倒立摆设计

合集下载

一级倒立摆【控制专区】系统设计

一级倒立摆【控制专区】系统设计

基于双闭环PID控制的一阶倒立摆控制系统设计一、设计目的倒立摆是一个非线性、不稳定系统,经常作为研究比较不同控制方法的典型例子。

设计一个倒立摆的控制系统,使倒立摆这样一个不稳定的被控对象通过引入适当的控制策略使之成为一个能够满足各种性能指标的稳定系统。

二、设计要求倒立摆的设计要求是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。

当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。

实验参数自己选定,但要合理符合实际情况,控制方式为双PID控制,并利用MATLAB进行仿真,并用simulink对相应的模块进行仿真。

三、设计原理倒立摆控制系统的工作原理是:由轴角编码器测得小车的位置和摆杆相对垂直方向的角度,作为系统的两个输出量被反馈至控制计算机。

计算机根据一定的控制算法,计算出空置量,并转化为相应的电压信号提供给驱动电路,以驱动直流力矩电机的运动,从而通过牵引机构带动小车的移动来控制摆杆和保持平衡。

四、设计步骤首先画出一阶倒立摆控制系统的原理方框图一阶倒立摆控制系统示意图如图所示:分析工作原理,可以得出一阶倒立摆系统原理方框图:一阶倒立摆控制系统动态结构图下面的工作是根据结构框图,分析和解决各个环节的传递函数!1.一阶倒立摆建模在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示,其中: M :小车质量 m :为摆杆质量 J :为摆杆惯量 F :加在小车上的力 x :小车位置θ:摆杆与垂直向上方向的夹角 l :摆杆转动轴心到杆质心的长度根据牛顿运动定律以及刚体运动规律,可知: (1) 摆杆绕其重心的转动方程为(2) 摆杆重心的运动方程为得sin cos ..........(1)y x J F l F l θθθ=-2222(sin ) (2)(cos ) (3)x y d F m x l d td F mg m l d t θθ=+=-(3)小车水平方向上的运动为22..........(4)x d xF F M d t-=联列上述4个方程,可以得出一阶倒立精确气模型:()()()()()()()2222222222222222sin .sin cos cos cos .sin cos .lg sin cos J ml F ml J ml m l g x J ml M m m l ml F m l M m m m l M m J ml θθθθθθθθθθθθ⎧+++-⎪=++-⎪⎨+-+⎪=⎪-++⎩式中J 为摆杆的转动惯量:32ml J =若只考虑θ在其工作点附近θ0=0附近(︒︒≤≤-1010θ)的细微变化,则可以近似认为:⎪⎩⎪⎨⎧≈≈≈1cos sin 02θθθθ ⎪⎪⎩⎪⎪⎨⎧++-+=++-+=2..2222..)(lg )()()(Mml m M J mlF m m M Mml m M J g l m F ml J x θθθ 若取小车质量M=2kg,摆杆质量m=1kg,摆杆长度2 l =1m,重力加速度取g=2/10s m ,则可以得 一阶倒立摆简化模型:....0.44 3.330.412x F F θθθ⎧=-⎪⎨⎪=-+⎩即 G 1(s)= ; G 2(s)=一阶倒立摆环节问题解决!2.电动机驱动器选用日本松下电工MSMA021型小惯量交流伺服电动机,其有关参数如下:222()0.4()12() 1.110()s F s s x s s s s θθ-⎧=⎪-⎪⎨-+⎪=⎪⎩驱动电压:U=0~100V 额定功率:PN=200W 额定转速:n=3000r/min 转动惯量:J=3×10-6kg.m2 额定转矩:TN=0.64Nm 最大转矩:TM=1.91Nm 电磁时间常数:Tl=0.001s 电机时间常数:TM=0.003s经传动机构变速后输出的拖动力为:F=0~16N ;与其配套的驱动器为:MSDA021A1A ,控制电压:UDA=0~±10V 。

倒立摆课程设计

倒立摆课程设计

摘要倒立摆系统作为一个具有绝对不稳定、高阶次、多变量、强祸合的典型的非线性系统,是检验新的控制理论和方法的理想模型,所以本文选择倒立摆系统作为研究对象具有重要的理论意义和应用价值。

相对于其他研究倒立摆系统的控制方法,Backstepping方法最大的优点是不必对’系统进行线性化,可以直接对系统进行递推性的控制器设计,保留了被控对象中有用的非线性项,使得控制设计更接近实际情况,而且所设计的控制器具有很强的鲁棒性。

本文主要利用Backstepping方法设计了直线型一级倒立摆系统控制器并基于/MATLAB Simulink对系统进行了离线仿真。

本文所作的主要工作或要达到的主要目的是:(一)建立直线型一级倒立摆系统的数学模型,并利用Backstepping方法设计了该倒立摆系统的控制器,然后对闭环系统进行了数值仿真并与其他方法进行了数值仿真分析比较。

与当前的倒立摆研究成果相比,具有研究方法新颖、控制效果好的特点。

(二)本文利用所设计的非线性控制器在/MATLAB Simulink环境下对系统进行了离线仿真分析,并与固高公司提供的算法进行了仿真效果比较。

关键词:倒立摆系统,Backstepping, /MATLAB Simulink,实时控制目录1.倒立摆系统的简介 (1)1.1倒立摆系统的研究背景 (1)1.2倒立摆系统的研究历史、现状及发展趋势 (2)1.3倒立摆的主要控制方法 (4)2.一级倒立摆数学模型 (6)2.1一级倒立摆系统的组成 (6)2.2一级倒立摆系统数学模型的建立 (7)3.系统控制器的设计和闭环系统的数值仿真 (9)4.直线型一级倒立摆系统的Simulink模型和离线仿真 (12)4.1基于线性控制器对线性系统的离线仿真 (12)4.2基于线性控制器对非线性系统的离线仿真 (15)4.3基于非线性控制器对非线性系统的离线仿真 (16)5.模型的优点 (18)6.结论和展望 (19)7.参考文献 (20)1.倒立摆系统的简介1.1倒立摆系统的研究背景在控制理论的研究及其应用的发展过程中,当一种新的理论产生,它的正确性及实际应用中的可行性都需要一个按其理论设计的控制器去控制一个典型对象来验证,而倒立摆就是这样一个被控制对象。

现控实验一级倒立摆状态反馈设计及时间响应实验总结

现控实验一级倒立摆状态反馈设计及时间响应实验总结

现控实验一级倒立摆状态反馈设计及时间响应实验总结
控制实验一级倒立摆的状态反馈设计可以分为以下几个步骤:
1. 系统建模:根据实际倒立摆的物理特性,建立系统的数学模型,包括倒立摆的运动方程和输出方程。

2. 设计状态反馈控制器:根据系统模型,设计状态反馈控制器的反馈矩阵K,使得系统在闭环下能够稳定并达到期望的性能指标。

3. 实施状态反馈控制器:根据设计好的控制器,对倒立摆系统进行实施。

4. 时间响应实验:进行时间响应实验,观察控制系统在不同输入下的响应情况。

可以通过给定不同的参考输入信号,如阶跃信号、正弦信号或任意波形信号等,来测试控制系统的性能。

根据实验结果进行总结时,需要注意以下几个方面:
1. 稳定性分析:观察控制系统是否能够保持稳定状态,即系统是否能够回到平衡位置并保持在该位置。

2. 超调量和调整时间分析:观察控制系统的过渡过程,检查系统是否出现过大的超调量和调整时间是否满足要求。

3. 鲁棒性分析:考察控制系统对参数变化、不确定性以及外部扰动的鲁棒性能。

4. 性能指标分析:根据实验结果,评估控制系统的性能指标,如误差大小、稳态误差、响应速度等。

总结实验时,尽量基于客观的实验数据和分析,对实验结果进行客观的评价和总结。

请注意,以上回答仅涉及到了一级倒立摆的状态反馈控制设计及时间响应实验总结的一般步骤,具体设计和总结要根据具体情境和实验要求进行。

基于PID的倒立摆控制系统设计

基于PID的倒立摆控制系统设计

基于PID的倒立摆控制系统设计摘要:倒立摆(Inverted Pendulum)控制系统设计是控制理论教学中的一种典型的实验对象,具有很高的教学和科研价值。

本文基于PID控制算法,设计一个倒立摆控制系统,对倒立摆进行控制。

首先介绍了倒立摆系统模型和其动力学方程,然后详细介绍PID控制算法的原理和设计方法,并将其应用于倒立摆系统中,进行控制器的设计。

最后,通过MATLAB/Simulink软件进行系统仿真,并对仿真结果进行分析和讨论。

研究结果表明,PID控制算法能够有效地控制倒立摆系统,并且具有良好的控制性能和稳定性。

一、引言倒立摆控制系统是一种实验教学中常见的控制对象,其模型简单、控制复杂度适中,具有很高的教学和科研价值。

倒立摆系统被广泛应用于控制理论教学、控制算法研究以及控制系统设计等领域。

PID控制是一种常用的控制算法,具有简单、易实现、稳定性好等特点。

因此,本文将基于PID控制算法设计一个倒立摆控制系统,对倒立摆进行控制。

二、倒立摆系统模型和动力学方程倒立摆系统由一个竖直放置的杆和一个可沿杆轴线做直线运动的摆组成。

根据杆的位置和速度,可以得到倒立摆的状态变量,进而得到系统的动力学方程。

本文采用小角度近似,假设杆的运动范围很小,可以将其近似为线性系统,动力学方程可以表示为:$$(M+m)l\ddot{\theta}-ml\ddot{x}\cos(\theta)+m\sin(\theta)g=0$$$$\ddot{x}-\ddot{\theta}l=0$$其中,M为杆的质量,m为摆的质量,l为杆的长度,g为重力加速度,x为摆的位置,$\theta$为杆的倾斜角度。

三、PID控制算法原理和设计方法PID控制算法是一种基于误差信号的反馈控制算法,由比例控制、积分控制和微分控制三部分组成。

比例控制根据当前误差的大小进行控制;积分控制用于消除系统的稳态误差;微分控制用于预测误差的变化趋势,提高系统的响应速度和稳定性。

倒立摆系统的课程设计

倒立摆系统的课程设计

倒立摆系统的课程设计一、课程目标知识目标:1. 学生能够理解倒立摆系统的基本概念,掌握其物理原理;2. 学生能够描述倒立摆系统的动态特性,了解系统稳定性与不稳定性的影响因素;3. 学生能够运用数学方法分析倒立摆系统的运动方程,并求解平衡条件。

技能目标:1. 学生能够运用物理知识建立倒立摆系统的数学模型;2. 学生能够通过实验观察和分析倒立摆系统的运动状态,并提出改进措施;3. 学生能够利用控制理论知识,设计简单的倒立摆稳定控制系统。

情感态度价值观目标:1. 学生对物理现象产生好奇心,培养探究科学问题的兴趣;2. 学生在小组合作中,学会沟通、协作,培养团队精神;3. 学生通过解决实际问题,体验科学研究的乐趣,增强自信心。

课程性质:本课程为物理学科选修课程,结合实际生活中的倒立摆现象,培养学生运用物理知识解决实际问题的能力。

学生特点:本课程面向高中二年级学生,他们已具备一定的物理知识和实验技能,具有较强的逻辑思维能力和动手操作能力。

教学要求:结合学生特点,注重理论与实践相结合,强调学生的主体地位,鼓励学生主动探究、合作学习,提高解决问题的能力。

通过本课程的学习,使学生能够将所学知识应用于实际问题的解决,培养创新精神和实践能力。

二、教学内容本课程教学内容主要包括以下几部分:1. 倒立摆系统基本概念:介绍倒立摆的定义、分类及在实际中的应用,如机器人、玩具等。

2. 倒立摆系统的物理原理:分析倒立摆系统的受力情况,探讨重力、摩擦力等对系统稳定性的影响。

3. 倒立摆系统的数学建模:引导学生运用牛顿运动定律、拉格朗日方程等方法建立倒立摆系统的数学模型。

4. 倒立摆系统的动态特性:研究系统在不同参数下的运动状态,分析稳定性与不稳定性的条件。

5. 倒立摆系统的控制方法:介绍PID控制、状态反馈控制等基本控制方法,并探讨其在倒立摆系统中的应用。

6. 实践操作:组织学生进行倒立摆实验,观察系统运动状态,分析实验结果,并提出改进措施。

倒立摆系统__实验设计报告

倒立摆系统__实验设计报告

倒立摆系统__实验设计报告一、实验目的本实验旨在通过对倒立摆系统的研究与实验,探讨倒立摆的运动规律,并分析其特点和影响因素。

二、实验原理与方法1.实验原理倒立摆是指在重力作用下,轴心静止在上方的直立摆。

倒立摆具有自然的稳定性,能够保持在平衡位置附近,且对微小干扰具有一定的抵抗能力。

其本质是控制系统的一个重要研究对象,在自动控制、机器人控制等领域有广泛的应用。

2.实验方法(1)搭建倒立摆系统:倒立摆由摆杆、轴心和电机组成,摆杆在轴心上下运动,电机用于控制倒立摆的运动。

(2)调节电机控制参数:根据实验需要,调节电机的参数,如转速、力矩等,控制倒立摆的运动状态。

(3)记录数据:通过相机或传感器等手段,记录倒立摆的位置、速度、加速度等相关数据,用于后续分析。

(4)分析数据:根据记录的数据,分析倒立摆的运动规律、特点和影响因素,在此基础上进行讨论和总结。

三、实验步骤1.搭建倒立摆系统:根据实验需要,选取合适的材料和设备,搭建倒立摆系统。

2.调节电机参数:根据实验目的,调节电机的转速、力矩、控制信号等参数,使倒立摆能够在一定范围内保持平衡。

3.记录数据:利用相机或传感器等设备,记录倒立摆的位置、速度、加速度等相关数据。

4.分析数据:通过对记录的数据进行分析,研究倒立摆的运动规律和特点,并探讨影响因素。

5.总结讨论:根据实验结果,进行总结和讨论,对倒立摆的运动规律、特点和影响因素进行深入理解和探究。

四、实验设备与器材1.倒立摆系统搭建材料:包括摆杆、轴心、电机等。

2.记录数据设备:相机、传感器等。

五、实验结果与分析通过实验记录的数据,分析倒立摆的运动规律和特点,找出影响因素,并进行讨论和总结。

六、实验结论根据实验结果和分析,得出倒立摆的运动规律和特点,并总结影响因素。

倒立摆具有一定的稳定性和抵抗干扰的能力,在控制系统中具有重要的应用价值。

七、实验感想通过参与倒立摆系统的搭建和实验,深入了解了倒立摆的运动规律和特点,对控制系统有了更深刻的理解。

倒立摆控制系统的设计

倒立摆控制系统的设计

倒立摆控制系统的设计对于倒立摆控制系统的设计,主要包括以下几个方面:建立数学模型、设计控制器、仿真和验证。

首先,建立数学模型是控制系统设计的第一步。

倒立摆的数学模型可以用动力学方程来描述。

根据牛顿定律和角动量定理,可以推导出摆的运动方程。

运动方程可以用二阶非线性微分方程来表示。

对于简单的倒立摆,可以假设摩擦等影响可以忽略不计,从而简化模型。

但在实际应用中,需要考虑摩擦等非线性因素的影响。

然后,设计控制器是控制系统设计的核心。

一般来说,倒立摆控制系统使用PID控制器或者模糊控制器。

PID控制器是一种经典的控制器,通过调节比例项、积分项和微分项的权重,可以实现对摆的位置和角度的控制。

模糊控制器则是一种模糊逻辑控制器,通过定义模糊化变量、模糊化规则和模糊推理等步骤,实现对摆的控制。

在设计控制器时,需要根据具体的系统动态特性和性能指标进行参数调整和优化。

接下来,进行仿真和验证是控制系统设计的关键步骤。

通过使用数学模型和设计好的控制器,在仿真软件或硬件平台上进行仿真实验。

在仿真实验中,可以观察摆的响应特性,如超调量、响应时间和稳态误差等,并对控制器的参数进行调整和优化。

在验证阶段,可以基于实际硬件搭建实验平台,进行实际实验,并与仿真结果进行比较和分析。

最后,根据仿真和验证的结果,可以对控制系统进行进一步的改进和优化。

针对仿真结果中存在的性能指标不达标或者响应不够理想的问题,可以重新调整控制器参数或者进行控制策略的改进。

通过多次迭代和优化,最终可以得到满足需求的倒立摆控制系统。

综上所述,倒立摆控制系统的设计涉及到数学模型的建立、控制器的设计、仿真和验证等多个步骤。

这些步骤需要结合实际需求和性能指标进行调整和优化,才能得到一个有效和稳定的控制系统。

倒立摆控制系统设计是控制工程领域的经典问题,通过对这一问题的研究和探索,可以深入理解控制系统设计的基本原理和方法。

倒立摆系统实验设计报告

倒立摆系统实验设计报告

倒立摆系统实验设计报告实验设计报告:倒立摆系统摘要:本实验旨在研究倒立摆系统的控制问题,通过进行动力学建模、控制器设计和实验验证,探究不同控制策略对倒立摆系统的稳定性和控制性能的影响。

实验使用MATLAB/Simulink软件进行系统建模和控制器设计,并通过实际硬件平台进行实验验证。

实验结果表明,PID控制器在稳定性和控制精度方面表现出较好的性能。

本实验为进一步研究倒立摆系统控制提供了参考。

引言:倒立摆系统是控制理论中一个经典且具有挑战性的问题,具有广泛的应用背景。

倒立摆系统的研究对于制造可倒立行进的机器人、电梯调节、飞行器控制等领域具有重要意义。

本实验旨在通过对倒立摆系统进行动力学建模和控制器设计,研究不同控制策略对其稳定性和控制性能的影响。

方法与材料:1.实验平台:本实验使用一台倒立摆硬件平台,包括一个竖直支架、一个带电机和减速器的转动摆杆以及一个测量角度的传感器。

2. 软件工具:本实验使用MATLAB/Simulink进行倒立摆系统的建模和控制器设计。

并使用Simulink中的实时仿真模块进行实验验证。

实验步骤:1. 动力学建模:根据倒立摆系统的动力学方程,使用MATLAB/Simulink建立系统的状态空间模型。

2.控制器设计:设计不同控制策略的控制器,包括PID控制器、模糊控制器等。

3. 系统仿真:在Simulink中进行系统仿真,分析不同控制策略下的系统响应情况,比较其稳定性和控制性能。

5.数据分析:通过对实验数据进行分析,比较不同控制策略的实际控制效果。

结果与讨论:经过对倒立摆系统进行动力学建模和控制器设计,我们设计了PID控制器和模糊控制器两种控制策略,并在Simulink中进行了系统仿真。

仿真结果显示,PID控制器能够有效地控制倒立摆系统,在较短的时间内将摆杆恢复到竖直位置,并保持稳定。

而模糊控制器的控制性能相对较差,系统响应时间较长且存在一定的震荡。

实验验证结果表明,PID控制器在实际硬件平台上也能够较好地控制倒立摆系统。

倒立摆_精品文档

倒立摆_精品文档

倒立摆1. 引言倒立摆(Inverted Pendulum)是一种经典的控制理论问题,它是指一个固定在支点上的杆子上方挂着一个质点,而质点受到重力的作用下,能够垂直于杆子方向做摆动的系统。

倒立摆在控制理论和机器人领域中具有重要意义,是研究控制策略和平衡控制的经典案例。

在本文中,我们将介绍倒立摆的基本原理、数学建模方法以及控制策略。

2. 基本原理倒立摆是一个多输入多输出系统,它受到外部输入(控制力)的作用下,通过控制杆子的倾斜角度,使质点能够保持在垂直方向上平衡。

倒立摆系统的基本原理可以用以下方程描述:ml^2θ'' + mgl sin(θ) = u - bθ'其中,m是质点的质量,l是杆子的长度,θ是杆子与垂直方向的夹角,u是施加在杆子上的控制力,b是阻尼系数,g是重力加速度。

3. 数学建模方法为了对倒立摆进行控制,我们需要对其进行数学建模。

首先,我们可以把倒立摆系统分解为两个自由度:质点在杆子上的位置和杆子的角度。

然后,我们可以利用拉格朗日方程进行建模。

对于质点在杆子上的位置,拉格朗日方程可以表示为:mx'' = N - mg - mθ'^2l sin(θ) - mlθ'' cos(θ)对于杆子的角度,拉格朗日方程可以表示为:ml^2θ'' = u - bθ'将以上两个方程联立,我们可以得到完整的倒立摆系统的数学模型。

4. 控制策略为了使倒立摆保持平衡,我们需要设计合适的控制策略。

常见的控制策略包括PID控制器、模糊控制器和神经网络控制器等。

PID控制器是一种广泛应用的控制策略,它通过调节比例、积分和微分三项来实现控制。

在倒立摆系统中,PID控制器可以通过测量杆子的角度和角速度,来调整施加在杆子上的控制力。

模糊控制器是一种基于模糊逻辑的控制策略,它通过模糊化输入和输出以及定义一系列模糊规则来实现控制。

在倒立摆系统中,模糊控制器可以根据当前的角度和角速度来确定施加在杆子上的控制力。

一阶倒立摆控制设计与实现

一阶倒立摆控制设计与实现

一阶倒立摆控制设计与实现以一阶倒立摆控制设计与实现为题,本文将介绍倒立摆控制系统的设计原理和实现过程。

倒立摆是一种经典的控制系统问题,它涉及到动力学建模、控制算法设计和实时控制等多个方面。

本文将从这些方面逐步展开,为读者介绍一阶倒立摆控制的基本知识。

1. 动力学建模倒立摆是一个复杂的动力学系统,它由一个可以旋转的杆和一个连接在杆末端的质点组成。

杆的旋转可以由一个电机控制,质点则受到重力和杆的作用力。

为了建立倒立摆的动力学模型,我们需要考虑杆的旋转角度和质点的位置。

2. 控制算法设计一阶倒立摆的控制目标是使杆保持竖直位置,即旋转角度为零,并且使质点保持在某个给定的位置上。

为了实现这个目标,我们可以设计一个控制器来控制杆的旋转角度和质点的位置。

常用的控制算法有PID控制算法、模糊控制算法和神经网络控制算法等。

PID控制算法是一种经典的控制算法,它通过调节比例、积分和微分三个参数来实现控制效果。

模糊控制算法则利用模糊逻辑的思想,将输入和输出之间的关系用模糊集合表示。

神经网络控制算法则利用神经网络的学习能力,通过训练网络来实现控制效果。

3. 实时控制倒立摆的控制需要实时采集传感器数据,并根据这些数据计算控制信号。

在实际应用中,我们可以使用编码器来测量杆的旋转角度,使用加速度计来测量质点的加速度,然后通过控制器来计算电机的控制信号。

为了实现实时控制,我们可以使用嵌入式系统来实现。

嵌入式系统是一种专门设计用于控制和处理实时数据的计算机系统,它通常由微处理器、存储器和输入输出设备组成。

通过将控制算法和传感器接口集成到嵌入式系统中,我们可以实现倒立摆的实时控制。

总结本文介绍了一阶倒立摆控制的基本原理和实现方法。

倒立摆是一个复杂的动力学系统,控制它需要建立动力学模型,并设计合适的控制算法。

通过实时采集传感器数据并计算控制信号,我们可以实现倒立摆的控制。

希望本文对读者理解一阶倒立摆控制有所帮助,同时也希望读者能够进一步探索和研究这个有趣的控制问题。

自动控制原理课程设计——倒立摆系统控制器设计

自动控制原理课程设计——倒立摆系统控制器设计

一、引言支点在下,重心在上,恒不稳定的系统或装置的叫倒立摆。

倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。

1.1 问题的提出倒立摆系统按摆杆数量的不同,可分为一级,二级,三级倒立摆等,多级摆的摆杆之间属于自有连接(即无电动机或其他驱动设备)。

对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。

通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。

倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。

当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。

1.2 倒立摆的控制方法倒立摆系统的输入来自传感器的小车与摆杆的实际位置信号,与期望值进行比较后,通过控制算法得到控制量,再经数模转换驱动直流电机实现倒立摆的实时控制。

直流电机通过皮带带动小车在固定的轨道上运动,摆杆的一端安装在小车上,能以此点为轴心使摆杆能在垂直的平面上自由地摆动。

作用力u平行于铁轨的方向作用于小车,使杆绕小车上的轴在竖直平面内旋转,小车沿着水平铁轨运动。

当没有作用力时,摆杆处于垂直的稳定的平衡位置(竖直向下)。

为了使杆子摆动或者达到竖直向上的稳定,需要给小车一个控制力,使其在轨道上被往前或朝后拉动。

本次设计中我们采用其中的牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型,然后通过开环响应分析对该模型进行分析,并利用学习的古典控制理论和Matlab /Simulink仿真软件对系统进行控制器的设计,主要采用根轨迹法,频域法以及PID(比例-积分-微分)控制器进行模拟控制矫正。

2 直线倒立摆数学模型的建立直线一级倒立摆由直线运动模块和一级摆体组件组成,是最常见的倒立摆之一,直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载不同的摆体组件。

倒立摆控制系统的设计与实现

倒立摆控制系统的设计与实现

倒立摆控制系统的设计与实现引言倒立摆是一种复杂的机械系统,在工业自动化、机器人学、航空航天等领域都有广泛应用。

如何掌控倒立摆的姿态是一个重要的问题,因此进行控制系统的设计和实现是必不可少的。

本文将介绍倒立摆控制系统的设计和实现。

一、倒立摆系统的组成倒立摆系统是由一个摆杆和一个转轴组成的。

摆杆通过转轴和转动连接到支架上。

倒立摆的底部是一个电机,用于向倒立摆施加力。

二、倒立摆系统的控制原理控制倒立摆的核心原理是反馈控制。

传感器将倒立摆的状态信息反馈给控制器,控制器计算出所需的力矩,然后电机施加所需的力矩将摆杆保持在垂直状态。

三、倒立摆系统的控制器设计1.控制器的类型在倒立摆控制系统中,传统的PID控制器被广泛使用。

此外,还有一些高级控制器,如模糊控制器和神经网络控制器。

2.传感器的选择为了计算正确的力矩,我们需要一个准确的传感器。

我们可以选择陀螺仪、加速度计或角度传感器。

3.控制器参数调整控制器参数调整是控制器设计的关键部分之一。

所选的控制器对系统响应时间、稳态误差和阻尼比等指标具有不同的影响。

通过不断调整控制器的参数,使系统保持稳定并快速响应。

四、倒立摆系统的实现在实际的倒立摆系统中,除了控制器外,还需要编写程序来将传感器数据反馈给控制器,计算力矩并控制电机。

此外,还需要设计电路板和选择适当的电机来控制摆杆的倾斜。

五、倒立摆系统的应用1.教育倒立摆系统可以用于教授物理、控制工程和机器人学等学科的基础知识。

其可视化和实验性质使其非常适合用于学术教学。

2.机器人学倒立摆控制系统在机器人学中得到广泛应用。

它可以用于控制机器人臂的运动,以及控制移动机器人的平衡。

3.摆臂系统倒立摆控制系统还可以用于改进摆臂系统,以控制各种工艺参数。

在重型机器和船舶等领域,通过控制倒立摆的悬挂动态平衡,可以使要处理的物品更加稳定。

结束语倒立摆控制系统是一项极具挑战性的工程。

它可以用于教学、机器人学和工业自动化等领域。

通过正确的传感器和控制器设计,结合适当的电路和机械设计,可以实现快速和精确的摆杆控制,从而取得非常好的结果,并具有广泛的应用前景。

倒立摆控制系统的设计

倒立摆控制系统的设计

倒立摆控制系统的设计倒立摆是一个常见的控制系统示例,用于探索倒立摆的控制理论和设计方法。

倒立摆是一个由一个可旋转的杆和一个质量可忽略不计的小球组成的系统。

通过控制杆的角度和角速度,可以使小球保持在直立的位置上,即实现倒立摆系统的控制。

首先,需要建立倒立摆的数学模型。

数学模型可以通过运动学和动力学方程来描述。

运动学方程描述摆杆角度和角速度之间的关系,动力学方程描述摆杆受到的力和加速度之间的关系。

根据数学模型可以得到系统的传递函数,即将输入信号映射为输出信号的数学表达式。

其次,通过对系统传递函数进行稳定性分析,选择合适的PID参数。

PID控制器由比例项、积分项和微分项组成,可以通过调整这三个参数来实现系统的控制。

比例项用于调整响应速度,积分项用于消除稳态误差,微分项用于抑制震荡。

根据系统的稳定性分析,可以选择合适的PID参数。

然后,进行PID控制器的仿真和调整。

通过将PID控制器连接到倒立摆系统并进行仿真,在仿真中可以观察系统的响应和稳定性。

如果系统的响应不理想,可以通过调整PID参数来改善系统的性能。

最后,实施实际的控制系统,并进行参数调优。

将设计好的PID控制器实施到实际的倒立摆系统中,通过不断调整PID参数,观察系统的响应和稳定性,以达到设计要求。

此外,还可以采用其他控制策略进行倒立摆控制系统的设计。

模糊控制方法利用模糊推理和模糊集合来实现系统的控制,可以处理非线性和模糊的系统。

模型预测控制方法则利用建立系统动态模型进行优化预测,以实现更精确的控制。

在设计控制系统时,还需考虑实际应用中的实时性、鲁棒性和可扩展性等因素。

倒立摆控制系统的设计是一个综合技术问题,需要结合系统的特点和实际应用要求来进行综合设计。

总结起来,倒立摆控制系统的设计包括建立数学模型、选择控制策略和参数、仿真和调整PID控制器、实施及参数调优等步骤。

通过合理的设计和优化,可以实现倒立摆系统的稳定控制。

在实际应用中,还需考虑系统的实时性、鲁棒性和可扩展性等因素,对控制系统进行综合设计和优化。

倒立摆系统__实验设计报告

倒立摆系统__实验设计报告

.学生实验报告课程名称: 倒立摆系统课程设计组号:7姓名:学号:邮箱:2010年11 月11 1日目录倒立摆系统的构成 (3)单级倒立摆数学模型的建立 (3)传递函数 (6)状态空间方程 (6)系统M ATLAB 仿真和开环响应 (7)稳定性与可控性分析 (11)控制器设计 (12)基于状态反馈的控制算法设计与仿真LQR (12)极点配置法 (16)PID控制算法 (19)实验结果及与仿真结果的对比分析 (29)感想和建议 (30)倒立摆系统的构成图1 倒立摆系统的组成框图如图1所示为倒立摆的结构图。

系统包括计算机、运动控制卡、伺服机构、倒立摆本体和光电码盘几大部分,组成了一个闭环系统。

光电码盘1将小车的位移、速度信号反馈给伺服驱动器和运动控制卡,摆杆的位置、速度信号由光电码盘2反馈回控制卡。

计算机从运动控制卡中读取实时数据,确定控制决策(小车向哪个方向移动、移动速度、加速度等),并由运动控制卡来实现该控制决策,产生相应的控制量,使电机转动,带动小车运动,保持摆杆平衡。

单级倒立摆数学模型的建立在忽略了空气流动,各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图2所示图2 单级倒立摆模型示意图那我们在本实验中定义如下变量:M 小车质量(本实验系统0.5 Kg)m 摆杆质量(本实验系统0.2 Kg)b 小车摩擦系数(本实验系统0.1 N/m/sec)l 摆杆转动轴心到杆质心的长度(0.3 m)I 摆杆惯量(0.006 kg*m*m)F 加在小车上的力x 小车位置φ摆杆与垂直向上方向的夹角θ摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)下面我们对这个系统作一下受力分析。

下图3是系统中小车和摆杆的受力分析图。

其中,N和P为小车与摆杆相互作用力的水平和垂直方向的分量。

注意:在实际倒立摆系统中检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图,图示方向为矢量正方向。

图3 倒立摆模型受力分析分析小车水平方向所受的合力,可以得到等式:应用Newton方法来建立系统的动力学方程过程如下:分析小车水平方向所受的合力,可以得到以下方程:N x b F xM --= 由摆杆水平方向的受力进行分析可以得到下面等式:)sin (22θl x dt d mN +=即 θθθθsin cos 2ml ml x m N -+= 把这个等式代入上式中,就得到系统的第一个运动方程:F ml ml x b xm M =-+++θθθθsin cos )(2 (1) 为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程:θθθθθcos sin )cos (222ml ml mg P l dtd m mg P --=-=-即:力矩平衡方程如下:θθθ I Nl Pl =--cos sin 注意:此方程中力矩的方向,由于θφθφφπθsin sin ,cos cos ,-=-=+=,故等式前面有负号。

倒立摆的设计报告

倒立摆的设计报告

摘要:倒立摆是进行控制理论研究的典型实验平台。

由于倒立摆系统的控制策略和杂技运动员顶杆平衡表演的技巧有异曲同工之处,极富趣味性,而且许多抽象的控制理论概念如系统稳定性、可控性和系统抗干扰能力等等,都可以通过倒立摆系统实验直观的表现出来,因此在欧美发达国家的高等院校,它已成为必备的控制理论教学实验设备。

学习自动控制理论的学生通过倒立摆系统实验来验证所学的控制理论和算法,非常的直观、简便,在轻松的实验中对所学课程加深了理解。

本论文在自动控制原理校正的基本思想上,通过采用根轨迹校正法,频域法,分别对倒立摆系统进行校正,使之满足性能要求。

关键词:倒立摆,自动控制,根轨迹,频域法1、引言倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。

最初研究开始于二十世纪50 年代,麻省理工学院的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。

近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。

倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。

由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。

平面倒立摆可以比较真实的模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。

法控制器的设计是倒立摆系统的核心容,因为倒立摆是一个绝对不稳定的系统,为使其保持稳定并且可以承受一定的干扰,需要给系统设计控制器,目前典型的控制器设计理论有:PID 控制、根轨迹以及频率响应法、状态空间法、最优控制理论、模糊控制理论、神经网络控制、拟人智能控制、鲁棒控制方法、自适应控制,以及这些控制理论的相互结合组成更加强大的控制算。

倒立摆控制系统设计matlab

倒立摆控制系统设计matlab

倒立摆控制系统设计matlab倒立摆控制系统设计是一个在工程领域中非常重要的课题。

倒立摆是一个经典的控制系统问题,通过控制电机的力矩来使倒立摆保持平衡。

在这篇文章中,我们将使用Matlab来设计一个倒立摆控制系统,并逐步回答其中的关键问题。

首先,我们需要明确设计的目标。

在倒立摆控制系统中,我们的目标是使摆杆保持垂直位置。

为了实现这个目标,我们需要采用逆向控制方法,即通过测量摆杆当前状态以及目标状态之间的差异,并控制力矩,从而使摆杆回复到垂直位置。

接下来,我们需要构建倒立摆的模型。

倒立摆模型可以采用Euler-Lagrange动力学方程进行描述。

具体地,我们可以使用如下的动力学方程来描述倒立摆:m*L^2*θ''(t) + m*g*L*sin(θ(t)) = u(t) - b*θ'(t) - c*sat(θ(t)) 其中,m是摆杆的质量,L是摆杆的长度,θ(t)是摆杆的角度,u(t)是电机的力矩,b是摩擦系数,c是控制器增益。

在上述动力学方程中,μ(t)表示补偿力,其作用是抵消由于重力引起的非线性成分。

有了动力学方程之后,我们可以使用Matlab来进行数值仿真。

首先,我们需要定义模型的初始状态和控制器增益。

我们可以选择一个合适的初始状态,比如θ(0)=pi/4,θ'(0)=0,然后根据模型的特性来选择控制器增益c。

接下来,我们可以使用Matlab的ode45函数来求解动力学方程的数值解。

ode45函数是一种常用的数值积分器,可以对常微分方程进行数值求解。

在本例中,我们可以将动力学方程与初始条件传递给ode45函数,然后使用该函数来求解摆杆的角度θ(t)和角速度θ'(t)的变化。

在求解得到角度和角速度之后,我们可以使用反馈控制方法来设计控制器。

一种常见的控制器设计方法是使用PID控制器。

PID控制器基于当前状态与目标状态之间的差异来计算控制信号。

具体地,PID控制器的输出可以通过如下公式来计算:u(t) = Kp*e(t) + Ki*∫e(t)dt + Kd*e'(t)其中,u(t)是控制器的输出,Kp、Ki和Kd分别是比例、积分和微分增益,e(t)=θ(t)-θd(t)是当前状态与目标状态之间的差异,e'(t)=θ'(t)-θd'(t)是当前状态与目标状态之间的差异的一阶导数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

倒立摆控制系统实验一、查阅倒立摆相关文献要求:1 掌握单级倒立摆数学模型的建立过程2 理解当前单级倒立摆的基本控制方法3 了解倒立摆控制技术的现状和未来发展趋势二、倒立摆系统简介1、倒立摆式机器人技术、控制理论、计算机控制等多个领域,多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。

最初研究开始于二十世纪50年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。

近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。

2、倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。

由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及粳米仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。

平面倒立摆可以比较真实的模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。

三、倒立摆分类1、倒立摆已经由原来的直线一级倒立摆扩展出很多种类,典型的有直线倒立摆,环形倒立摆,平面倒立摆和复合倒立摆等,倒立摆系统是在运动模块上装有倒立摆装置,由于在相同的运动模块上可以装载不同的倒立摆装置,倒立摆的种类由此而丰富很多。

按倒立摆的结构来分,有以下类型的倒立摆:⏹1、直线倒立摆系列⏹直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载不同的摆体组件,可以组成很多类别的倒立摆,直线柔性倒立摆和一般直线倒立摆的不同之处在于,柔性倒立摆有两个可以沿导轨滑动的小车,并且在主动小车和从动小车之间增加了一个弹簧,作为柔性关节。

直线倒立摆系列产品如图1 所示。

图 1 直线倒立摆系列图 2 环形倒立摆系列2、环形倒立摆系列环形倒立摆是在圆周运动模块上装有摆体组件,圆周运动模块有一个自由度,可以围绕齿轮中心做圆周运动,在运动手臂末端装有摆体组件,根据摆体组件的级数和串连或并联的方式,可以组成很多形式的倒立摆。

如图2所示。

3、平面倒立摆系列平面倒立摆是在可以做平面运动的运动模块上装有摆杆组件,平面运动模块主要有两类:一类是XY 运动平台,另一类是两自由度SCARA 机械臂;摆体组件也有一级、二级、三级和四级很多种。

如图3 所示图3 平面倒立摆系列图 4 复合倒立摆4、复合倒立摆系列复合倒立摆为一类新型倒立摆,由运动本体和摆杆组件组成,其运动本体可以很方便的调整成三种模式,一是2)中所述的环形倒立摆,还可以把本体翻转90 度,连杆竖直向下和竖直向上组成托摆和顶摆两种形式的倒立摆。

按倒立摆的级数来分:有一级倒立摆、两级倒立摆、三级倒立摆和四级倒立摆,一级倒立摆常用于控制理论的基础实验,多级倒立摆常用于控制算法的研究,倒立摆的级数越高,其控制难度更大,目前,可以实现的倒立摆控制最高为四级倒立摆。

四、倒立摆的特性虽然倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性:1、非线性2、不确定性3、耦合性4、开环不稳定性5、约束限制1、非线性倒立摆是一个典型的非线性复杂系统,实际中可以通过线性化得到系统的近似模型,线性化处理后再进行控制。

也可以利用非线性控制理论对其进行控制。

倒立摆的非线性控制正成为一个研究的热点。

2、不确定性主要是模型误差以及机械传动间隙,各种阻力等,实际控制中一般通过减少各种误差来降低不确定性,如通过施加预紧力减少皮带或齿轮的传动误差,利用滚珠轴承减少摩擦阻力等不确定因素。

3、耦合性倒立摆的各级摆杆之间,以及和运动模块之间都有很强的耦合关系,在倒立摆的控制中一般都在平衡点附近进行解耦计算,忽略一些次要的耦合量。

4、开环不稳定性倒立摆的平衡状态只有两个,即在垂直向上的状态和垂直向下的状态,其中垂直向上为绝对不稳定的平衡点,垂直向下为稳定的平衡点。

5、约束限制由于机构的限制,如运动模块行程限制,电机力矩限制等。

为了制造方便和降低成本,倒立摆的结构尺寸和电机功率都尽量要求最小,行程限制对倒立摆的摆起影响尤为突出,容易出现小车的撞边现象。

五、实验内容和目的1 PID控制器实物控制实验①了解self-erect问题的控制目的与实际应用价值。

②利用数字倒立摆系统,通过PID控制器对self-erect问题进行实物控制实验。

③通过调整PID控制器的参数,使倒立摆在竖起后保持稳定。

④分析PID控制器各个参数对系统稳定性和响应过程的影响。

2 LQ控制器仿真实验①了解crane问题的控制目的。

②利用数字倒立摆系统中的MA TLAB工具箱进行仿真实验。

③通过LQ (linear-quadratic)控制器对crane问题对倒立摆模型进行仿真实验。

④理解LQ控制器的原理和设计方法,分析控制参数对系统稳定性和响应过程的影响。

六、控制器设计方法控制器的设计是倒立摆系统等核心内容,因为倒立摆是一个绝对不稳定的系统,为使其保持稳定并且可以承受一定的干扰,需要给系统设计控制器,目前典型的控制器设计理论有:PID控制、根轨迹以及频率响应法、状态空间法、最优控制理论、模糊控制理论、神经网络控制、拟人智能控制、鲁棒控制方法、自适应控制,以及这些控制理论的相互结合组成更加强大的控制算法。

1、直线一级倒立摆PID 控制实验本实验的目的是让实验者理解并掌握PID 控制的原理和方法,并应用于直线一级倒立摆的控制,PID 控制并不需要对系统进行精确的分析,因此我们采用实验的方法对系统进行控制器参数的设置。

PID 控制基本原理及分析经典控制理论的研究对象主要是单输入单输出的系统,控制器设计时一般需要有关被控对象的较精确模型。

PID 控制器因其结构简单,容易调节,且不需要对系统建立精确的模型,在控制上应用较广。

首先,对于倒立摆系统输出量为摆杆的角度,它的平衡位置为垂直向上的情况。

系统控制结构框图如下:⏹图5直线一级倒立摆闭环系统图图中KD(s) 是控制器传递函数,G(s) 是被控对象传递函数。

考虑到输入r(s) = 0,结构图可以很容易的变换成:⏹图6直线一级倒立摆闭环系统简化图该系统的输出为:⏹其中num ——被控对象传递函数的分子项den ——被控对象传递函数的分母项numPID ——PID 控制器传递函数的分子项denPID ——PID 控制器传递函数的分母项通过分析上式就可以得到系统的各项性能。

由(3-13)可以得到摆杆角度和小车加速度的传递函数:⏹⏹PID 控制器的传递函数为:⏹需仔细调节PID 控制器的参数,以得到满意的控制效果。

MATLAB 版实验软件下的实验步骤:1) 打开直线一级倒立摆PID 控制界面如图所示:(进入MA TLAB Simulink 实时控制工具箱“Googol Education Products”打开“Inverted Pendulum\Linear Inverted Pendulum\Linear 1-Stage IP Experiment\ PID Experiments”中的“PID Control Demo”)2) 双击“PID”模块进入PID 参数设置,如下图所示:3) 点击编译程序,完成后点击使计算机和倒立摆建立连接。

4) 点击运行程序,检查电机是否上伺服,如果没有上伺服,请参见直线倒立摆使用手册相关章节。

缓慢提起倒立摆的摆杆到竖直向上的位置,在程序进入自动控制后松开,当小车运动到正负限位的位置时,用工具挡一下摆杆,使小车反向运动。

5) 实验结果如下图所示:修改PID 控制参数,观察控制结果的变化。

通过不断修改PID参数,最终得到一个满足要求的系统。

请将计算步骤、仿真和实验结果完整记录并按照下一章节要求完成实验报告。

线性二次最优控制LQR 控制实验本实验的主要内容是让实验者了解并掌握线性二次最优控制LQR 控制的原理和方法,并对直线一级倒立摆进行控制实验。

线性二次最优控制LQR 基本原理及分析线性二次最优控制LQR 基本原理为,由系统方程:确定下列最佳控制向量的矩阵K:使得性能指标达到最小值:式中Q——正定(或正半定)厄米特或实对称阵R——为正定厄米特或实对称阵图8最优控制LQR 控制原理图方程右端第二项是考虑到控制能量的损耗而引进的,矩阵Q 和R 确定了误差和能量损耗的相对重要性。

并且假设控制向量u(t)是无约束的。

⏹对线性系统:根据期望性能指标选取Q 和R,利用MATLAB 命令lqr 就可以得到反馈矩阵K 的值。

改变矩阵Q 的值,可以得到不同的响应效果,Q 的值越大(在一定的范围之内),系统抵抗干扰的能力越强,调整时间越短。

直线一级倒立摆LQR 控制实验操作步骤:1) 打开直线一级倒立摆LQR 实时控制模块,(进入MA TLAB Simulink 实时控制工具箱“Googol Education Products”打开“Inverted Pendulum\Linear Inverted Pendulum\Linear 1-Stage IP Experiment\ LQR Experiments”中的“LQR Control Demo”)⏹其中“LQR Controller”为LQR 控制器模块,“Real Control”为实时控制模块双击“LQR Controller”模块打开LQR 控制器参数设置窗口如下:2) 点击编译程序,编译成功后点击“”连接,再点击“”运行程序,在确认点击上伺服后,缓慢的提起摆杆到竖直向上的位置,程序进入自动控制后松开摆杆。

3) 实验运行结果如下图所示:其中图片上半部分为小车的位置曲线,下半部分为摆杆角度的变化曲线,从图中可以看出,在给定外界干扰后,小车可以在1.5 秒内回到平衡位置。

达到了较好的控制效果。

4) 改变Q 矩阵的值Q11和Q33 ,再把仿真得到的LQR 控制参数输入实时控制程序,运行实时控制程序,观察控制效果的变化。

请将计算步骤、仿真和实验结果完整记录并按照下一章节要求完成实验报告。

七、实验报告要求请将计算步骤,仿真和实验结果记录并完成实验报告。

实验报告需要详细分析实验者所设计的倒立摆控制方案。

实验报告需包括系统参数、实验数据、仿真结果、结果分析等。

实验注意事项在操作直线倒立摆系列产品前,按下电源开关,并确认伺服电源被切断,伺服电源切断后,电源指示灯熄灭。

在倒立摆运行出现异常情况下,若不能及时关断电源,则可能造成人身伤害或设备损坏。

相关文档
最新文档