数学必修四三角函数公式总结与归纳
最新数学必修四三角函数公式总结与归纳
sin(α+β)=sinαcosβ+cosαsinβ,
sin(α-β)=sinαcosβ-cosαsinβ
tan(α+β)= ,
tan(α-β)= ,
4、二倍角的三角函数:
sin2α=2sinαcosα,
cos2α=cos2α-sin2α
=1-2sin2α
合计50100%7、其他公式:
sinαcosβ= [sin(α+β)+sin(α-β)],
cosαsinβ= [sin(α+β)-sin(α-β)],
这里有营业员们向顾客们示范着制作各种风格炯异的饰品,许多顾客也是学得不亦乐乎。据介绍,经常光顾“碧芝”的都是些希望得到世界上“独一无二”饰品的年轻人,他们在琳琅满目的货架上挑选,然后亲手串连,他们就是偏爱这种DIY的方式,完全自助在现场,有上班族在里面精挑细选成品,有细心的小女孩在仔细盘算着用料和价钱,准备自己制作的原料。可以想见,用本来稀奇的原料,加上别具匠心的制作,每一款成品都必是独一无二的。而这也许正是自己制造所能带来最大的快乐吧。cosαcosβ= [cos(α+β)+cos(α-β)],
sin( +α)=cosα, cos( +α)=-sinα
sin( -α)=cosα, cos( -α)=sinα
2、同角三角函数基本关系:
sin2α+cos2α=1,
=tanα,
tanα×cotα=1,
1+tan2α= ,
1+cot2α=
cosα= ,
sinα=
3、两角和与差的三角函数:
cos(α+β)=cosαcosβ-sinαsinβ,
高中数学必修四三角函数知识点总结
高中数学必修四三角函数知识点总结三角函数是高中数学考试必考的一个内容, 也是很多同学遇到的一个难点, 下面是给大家带来的高中数学必修四三角函数知识点总结, 希望对你有帮助。
高中数学三角函数找知识点总结(一)高中数学三角函数知识点总结:锐角三角函数公式sin =的对边/ 斜边cos =的邻边/ 斜边tan =的对边/ 的邻边cot =的邻边/ 的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方sin2(A) )高中数学三角函数知识点总结:三倍角公式sin3=4sinsin(/3+)sin(/3-)cos3=4coscos(/3+)cos(/3-)tan3a = tan a tan(/3+a) tan(/3-a)高中数学三角函数知识点总结:三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina高中数学三角函数知识点总结:辅助角公式Asin+Bcos=(A^2+B^2)^(1/2)sin(+t), 其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsin+Bcos=(A^2+B^2)^(1/2)cos(-t), tant=A/B降幂公式sin^2()=(1-cos(2))/2=versin(2)/2cos^2()=(1+cos(2))/2=covers(2)/2tan^2()=(1-cos(2))/(1+cos(2))高中数学三角函数知识点总结:推导公式tan+cot=2/sin2tan-cot=-2cot21+cos2=2cos^21-cos2=2sin^21+sin=(sin/2+cos/2)^2=2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa高中数学三角函数知识点总结(二)sin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(3/2)2-sin2a]=4sina(sin260-sin2a)=4sina(sin60+sina)(sin60-sina)=4sina*2sin[(60+a)/2]cos[(60-a)/2]*2sin[(60-a)/2]cos[(60-a)/2] =4sinasin(60+a)sin(60-a)cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(3/2)2]=4cosa(cos2a-cos230)=4cosa(cosa+cos30)(cosa-cos30)=4cosa*2cos[(a+30)/2]cos[(a-30)/2]*{-2sin[(a+30)/2]sin[(a-30)/2]} =-4cosasin(a+30)sin(a-30)=-4cosasin[90-(60-a)]sin[-90+(60+a)]=-4cosacos(60-a)[-cos(60+a)]=4cosacos(60-a)cos(60+a)上述两式相比可得tan3a=tanatan(60-a)tan(60+a)高中数学三角函数知识点总结:半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(++)=sincoscos+cossincos+coscossin-sinsinsincos(++)=coscoscos-cossinsin-sincossin-sinsincostan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)点击下一页分享更多高中数学必修四三角函数知识点总结。
数学必修四公式 (三角函数 向量)
当λ<0时,λa与a反方向;
当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;
=[sin(n+1)x+sinnx-sinx]/2sinx=右边
等式得证
sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx
证明:
左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)
=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
三角和的三角函数:
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
高中数学必修四公式大全[1]
基本三角函数 ⅠⅡ ◆ 终边落在x 轴上的角的集合:{}z ∈=κκπαα, ❖ 终边落在y 轴上的角的集合:⎭⎬⎫⎩⎨⎧∈+=z κπκπαα,2♦ 终边落在坐标轴上的角的集合:⎭⎬⎫⎩⎨⎧∈=z κπκαα,2⌧ 2 21 21 rr l S rl αα===弧度度弧度弧度弧度度 18018011801 2360.ππππ====︒︒ 倒数关系 1+(tan a 的平方)= cos a 的平方分之一平方关系:αααα222211Csc Cot Cos Sin =+=+乘积关系:αααCos Sin tan = , 顶点的三角函数等于相邻的点对应的函数乘积Ⅲ 诱导公式◆ 终边相同的角的三角函数值相等 ()()()z k , tan 2tan z k , 2zk , 2∈=+∈=+∈=+απααπααπαk Cos k Cos Sin k Sin❖ 轴对称关于与角角x αα- ()()()ααααααtan tan -=-=--=-Cos Cos Sin Sin♦ 轴对称关于与角角y ααπ- ()()()ααπααπααπtan tan -=--=-=-Cos Cos Sin Sin ⌧ 关于原点对称与角角ααπ+()()()ααπααπααπtan tan =+-=+-=+Cos Cos Sin Sin ⍓对称关于与角角x y =-ααπ2ααπααπααπcot 2tan 22=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-Sin Cos Cos Sin ααπααπααπcot 2tan 22-=⎪⎭⎫⎝⎛+-=⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛+Sin Cos Cos Sin上述的诱导公式记忆口诀:“奇变偶不变,符号看象限三角函数的性质单调性 减函数增函数,,232,22,,22,22z k k k z k k k ∈⎥⎦⎤⎢⎣⎡++∈⎥⎦⎤⎢⎣⎡+-ππππππππ[][]减函数增函数,,2,2,,2,2z k k k z k k k ∈+∈-ππππππ对称中心 ()z k k ∈,0,πz k k ∈⎪⎭⎫ ⎝⎛+,0,2ππ对称轴z k k x ∈+=,2ππz k k x ∈=,π图像性 质 x y tan =x y cot =定义域 ⎭⎬⎫⎩⎨⎧∈+≠z x x κπκπ,2{}z x x ∈≠κκπ,值 域 RR周期性 ππ奇偶性 奇函数奇函数单调性 增函数,,2,2z k k k ∈⎪⎭⎫ ⎝⎛+-ππππ()增函数,,,z k k k ∈+πππ对称中心()z k k ∈,0,πz k k ∈⎪⎭⎫ ⎝⎛+,0,2ππ()k x ASin y Sinx y ++==ϕω变化为怎样由 ?振幅变化:Sinx y = ASinx y = 左右伸缩变化: x ASin y ω= 左右平移变化 )(ϕω+=x ASin y 上下平移变化 k x ASin y ++=)(ϕωⅥ平面向量共线定理:一般地,对于两个向量 ()如果有,,0,b a a ≠()是共线向量与是共线向量;反之如果与则使得一个实数a b a b a a b ,0,,≠=λλ.,a b λλ=使得那么又且只有一个实数Ⅶ 线段的定比分点P P 所成的比的定义式PP P P λλ+=121OP OP↓当1=λ时↓当1=λ时221yyy+=Ⅷ向量的一个定理的类似推广向量共线定理:()0≠=aabλ↓推广平面向量基本定理:⎪⎪⎭⎫⎝⎛+=不共线的向量为该平面内的两个其中212211,,eeeeaλλ↓推广空间向量基本定理:⎪⎪⎭⎫⎝⎛++=不共面的向量为该空间内的三个其中321332211,,,eeeeeeaλλλⅨ一般地,设向量()()aayxbyxa如果且,0,,,2211≠==∥01221=-yxyxb那么反过来,如果ayxyx则,01221=-∥b.Ⅹ一般地,对于两个非零向量ba,有θba=•,其中θ为两向量的夹角。
高中数学必修四 角度制 三角函数关系及诱导公式讲解
3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
A90B 90∠-︒=∠︒=∠+∠得由B A7、正切、余切的增减性:一、任意角的三角函数的定义: 设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin ,cos y x r r αα==,()tan ,0y x x α=≠,cot x y α=(0)y ≠,sec rxα=()0x ≠,()csc 0ry yα=≠。
三角函数值只与角的大小有关,而与终边上点P 的位置无关。
设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M ,则点M 是点P 在x 轴上的正射影.由三角函数的定义知,点P 的坐标为(cos_α,sin_α),即P (cos_α,sin_α),其中cos α=OM ,sin α=MP ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tan α=AT .我们把有向线段OM 、MP 、AT 叫做α的余弦线、正弦线、正切线.三角函数线的特征是:正弦线MP “站在x 轴上(起点在x 轴上)”、余弦线OM “躺在x 轴上(起点是原点)”、正切线AT “站在点(1,0)A 处(起点是A )”.有向线段OM 为余弦线有向线段AT 为正切线比较)2,0(∈x ,x sin ,x tan ,x 的大小关系:三角函数线的重要应用是比较三角函数值的大小和解三角不等式。
四、一条规律三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦.两个技巧(1)在利用三角函数定义时,点P 可取终边上任一点,如有可能则取终边与单位圆的交点,|OP |=r 一定是正值.(2)在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧. 利用单位圆解三角不等式(组)的一般步骤是: (1)用边界值定出角的终边位置; (2)根据不等式(组)定出角的范围; (3)求交集,找单位圆中公共的部分; (4)写出角的表达式.(1)注意易混概念的区别:第一象限角、锐角、小于90°的角是概念不同的三类角,第一类是象限角,第二类、第三类是区间角.(2)角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.(3)α与2α的终边关系:由“两等分各象限、一二三四确定”.若α是第一象限,则2α是第一、三象限角;若α是第二象限,则2α是第一、三象限角;若α是第三象限角,则2α是第二、四象限;若α是第四象限角,则2α是第二、四象限。
数学必修四所有三角函数公式
数学必修四所有三角函数公式在数学中,三角函数是一类重要的运算工具,可以用来描述图形的形状、大小和关系,也可以解决一些复杂的实际问题,是必学的基本知识。
数学必修四是高中阶段数学课程中最重要的一门课程,其中涉及三角函数的知识十分重要,下面就来回顾一下数学必修四中所有的三角函数公式。
一、正弦函数公式正弦函数的定义为y=sinx,其中x为弧度,y为正弦值。
正弦函数的图像是一条波浪线,其最大值为1,最小值为-1,两个极值出现的位置和周期T为2π,表示的公式为:sinx=sin(x+2kπ)。
此外,正弦函数的反函数也重要,其公式为:arcsinx=x+2kπ,其中k为任意整数。
二、余弦函数公式余弦函数的定义为y=cosx,其中x为弧度,y为余弦值。
余弦函数的图像是一条类似V的波浪线,其最大值为1,最小值为-1,两个极值出现的位置和周期T为2π,表示的公式为:cosx=cos(x+2kπ)。
此外,余弦函数的反函数也重要,其公式为:arccosx=x+2kπ,其中k为任意整数。
三、正切函数公式正切函数的定义为y=tanx,其中x为弧度,y为正切值。
正切函数的图像是一条锯齿状的曲线,其最大值变化不定,但一般不大于3,最小值变化不定,但一般不小于-3,表示的公式为:tanx=tan(x+2kπ),其中k为任意整数。
此外,正切函数的反函数也重要,其公式为:arctanx=x+2kπ,其中k为任意整数。
四、反正弦函数公式反正弦函数的定义为y=arcsinx,其中x为正弦值,y为对应的弧度值,表示的公式为:arccosx=cosx+2kπ,其中k为任意整数。
五、反余弦函数公式反余弦函数的定义为y=arccosx,其中x为余弦值,y为对应的弧度值,表示的公式为:arccosx=cosx+2kπ,其中k为任意整数。
六、反正切函数公式反正切函数的定义为y=arctanx,其中x为正切值,y为对应的弧度值,表示的公式为:arctanx=tanx+2kπ,其中k为任意整数。
【精品】高中数学 必修4_三角函数的诱导公式_讲义 知识点讲解+巩固练习(含答案)提高
三角函数的诱导公式【学习目标】1.借助单位圆中的三角函数线导出诱导公式(απαπ±±,2的正弦、余弦、正切);2.掌握并运用诱导公式求三角函数值,化简或证明三角函数式. 【要点梳理】 要点一:诱导公式 诱导公式一:sin(2)sin k απα+=, cos(2)cos k απα+=,tan(2)tan k απα+=,其中k Z ∈诱导公式二:sin()sin αα-=-, cos()cos αα-=,tan()tan αα-=-,其中k Z ∈诱导公式三:sin[((21)]sin k απα++=-, cos[(21)]cos k απα++=-, tan[(21)]tan k απα++=,其中k Z ∈诱导公式四:sin cos 2παα⎛⎫+= ⎪⎝⎭, cos sin 2παα⎛⎫+=- ⎪⎝⎭.sin cos 2παα⎛⎫-= ⎪⎝⎭, cos sin 2παα⎛⎫-= ⎪⎝⎭,其中k Z ∈ 要点诠释:(1)要化的角的形式为α±⋅ο90k (k 为常整数); (2)记忆方法:“奇变偶不变,符号看象限”;(3)必须对一些特殊角的三角函数值熟记,做到“见角知值,见值知角”;(4)sin cos cos 444x x x πππ⎛⎫⎛⎫⎛⎫+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;cos sin 44x x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.要点二:诱导公式的记忆诱导公式一~三可用口诀“函数名不变,符号看象限”记忆,其中“函数名不变”是指等式两边的三角函数同名,“符号”是指等号右边是正号还是负号,“看象限”是指把α看成锐角时原三角函数值的符号.诱导公式四可用口诀“函数名改变,符号看象限”记忆,“函数名改变”是指正弦变余弦,余弦变正弦,为了记忆方便,我们称之为函数名变为原函数的余名三角函数.“符号看象限”同上.因为任意一个角都可以表示为k ·90°+α(|α|<45°)的形式,所以这六组诱导公式也可以统一用“口诀”: “奇变偶不变,符号看象限”,意思是说角90k α⋅±o(k 为常整数)的三角函数值:当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变,然后α的三角函数值前面加上当视α为锐角时原函数值的符号.要点三:三角函数的三类基本题型(1)求值题型:已知一个角的某个三角函数值,求该角的其他三角函数值. ①已知一个角的一个三角函数值及这个角所在象限,此类情况只有一组解;②已知一个角的一个三角函数值但该角所在象限没有给出,解题时首先要根据已知的三角函数值确定这个角所在的象限,然后分不同情况求解;③一个角的某一个三角函数值是用字母给出的,这时一般有两组解.求值时要注意公式的选取,一般思路是“倒、平、倒、商、倒”的顺序很容易求解,但要注意开方时符号的选取.(2)化简题型:化简三角函数式的一般要求是:能求出值的要求出值;函数种类要尽可能少;化简后的式子项数最少,次数最低,尽可能不含根号.(3)证明题型:证明三角恒等式和条件等式的实质是消除式子两端的差异,就是有目标的化简.化简、证明时要注意观察题目特征,灵活、恰当选取公式. 【典型例题】类型一:利用诱导公式求值【高清课堂:三角函数的诱导公式385952 例2】例1.求下列各三角函数的值: (1)252525sincos tan()634πππ++-; (2)()()cos 585tan 300---o o(3)2222132131sin cos 6tan 10cot 243ππππ-+-⎛⎫⎛⎫⎛⎫⎪⎪⎪⎝⎭⎝⎭⎝⎭【思路点拨】利用诱导公式把所求角化为我们熟悉的锐角去求解. 【答案】(1)0(2)2-(3)16【解析】(1)原式=sin(4)cos(8)tan(6)634ππππππ+++-+sincostan634111022πππ=+-=+-=(2)原式=cos(18045)tan(36060)++-o o o o =cos 45tan 60--o o= (3)原式=2222sin (6)cos (5)6tan 10cot (10)243πππππππ+-++-+=2222sin cos 6tan 0cot 243πππ-+-=111023-+-=16【总结升华】(1)对任意角求三角函数值,一般遵循“化负为正,化大为小”的化归方向,但是在具体的转化过程中如何选用诱导公式,方法并不唯一,这就需要同学们去认真体会,适当选择,找出最好的途径,完成求值.(2)运用诱导公式求任意三角函数值的过程的本质是化任意角的三角函数为锐角三角函数的过程,而诱导公式就是这一转化的工具. 举一反三:【变式】(1)10sin 3π⎛⎫- ⎪⎝⎭;(2)31cos 6π;(3)tan (-855°).【答案】(1)2(2)2-(3)1 【解析】(1)1010sin sin 33ππ⎛⎫-=- ⎪⎝⎭44sin 2sin 33πππ⎛⎫=-+=- ⎪⎝⎭sin sin sin 3332ππππ⎛⎫⎛⎫=-+=--==⎪ ⎪⎝⎭⎝⎭.(2)3177coscos 4cos 666ππππ⎛⎫=+= ⎪⎝⎭cos cos 662πππ⎛⎫=+=-=- ⎪⎝⎭. (3)tan(-855°)=tan(-3×360°+225°)=tan225°=tan(180°+45°)=tan45°=1. 例2.已知函数()sin()cos()f x a x b x παπβ=+++,其中a 、b 、α、β都是非零实数,又知f (2009)=-1,求f (2010).【解析】 (2009)sin(2009)cos(2009)f a b παπβ=+++sin(2008)cos(2008)a b ππαππβ=+++++sin()cos()sin cos (sin cos )a b a b a b παπβαβαβ=+++=--=-+.∵f (2009)=-1 ∴sin cos 1a b αβ+=. ∴(2010)sin(2010)cos(2010)f a b παπβ=+++sin cos 1a b αβ=+=.【总结升华】 求得式子sin cos 1a b αβ+=,它是联系已知和未知的纽带.解决问题的实质就是由未知向已知的转化过程,在这个转化过程中一定要抓住关键之处.举一反三:【变式1】 已知1cos(75)3α︒+=,其中α为第三象限角,求cos(105°―α)+sin(α―105°)的值.【答案】13【解析】 ∵cos(105°-α)=cos[180°-(75°+α)]=-cos(75°+α)=13-,sin(α―105°)=―sin[180°-(75°+α)]=-sin(75°+α), ∵α为第三象限角,∴75°+α为第三、四象限角或终边落在y 轴负半轴上.又cos(75°+α)=13>0,∴75°+α为第四象限,∴sin(75)3α︒+===-.∴11cos(105)sin(105)333αα︒-+-︒=-+=.【总结升华】 解答这类给值求值的问题,关键在于找到已知角与待求角之间的相互关系,从而利用诱导公式去沟通两个角之间的三角函数关系,如:75°+α=180°-(105°-α)或105°-α=180°-(75°+α)等.【变式2】已知3sin()2παπβ⎛⎫-=+ ⎪⎝⎭))απβ-=+,且0<α<π,0<β<π,求α和β的值.【解析】由已知得sin αβ=αβ=. 两式平方相加,消去β,得22sin 3cos 2αα+=, ∴21cos 2α=,而0απ<<,∴cos 2α=±,∴4πα=或34πα=.当4πα=时,cos 2β=,又0βπ<<,∴6πβ=;当34πα=时,cos 2β=-,又0βπ<<,∴56βπ=.故4πα=,6πβ=或34πα=,56βπ=. 类型二:利用诱导公式化简 例3.化简(1)sin(180)sin()tan(360)tan(180)cos()cos(180)αααααα-++--+++-+-o o o o ;(2)sin()sin()()sin()cos()n n n Z n n απαπαπαπ++-∈+-.【思路点拨】化简时,要认真观察“角”,显然利用诱导公式,但要注意公式的合理选用.【答案】(1)-1(2)略 【解析】(1)原式sin sin tan tan 1tan cos cos tan αααααααα--==-=-+-;(2)①当2,n k k Z =∈时,原式sin(2)sin(2)2sin(2)cos(2)cos k k k k απαπαπαπα++-==+-.②当21,n k k Z =+∈时,原式sin[(21)]sin[(21)]2sin[(21)]cos[(21)]cos k k k k απαπαπαπα+++-+==-++-+.【总结升华】(1)诱导公式应用的原则是:负化正,大化小,化到锐角就终了; (2)关键抓住题中的整数n 是表示π的整数倍与公式一中的整数k 有区别,所以必须把n 分成奇数和偶数两种类型,分别加以讨论.举一反三: 【变式1】化简 (1)()()()()cos cot 7tan 8sin 2-⋅--⋅--αππαπααπ;(2)()sin2n n Z π∈; (3)()222121tan tan ,22n n n Z παπα++⎛⎫⎛⎫+--∈ ⎪ ⎪⎝⎭⎝⎭(4)sin()cos[(1)]sin[(1)]cos(]k k k k παπαπαπα---+++,()k z ∈.【解析】(1)原式=[]cos()cot()tan(2)sin(2)παπαπαπα----+=cos cot (tan )(sin )αααα-⋅-=3cot α(2)1,(41)sin1,(43)20,(2)n k n n k n k π=+⎧⎪=-=+⎨⎪=⎩ (3)原式=22cot cot αα-=0(4)由(k π+α)+(k π―α)=2k π,[(k ―1)π―α]+[(k+1)π+α]=2k π,得cos[(1)]cos[(1)]cos()k k k παπαπα--=++=-+,sin[(1)]sin()k k παπα++=-+.故原式sin()[cos()]1sin()cos()k k k k παπαπαπα-+-+==--++.【总结升华】 常见的一些关于参数k 的结论: (1)sin()(1)sin ()k k k Z παα+=-∈; (2)cos()(1)cos ()k k k Z παα+=-∈; (3)1sin()(1)sin ()k k k z παα+-=-∈; (4)cos()(1)cos ()k k k Z παα-=-∈. 类型三:利用诱导公式进行证明例4.设8tan 7m πα⎛⎫+= ⎪⎝⎭,求证:1513sin 3cos 37720221sin cos 77m m ππααππαα⎛⎫⎛⎫++- ⎪ ⎪+⎝⎭⎝⎭=+⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭. 【思路点拨】证明此恒等式可采取从“繁”到“简”,从左边到右边的方法.【证明】 证法一:左边88sin 3cos 37788sin 4cos 277πππααπππαππα⎡⎤⎡⎤⎛⎫⎛⎫++++- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=⎡⎤⎡⎤⎛⎫⎛⎫-+-++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦888sin 3cos tan 3777888sin cos tan 1777πππαααπππααα⎛⎫⎛⎫⎛⎫-+-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-⎛⎫⎛⎫⎛⎫-+-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭31m m +=+=右边. ∴等式成立.证法二:由8tan 7m πα⎛⎫+= ⎪⎝⎭,得tan 7m πα⎛⎫+= ⎪⎝⎭,∴左边sin 23cos 277sin 2cos 277πππαπαππππαππα⎡⎤⎡⎤⎛⎫⎛⎫+++++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=⎡⎤⎡⎤⎛⎫⎛⎫+-+-+++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦sin 3cos 77sin cos 77ππααπππαπα⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭=⎡⎤⎡⎤⎛⎫⎛⎫-+-++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦sin 3cos 77sin cos 77ππααππαα⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭=⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭tan 3371tan 17m m παπα⎛⎫++ ⎪+⎝⎭==+⎛⎫++ ⎪⎝⎭=右边, ∴等式成立. 举一反三:【高清课堂:三角函数的诱导公式385952 例4 】 【变式1】设A 、B 、C 为ABC ∆的三个内角,求证: (1)()sin sin A B C +=;(2)sincos22A B C+=; (3)tan cot 22A B C+=【解析】(1)左边=sin()sin()sin A B c C π+=-==右边,等式得证. (2)左边=sin2A =()sin cos cos 2222B C B C B C ππ-+++⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭=右边,等式得证. (3)左边=tantan cot 2222A B C C π+⎛⎫=-= ⎪⎝⎭=右边,等式得证. 【变式2】求证:232sin cos 1tan(9)12212sin ()tan()1ππθθπθπθπθ⎛⎫⎛⎫-+- ⎪ ⎪++⎝⎭⎝⎭=-++-. 证明:∵左边2232sin sin 12sin (sin )12212sin 12sin πππθθθθθθ⎡⎤⎛⎫⎛⎫+----⋅-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦==-- 22222sin sin 12cos sin 1212sin cos sin 2sin πθθθθθθθθ⎛⎫--- ⎪--⎝⎭==-+-222(sin cos )sin cos sin cos sin cos θθθθθθθθ++==--,右边tan(9)1tan 1sin cos tan()1tan 1sin cos πθθθθπθθθθ++++===+---,∴左边=右边,故原式得证. 类型四:诱导公式的综合应用例5.已知3sin(3)cos(2)sin 2()cos()sin()f παππαααπαπα⎛⎫---+⎪⎝⎭=----.(1)化简()f α;(2)若α是第三象限的角,且31cos 25πα⎛⎫-= ⎪⎝⎭,求()f α的值. (3)若313πα=-,求()f α的值. 【解析】 (1)(sin )cos (cos )()cos (cos )sin f ααααααα-⋅⋅-==--.(2)∵3cos sin 2παα⎛⎫-=- ⎪⎝⎭, ∴1sin 5α=-,∴cos α==()f α=. (3)31315cos cos 62333f ππππ⎛⎫⎛⎫⎛⎫-=--=--⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭51cos cos 332ππ=-=-=-. 【总结升华】这是一个与函数相结合的问题,解决此类问题时,可先用诱导公式化简变形,将三角函数的角度统一后再用同角三角函数关系式,这样可避免公式交错使用时导致的混乱.举一反三: 【变式1】已知α、β均为锐角,cos()sin()αβαβ+=-,若()sin cos 44f ππααα⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,求2f πα⎛⎫- ⎪⎝⎭的值. 【解析】由cos()sin()αβαβ+=-得cos()cos ()2παβαβ⎡⎤+=--⎢⎥⎣⎦,又α、β均为锐角.则()2παβαβ+=--,即4πα=.于是,sin cos 0222f ππα⎛⎫-=+= ⎪⎝⎭.【巩固练习】1.sin585°的值为( )A.2-B.2 C.2- D.2A .13 B . 13- C. D3.已知(cos )cos3f x x =,则(sin 30)f ︒的值等于( )A .―1B .1C .12D .0)A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos25.若sin cos 2sin cos αααα+=-,则3sin(5)sin 2παπα⎛⎫-⋅-⎪⎝⎭等于( ) A .34 B .310 C .310± D .310-6.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是( )A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角形7.已知3sin()cos(2)tan 2()cos()f ππαπαααπα⎛⎫---+ ⎪⎝⎭=--,则313f π⎛⎫-⎪⎝⎭的值为( ) A .12 B .12- C.2 D.2-8.已知cos 63πα⎛⎫-= ⎪⎝⎭,则25sin cos 66ππαα⎛⎫⎛⎫--+ ⎪⎪⎝⎭⎝⎭的值是( )A .23+B .23+-C .23- D.23-+9.计算:)425tan(325cos 625sinπππ-++= .10.若()θ+ο75cos 31=,θ为第三象限角,则()()θθ++--οο435sin 255cos 的值是 . 11.已知1sin()43πα-=,则cos()4πα+=__________. 12.(1)cos1°+cos2°+cos3°+…+cos180°的值为________;(2)cos 21°+cos 22°+cos 23°+…+cos 289°的值为________。
数学必修四所有三角函数公式
数学必修四所有三角函数公式“三角函数”是从古希腊数学家凯撒伯罗的一篇论文中来的,它开始于一个环状几何图形的旋转动作,因此他们又被称为“旋转函数”。
三角函数在数学必修四中有着广泛的应用,其基本公式包括正弦函数公式、余弦函数公式、正切函数公式,以及余切函数公式等。
正弦函数公式:sin x=y/r其中,x为角度值(单位为弧度),y为三角形直角边,r为斜边。
此函数表示,角度X对应的正弦值为y/r。
余弦函数公式:cos x=a/r其中,x为角度值(单位为弧度),a为三角形的邻边,r为斜边。
此函数表示,角度X对应的余弦值为a/r。
正切函数公式:tan x=y/a其中,x为角度值(单位为弧度),y为三角形的直角边,a为邻边。
此函数表示,角度X对应的正切值为y/a。
余切函数公式:cot x=a/y其中,x为角度值(单位为弧度),a为三角形的邻边,y为直角边。
此函数表示,角度X对应的余切值为a/y。
此外,还有一些特殊的三角函数,比如正割函数sec x、余割函数csc x、双曲正切函数tanh x和双曲余切函数coth x等。
正割函数公式:sec x=r/a其中,x为角度值(单位为弧度),r为三角形的斜边,a为邻边。
此函数表示,角度X对应的正割值为r/a。
余割函数公式:csc x=r/y其中,x为角度值(单位为弧度),r为三角形的斜边,y为直角边。
此函数表示,角度X对应的余割值为r/y。
双曲正切函数公式:tanh x=y/(ar)其中,x为角度值(单位为弧度),y为三角形的直角边,a为邻边,r为斜边。
此函数表示,角度X对应的双曲正切值为y/(ar)。
双曲余切函数公式:coth x=ar/y其中,x为角度值(单位为弧度),a为三角形的邻边,r为斜边,y为直角边。
此函数表示,角度X对应的双曲余切值为ar/y。
三角函数的基本运算法则是:1.sin(-x)=-sin x2.cos(-x)=cos x3.tan(-x)=-tan x4.sec(-x)=sec x5.csc(-x)=csc x6.cot(-x)=-cot x7.sin(π/2+x)=cos x8.cos(π/2+x)=-sin x9.tan(π/2+x)=-cot x10.sec(π/2+x)=-csc x11.csc(π/2+x)=-sec x12.cot(π/2+x)=tan x因此,数学必修四中所有的三角函数公式可以总结如下:正弦函数公式:sin x=y/r余弦函数公式: cos x=a/r正切函数公式:tan x=y/a余切函数公式:cot x=a/y正割函数公式:sec x=r/a余割函数公式:csc x=r/y双曲正切函数公式:tanh x=y/(ar)双曲余切函数公式:coth x=ar/y以上就是数学必修四中所有三角函数的基本公式及其基本运算法则了。
(word完整版)高中数学必修4三角函数常考题型:三角函数的诱导公式(一)
三角函数的诱导公式(一)【知识梳理】1. 诱导公式⑴角n+ a与角a的终边关于原点对称. 如图所示.10丿H(2)公式:sin( n+ a = —sin acos( n+ a) =—cos_ a.tan( n+ a = tan_ a2. 诱导公式三(1)角一a与角a的终边关于X轴对称. 如图所示.彳(2)公式:sin( —a = —sin _aCOs(— a) = COs_ atan(— a = —tan_ a3. 诱导公式四(1)角n— a与角a的终边关于y轴对称.如图所示.(2)公式:sin( n— a = sin __ acos( n— a = 一COS_a tan( n— a = —tan_ a.【常考题型】题型一、给角求值问题【例1】 求下列三角函数值:。
o 119 n⑴sin( — 1 200 °; (2)tan 945 ; (3)cos_^.[解](1)si n( — 1 200 )=— sin 1 200 =—°si n(3 x 360 牛 120 ) =— sin 120 =— sin(180 — 60 )3=—sin 60 =——; 2(2)tan 945 =tan(2 x 360 °+ 225 °= tan 225 = tan( 180 4 45 °)= tan 45 = 1;【类题通法】【对点训练】求 sin 585 cos 1 290 4 cos( — 30°)sin 210 4 tan 135 的值.解:sin 585 °s 1 290 C cos(— 30°)sin 210 ° tan 135 = sin(360 ° 225°)cos(3x 360° 4 210) 4 cos 30 gin 210 半 tan(180 —45 ° = sin 225 c6s 210 半 cos 30 s °n 210 — tan 45 = sin( 180 半 45 °)cos(180 4 30 °)4 cos 30 sin(180 4 30 °— tan 45 =sin 45 cbs 30 — cos 30 s i n 30 — tan 45 = 返 x ©_ ?/3x 1—1 乎-也-42 2 2 2 4题型二、化简求值问题cos — a tan 7 n4 asin n — a(2)化简曲:豊4 " * "—1需°cos — 180 — a sin — a — 180 (3)cos 譽 =cos 20 n — n = cos 6 6n =cos := 6 【例2】 (1)化简:cos — a tan 7 n4 a 解析]sin n— a cos d an n4 asin acos a tan asin a心=1sin a[答案]1•••a+ 125°= 180°+ ( a — 55°),sin 4X 360 °+ a c os 3 x 360 °— a sin a c os — a (2)[解]原式=—— cos 180 + a [ — sin 180 + a ] COS a = =—1. —cos a sin a — COs a 【类题通法】 利用诱导公式一〜四化简应注意的问题(1)利用诱导公式主要是进行角的转化,从而达到统一角的目的;(2)化简时函数名没有改变,但一定要注意函数的符号有没有改变;(3)同时有切(正切)与弦(正弦、余弦)的式子化简,一般采用切化弦,有时也将弦化切. 化简: tan 2 n — 0 sin 2 n — 0 cos 6 n —tan — 0s in — 0cos — 0—cos 0sin n+ 0 tan Osin 0cos 0cos 0sin 0 =tan 0 题型三、给角(或式)求值冋题【例3】 1 (1)已知 sin 3= 3, cos(a+ 3=— 1,贝U sin( a+ 2 3)的值为( ) 3 A . 1 B . — 11 Ci 1D 「11⑵已知cos( a — 55 °)=— 3,且a 为第四象限角,求 sin( a+ 125°)的值.(1)[解析] **cos( a+ 3) = — 1 ,• '•a+ 3= T H- 2k n, k , 1 •'sin( a+ 2 3) = sin [(a+ 3] = sin( n+ 3 = — sin 3= — 3.3[答案]D(2)[解]・.cos( a — 55 °)=— ]0,且a 是第四象限角.• a — 55°是第三象限角.sin( a — 55 °)= — i : 1 — COS ? a — 55 =— 2.23【对点训练】解:原式=••sin( a- 125° = sin[180 — (a — 55°)] = — sin( a — 55°)=警.【类题通法】解决条件求值问题的策略(1)解决条件求值问题,首先要仔细观察条件与所求式之间的角、函数名称及有关运算之间 的差异及联系.(2)可以将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化.【对点训练】1 、sin( n+ a=— 3,求 cos(5n+ a 的值. 3由诱导公式得,sin( n- a = — sin a,当a 是第一象限角时,cos a= - ;1 — Sin 2 a=彳^2 2A /2 此时,cos(5 n — %)= cos( n+ a = —cos a=— 3 . 3当 a 是第二象限角时,cos a=— • :1— sin 2 a=— ^^2 ,2占 此时,cos(5 n — %)= cos( n+ a = — cos a= 3 .3 【练习反馈】1.如图所示,角0的终边与单位圆交于点 P ,晋,则cos(n — 的值为(B . — -5 52*5D. 50-五—5,送•'cos( n — ® = — cos 0= 5 .已知 解: 所以sin a= 3,所以a 是第一象限或第二象限角.解析: 选 C 行=1 ,「.cos答案:2 — 2n5.已知 cos 6"coS a+于的值.n —cos 6— a 2. 4 _ 已知 sin( n+%)= 5,且 a 是第四象限角,贝U COS ( a — 2冗)的值是( ) 3 B.5D.5 4 解析:选 B sin a =-4, 又a 是第四象限角, • 'COS ( a — 2 n )= COS a= \ -1- Sin 2 a= 5. sin a — 3 n + COS n — a 3.设 tan(5 n+ a) = m ,贝U sin — a — COS n+ a 解析: '•ta n(5n+ a = tan a= m , —sin a — cos a — tan a — 1 — m — 1 m + 1 • • •原式= = = = —sin a+ cos a — tan a+ 1 — m + 1 m — 1 答案:cos — 585 ° sin 495 + sin — 570的值是解析: 原式= cos 360 °+ 225 ° sin 360 °+ 135 ° — sin 210 °+ 360 cos 225 cos 180 °+ 45 ° sin 135 — sin 210 °sin 180 °— 45° — sin 180 ° + 30° —cos 45sin 45 + sin 30 —2 .2 1 + _ 2 2 2 — 2.解:cos n+ =— cos n —6 5 n a+E。
北师大版数学必修四:第一章《三角函数》章节归纳梳理ppt课件
2sin 2 sin 2sin cos cos 2sin 2 sin 2sin 1 cos 1 2sin 1 sin tan
若 17 ,
6 1 1 则 f ( 17 ) 17 6 tan( ) tan(3 ) 6 6 1 1 3. 3 tan 6 3
三角函数的图像
对三角函数的图像的几点认识 本章在必修一学习基本初等函数图像画法的基础上,进一 步学习了三角函数图像的画法,完善了函数图像的画法理论,
主要包括以下内容.
(1)描点法.用列表、描点、连线的方式研究未知函数的图像 特征. (2)利用性质画简图,对于熟悉的函数可直接根据特殊点、线 画简图.如“五点法”“三点二线法”等.
【审题指导】解答本题的关键是利用诱导公式和因式分解的 方法化简求值.
【规范解答】f 2sin cos cos
2sin 2 sin( )
2sin cos cos
正弦、余弦、正切函数的诱导公式 对正弦、余弦、正切函数的诱导公式的理解
和应用
(1)理解方法:借助单位圆,根据角终边的对称性和三角函数 的定义理解. (2)记忆方法:奇变偶不变,符号看象限
(3)应用方法:用诱导公式一方面可化任意角为0°~90°的 角,另一方面可实现正弦与余弦之间的互化.因此在应用诱导 公式时,要根据题目的要求恰当选择公式.
4
小的θ 值是( (A)
3 4
) (B)
4
(C)
4
(D)
3 4
(2)已知角α 的终边与角-330°的终边关于原点对称,则其中 绝对值最小的角α 是_______. 【审题指导】(1)解答的关键是判断出θ与
高中数学必修4三角函数优质课件:两角和与差的正弦、余弦公式
第二页,编辑于星期日:二十三点 三十八分。
给角求值问题
[例 1]
cos (1)sin
2200°°【·c常os考1题0°+型】3sin
10°tan
70°-2cos
40°=________.
(2)求值:(tan 10°-
=-2.
第六页,编辑于星期日:二十三点 三十八分。
[类题通法] 解决给角求值问题的策略
对非特殊角的三角函数式求值问题,一定要本着先整 体后局部的基本原则,如果整体符合三角公式的形式,则 整体变形,否则进行各局部的变形.一般途径有将非特殊 角化为特殊角的和或差的形式,化为正负相消的项并消项 求值,化分子、分母形式进行约分式值;要善于逆用或变 用公式.
(2)原式 =cos(70°+α)sin(10°+α)-sin(70°+α)cos(10°+α)
=sin[(10°+α)-(70°+α)] =sin(-60°)
=- 23.
第二十六页,编辑于星期日:二十三点 三十八 分。
(3)原式=cos 21°cos 24°+sin(180°-21°)sin(180°+24°) =cos 21°cos 24°-sin 21°sin 24° =cos(21°+24°)
20°cos 10°+ sin 20°
3sin
10°-2cos
40°
=2cos
20°cos
10°sin 30°+sin sin 20°
10°cos
30°-2cos
40°
=2cos 20°ssinin2300°°+10°-2cos 40°
=2cos
20°sin
(完整版)人教高中数学必修四第一章三角函数知识点归纳
三角函数一、随意角、弧度制及随意角的三角函数1.随意角(1)角的观点的推行①按旋转方向不一样分为正角、负角、零角.正角 : 按逆时针方向旋转形成的角随意角 负角: 按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角②按终边地点不一样分为象限角和轴线角.角 的极点与原点重合,角的始边与 x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的会合为 k 360ok 360o 90o , k第二象限角的会合为 k 360o 90o k 360o 180o , k第三象限角的会合为 k 360o 180o k 360o 270o , k第四象限角的会合为k 360o 270ok 360o360o , k终边在 x 轴上的角的会合为 k 180o , k终边在 y 轴上的角的会合为 k 180o 90o , k终边在座标轴上的角的会合为k 90o ,k(2)终边与角 α同样的角可写成 α+ k ·360 °(k ∈ Z).终边与角 同样的角的会合为k 360o, k(3)弧度制① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1 弧度的角.②弧度与角度的换算: 360°= 2π弧度; 180°= π弧度.③ 半径为 r 的圆的圆心角所对弧的长为 l ,则角的弧度数的绝对值是lr④ 若扇形的圆心角为 为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则 lr,C2r l ,S1 lr 1 r2 . 222 .随意角的三角函数定义设 α是一个随意角,角 α的终边上随意一点P(x , y),它与原点的距离为 r rx 2 y 2 ,那么角 α的正弦、余弦、rrx(三角函数值在各象限的符号规律归纳为:一全正、二正弦、三正切分别是: sin α= y , cos α= x , tan α= y.正切、四余弦)3.特别角的三角函数值角度030456090120135150180270360函数角 a 的弧度0π /6π/4π /3π /22π /33π /45π/6π3π /22πsina01/2√ 2/2√ 3/21√ 3/2√ 2/21/20-10 cosa1√ 3/2√ 2/21/20-1/2-√ 2/2-√ 3/2-101 tana0√ 3/31√ 3-√ 3-1-√ 3/300二、同角三角函数的基本关系与引诱公式A.基础梳理1.同角三角函数的基本关系(1)平方关系: sin2α+ cos2α= 1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)sin α(2)商数关系:=tanα.(3)倒数关系:tan cot 1cos α2.引诱公式公式一: sin( α+ 2kπ)=sin α, cos(α+ 2kπ)=cos_α,tan(2k )tan此中 k∈Z .公式二: sin( π+α)=- sin_α, cos( π+α)=- cos_α, tan( π+α)= tan α.公式三: sin( π-α)= sin α, cos( π-α)=- cos_α,tan tan.公式四: sin( -α)=- sin_α, cos(-α)= cos_α,tan tan .ππ公式五: sin -α= cos_α, cos-α= sin α.22ππ公式六: sin 2+α= cos_α, cos2+α=- sin_α.π口诀:奇变偶不变,符号看象限.此中的奇、偶是指π引诱公式可归纳为 k· ±α的各三角函数值的化简公式.的奇数22倍和偶数倍,变与不变是指函数名称的变化.假如奇数倍,则函数名称要变( 正弦变余弦,余弦变正弦 ) ;假如偶数倍,则函数名称不变,符号看象限是指:把πα当作锐角时,依据 k· ±α在哪个象限判断原三角函数值的符号,最后作为结....2...果符号.B. 方法与重点一个口诀1、引诱公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:sin α(1)弦切互化法:主要利用公式tan α=化成正、余弦.cos α(2)和积变换法:利用 (sin θ±cos θ)2=1 ±2sin θcos θ的关系进行变形、转变.( sin cos、sin cos、sin cos三个式子知一可求二)(3)巧用 “1”的变换: 1= sin 2θ+ cos 2θ= sinπ=tan 42(4)齐次式化切法:已知 tank ,则 a sinbcos a tan b ak bm sinn cos m tan n mk n三、三角函数的图像与性质学习目标:1 会求三角函数的定义域、值域2 会求三角函数的周期 :定义法,公式法,图像法(如y sin x 与 y cosx 的周期是)。
必修4 三角函数的诱导公式
思考2: 对于任意给定的一个角α, π-
α的终边与α的终边有什么关系?
关于y轴对称
y α 的终边 π -α 的终边
o
x
设角α的终边与单位圆交于点P(x,y),则 π-α的终边与单位圆的交点坐标如何?它们
的三角函数又有何关系?
y α 的终边 P(x,y) o π -α 的终边
P2 (-x,y)
x
公式四
公式二: sin( ) sin cos( ) cos tan( ) tan 公式四: sin( ) sin cos( ) cos tan( ) tan
公式一 ~ 四可用下面的话来概括:
2k (k Z ), , 的三角函数值, 等于角的同名函数值,前面加上一个把
任意正角的 三角函数
公式一
用公式三或四
锐角三 角函数
0 到 360 的角 的三角函数
o
o
负化正,大化小,化到锐角为终了
例2 化简:
) sin( 360 ) cos(180 (1) ) cos(-180 - ) ; sin(- -180
cos sin 解:原式 sin( 180) cos( ) 180 cos sin 1 sin ( cos )
公式作用:可以把求任意角的三角函数值, 转化为求 0到2 或0到360 角的三角函数值 .
思考1:对于任意给定的一个角α ,角
π +α 的终边与角α 的终边有什么关系?
y
α 的终边
关于原点对称
o x
π+α 的终边
设角α的终边与单位圆交于点P(x,y),则 角π+α的终边与单位圆的交点坐标如何? 它们的三角函数又有何关系?
(完整版)高中必修四三角函数知识点总结
§04。
三角函数 知识要点1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+⨯=,360|αββ②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180|ββ ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|ββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0。
01745 1=57。
30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad =π180°≈57。
30°=57°18ˊ. 1°=180π≈0。
01745(rad )3、弧长公式:rl ⋅=||α。
扇形面积公式:211||22s lr r α==⋅扇形4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y)P与原点的距离为r,则 ry =αsin ; rx =αcos ; =αtan yx=αcot ; xr =αsec ;。
yr=αcsc 。
5、三角函数在各象限的符号:(一全二正弦,三切四余弦)正切、余切余弦、正割正弦、余割6、三角函数线正弦线:MP ; 余弦线:OM; 正切线: AT.SIN \COS 三角函数值大小关系图1、2、3、4表示第一、二、三、四象限一半所在区域16. 几个重要结论:8、同角三角函数的基本关系式:αααtan cos sin = αααcot sin cos = 1cot tan =⋅αα 1sin csc =α⋅α 1cos sec =α⋅α1cos sin 22=+αα 1tan sec 22=-αα 1cot csc 22=-αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为: “奇变偶不变,符号看象限"公式组二 公式组三(完整版)高中必修四三角函数知识点总结x x k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=- 公式组四 公式组五 公式组六xx x x x x xx cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ xx x x x x xx cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ xx x x xx xx cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ(二)角与角之间的互换公式组一 公式组二 βαβαβαsin sin cos cos )cos(-=+ αααcos sin 22sin =βαβαβαsin sin cos cos )cos(+=- ααααα2222sin 211cos 2sin cos 2cos -=-=-= βαβαβαsin cos cos sin )sin(+=+ ααα2tan 1tan 22tan -=βαβαβαsin cos cos sin )sin(-=- 2cos 12sinαα-±= βαβαβαtan tan 1tan tan )tan(-+=+ 2cos 12cos αα+±=βαβαβαtan tan 1tan tan )tan(+-=- 公式组三 公式组四 公式组五2tan 12tan2sin 2ααα+= 2tan 12tan 1cos 22ααα+-= 2tan 12tan2tan 2ααα-=42675cos 15sin -== ,42615cos 75sin +== ,3275cot 15tan -== ,3215cot 75tan +== 。
高中三角函数公式大全
必修四常考公式及高频考点第一部分 三角函数与三角恒等变换考点一 角的表示方法 1.终边相同角的表示方法:所有与角α终边相同的角,连同角α在内可以构成一个集合:{β|β= k ·360 °+α,k ∈Z } 2.象限角的表示方法:第一象限角的集合为{α| k ·360 °<α<k ·360 °+90 °,k ∈Z }第二象限角的集合为{α| k ·360 °+90 °<α<k ·360 °+180 °,k ∈Z } 第三象限角的集合为{α| k ·360 °+180 °<α<k ·360 °+270 °,k ∈Z } 第四象限角的集合为{α| k ·360 °+270 °<α<k ·360 °+360 °,k ∈Z } 3.终边在某条射线、某条直线或两条垂直的直线上(如轴线角)的表示方法:(1)若所求角β的终边在某条射线上,其集合表示形式为{β|β= k ·360 °+α,k ∈Z },其中α为射线与x 轴非负半轴形成的夹角(2)若所求角β的终边在某条直线上,其集合表示形式为{β|β= k ·180 °+α,k ∈Z },其中α为直线与x 轴非负半轴形成的任一夹角(3)若所求角β的终边在两条垂直的直线上,其集合表示形式为{β|β= k ·90 °+α,k ∈Z },其中α为直线与x 轴非负半轴形成的任一夹角 例:终边在y 轴非正半轴上的角的集合为{α|α= k ·360 °+270 °,k ∈Z }终边在第二、第四象限角平分线上的集合为{α|α= k ·180 °+135 °,k ∈Z } 终边在四个象限角平分线上的角的集合为{α|α= k ·90 °+45 °,k ∈Z } 易错提醒:区别锐角、小于90度的角、第一象限角、0~90、小于180度的角 考点二 弧度制有关概念与公式 1.弧度制与角度制互化π=︒180,1801π=︒,1弧度︒≈︒=3.57180π2.扇形的弧长和面积公式(分别用角度制、弧度制表示方法)弧长公式:R Rn l απ==180, 其中α为弧所对圆心角的弧度数 扇形面积公式:lR R n S 213602==π=12 R 2|α|, 其中α为弧所对圆心角的弧度数 易错提醒:利用S=12R 2|α|求解扇形面积公式时,α为弧所对圆心角的弧度数,不可用角度数规律总结:“扇形周长、面积、半径、圆心角”4个量,“知二求二”,注意公式选取技巧考点三 任意角的三角函数 1.任意角的三角函数定义设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么sin y r α=,cos x r α=,tan y x α=(22||r OP x y ==+);化简为xyx y ===αααtan ,cos ,sin . 2.三角函数值符号规律总结:利用三角函数定义或“一全正、二正弦、三正切、四余弦”口诀记忆象限角或轴线角的三角函数值符号. 3.特殊角三角函数值SIN15º=SIN(60º-45º)=SIN60ºCOS45º-SIN45ºCOS60º=(√6-√2)/4 COS15º=COS(60º-45º)=COS60ºCOS45º+SIN60ºSIN45º=(√6+√2)/4除此之外,还需记住150、750的正弦、余弦、正切值 4.三角函数线经典结论: (1)若(0,)2x π∈,则sin tan x x x <<(2)若(0,)2x π∈,则1sin cos 2x x <+≤(3)|sin ||cos |1x x +≥考点四 三角函数图像与性质y OxyOxα终边yOx yOx P M A TPM A T正弦线余弦线 正切线PP MA TP MA T α终边α终边α终边sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min1y=-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数; 在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数; 在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z 对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z⎪⎝⎭无对称轴考点五 正弦型(y=Asin(ωx +φ))、余弦型函数(y=Acos(ωx +φ))、正切性函数(y=Atan(ωx +φ))图像与性质 1.解析式求法字母 确定途径 说明A 由最值确定 A =最大值-最小值2B 由最值确定B =最大值+最小值2ω 由函数的周期确定相邻的最高点与最低点的横坐标之差的绝对值为半个周期,最高点(或最低点)的横坐标与相邻零点差的绝对值为0.25个周期φ由图象上的特殊点确定可通过认定特殊点是五点中的第几个关键点,然后列方程确定;也可通过解简单三角方程确定A 、B 通过图像易求,重点讲解φ、ω求解思路: ①φ求解思路:函数性质代入图像的确定点的坐标.如带入最高点),(11y x 或最低点坐标),(22y x ,则)(221Z k k x ∈+=+ππϕω或)(2232Z k k x ∈+=+ππϕω,求ϕ值. 易错提醒:y=Asin(ωx+φ),当ω>0,且x=0时的相位(ωx+φ=φ)称为初相.如果不满足ω>0,先利用诱导公式进行变形,使之满足上述条件,再进行计算.如y=-3sin(-2x+600)的初相是-600②ω求解思路:利用三角函数对称性与周期性的关系,解ω.相邻的对称中心之间的距离是周期的一半;相邻的对称轴之间的距离是周期的一半;相邻的对称中心与对称轴之间的距离是周期的四分之一. 2.“一图、两域、四性” “一图”:学好三角函数,图像是关键。
高一数学必修四三角函数公式
倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)平常针对不同条件的常用的两个公式sin^2(α)+cos^2(α)=1tan α *cot α=1一个特殊公式(s ina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ)坡度公式我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示,即i=h / l, 坡度的一般形式写成l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作a(叫做坡角),那么i=h/l=tan a.锐角三角函数公式正弦:sin α=∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边二倍角公式正弦sin2A=2sinA·cosA余弦1.Cos2a=Cos^2(a)-Sin^2(a)2.Cos2a=1-2Sin^2(a)3.Cos2a=2Cos^2(a)-1即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)正切tan2A=(2tanA)/(1-tan^2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin(3a)=sin(a+2a)=sin2acosa+cos2asina=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin^3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-cos^a)cosa=4cos^3a-3cosasin3a=3sina-4sin^3a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos^3a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)^2]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)现列出公式如下: sin2α=2sinαcosα tan2α=2tanα/(1-tan^2(α)) cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 可别轻视这些字符,它们在数学学习中会起到重要作用。
高中数学必修四第一章三角函数公式总结
高中数学必修四第一章三角函数公式总结锐角三角函数公式sin α=∠α的对边 / 斜边cos α=∠α的邻边 / 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=2tanA/1-tanA^2注:SinA^2 是sinA的平方 sin2A三倍角公式sin3α=4sinα·sinπ/3+αsinπ/3-αcos3α=4cosα·cosπ/3+αcosπ/3-αtan3a = tan a · tanπ/3+a· tanπ/3-a三倍角公式推导sin3a=sin2a+a=sin2acosa+cos2asina辅助角公式Asinα+Bcosα=A^2+B^2^1/2sinα+t,其中sint=B/A^2+B^2^1/2cost=A/A^2+B^2^1/2tant=B/AAsinα+Bcosα=A^2+B^2^1/2cosα-t,tant=A/B降幂公式sin^2α=1-cos2α/2=versin2α/2cos^2α=1+cos2α/2=covers2α/2tan^2α=1-cos2α/1+cos2α半角公式tanA/2=1-cosA/sinA=sinA/1+cosA;cotA/2=sinA/1-cosA=1+cosA/sinA.sin^2a/2=1-cosa/2cos^2a/2=1+cosa/2tana/2=1-cosa/sina=sina/1+cosa三角和sinα+β+γ=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcosα+β+γ=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtanα+β+γ=tanα+tanβ+tanγ-tanα·tanβ·tanγ/1-tanα·tanβ-tanβ·tanγ-tanγ·tanα两角和差cosα+β=cosα·cosβ-sinα·sinβcosα-β=cosα·cosβ+sinα·sinβsinα±β=sinα·cosβ±cosα·sinβtanα+β=tanα+tanβ/1-tanα·tanβtanα-β=tanα-tanβ/1+tanα·tanβ和差化积sinθ+sinφ = 2 sin[θ+φ/2] cos[θ-φ/2]sinθ-sinφ = 2 cos[θ+φ/2] sin[θ-φ/2]cosθ+cosφ = 2 cos[θ+φ/2] cos[θ-φ/2]cosθ-cosφ = -2 sin[θ+φ/2] sin[θ-φ/2] tanA+tanB=sinA+B/cosAcosB=tanA+B1-tanAtanB tanA-tanB=sinA-B/cosAcosB=tanA-B1+tanAtanB 积化和差sinαsinβ = [cosα-β-cosα+β] /2cosαcosβ = [cosα+β+cosα-β]/2sinαcosβ = [sinα+β+sinα-β]/2cosαsinβ = [sinα+β-sinα-β]/2诱导公式sin-α = -sinαcos-α = cosαtan —a=-tanαsinπ/2-α = cosαcosπ/2-α = sinαsinπ/2+α = cosαcosπ/2+α = -sinαsinπ-α = sinαcosπ-α = -cosαsinπ+α = -sinαcosπ+α = -cosαtanA= sinA/cosAtanπ/2+α=-cotαtanπ/2-α=cotαtanπ-α=-tanαtanπ+α=tanα抓好基础是关键数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。