练习题](https://img.taocdn.com/s3/m/21923d674431b90d6c85c7fa.png)
一、名词解释1.冷作硬化:机械加工过程中产生的塑性变形,使晶格扭曲、畸变,晶粒间产生滑移,晶粒被拉长,这些都会使表层金属的硬度增加,此称为冷作硬化。
2.磨削烧伤:对于已淬火的钢件,很高的磨削温度往往会使表层金属的金相组织产生变化,使得表层金属硬度下降,使工件表面呈现氧化膜颜色,这种现象称为磨削烧伤。
二、选择题1.磨削淬火钢时,磨削区温度末超过淬火钢的相变温度,但已超过马氏体的转变温度,可能产生()。
A、淬火烧伤B、回火烧伤C、退火烧伤D、不烧伤。
2.磨削淬火钢时在重磨削(不用切削液)条件下可能产生()形式的磨削烧伤。
A、淬火烧伤B、回火烧伤C、不烧伤D、退火烧伤3.加工过程中若表面层以冷塑性变形为主,则表面层产生()应力。
A、拉应力B、压应力C、无应力层4.机械加工中的振动,按其产生的原因可分为三种,试指出自激振动的能量特性()A、在外界周期性干扰力持续作用下的持续振动;B、只有初始干扰力的作用、振动中再也没有能量输入,故为衰减振动;C、维持振动的交变力是振动系统在自身运动中激发出来的,从而引起系统的持续振动。
5.削扁镗杆的抗振性比圆镗杆好是由于()。
A、系统刚度的组合特性合适B、阻尼大、消耗振动能量大C、刚度高6.磨削淬火钢时,若工件表面出现淬火烧伤,工件表面将产生()残余应力。
A、拉伸B、压缩C、无7.零件配合性质的稳定性与()的关系较大。
A.零件材料B.加工表面质量C.载荷大小D.接触刚度8.如果使扁形镗杆能够产生消振作用,需要()。
A.选择合适的削扁值和刀头相对削扁方向的位置B.选择合适的镗杆长度C.选择合适的削扁值D.选择合适的刀头相对削扁方向的位置9.冷态下塑性变形经常在表层产生()。
A.拉应力B.不定C.压应力D.金相组织变化10.金属的加工硬化现象将导致什么结果。
A、强度降低,塑性提高B、强度提高,塑性提高C、强度提高,塑性降低D、强度降低,塑性降低11.工件材料的塑性越大,冷作硬化倾向(),冷作硬化程度()A.越小,越轻微B.越小,越严重C.越大,越轻微D.越大,越严重12.机械加工时,工件表面产生波纹的原因有()。
第5讲-金属材料组织和性能控制-应变强化和凝固
![第5讲-金属材料组织和性能控制-应变强化和凝固](https://img.taocdn.com/s3/m/9ece2bfaf46527d3240ce0b7.png)
因此,通过对金属材料施加超过屈服强 度的应力我们就能够使其发生应变硬化;或 者说,在对金属材料进行冷作加工时,在材 料变形的同时,也使材料发生了加工硬化。 这就是许多制造技术如线材拉拔技术的基础。
图8-2图示说明了几种冷作加工(也可进 行热作加工)的材料制造技术。后面我们会 谈及热作加工和冷作加工的区别。许多制造 技术实质上就是变形和加工硬化同时进行的 冷作加工过程,如图8-2。
• 在材料的退火过程中,可能存在三个组织转变阶段。图8-14就是黄铜 退火时的三个阶段对黄铜材料性能的影响情况。
• 回复阶段 材料的冷作加工原始组织是由变形晶粒组成,晶粒中包括大量纠缠 的
位错。当对金属开始加热,附加的热能会让位错运动并形成多边化亚晶 粒结构的边界。此时,材料中的位错密度实际上并没有改变,这种低温 退火处理能够消除冷作加工产生的残余应力,但没有使位错密度发生变 化。因此,叫做回复阶段。
3、退火 • 冷作加工是一种非常有用的强化手段,它通过拉拔、扎制和挤压等方 法为材料成型提供了良好的实现途径。但是,冷作加工也会带来不期望 的问题,如材料塑性变差、存在残余应力等。由于冷作加工硬化产生的 根源是材料中的位错密度增加而形成的,那么我们就可以认定,任何能 够使冷作材料中位错排列改变或者消除的方法度应该能够消除冷作加工 带来的影响。 • 退火处理就是用来消除或部分去除冷作加工带来的影响的一种热处理 工艺。低温退火可以去除冷作加工产生的残余应力,而且对材料的机械 性能不会产生影响。而高温退火则可以用来完全消除冷作加工材料中的 加工硬化现象,退火后的工件硬度低,塑性好,而且表面质量和尺寸精 度都很好。而工件在退火处理后,还可以进行再次冷作加工。材料经过 多次反复的冷作加工和退火处理后,就可以实现材料的大程度变形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
塑性决定于珠光体球团、片层间距两个因素的迭加。
总结: 1)铁素体为主的钢,细化铁素体晶粒来提高强度 和韧性; 2)珠光体为主的钢,控制轧制使强度降低,韧性 提高。对此类钢必须采用再结晶型控轧。 3)对中高碳钢,轧后控制冷却,使珠光体在低温 度下产生,得到细片层珠光体,可提高强度和韧 性。
图5-7-2 0.42%C-0.55%Mn-0.023%Nb钢的控制轧制组织 (a)35%;(b)50%;(c)75%
中碳钢,如Mn<1%,钢的主体为铁素体时,仍是 铁素体细化机理在起作用。控制轧制→铁素体和 珠光体充分细化。
(2)常温组织以珠光体为主的钢材 0.43%C,1.40%Mn钢: 普通热轧:所得到的组织:铁素体在即将转变的 奥氏体晶界上生成网状组织。 控制轧制(再结晶区中轧制):奥氏体再结晶晶粒 细化→铁素体及珠光体组织都得到细化。随着变 形量的增加,细化程度增加。
(2)控制轧制中组织性能的变化 强度变化: 强度变化:
碳量0.2%∼0.3%: 含0.4%C以上: 含0.8%C以上的钢:
பைடு நூலகம்
图5-12 碳含量对控制轧制材(CR)与普通轧制材(HR)强度的影响
强度降低原因:
1)珠光体的片层间距及珠光体(领域)的大小与奥氏体晶 粒尺寸毫无关系。
图5-13 560°C(833K)及600°C(873K)铅浴淬火的珠光体领域直径和层 间距与γ晶粒度的关系 (a)珠光体领域直径和γ 晶粒度的关系;(b)珠光体片层间距与γ晶粒度的关 系
2)γ温度愈低、 γ晶粒愈细,珠光体成核点愈 多。珠光体开始转变线和终了转变线发生变化。
珠光体相变曲线随γ化温度的 移动状况
珠光体生成温度和层间距的关系
塑性、韧性的变化:
0.2%∼0.8%C内的脆性 转化温度比较: 0.2∼0.8%C内的断面收 缩率比较: 延伸率的比较:
图5-12-1 碳含量对控制轧制材(CR) 与普通轧制材(HR)塑性、韧性的影响
原因:固溶量增加 阻止奥氏体再结晶 作用加强。
图5-5 轧制前加热温度对 0.4%C,1.38%Mn,0.023% Nb钢临界压下率的影响效果
(2)铌、碳对中高碳钢奥氏体再结晶晶粒度的影响
图5-6 压下率、轧制温度对中碳钢(加Nb与不加Nb)轧制后 再结晶晶粒度的影响
图中得到:1)压下率大、再结晶奥氏体晶粒细;2)轧制温度 对奥氏体晶粒尺寸的影响较小;3)同一变形条件下,加铌的 中碳钢比不加铌的中碳钢的再结晶晶粒细;4)碳含量对再 结晶晶粒度影响较小。
图5-2 0.40%C,1.38%Mn,0.023 %Nb钢的γ晶粒再结晶行为
在中碳钢中添加铌同样可以延迟奥氏体再结晶。
(2)碳对中高碳钢奥氏体再结晶临界变形量的影响 不含铌钢: 加铌钢:随碳含量↑ 临 界压下量↓。
图5-4 C量对Nb钢与不加Nb钢 临界压下率的影响
碳量的多少决定了Nb的固 溶量,C↑,Nb的固溶量↓, 轧制时析出量↓,阻止再 结晶作用↓ 。
珠光体球直径愈细,断面收缩率愈大,珠光体片层 间距愈小延性愈好。
含碳量和球化处理对εu的影响 1-球化处理(粒状渗碳体);2-正 火(片状渗碳体)
碳化物体积和球化处理对的εT影响 1-球化处理(粒状渗碳体);2-正火 (片状渗碳体)
3)对韧性的影响: 各强化因素对冲击值转变温度ITT的影响:
珠光体碳分冲淡系数:
5.3 中高碳钢的组织与力学性能的关系 (1) 中高碳钢组织对性能的影响 1)对强度的影响 重要因素:珠光体的片层间距。
式中σ0为纯铁素体强度,σS、σ0.2为材料的 屈服强度,I0为珠光体的片层间距,Ky为系数。
各种强化因素对抗拉强度的影响:
2)对塑性的影响:
图5-10球状珠光体直径(dy)和断面收缩率关系
5 中高碳钢控制轧制特点
中高碳钢特点:(1)冷却后的组织发生变 化:(2)决定钢材性能的因素发生变化: 铁素体和珠光体的比例、铁素体晶粒的大 小、珠光体片层粗细和球团大小以及渗碳 体的形貌。
5.1 中高碳钢奥氏体的再结晶行为
(1) 铌对中高碳钢奥氏体再结晶临界变形量的影响
图5-1 0.43%C,1.4%Mn钢, γ 晶粒再结晶行为 (1200°C加热后 轧制1道次,原始γ晶粒度为1级)
所得常温组织: 铁素体和珠光 体;所占面积: 各50%;铁素体 晶粒:8级。
图5-7-1 0.42%C-0.55%Mn-0.023%Nb 钢的常规轧制组织(×200)
控制轧制工艺 : 第一阶段:压下率:50%,最后 一道温度:再结晶区下限(1050~1100°C); 第二阶段轧制:终轧温度:870°C,压下率分别 为: 1)35%:铁素体晶粒比普通轧制时的铁素体晶粒 细小,珠光体变得粗大。原因: 2)压下率为50%:部分再结晶区轧制,铁素体和 珠光体基本上都得到均匀细化。 3)压下率为75%:铁素体晶粒组织更细化、均 匀,晶粒度达到12~13级。
图5-7 压下率对含Nb和不含Nb中高碳钢 轧制后γ再结晶晶粒度的影响
5.2中高碳钢控制轧制钢材的组织状态 (1)常温组织以铁素体为主的钢材(Mn<1.0%) 成分:0.42%C,0.55%Mn、0.032%Ni 加热温度:1200°C 普通轧制 :第一阶段压下率:50%,第二阶段压下率: 35%,终轧温度:再结晶区下限(1050°C∼1000°C)
0.43%C,1.38%Mn、0.023%Nb钢:相同条件进行控 轧,存在的问题: 总结: 中碳钢(尤其加铌钢)低温轧制不利。最好 在奥氏体再结晶区进行充分的轧制尽量细化奥氏 体晶粒。
(3)共析钢 共析钢控制轧制目的:珠光体团得到细化。 珠光体球团尺寸取决于γ晶粒尺寸,随着γ晶粒尺 寸↓,珠光体球团直径↓。 过共析钢控制轧制目的:珠光体球团变小,同时 亦使析出的网状碳化物变薄。要在奥氏体再结晶 区轧制,使奥氏体晶粒细小。