高三数学文科试卷
高三文科数学试卷电子版
第1页 共4页 ◎ 第2页 共4页…………外………………内……………○……在※※装※※订※※线………○……第II卷(非选择题)二、填空题(共4题,每题5分,共20分)13.若(x2+a)(x+x)8的展开式中x8的系数为9,则a的值为.14.北宋时期的科学家沈括在他的著作《梦溪笔谈》一书中提出一个有趣的问题,大意是:酒店把酒坛层层堆积,底层摆成长方形,以后每上一层,长和宽两边的坛子各少一个,堆成一个棱台的形状(如图1),那么总共堆放了多少个酒坛?沈括给出了一个计算酒坛数量的方法——隙积术,设底层长和宽两边分别摆放a,b个坛子,一共堆了n层,则酒坛的总数S=ab+(a-1)(b-1)+(a-2)(b-2)+…+(a-n+1)(b-n+1).现在将长方形垛改为三角形垛,即底层摆成一个等边三角形,向上逐层等边三角形的每边少1个酒坛(如图2),若底层等边三角形的边上摆放10个酒坛,顶层摆放1个酒坛,那么酒坛的总数为.15.定义:如果函数f(x)在[a,b]上存在x1,x2(a<x1<x2<b)满足f'(x1)=f'(x2)=f(b)-f(a)b-a,则称函数f(x)是[a,b]上的“中值函数”.已知函数f(x)=13x3-12x2+m是[0,m]上的“中值函数”,则实数m的取值范围是.16.设函数f(x)=exx+a(x-1)+b(a,b∈R)在区间[1,3]上总存在零点,则a2+b2的最小值为.三、解答题(共6题,共70分)17.已知数列{a n}的各项均为正数,S n为其前n项和,且4S n=a n2+2a n-3.(1)求数列{a n}的通项公式;(2)若T n=a1+1S1−a3+1S3+a5+1S5-…+(-1)n+1a2n-1+1S2n-1,比较T n与1的大小.18.已知△ABC的内角A,B,C的对边分别为a,b,c,且2a sin(C+π6)=b+c.(1)求角A的大小;(2)若a=√7,BA⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ =-3,角A的平分线交边BC于点T,求AT的长.19.垃圾是人类生产和生活中产生的废弃物,由于排出量大,成分复杂多样,且具有污染性,因此需要无害化、减量化处理.某市为调查产生的垃圾数量,采用简单随机抽样的方法抽取20个镇进行分析,得到样本数据(x i,y i)(i=1,2,…,20),其中x i和y i分别表示第i个镇的人口(单位:万人)和该镇年垃圾产生总量(单位:吨),并计算得∑i=120x i=80,∑i=120y i=4 000,∑i=120(x i-x¯)2=80,∑i=120(y i-y¯)2=8 000,∑i=120(x i-x¯)(y i-y¯)=700.(1)请用相关系数说明该组数据中y与x之间的线性相关程度;(2)求y关于x的线性回归方程;(3)某机构有两款垃圾处理机器,其中甲款机器每台售价100万元,乙款机器每台售价80万元,下表是这两款垃圾处理机器的使用年限(整年)统计表:根据以往经验可知,某镇每年可获得政府支持的垃圾处理费用为50万元,若仅考虑购买机器的成本和每台机器的使用年限(使用年限均为整年),以频率估计概率,该镇选择购买哪一款垃圾处理机器更划算?参考公式:相关系数r=∑i=1n(x i-x¯)(y i-y¯)√∑i=1(x i-x¯)2∑i=1(y i-y¯)2,对于一组具有线性相关关系的数据(x i,y i)(i=1,2,…,n),其回归直线y^=b^x+a^的斜率和截距的最小二乘估计分别为b^=∑i=1nx i y i−nx-y-∑i=1nx i2−nx-2,a^=y-−b^x-.20.如图,已知各棱长均为2的直三棱柱ABC-A1B1C1中,E为AB的中点.(1)求证:BC1∥平面A1EC;(2)求点B1到平面A1EC的距离.21.已知椭圆C:y2a2+x2b2=1(a>b>0)的离心率为√22,且椭圆上一点到两个焦点的距离之和为2√2.(1)求椭圆C的标准方程.(2)过点S(-13,0)的动直线l交椭圆C于A,B两点,试问:在x轴上是否存在一个定点T,使得无论直线l如何转动,以AB为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,请说明理由.22.已知函数f(x)=lnx,g(x)=-12x.(1)令F(x)=ax·f(x)-2x2·g(x),讨论F(x)的单调性;(2)设φ(x)=f(x)x-g(x),若在(√e,+∞)上存在x1,x2(x1≠x2)使不等式|φ(x1)-φ(x2)|≥k|lnx1-lnx2|成立,求k的取值范围.第3页共4页◎第4页共4页参考答案1.D【解析】解法一 因为A ={x ||x |≤3}={x |-3≤x ≤3},(题眼)(方法点拨:含有一个绝对值的不等式的解法口诀是“大于在两边,小于在中间”,即|x |≤a 的解集是{x |-a ≤x ≤a },|x |≥a 的解集是{x |x ≤-a 或x ≥a })B ={x |x ≤2},所以A ∩B ={x |-3≤x ≤2},故选D.解法二 因为3∉B ,所以3∉(A ∩B ),故排除A,B;因为-3∈A 且-3∈B ,所以-3∈(A ∩B ),故排除C.故选D. 【备注】无 2.B【解析】解法一 z =4-3i 2-i=(4-3i)(2+i)(2-i)(2+i)=11-2i 5=115−25i,所以|z |=√(115)2+(-25)2=√5,(题眼)故选B.解法二 |z |=|4-3i2-i |=|4-3i||2-i|=√42+(-3)2√22+(-1)2=√5=√5,故选B.(方法总结:若z 1,z 2∈C ,则|z 1z 2|=|z 1|·|z 2|,|z1z 2|=|z 1||z 2|(|z 2|≠0)) 【备注】无3.A【解析】解法一 由sin x =1,得x =2k π+π2(k ∈Z ),则cos (2k π+π2)=cos π2=0,故充分性成立;又由cosx =0,得x =k π+π2(k ∈Z ),而sin(k π+π2)=1或-1,故必要性不成立.所以“sin x =1”是“cos x =0”的充分不必要条件,(判断充分、必要条件应分三步:(1)确定条件是什么,结论是什么;(2)尝试从条件推结论(充分性),从结论推条件(必要性);(3)确定条件和结论是什么关系)故选A.解法二 由sin x =1,得x =2k π+π2 (k ∈Z ),则cos(2k π+π2)=cos π2=0,故充分性成立;又cos 3π2=0,sin 3π2=-1,故必要性不成立.所以“sin x =1”是“cos x =0”的充分不必要条件,故选A. 【备注】无 4.A【解析】由题可知,数列{a n }是首项为29、公比为12的等比数列,所以S n =29[1-(12)n ]1-12=210-210-n,T n =29×28×…×210-n=29+8+…+(10-n )=2n(19-n)2,由T n >S n ,得2n(19-n)2>210-210-n,由n(19-n)2≥10,可得n 2-19n +20≤0,结合n ∈N *,可得2≤n ≤17,n ∈N *.当n =1时,S 1=T 1,不满足题意;当n ≥18时,n(19-n)2≤9,T n ≤29,S n =210-210-n>210-1>29,所以T n <S n ,不满足题意.综上,使得T n >S n 成立的n 的最大正整数值为17. 【备注】无 5.B【解析】依题意,1=a 2+b 2-2a ·b =1+1-2a ·b ,故a ·b =12,所以(a -b )·(b -c )=a ·b -b 2-(a -b )·c =(b -a )·c -12=|b -a ||c |·cos<b -a ,c >-12≤1-12=12,当且仅当b -a 与c 同向时取等号.所以(a -b )·(b -c )的最大值为12.故选B.【备注】无 6.D【解析】由已知可得∠xOP =∠P 0OP -∠P 0Ox =π2t -π3,所以由三角函数的定义可得y =3sin∠xOP =3sin(π2t -π3),故选D.【备注】无 7.B【解析】本题主要考查古典概型、排列与组合等知识,考查的学科素养是理性思维、数学应用. “礼、乐、射、御、书、数”六节课程不考虑限制因素有A 66=720(种)排法,其中“数”排在前两节,“礼”和“乐”相邻排课的排课方法可以分两类:①“数”排在第一节,“礼”和“乐”两门课程相邻排课,则有C 41A 22A 33=48(种)排法;②“数”排在第二节,“礼”和“乐”两门课程相邻排课,则有C 31A 22A 33=36(种)排法.(方法总结:解决排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置))故“数”排在前两节,“礼”和“乐”相邻排课的排法共有48+36=84(种),所以“数”排在前两节,“礼”和“乐”相邻排课的概率P =84720=760,故选B. 【备注】无 8.C【解析】解法一 由已知可得AA 1⊥底面ABC ,且AC ⊥BC ,所以V A -PBC =V P -ABC =13×S △ABC ×PA =13×12×3×4×PA =4,解得PA =2.在平面ACC 1A 1内,过点C 1作C 1H ⊥PC ,垂足为H ,如图.由CC 1⊥底面ABC ,可得CC 1⊥BC ,因为AC ⊥BC ,AC ∩CC 1=C ,所以BC ⊥平面ACC 1A 1,所以BC ⊥C 1H ,又C 1H ⊥PC ,PC ∩BC =C ,所以C 1H ⊥平面PBC ,连接BH ,故∠C 1BH 就是直线BC 1与平面PBC 所成的角.在矩形ACC 1A 1中,CP =√CA 2+AP 2=√42+22=2√5,sin∠C 1CH =cos∠PCA =AC CP =2√5=√5=C 1H CC 1=C 1H 3,故C 1H =3×√5=√5.故在△BC 1H中,sin∠C 1BH =C 1HBC 1=√53√2=√105,所以直线BC 1与平面PBC 所成角的正弦值等于√105.故选C.解法二 由已知得AA 1⊥底面ABC ,且AC ⊥BC ,所以V A -PBC =V P -ABC =13×S △ABC ×PA =13×12×3×4×PA =4,解得PA =2.如图,以C 为坐标原点,分别以CB⃗⃗⃗⃗⃗ ,CA ⃗⃗⃗⃗⃗ ,C C_1的方向为x ,y ,z 轴的正方向建立空间直角坐标系,则C (0,0,0),P (0,4,2),B (3,0,0),C 1(0,0,3),则CB⃗⃗⃗⃗⃗ =(3,0,0),CP ⃗⃗⃗⃗⃗ =(0,4,2),B ⃗ C_1=(-3,0,3).设平面BCP 的法向量为n =(x ,y ,z ),则由{n ⊥CB⃗⃗⃗⃗⃗ ,n ⊥CP⃗⃗⃗⃗ 可得{n·CB ⃗⃗⃗⃗⃗ =3x =0,n·CP ⃗⃗⃗⃗ =4y +2z =0,即{x =0,2y +z =0,得x =0,令y =1,得z =-2,所以n =(0,1,-2)为平面BCP 的一个法向量.设直线BC 1与平面PBC 所成的角为θ,则sin θ=|cos<n ,B ⃗ C_1>|=|n·B⃗⃗ C_1||n||B⃗⃗ C_1|=√(-3)2+32×√12+(-2)2=√105.故选C.【备注】求直线与平面所成角的方法:(1)定义法,①作,在直线上选取恰当的点向平面引垂线,确定垂足的位置是关键;②证,证明所作的角为直线与平面所成的角,证明的主要依据是直线与平面所成角的概念;③求,利用解三角形的知识求角.(2)向量法,sin θ=|cos<AB ⃗⃗⃗⃗⃗ ,n >|=|AB ⃗⃗⃗⃗⃗⃗·n||AB ⃗⃗⃗⃗⃗⃗||n|(其中AB 为平面α的斜线,n 为平面α的法向量,θ为斜线AB 与平面α所成的角).9.B【解析】本题主要考查集合以及自定义问题的解题方法;G =N,⊕为整数的加法时,对任意a,b ∈N ,都有a ⊕b ∈N ,取c =0,对一切a ∈G ,都有a ⊕c =c ⊕a =a ,G 关于运算⊕为“融洽集”. 【备注】无 10.D【解析】对于A,甲街道的测评分数的极差为98-75=23,乙街道的测评分数的极差为99-73=26,所以A 错误;对于B,甲街道的测评分数的平均数为75+79+82+84+86+87+90+91+93+9810=86.5,乙街道的测评分数的平均数为73+81+81+83+87+88+95+96+97+9910=88,所以B 错误;对于C,由题中表可知乙街道测评分数的众数为81,所以C 错误;对于D,甲街道的测评分数的中位数为86+872=86.5,乙街道的测评分数的中位数为87+882=87.5,所以乙的中位数大,所以D 正确. 故选D. 【备注】无 11.A【解析】本题考查函数的图象与性质,数形结合思想的应用,考查考生分析问题、解决问题的能力. 解法一 易知x =0是方程|x |-a (x 3+3x 2)=0的一个根,显然x ≠-3,当x ≠0且x ≠−3时,由|x |-a (x 3+3x 2)=0,得a =|x|x 3+3x 2,设g (x )=|x|x 3+3x 2,则g (x )的图象与直线y =a 有3个不同的交点.当x >0时,g (x )=1x 2+3x ,易知g (x )在(0,+∞)上单调递减,且g (x )∈(0,+∞).当x <0且x ≠-3时,g (x )=-1x 2+3x,g'(x )=2x+3(x 2+3x)2,令g'(x )>0,得-32<x <0,令g'(x )<0,得−3<x <−32或x <−3,所以函数g (x )在(−∞,−3)和(−3,−32)上单调递减,在(−32,0)上单调递增,且当x 从左边趋近于0和从右边趋近于−3时,g (x )→+∞,当x 从左边趋近于-3时,g (x )→−∞,当x →−∞时,g (x )→0,可作出函数g (x )的大致图象,如图所示,由图可知,a >49.综上,实数a 的取值范围是(49,+∞).解法二 易知x =0是方程|x |-a (x 3+3x 2)=0的一个根,当x ≠0时,由|x |-a (x 3+3x 2)=0,得1|x|=a (x +3),则该方程有3个不同的根.在同一坐标系内作出函数y =1|x|和y =a (x +3)的图象,如图所示.易知a >0,当y =a (x +3)与曲线y =1|x|的左支相切时,由-1x=a (x +3)得ax 2+3ax +1=0,Δ=(3a )2-4a =0,得a =49.由图可知,当a >49时,直线y =a (x +3)与曲线y =1|x|有3个不同的交点,即方程1|x|=a (x +3)有3个不同的根.综上,实数a 的取值范围是(49,+∞).【备注】【方法点拨】利用方程的根或函数零点求参数范围的方法及步骤:(1)常规思路:已知方程的根或函数的零点个数,一般利用数形结合思想转化为两个函数图象的交点个数,这时图象一定要准确,这种数形结合的方法能够帮助我们直观解题.(2)常用方法:①直接法——直接根据题设条件构建关于参数的不等式,通过解不等式确定参数范围;②分离参数法——先将参数分离,转化成求函数的值域问题加以解决;③数形结合法——先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.(3)一般步骤:①转化——把已知函数零点的存在情况转化为方程的解或两函数图象的交点的情况;②列式——根据零点存在性定理或结合函数图象列式;③结论——求出参数的取值范围或根据图象得出参数的取值范围 12.B【解析】因为圆x 2+y 2=a 2与双曲线的渐近线在第一象限的交点为M ,所以∠A 1MA 2=90°,tan∠MOA 2=ba,所以∠PMA 2=90°.因为△MPA 2是等腰三角形,所以∠MA 2P =45°.因为∠PA 2M 的平分线与y 轴平行,所以∠OA 2M =∠PA 2x ,又∠OA 2M +∠A 2MO +∠MOA 2=180°,∠OA 2M =∠A 2MO ,所以∠MOA 2=∠MA 2P =45°,(题眼)所以b a=tan∠MOA 2=1,所以C 的离心率e =c a =√a 2+b 2a 2=√1+b 2a 2=√2.故选B.【备注】无 13.1【解析】二项式(x +1x )8的展开式中,含x 6的项为C 81x 7(1x )1=8x 6,含x 8的项为C 80x 8(1x )0=x 8,所以(x 2+a )(x +1x)8的展开式中,x 8的系数为8+a =9,解得a =1.【备注】无 14.220【解析】根据题目中已给模型类比和联想,得出第一层、第二层、第三层、…、第十层的酒坛数,然后即可求解.每一层酒坛按照正三角形排列,从上往下数,最上面一层的酒坛数为1,第二层的酒坛数为1+2,第三层的酒坛数为1+2+3,第四层的酒坛数为1+2+3+4,…,由此规律,最下面一层的酒坛数为1+2+3+…+10,所以酒坛的总数为1+(1+2)+(1+2+3)+…+(1+2+3+…+10)=1+3+6+…+55=220. 【备注】无 15.(34,32)【解析】由题意,知f '(x )=x 2-x 在[0,m ]上存在x 1,x 2(0<x 1<x 2<m ),满足f '(x 1)=f '(x 2)=f(m)-f(0)m=13m 2-12m ,所以方程x 2-x =13m 2-12m 在(0,m )上有两个不相等的解.令g (x )=x 2-x-13m 2+12m (0<x <m ),则{Δ=1+43m 2-2m >0,g(0)=-13m 2+12m >0,g(m)=23m 2-12m >0,解得34<m <32.【备注】无16.e 48 【解析】设x 0为函数f (x )在区间[1,3]上的零点,则e x 0x 0+a (x 0-1)+b =0,所以点(a ,b )在直线(x 0-1)x +y +e x 0x 0=0上,(题眼)而a 2+b 2表示坐标原点到点(a ,b )的距离的平方,其值不小于坐标原点到直线(x 0-1)x +y +e x 0x 0=0的距离的平方,(名师点拨:直线外一点到直线上的点的距离大于等于该点到直线的距离)即a 2+b 2≥e 2x 0x 02(x 0-1)2+12=e 2x 0x 04-2x 03+2x 02.令g (x )=e 2xx 4-2x 3+2x 2,x ∈[1,3],则g'(x )=2e 2x (x 4-2x 3+2x 2)-e 2x (4x 3-6x 2+4x)(x 4-2x 3+x 2)2=2x(x-1)2(x-2)e 2x (x 4-2x 3+x 2)2,则当1≤x <2时,g'(x )<0,当2<x ≤3时,g'(x )>0,所以函数g (x )在区间[1,2)上单调递减,在区间(2,3]上单调递增,所以g (x )min =g (2)=e 48,所以a 2+b 2≥e 48,所以a 2+b 2的最小值为e 48. 【备注】无17.解:(1)令n =1,则4a 1=a 12+2a 1-3,即a 12-2a 1-3=0,解得a 1=-1(舍去)或a 1=3.因为4S n =a n 2+2a n -3 ①,所以4S n +1=a n+12+2a n +1-3 ②,②-①,得4a n +1=a n+12+2a n +1-a n 2-2a n ,整理得(a n +1+a n )(a n +1-a n -2)=0, 因为a n >0,所以a n +1-a n =2,所以数列{a n }是首项为3、公差为2的等差数列,所以a n =3+(n -1)×2=2n +1.(2)由(1)可得,S n =(n +2)n ,a 2n -1=4n -1,S 2n -1=(2n +1)(2n -1), 所以a 2n-1+1S 2n-1=4n (2n+1)(2n-1)=12n-1+12n+1.当n 为偶数时,a 1+1S 1−a 3+1S 3+a 5+1S 5-…+(-1)n+1a 2n-1+1S 2n-1=(1+13)-(13+15)+(15+17)-…-(12n-1+12n+1) =1-12n+1<1; 当n 为奇数时,a 1+1S 1−a 3+1S 3+a 5+1S 5-…+(-1)n+1a 2n-1+1S 2n-1=(1+13)-(13+15)+(15+17)-…+(12n-1+12n+1)=1+12n+1>1.综上,当n 为偶数时,T n <1;当n 为奇数时,T n >1. 【解析】无 【备注】无 18.无【解析】(1)由已知及正弦定理,得2sin A sin(C +π6)=sin B +sin C ,所以sin A cos C +√3sin A sin C =sinB +sin C.(有两角和或差的正弦(余弦)形式,并且其中有一个角是特殊角时,常常将其展开) 因为A +B +C =π,所以sin B =sin(A +C ),所以sin A cos C +√3sin A sin C =sin(A +C )+sin C ,则sin A cos C +√3sin A sin C =sin A cos C +cos A sin C +sin C ,即√3sin A sin C =sin C cos A +sin C.因为sin C ≠0,所以√3sin A =cos A +1,即sin(A -π6)=12. 因为0<A <π,所以A =π3.(2)由BA ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =-3可知cb cos 2π3=-3,因此bc =6. 由a 2=b 2+c 2-2bc cos∠BAC =(b +c )2-2bc -bc =7,可得b +c =√7+3×6=5. 由S △ABC =S △ABT +S △ACT 得,12bc sin π3=12c ·AT ·sin π6+12b ·AT ·sin π6,(与角平分线相关的问题,常常利用三角形的面积来解决)因此AT =bcsinπ3(b+c)sinπ6=6×√325×12=6√35. 【备注】无19.解:(1)由题意知,相关系数r =∑i=120(x i -x ¯)(y i -y ¯)√∑i=1(x i -x ¯)2∑i=1(y i -y ¯)2=√80×8 000=78=0.875, 因为y 与x 的相关系数接近于1,所以y 与x 之间具有较强的线性相关关系.(2)由题意可得,b ^=∑i=120(x i -x ¯)(y i -y ¯)∑i=120(x i-x ¯)2=70080=8.75,a ^=y -−b ^x -=4 00020-8.75×8020=200-8.75×4=165,所以y ^=8.75x +165.(将变量x ,y 的平均值代入线性回归方程,求得a ^)(3)以频率估计概率,购买一台甲款垃圾处理机器节约政府支持的垃圾处理费用X (单位:万元)的分布列为E (X )=-50×0.1+0×0.4+50×0.3+100×0.2=30(万元).购买一台乙款垃圾处理机器节约政府支持的垃圾处理费用Y (单位:万元)的分布列为E (Y )=-30×0.3+20×0.4+70×0.2+120×0.1=25(万元).因为E (X )>E (Y ),所以该镇选择购买一台甲款垃圾处理机器更划算.(根据已知数据,分别计算随机变量X 和Y 的分布列、期望,期望越大,说明节约费用的平均值越大,也就越划算)【解析】本题主要考查变量相关性分析、线性回归方程的求解、概率的计算以及随机变量期望的意义和求法,考查的学科素养是理性思维、数学应用.第(1)问,由已知数据,代入相关系数公式,求得相关系数r 即可判断x 和y 的相关程度;第(2)问,根据最小二乘估计公式,求得b ^,a ^的值,从而确定y 关于x 的线性回归方程;第(3)问,根据统计数据计算随机变量X 和Y 的分布列,并分别求期望,由期望的意义可知,数值越大表示节约的垃圾处理费用的平均值越大,从而确定购买哪一款垃圾处理机器. 【备注】无20.(1)如图,连接AC 1交A 1C 于点O ,连接OE ,则BC 1∥OE.(题眼)BC 1∥OEOE ⊂平面A 1EC BC 1⊄平面A 1EC }⇒BC 1∥平面A 1EC.(运用直线与平面平行的判定定理时,关键是找到平面内与已知直线平行的直线)(2)如图,连接A 1B ,则V A 1-ACE =12V A 1-ABC =12×13V ABC-A 1B 1C 1=12×13×√34×22×2=√33.(题眼) 根据直三棱柱的性质,易得A 1A ⊥平面ABC ,因为CE ⊂平面ABC ,所以AA 1⊥CE .因为E 为AB 的中点,△ABC 为正三角形,所以CE ⊥AB. 又AA 1∩AB =A ,AA 1,AB ⊂平面ABB 1A 1,所以CE ⊥平面ABB 1A 1, 因为A 1E ⊂平面ABB 1A 1,所以A 1E ⊥CE .在Rt△A 1CE 中,A 1E ⊥CE ,A 1C =2√2,A 1E =√5,EC =√3,所以S △A 1CE =12×√5×√3=√152. 设点A 到平面A 1EC 的距离为h ,则点B 1到平面A 1EC 的距离为2h .因为V A 1-ACE =V A-A 1CE =13×S △A 1CE ×h ,(点到平面的距离可转化为几何体的体积问题,借助等体积法来解决.等体积法:轮换三棱锥的顶点,体积不变;利用此特性,把三棱锥的顶点转换到易于求出底面积和高的位置是常用方法) 所以h =2√55,即点A 到平面A 1EC 的距离为2√55, 因此点B 1到平面A 1EC的距离为4√55.【解析】无【备注】高考文科数学对立体几何解答题的考查主要设置两小问:第(1)问通常考查空间直线、平面间的位置关系的证明;第(2)问通常考查几何体体积的计算,或利用等体积法求点到平面的距离.21.解:(1)由椭圆的定义可得2a =2√2,则a =√2, ∵椭圆C 的离心率e =ca =√22,∴c =1,则b =√a 2-c 2=1,∴椭圆C 的标准方程为y 22+x 2=1.(2)当直线l 不与x 轴重合时,设直线l 的方程为x =my -13,A (x 1,y 1),B (x 2,y 2),T (t ,0),(由于存在直线l 与x 轴重合的情形,故需进行分类讨论) 由{x =my-13y 22+x 2=1消去x 并整理,得(18m 2+9)y 2-12my -16=0,Δ=144m 2+64(18m 2+9)=144(9m 2+4)>0恒成立,则y 1+y 2=12m 18m 2+9=4m 6m 2+3,y 1y 2=-1618m 2+9. 由于以AB 为直径的圆恒过点T ,则TA ⊥TB ,TA⃗⃗⃗⃗⃗ =(my 1-t -13,y 1),TB ⃗⃗⃗⃗⃗ =(my 2-t -13,y 2), 则TA ⃗⃗⃗⃗⃗ ·TB ⃗⃗⃗⃗⃗ =(my 1-t -13)(my 2-t -13)+y 1y 2 =(m 2+1)y 1y 2-m (t +13)(y 1+y 2)+(t +13)2=-16(m 2+1)-m(t+13)×12m18m 2+9+(t +13)2=(t +13)2-(12t+20)m 2+1618m 2+9=0,∵点T 为定点,∴t 为定值,∴12t+2018=169,(分析式子结构,要使此式子的取值与m 无关,必须要将含有m 的相关代数式约去,通常采用分子与分母的对应项成比例即可解决) 解得t =1,此时TA⃗⃗⃗⃗⃗ ·TB ⃗⃗⃗⃗⃗ =(43)2-169=0,符合题意. 当直线l 与x 轴重合时,AB 为椭圆C 的短轴,易知以AB 为直径的圆过点(1,0).综上所述,存在定点T (1,0),使得无论直线l 如何转动,以AB 为直径的圆恒过定点T .【解析】本题主要考查椭圆的定义及几何性质、直线与椭圆的位置关系,考查的学科素养是理性思维、数学探索.(1)首先由椭圆的定义求得a 的值,然后根据离心率的公式求得c 的值,从而求得b 的值,进而得到椭圆C 的标准方程;(2)当直线l 不与x 轴重合时,设直线l 的方程为x =my -13,A (x 1,y 1),B (x 2,y 2),T (t ,0),与椭圆方程联立,得到y 1+y 2,y 1y 2,由题意得出TA⃗⃗⃗⃗⃗ ·TB ⃗⃗⃗⃗⃗ =0,然后根据平面向量数量积的坐标运算及T 为定点求得t 的值,当直线l 与x 轴重合时,验证即可,最后可得出结论. 【备注】无22.(1)∵F (x )=ax ·f (x )-2x 2·g (x ),∴F (x )=x +ax ·ln x , ∴F'(x )=1+a +a ln x .①当a =0时,F (x )=x ,函数F (x )在(0,+∞)上单调递增;②当a >0时,函数F'(x )=1+a +a ln x 在(0,+∞)上单调递增,令F'(x )=1+a +a ln x =0,得x =e-1-1a>0,∴当x ∈(0,e -1-1a )时,F'(x )<0,当x ∈(e -1-1a ,+∞)时,F'(x )>0,所以当a >0时,F (x )在(0,e -1-1a )上单调递减,在(e-1-1a,+∞)上单调递增;③当a <0时,函数F'(x )=1+a +a ln x 在(0,+∞)上单调递减,令F'(x )=1+a +a ln x =0,得x =e-1-1a>0,∴当x ∈(0,e -1-1a )时,F'(x )>0,当x ∈(e -1-1a ,+∞)时,F'(x )<0,∴F (x )在(0,e -1-1a )上单调递增,在(e -1-1a ,+∞)上单调递减. (2)由题意知,φ(x )=lnx x+12x,∴φ'(x )=1-lnx x 2−12x 2=1-2lnx 2x 2,令φ'(x )=0,得x =√e ,∴x >√e时,φ'(x )<0,∴φ(x )在(√e ,+∞)上单调递减.不妨设x 2>x 1>√e ,则φ(x 1)>φ(x 2),则不等式|φ(x 1)-φ(x 2)|≥k |ln x 1-ln x 2|等价于φ(x 1)-φ(x 2)≥k (ln x 2-ln x 1),即φ(x 1)+k ln x 1≥φ(x 2)+k ln x 2.令m (x )=φ(x )+k ln x ,则m (x )在(√e ,+∞)上存在单调递减区间, 即m'(x )=φ'(x )+kx=-2lnx+2kx+12x 2<0在(√e ,+∞)上有解,即-2ln x +2kx +1<0在(√e ,+∞)上有解,即在(√e ,+∞)上,k <(2lnx-12x)max .令n (x )=2lnx-12x(x >√e ),则n'(x )=3-2lnx 2x 2(x >√e ),由 n'(x )=0得x =e 32, ∴函数n (x )=2lnx-12x在(√e ,e 32)上单调递增,在(e 32,+∞)上单调递减.∴n (x )max =n (e 32)=2ln e 32-12e 32=e -32,∴k <e -32.故k 的取值范围为(-∞,e -32).【解析】本题考查利用导数研究函数的单调性和最值,考查分类讨论思想、化归与转化思想的灵活应用,考查考生的运算求解能力以及运用所学知识分析问题和解决问题的能力.(1)通过对函数求导,对参数进行分类讨论,来讨论函数的单调性;(2)依据函数的单调性将不等式转化为函数存在单调递减区间,最后转化为函数的最值问题来解决.【备注】【素养落地】本题将函数、不等式等知识融合起来,借助导数研究函数的性质,考查逻辑推理、数学运算等核心素养.【技巧点拨】解决本题第(2)问的关键是化归与转化思想的应用,先利用函数的单调性将不等式转化为φ(x1)+k ln x1≥φ(x2)+k ln x2,然后根据式子的结构特征构造函数m(x)=φ(x)+k ln x,将m(x)在(√e,+∞))max.上存在单调递减区间转化为m'(x)<0在(√e,+∞)上有解,进而转化为k<(2lnx-12x。
高三数学文科试题
高三文科数学试题说明:试题满分150分,时间120分钟。
分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第2页,选项按要求涂在答题卡,第Ⅱ卷为第3页至第4页,按要求写在答题卡指定位置。
一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{|32}M m m m =∈≤-≥Z 或,{|13}N n n =∈-Z ,≤≤C )Z M N ⋂=则(( ) A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,2. 定义集合运算:|xA B z z x A y B y ⎧⎫*==∈∈⎨⎬⎩⎭,,.设{}02A =,,{}12B =,,则集合A B *的所有元素之和为( )A .0B .2C .3D .63. 在等差数列{}n a 中,若2006200720086a a a ++=,则该数列的前2013项的和为( ) A .2012 B .2013C . 4024D .40264. 在△ABC 中,cos cos A bB a=,则△ABC 一定是 ( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形5. 已知a 、b 、c∈R,下列命题正确的是 ( ) A .a >b ⇒ ac 2>bc 2B .b a cbc a >⇒> C .110a b ab a b >⎫⇒>⎬<⎭ D .110a b ab a b>⎫⇒>⎬>⎭ 6. 定义在R 上的偶函数()f x 满足:对任意的1212,[0,)()x x x x ∈+∞≠,有2121()()0f x f x x x -<-.则 ( )A. (5)(3)(1)f f f <-<B. (1)(3)(5)f f f <-<C. (3)(1)(5)f f f -<<D. (5)(1)(3)f f f <<-7. 设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a = ( ) A .2 B .12 C .12- D .2-8. 若函数()(21)()x f x x x a =+- 为奇函数,则sin 3a π=( ).A.12B.32C.34D. 19. 已知变量x 、y 满足约束条件11y x xy y ≤⎧⎪+≤⎨≥-⎪⎩,则32z x y =+的最大值为( )A .-3 B. 25C. -5D. 410. 已知函数2sin(2)(0)y x ωϕω=+>)在区间[]02π,的图像如下:那么ω=( ) A .1B .2C .21D .31 11. 函数()sin lg f x x x =-零点的个数( )A .3B. 4C. 5D. 612. 函数3,0()log 1,0xex f x x x ⎧<⎪=⎨-≥⎪⎩的图像的是( )y 2π11 O二、填空题:(本大题共4小题,每小题4分,共16分.将答案填在题中的横线上) 13. 函数lg(5)2x y x -=-的定义域是 .14. 40(2)2x a x x ++≥>-恒成立,则a 的取值范围是______________. 15. 已知等比数列{}n a 的前n 项和为n S ,其中252,16a a ==,则2182n n nS S ++的最小值是 .16. 在下列命题中:①对于任意实数x ,有()(),()(),f x f x g x g x -=--=且x>0时,()0,()0,f x g x ''>>则x<0时()().f x g x ''> ②函数sin(2)6y x π=-图象的一个对称中心为点(,0)3π;③若函数()f x 在R 上满足1(2)()f x f x +=-,则()f x 是周期为4的函数; ④在ABC ∆中,若20OA OB OC ++=,则AOC BOC S S∆=;其中正确命题的序号为_________________________________。
金太阳试卷高三数学文科
一、选择题1. 已知函数f(x) = 2x^3 - 3x^2 + 2,则f'(x)的零点为()A. 0B. 1C. 2D. 3解析:f'(x) = 6x^2 - 6x,令f'(x) = 0,解得x = 0或x = 1,故选A。
2. 已知等差数列{an}的首项a1 = 1,公差d = 2,则第10项a10为()A. 18B. 20C. 22D. 24解析:根据等差数列的通项公式an = a1 + (n - 1)d,代入a1 = 1,d = 2,n = 10,得a10 = 1 + (10 - 1)×2 = 19,故选B。
3. 已知复数z = 1 + 2i,则|z|^2的值为()A. 5B. 9C. 13D. 25解析:|z|^2 = (1 + 2i)(1 - 2i) = 1 + 4 = 5,故选A。
4. 已知平面直角坐标系中,点A(1, 2),点B(-2, 3),则线段AB的中点坐标为()A. (-1, 2.5)B. (-1, 2)C. (0, 2.5)D. (0, 2)解析:设线段AB的中点为M(x, y),根据中点坐标公式,有x = (1 - 2)/2 = -0.5,y = (2 + 3)/2 = 2.5,故选A。
5. 已知函数f(x) = x^3 - 3x^2 + 4x,则f(x)的极小值为()A. 0B. 1C. 2D. 3解析:f'(x) = 3x^2 - 6x + 4,令f'(x) = 0,解得x = 1或x = 2/3,当x = 1时,f''(x) = 6 > 0,故x = 1是极小值点,f(1) = 1^3 - 3×1^2 + 4×1 = 2,故选C。
二、填空题1. 已知等比数列{an}的首项a1 = 2,公比q = 3,则第n项an = __________。
解析:an = a1×q^(n - 1) = 2×3^(n - 1)。
高三文科数学周考卷
高三文科数学周考卷一、选择题(本大题共10小题,每小题4分,共40分)1. 已知集合A={x|2<x<4},B={x|0<x<3},则A∩B=()A. {x|2<x<0}B. {x|0<x<3}C. {x|2<x<3}D. {x|0<x<4}2. 函数f(x)=x²2x+1的定义域为R,则f(x)的值域为()A. [0,+∞)B. (∞,0]C. (∞,+∞)D. [1,+∞)3. 已知等差数列{an}的公差为2,首项为1,则第10项a10=()A. 17B. 19C. 21D. 234. 若复数z满足|z|=1,则z的共轭复数z的模为()A. 0B. 1C. 2D. 无法确定5. 在ΔABC中,a、b、c分别为角A、B、C的对边,若a=3,b=4,cosC=1/2,则sinB的值为()A. 3/5B. 4/5C. 3/4D. 4/36. 已知函数f(x)=lg(x²3x+2),则f(x)的单调递增区间为()A. (∞,1)B. (1,2)C. (2,+∞)D. (∞,2)∪(2,+∞)7. 若直线y=kx+1与圆(x1)²+(y2)²=4相切,则k的值为()A. 1/2B. 1/2C. 1D. 18. 设平面直角坐标系中,点A(2,3),点B在x轴上,若|AB|=5,则点B的坐标为()A. (3,0)或(7,0)B. (7,0)或(3,0)C. (3,0)或(7,0)D. (3,0)或(7,0)9. 若函数f(x)=x²+ax+b是偶函数,则a的值为()A. 0B. 1C. 1D. 无法确定10. 已知数列{an}的通项公式为an=n²+n+1,则数列的前n项和为()A. n(n+1)(2n+3)/6B. n(n+1)(2n+1)/6C. n(n+1)(2n1)/6D. n(n+1)(2n+2)/6二、填空题(本大题共5小题,每小题6分,共30分)11. 已知函数f(x)=2x1,求f(f(x))的值。
河南省开封市天成学校2023届高三文科数学试题
试卷第51 页,共33 页
焦点 F 的距离 SF = 5 .不经过点 S 的直线 l 与 E 交于 A,B. (1)求抛物线 E 的标准方程; (2)若直线 AS,BS 的斜率之和为 2,证明:直线 l 过定点.
(1)解不等式 f (x) < 2x +1;
(2)若关于 x 的不等式 f (x) >| 3x + 3 | -m 有解,求 m 的取值范围.
试卷第61 页,共33 页
1.C
参考答案:
【分析】先分别求得集合 A 和集合 B ,再根据交集的运算即可得到 A Ç B .
{ } 【详解】因为集合 A = x | x2 ³ 4 = {x | x ³ 2 或 x £ -2} ,
集合 B = {x | y = ln (3 - x)} = {x | 3 - x > 0} = {x | x < 3} ,
所以 A I B = {x | x £ -2} U{x | 2 £ x < 3} ,
即 A I B = (-¥, 2]U[2,3) ,
故选:C. 2.C
【分析】先根据复数的除法运算得到
【分析】根据题目所给函数图象分别过
(
0,1)
,
æ çè
5π 12
,
0
ö ÷ø
和
æ çè
11π 12
,
0
ö ÷ø
,再结合正弦函数的图象
与性质求得
f
(
x)
=
2 sin
æ çè
2x
高三文科数学试卷(含答案)经典题
高三文科数学试卷一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}24M x x =<,{}2230N x x x =--<,且M N =A .{}2x x <-B .{}3x x >C .{}12x x -<<D .{}23x x << 2.若函数2()log f x x =,则下面必在()f x 反函数图像上的点是反函数图像上的点是A .(2)aa , B .1(2)2-,C .(2)a a ,D .1(2)2-,3.右图为某几何体三视图,按图中所给数据,该几何体的体积为右图为某几何体三视图,按图中所给数据,该几何体的体积为A .64+163B . 16+334C .163D . 16 4.在各项都为正数的等比数列}{n a 中,首项为3,前3项和为项和为21,则=++543a a a ( )A .33 B .72 C .84 D .189 5. 将函数)32sin(p+=x y 的图像向右平移12p=x 个单位后所得的图像的一个对称轴是:个单位后所得的图像的一个对称轴是:A. 6p=x B. 4p=x C. 3p=x D. 2p=x6. 若以连续抛掷两次骰子分别得到的点数m ,n 作为点P 的坐标,则点P 落在圆落在圆1022=+y x 内(含边界)的概率为内(含边界)的概率为A .61 B .41 C .92D .3677.下列有关命题的说法正确的是.下列有关命题的说法正确的是A .“21x =”是“1-=x ”的充分不必要条件”的充分不必要条件 B .“2=x ”是“0652=+-x x ”的必要不充分条件.”的必要不充分条件. C .命题“x R $Î,使得210x x ++<”的否定是:“x R "Î, 均有210x x ++<”.D .命题“若x y =,则sin sin x y =”的逆否命题为真命题.”的逆否命题为真命题.P T O ,m)三点共线, 则m的值为 ..程序框图(即算法流程图)如图所示,其输出结果是 . a b b a a b 2的值为 .p所得的弦长为所得的弦长为. pp .开始开始 a =1 a =3a +1 a >100? 结束结束是否a =a +1 输出a33]3型号型号 甲样式甲样式 乙样式乙样式 丙样式丙样式 500ml2000 z 3000 700ml3000 4500 5000 A B C 2a0AF F F 13OF QN MQ a b a 21n +722p)ppp3122p]1 333222,0),(2,0),2a a --22,a 2)2a a a -22a -22a -222123a a -- QN MQ )33x x-1a£ïíïx=>上恒成立,0x >\只要24aa ì£ïí解:(1)由121n n na a a +=+得:1112n na a +-=且111a=,所以知:数列1n a ìüíýîþ是以1为首项,以2为公差的等差数列,为公差的等差数列, …………2分所以所以1112(1)21,21n nn n a a n =+-=-=-得:; ------------4分(2)由211n n b a =+得:212112,n n n n b b n=-+=\= , 从而:11(1)n n b b n n +=+ ------------6分则 122311111223(1)n n n T b b b b b b n n +=+++=+++´´+=11111111()()()()1223341n n -+-+-++-+ 1111nn n =-=++ ------------9分(3)已知)1()1)(1)(1(12531-++++=n nb b b b P 246213521n n =····- 22212(4)(4)1,221n nn n n n +<-\<- 设:nn T n 2124523+´´´= ,则n n T P >从而:nn n n T P P n n n 2121223423122+´-´´´´=> 21n =+故:故: 21n T n >+ ------------14分。
高三文科数学题试卷及答案
一、选择题(本大题共12小题,每小题5分,共60分)1. 下列各数中,无理数是()A. √4B. 2πC. 3.14D. -2/32. 已知函数f(x) = x² - 4x + 3,则f(2)的值为()A. -1B. 1C. 3D. 53. 已知等差数列{an}的前n项和为Sn,若a1 = 2,S5 = 20,则公差d为()A. 2B. 3C. 4D. 54. 若log2x + log2(x + 2) = 3,则x的值为()A. 2B. 4C. 8D. 165. 下列函数中,奇函数是()A. f(x) = x²B. f(x) = x³C. f(x) = x⁴D. f(x) = |x|6. 已知复数z = 1 + i,则|z|的值为()A. √2B. 2C. √3D. 37. 若sinα = 1/2,则cosα的值为()A. √3/2B. -√3/2C. 1/2D. -1/28. 已知三角形ABC中,∠A = 60°,∠B = 45°,则∠C的度数为()A. 75°B. 105°C. 120°D. 135°9. 下列命题中,正确的是()A. 若a > b,则a² > b²B. 若a > b,则ac > bcC. 若a > b,则a/c > b/cD. 若a > b,则ac > bc(c > 0)10. 已知等比数列{an}的前n项和为Sn,若a1 = 1,S3 = 9,则公比q为()A. 2B. 3C. 4D. 611. 若sinα = 1/3,cosα = 2√2/3,则tanα的值为()A. 2√2B. √2/2C. √2/6D. 2/√212. 下列函数中,有界函数是()A. f(x) = x²B. f(x) = sinxC. f(x) = |x|D. f(x) = x³二、填空题(本大题共6小题,每小题5分,共30分)13. 已知函数f(x) = 2x - 3,若f(x) > 1,则x的取值范围是__________。
(完整版)高三文科数学试题
高三文科数学试题(考试时间为120 分钟,共150 分)第Ⅰ卷一、选择题:本大题共12 小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项吻合题目要求的.1. 已知会集M x ( x 2)(x 1)0 , N x x 10 ,则 M N =()A .(1,2)B.(11), C .(2,1) D .(2, 1)2..复数5i()2i1A .2 iB .1 2i C.2 i D .1 2i3. 在独立性检验中,统计量K 2有两个临界值: 3.841 和 6.635 ;当K2> 3.841 时,有 95%的掌握说明两个事件有关,当K2> 6.635时,有 99% 的掌握说明两个事件有关,当K 2 3.841时,认为两个事件没关 .在一项打鼾与患心脏病的检查中,共检查了2000 人,经计算的 K 2=20.87,依照这一数据解析,认为打鼾与患心脏病之间()A .有 95%的掌握认为两者有关B .约有 95% 的打鼾者患心脏病C .有 99%的掌握认为两者有关D .约有 99% 的打鼾者患心脏病4.已知椭圆x2y2F 1、 F2, M 是椭圆上一点, N 是 MF 1的中点,161 的左右焦点分别为12若 ON1,则 MF1的长等于()A 、 2B、 4C、 6 D 、 5x+ y≥05. 在平面直角坐标系中,不等式组x- y+ 4≥0表示的平面地域面积是()x≤19A . 3B . 6C .2D. 96. l 是某 参加 2007 年高考的学 生身高条形 , 从左到右的各 条 形 表 示的 学 生 人 数 依 次A 1 ,、 A 2 、 ⋯ 、 A 10 。
(如 A 2表示身高 ( 位: cm) 在 [150 ,155) 内的学生人数 ) . 2 是 l 中身高在必然范 内学生人数的一个算法流程 . 要 身高在160 ~ 180cm( 含 160cm ,不含 180cm) 的 学生人数,那么在流程 中的判断 框内 填写的条件是A.i<9B.i<8C.i<7D.i<6()7.一个几何体的三 如 所示,其中正 是一个正三角形, 个几何体的 ( )A .外接球的半径3B .表面731331 11C .体3D .外接球的表面 4163正视图 侧视图8.一个球的表面 等于,它的一个截面的半径,球心到 截面的距离( )A .3B .C . 1D . 31俯视图225π 5π9.已知角 α的 上一点的坐sin6 ,cos 6, 角 α的最小正()5π2π5π11πA. 6B. 3C. 3D. 610 . 双曲 x2y 21(a 0, b 0) 的左焦点 F ( c,0)( c 0)作 x 2y 2 a 2 的切a 2b 24 ,切点 E ,延 FE 交双曲 右支于点P ,若 OFOP2OE , 双曲 的离心率()A .2B .10C . 10D . 105211.a1 , 关于 x 的不等式 a( x a)( x1) 0 的解集是 ()a(A) { x | xa ,或 x 1}(B) { x | x a}(C) { x | xa ,或 x 1 }(D) { x | x 1}aaa 12. 已知 a n3( n N * ) , 数列 { a n } 的前 n 和 S n ,即 S na 1 a 2a n ,2n5使 S n0 的 n 的最大()第Ⅱ卷本卷包括必考和考两部分。
高三文科数学试卷带答案
一、选择题(本大题共10小题,每小题5分,共50分)1. 下列各数中,无理数是()A. √4B. 3/5C. √9/16D. √2答案:D解析:无理数是不能表示为两个整数比的实数,只有√2是无理数。
2. 函数y=2x+1在定义域内是()A. 增函数B. 减函数C. 奇函数D. 偶函数答案:A解析:函数的斜率为正,所以是增函数。
3. 已知向量a=(2, -3),向量b=(4, 6),则向量a与向量b的夹角是()A. 0°B. 90°C. 180°D. 120°答案:D解析:向量a与向量b的点积为24 + (-3)6 = -12,向量a的模长为√(2^2 + (-3)^2) = √13,向量b的模长为√(4^2 + 6^2) = √52。
点积公式为a·b =|a||b|cosθ,所以cosθ = -12/(√13√52) ≈ -0.5,夹角θ ≈ 120°。
4. 已知函数f(x) = x^2 - 4x + 3,其对称轴是()A. x = 1B. x = 2C. x = 3D. x = 4答案:B解析:二次函数的对称轴为x = -b/2a,所以对称轴为x = -(-4)/21 = 2。
5. 已知等差数列{an}的第一项为2,公差为3,则第10项是()A. 25B. 28C. 31D. 34答案:D解析:等差数列的通项公式为an = a1 + (n-1)d,所以第10项为2 + (10-1)3 = 2 + 27 = 29。
6. 若复数z满足|z-1| = |z+1|,则z在复平面上的位置是()A. 实轴B. 虚轴C. 第一象限D. 第二象限答案:A解析:|z-1| = |z+1|表示z到点1和点-1的距离相等,因此z在实轴上。
7. 已知圆C的方程为x^2 + y^2 = 25,点P(3, 4)到圆C的最短距离是()A. 4B. 5C. 6D. 7答案:B解析:圆心到点P的距离为√(3^2 + 4^2) = 5,圆的半径为5,所以最短距离为5 - 5 = 0。
高三文科数学综合测试
高三数学综合练习第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)0000sin 45cos15cos225sin15⋅+⋅的值为( )(A ) -2 1(B ) -2 1(C )2 (D )2(2) 集合{x |||4,},{|},a A x x R B x x a =≤∈=<⊆则“A B ( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件(3)若PQ 是圆22x 9y +=的弦,PQ 的中点是(1,2)则直线PQ 的方程是( ) (A )230x y +-= (B )250x y +-= (C )240x y -+= (D )20x y -=(4)已知函数y=f(x)与x y e =互为反函数,函数y=g(x)的图像与y=f(x)图像关于x 轴对称,若g(a)=1,则实数a 值为( )(A )-e (B) 1e - (C) 1e(D) e(5)抛物线212y x =-的准线与双曲线等22193x y -=的两条渐近线所围成的三角形面积等于( )(A) (6)将函数cos()3y x π=-的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移6π个单位,所得函数图象的一条对称轴为( )(A) 9x π= (B) 8x π= (c) 2x π= (D) x π=(7)已知m 、n 是两条不同的直线,α、β、γ是三个不同的平面,则下列命题正确的是( )(A)若α⊥γ,α⊥β,则γ∥β (B)若m∥n,m ⊂n,n ⊂β,则α∥β (C)若m∥n,m∥α,则n∥α (D)若n⊥α,n⊥α,则α∥β (8) 下列结论正确的是( )(A )当0x >且1x ≠时,1lglg x x +2≥ (B )0x >当2≥ (C )当2x ≥时,1x x +的最小值为2 (D )02x <≤时,1x x-无最大值 (9)双曲线22221(0,0)x y a b a b -=>>的离心率是2,则21b a+的最小值为A. C. 2 D. 1(10)给出如下三个命题:①若“p 且q ”为假命题,则p 、q 均为假命题;②命题“若x ≥2且y ≥3,则x +y ≥5”的否命题为“若x <2且y <3,则x +y <5”;③四个实数a 、b 、c 、d 依次成等比数列的必要而不充分条件是ad=bc ;④在△ABC 中,“︒>45A ”是“22sin >A ”的充分不必要条件.其中不正确的命题的个数是 ( )A .4B .3C .2D .1(11)如图,在ΔABC 中,AD AB ⊥,BC BD ,1AD =,则AC AD ⋅ =(A )(B )2 (C )3(D (12)已知等差数列{}n a 中,有011011<+a a ,且它们的前n 项和n S 有最大值,则使得0n S >的 n 的最大值为 ( ) A .11 B .19 C . 20D .21第Ⅱ卷 (非选择题共90分)二、填空题:本大题共4小题。
第一学期期末考试高三数学文科试题
第一学期期末考试高三数学文科试题温馨提示:1、全卷满分150分,考试时间120分钟.编辑人:丁济亮2、考生务必将自己的姓名、考号、班级、学校等填写在答题卡指定位置;交卷时只交答题卡.一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.将选项代号填涂在答题卡上相应位置. 1.复数22i i+-表示复平面内点位于A .第一象限B .第二象限C .第三象限D .第四象限2.首项为20-的等差数列,从第10项起开始为正数,则公差d 的取值范围是 A .209d > B .52d ≤C .20592d <≤D .20592d <≤3.命题“,x x R e x ∃∈<”的否定是 A . ,x x R e x ∃∈> B . ,x x R e x ∀∈≥ C . ,x x R e x ∃∈≥D . ,x x R e x ∀∈>4.已知集合{}{}22,0,lg(2),x M y y x N x y x x M N ==>==- 为 A .(1,2) B . (1,)+∞ C . [2,)+∞ D . [1,)+∞5.设a 、b 是两条不重合的直线,,αβ是两个不重合的平面,则下列命题中不正确的一个是 A .若,a a αβ⊥⊥则α∥β B .若,a b ββ⊥⊥,则a ∥b C .若,b a ββ⊥⊆则a b ⊥D .若a ∥,b ββ⊆,则a ∥b6.若,x y 满足约束条件2122x y x y y x -⎧⎪⎨⎪-⎩≤+≥≤,目标函数2Z kx y =+仅在点(1,1)处取得小值,则k 的取值范围为 A .(-1,2)B .(-4,2)C .(-4,0]D .(-2,4)7.已知函数()f x 是定义域为R 的偶函数,且(1)()f x f x +=-,若()f x 在[1,0]-上是增函数,那么()f x 在[1,3]上是 A .增函数 B .减函数 C .先增后减的函数 D .先减后增的函数8.函数()ln x f x x e =+的零点所在的区间是 A .1(0,)eB . 1(,1)eC . (1,)eD . (,)e +∞9.函数sin ,[π,π]y x x x =+∈-,的大致图象是A 、B 、C 、D 、10. 若向量a 与b 不共线,0≠⋅b a ,且b a c -=,则向量a 与c 的夹角为A . 0B .π6C .π3D . π2二、填空题(本大题共7小题,每小题5分,共35分)11. 已知函数2(3)()(1)(3)x x f x f x x -⎧=⎨+<⎩≥则2(log 3)f = ▲ .12.若等比数列}{n a 的前n 项和61)31(+=a S nn ,则=a ▲ .13. 曲线21x y x =-在点(1,1)处的切线方程为 ▲ .14.πsin(2)4y x =-的单调减区间为 ▲ .15.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,AC AE AF λμ=+,其中,,R λμλμ∈+=则_____▲______.16.在△ABC 中,45B = ,C =60°,c =1,则最短边的边长是 ▲ .17.若函数21()ln 12f x x x =-+在其定义域内的一个子区间(1,1)k k -+内不是单调函数,则实数k 的取值范围_______▲________.三、解答题(本大题共5小题,共65分,解答应写出文字说明、证明过程或演算步骤) 18.(本小题满分12分)已知数列{}2log (1)()n a n N *-∈为等差数列,且133,9a a == (1)求数列{}n a 的通项公式; (2)证明213211a a a a ++--…111n na a ++<-.19.(本小题满分12分)已知命题P :函数()(25)x f x a =-是R 上的减函数,命题Q :在(1,2)x ∈时,不等式220x ax -+<恒成立,若命题“P Q ”是真命题,求实数a 的取值范围.20(本小题满分13分)如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图的侧视图,俯视图,在直观图中,M 是BD 的中点,N 是BC 的中点,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示. (1)求该几何体的体积; (2)求证:AN ∥平面CME ; (3)求证:平面BDE ⊥平面BCD21.(本小题满分14分)已知函数()ln k f x e x x=+(其中e 是自然对数的底数,k 为正数)(I )若()f x 在0x 处取得极值,且0x 是()f x 的一个零点,求k 的值; (II )若(1,)k e ∈,求()f x 在区间1[,1]e 上的最大值.第20题图22. (本小题满分14分)如图,已知直线OP 1,OP 2为双曲线E :22221(0,0)x y a b ab-=>>的渐近线,△P 1OP 2的面积为274,在双曲线E 上存在点P 为线段P 1P 2的一个三等分点,且双曲线E2.(1)若P 1、P 2点的横坐标分别为x 1、x 2,则x 1、x 2之间满足怎样的关系?并证明你的结论; (2)求双曲线E 的方程;(3)设双曲线E 上的动点M ,两焦点12,F F ,若1F ∠ 为钝角,求M 点横坐标0x 的取值范围.高三期末考试数学(文)参考答案及评分标准命题人:钟祥一中 范德宪 邹斌 审题人:龙泉中学 刘灵力 市教研室 方延伟 一、选择题(每小题5分,共50分。
2024届联考高三一轮复习联考(三)全国卷文科数学一轮三数学(全国文)答案
\2)\2
B( )的最大值为 2 ln2i ln2 <o·
:.g(x)<0,即f'(x)<0在(0,+)上恒成立,…………………………………4分
f(x)在(0,+)上单调递减.………………………………………………………………………………5分
N是平行四边形
是平行四边形
是平行四边形
所以平面PBC
即是△A
2
全国卷文科数学答案第2页
由余弦定理,得DM2=MN2+DN22MN·DN·COSLMND—1+4AC2+2X1X2ACXSinB
11sina
=1 X(54COSa)十2X1XACX
42AC
4Cos +sina·…9分-4+ sini a4 i·其中o< <r·
TT3
当a ,即a=x时,DM有最大值:
424
DM长度的最大值为 ·i2分
21.(1)证明:f(u)=x(alnzz1)=axrlnzz2x的定义域为(0,+),
当a=1时,f"(x)=lnx2z.…………………………………………………1分
112
设x()=Inx2r,则g'(r) 2 ·
由g(.r)—0·得 2·当o< <2时·g ( )>o;当 >2时·g ( )<0
h(x)有极大值也是最大值h(e) e·
当0<z<1时,h(x)<0,当z>1时,h(x)>0,且z→+o时,h(x)→0.…………………………………10分
高三文科数学试卷答案
一、选择题1. 答案:C解析:本题考查函数的定义。
函数是定义在集合D上的映射,对于D中的任意一个元素x,按照一定的法则f,都有唯一确定的值y与之对应。
因此,正确答案是C。
2. 答案:B解析:本题考查数列的通项公式。
根据数列的定义,第n项是第n-1项加上公差,即an = an-1 + d。
所以,正确答案是B。
3. 答案:A解析:本题考查三角函数的性质。
由题意可知,sin(α + β) = sinαcosβ +cosαsinβ,sin(α - β) = sinαcosβ - cosαsinβ。
因此,sin(α + β) + sin(α - β) = 2sinαcosβ。
所以,正确答案是A。
4. 答案:D解析:本题考查向量数量积的性质。
由题意可知,向量a与向量b的数量积为0,即a·b = 0。
根据向量数量积的性质,如果两个非零向量的数量积为0,则这两个向量垂直。
所以,正确答案是D。
5. 答案:B解析:本题考查函数的极值。
首先,求出函数的一阶导数f'(x),令f'(x) = 0,得到x的值。
然后,求出函数的二阶导数f''(x),判断x处的二阶导数的正负。
如果f''(x) > 0,则x是函数的极小值点;如果f''(x) < 0,则x是函数的极大值点。
根据题意,f''(x) > 0,所以x是函数的极小值点。
因此,正确答案是B。
二、填空题6. 答案:-1解析:本题考查指数函数的值。
由题意可知,2^x = 1/2,两边同时取对数,得到x = log2(1/2) = -1。
7. 答案:3解析:本题考查对数函数的值。
由题意可知,log3(27) = 3,因为27是3的立方。
8. 答案:π解析:本题考查三角函数的值。
由题意可知,sin(π/2) = 1,cos(π/2) = 0。
9. 答案:5解析:本题考查二次方程的解。
高三数学试卷(文科)
高三数学试卷(文科).2022年高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)设全集U={某∈R|某>0},函数f(某)=的定义域为A,则UA为()A.(0,e]B.(0,e)C.(e,+∞)D.[e,+∞)2.(5分)设复数z满足(1+i)z=﹣2i,i为虚数单位,则z=()A.﹣1+iB.﹣1﹣iC.1+iD.1﹣i3.(5分)已知A(1,﹣2),B(4,2),则与反方向的单位向量为()A.(﹣,)B.(,﹣)C.(﹣,﹣)D.(,)4.(5分)若m=0.52,n=20.5,p=log20.5,则()A.n>m>pB.n>p>mC.m>n>pD.p>n>m5.(5分)执行如图所示的程序框图,输出n的值为()A.19B.20C.21D.226.(5分)已知p:某≥k,q:(某﹣1)(某+2)>0,若p是q的充分不必要条件,则实数k的取值范围是()A.(﹣∞,﹣2)B.[﹣2,+∞)C.(1,+∞)D.[1,+∞)A.056,080,104B.054,078,102C.054,079,104D.056,081,1068.(5分)若直线某=π和某=π是函数y=in(ωx+φ)(ω>0)图象的两条相邻对称轴,则φA.B.C.D.9.(5分)如果实数某,y满足约束条件,则z=的最大值为()A.B.C.2D.310.(5分)函数f(某)=的图象与函数g(某)=log2(某+a)(a∈R)的图象恰有一个交点,则实数a的取值范围是()A.a>1B.a≤﹣C.a≥1或a<﹣D.a>1或a≤﹣二、填空题(共5小题,每小题5分,满分25分)11.(5分)已知直线l:某+y﹣4=0与坐标轴交于A、B两点,O为坐标原点,则经过O、A、B三点的圆的标准方程为.12.(5分)某几何体三视图如图所示,则该几何体的体积为.13.(5分)在[0,a](a>0)上随机抽取一个实数某,若某满足<0的概率为,则实数a的值为.14.(5分)已知抛物线y2=2p某(p>0)上的一点M(1,t)(t>0)到焦点的距离为5,双曲线﹣=1(a>0)的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数a的值为.15.(5分)已知f(某),g(某)分别是定义在R上的偶函数和奇函数,且f(某)+g(某)=2某,.三、解答题(共6小题,满分75分)16.(12分)已知向量=(in某,﹣1),=(co某,),函数f(某)=(+).(1)求函数f(某)的单调递增区间;(2)将函数f(某)的图象向左平移个单位得到函数g(某)的图象,在△ABC中,角A,B,C所对边分别a,b,c,若a=3,g()=,inB=coA,求b的值.17.(12分)某校举行高二理科学生的数学与物理竞赛,并从中抽取72名学生进行成绩分析,所得学生的及格情况统计如表:物理及格物理不及格合计数学及格28836数学不及格162036合计442872(1)根据表中数据,判断是否是99%的把握认为“数学及格与物理及格有关”;(2)从抽取的物理不及格的学生中按数学及格与不及格的比例,随机抽取7人,再从抽取的7人中随机抽取2人进行成绩分析,求至少有一名数学及格的学生概率.附:某2=.P(某2≥k)0.1500.1000.0500.010k2.0722.7063.8416.63518.(12分)在四棱锥P﹣ABCD中,PC⊥底面ABCD,M,N分别是PD,PA的中点,AC⊥AD,∠ACD=∠ACB=60°,PC=AC.(1)求证:PA⊥平面CMN;(2)求证:AM∥平面PBC..19.(12分)已知等差数列{an}的首项a1=2,前n项和为Sn,等比数列{bn}的首项b1=1,且a2=b3,S3=6b2,n∈N某.(1)求数列{an}和{bn}的通项公式;(2)数列{cn}满足cn=bn+(﹣1)nan,记数列{cn}的前n项和为Tn,求Tn.20.(13分)已知函数f(某)=e某﹣1﹣,a∈R.(1)若函数g(某)=(某﹣1)f(某)在(0,1)上有且只有一个极值点,求a的范围;(2)当a≤﹣1时,证明:f(某)<0对任意某∈(0,1)成立.21.(14分)已知椭圆E:+=1(a>b>0)的离心率是,点P(1,)在椭圆E上.(1)求椭圆E的方程;(2)过点P且斜率为k的直线l交椭圆E于点Q(某Q,yQ)(点Q异于点P),若0<某Q<1,求直线l斜率k的取值范围;(3)若以点P为圆心作n个圆Pi(i=1,2,…,n),设圆Pi交某轴于点Ai、Bi,且直线PAi、PBi分别与椭圆E交于Mi、Ni(Mi、Ni皆异于点P),证明:M1N1∥M2N2∥…∥MnNn...2022年高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)设全集U={某∈R|某>0},函数f(某)=的定义域为A,则UA为()A.(0,e]B.(0,e)C.(e,+∞)D.[e,+∞)【分析】先求出集合A,由此能求出CUA.【解答】解:∵全集U={某∈R|某>0},函数f(某)=的定义域为A,∴A={某|某>e},∴UA={某|0<某≤e}=(0,e].故选:A.【点评】本题考查补集的求法,是基础题,解题时要认真审题,注意补集定义的合理运用.2.(5分)设复数z满足(1+i)z=﹣2i,i为虚数单位,则z=()A.﹣1+iB.﹣1﹣iC.1+iD.1﹣i【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解:(1+i)z=﹣2i,则z===﹣i﹣1.故选:B.【点评】本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.3.(5分)已知A(1,﹣2),B(4,2),则与反方向的单位向量为()A.(﹣,)B.(,﹣)C.(﹣,﹣)D.(,)【解答】解:=(3,4).∴与反方向的单位向量=﹣=﹣=.故选:C.【点评】本题考查了向量的坐标运算性质、数量积运算性质,考查了推理能力与计算能力,属于基础题.4.(5分)若m=0.52,n=20.5,p=log20.5,则()A.n>m>pB.n>p>mC.m>n>pD.p>n>m【分析】利用指数函数对数函数的运算性质即可得出.【解答】解:m=0.52=,n=20.5=>1,p=log20.5=﹣1,则n>m>p.故选:A.【点评】本题考查了指数函数对数函数的运算性质,考查了推理能力与计算能力,属于基础题.5.(5分)执行如图所示的程序框图,输出n的值为()A.19B.20C.21D.22【分析】模拟执行如图所示的程序框图知该程序的功能是.【解答】解:模拟执行如图所示的程序框图知,该程序的功能是计算S=1+2+3+…+n≥210时n的最小自然数值,由S=≥210,解得n≥20,∴输出n的值为20.故选:B.【点评】本题考查了程序框图的应用问题,是基础题.6.(5分)已知p:某≥k,q:(某﹣1)(某+2)>0,若p是q的充分不必要条件,则实数k的取值范围是()A.(﹣∞,﹣2)B.[﹣2,+∞)C.(1,+∞)D.[1,+∞)【分析】利用不等式的解法、充分不必要条件的意义即可得出.【解答】解:q:(某﹣1)(某+2)>0,解得某>1或某<﹣2.又p:某≥k,p是q的充分不必要条件,则实数k>1.故选:C.【点评】本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.A.056,080,104B.054,078,102C.054,079,104D.056,081,106【分析】根据系统抽样的方法的要求,先随机抽取第一数,再确定间隔.【解答】解:依题意可知,在随机抽样中,首次抽到006号,以后每隔=25个号抽到一个人,故选:D.【点评】本题主要考查系统抽样方法的应用,解题时要认真审题,是基础题..8.(5分)若直线某=π和某=π是函数y=in(ωx+φ)(ω>0)图象的两条相邻对称轴,则φ的一个可能取值为()A.B.C.D.【分析】根据直线某=π和某=π是函数y=in(ωx+φ)(ω>0)图象的两条相邻对称轴,可得周期T,利用某=π时,函数y取得最大值,即可求出φ的取值.【解答】解:由题意,函数y的周期T==2π.∴函数y=in(某+φ).当某=π时,函数y取得最大值或者最小值,即in(+φ)=±1,可得:φ=.∴φ=kπ,k∈Z.当k=1时,可得φ=.故选:D.【点评】本题考查了正弦型三角函数的图象即性质的运用,属于基础题.9.(5分)如果实数某,y满足约束条件,则z=的最大值为()A.B.C.2D.3【分析】作出不等式组对应的平面区域,z=的几何意义是区域内的点到定点(﹣1,﹣1)的斜率,利用数形结合进行求解即可..【解答】解:作出约束条件所对应的可行域(如图阴影),z=的几何意义是区域内的点到定点P(﹣1,﹣1)的斜率,由图象知可知PA的斜率最大,由,得A(1,3),则z==2,即z的最大值为2,故选:C.【点评】本题考查简单线性规划,涉及直线的斜率公式,准确作图是解决问题的关键,属中档题.10.(5分)函数f(某)=的图象与函数g(某)=log2(某+a)(a∈R)的图象恰有一个交点,则实数a的取值范围是()A.a>1B.a≤﹣C.a≥1或a<﹣D.a>1或a≤﹣【分析】作出f(某)的图象和g(某)的图象,它们恰有一个交点,求出g(某)的恒过定点坐标,数形结合可得答案..【解答】解:函数f(某)=与函数g(某)的图象它们恰有一个交点,f(某)图象过点(1,1)和(1,﹣2),而,g(某)的图象恒过定点坐标为(1﹣a,0).从图象不难看出:到g(某)过(1,1)和(1,﹣2),它们恰有一个交点,当g(某)过(1,1)时,可得a=1,恒过定点坐标为(0,0),往左走图象只有一个交点.当g(某)过(1,﹣2)时,可得a=,恒过定点坐标为(,0),往右走图象只有一个交点.∴a>1或a≤﹣.故选:D.【点评】本题考查了分段函数画法和对数函数性质的运用.数形结合的思想.属于中档题.二、填空题(共5小题,每小题5分,满分25分)11.(5分)已知直线l:某+y﹣4=0与坐标轴交于A、B两点,O为坐标原点,则经过O、A、B三点的圆的标准方程为(某﹣2)2+(y﹣2)2=8.【分析】根据题意,求出直线与坐标轴的交点坐标,分析可得经过O、A、B三点的圆的直径为|AB|,圆心为AB的中点,求出圆的半径与圆心,代入圆的标准方程即可得答案.【解答】解:根据题意,直线l:某+y﹣4=0与坐标轴交于(4,0)、(0,4)两点,即A、B的坐标为(4,0)、(0,4),经过O、A、B三点的圆,即△AOB的外接圆,.则有2r=|AB|=4,即r=2,圆心坐标为(2,2),其该圆的标准方程为(某﹣2)2+(y﹣2)2=8,故答案为:(某﹣2)2+(y﹣2)2=8.【点评】本题考查圆的标准方程,注意直角三角形的外接圆的性质.12.(5分)某几何体三视图如图所示,则该几何体的体积为.【分析】由三视图可知:该几何体为一个正方体去掉一个倒立的四棱锥.【解答】解:由三视图可知:该几何体为一个正方体去掉一个倒立的四棱锥.∴该几何体的体积V==.故答案为:.【点评】本题考查了正方体与四棱锥的三视图、体积计算公式,考查了推理能力与计算能力,属于基础题.13.(5分)在[0,a](a>0)上随机抽取一个实数某,若某满足<0的概率为,则实数a的值为4..【解答】解:由<0,得﹣1<某<2.又某≥0,∴0≤某<2.∴满足0≤某<2的概率为,得a=4.故答案为:4.【点评】本题考查几何概型,考查了分式不等式的解法,是基础的计算题.14.(5分)已知抛物线y2=2p某(p>0)上的一点M(1,t)(t>0)到焦点的距离为5,双曲线﹣=1(a>0)的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数a的值为2.【分析】设M点到抛物线准线的距离为d,由已知可得p值,由双曲线的一条渐近线与直线AM平行,则=,解得实数a的值.【解答】解:设M点到抛物线准线的距离为d,则丨MF丨=d=1+=5,则p=8,所以抛物线方程为y2=16某,M的坐标为(1,4);又双曲线的左顶点为A(﹣a,0),渐近线为y=±,直线AM的斜率k==,由=,解得a=3.∴a的值为3,故答案为:3.【点评】本题考查的知识点是抛物线的简单性质,双曲线的简单性质,是抛物线与双曲线的综合应用,属于中档题..若存在某0∈[1,2]使得等式af(某0)+g(2某0)=0成立,则实数a的取值范围是[,].【分析】根据函数奇偶性,解出奇函数g(某)和偶函数f(某)的表达式,将等式af(某)+g(2某)=0,令t=2某﹣2﹣某,则t>0,通过变形可得a=t+,讨论出右边在某∈[1,2]的最大值,可以得出实数a的取值范围.【解答】解:解:∵g(某)为定义在R上的奇函数,f(某)为定义在R上的偶函数,∴f(﹣某)=f(某),g(﹣某)=﹣g(某),又∵由f(某)+g(某)=2某,结合f(﹣某)+g(﹣某)=f(某)﹣g(某)=2﹣某,∴f(某)=(2某+2﹣某),g(某)=(2某﹣2﹣某).等式af(某)+g(2某)=0,化简为(2某+2﹣某)+(22某﹣2﹣2某)=0.∴a=2﹣某﹣2某∵某∈[1,2],∴≤2某﹣2﹣某≤,则实数a的取值范围是[﹣,﹣],故答案为:[﹣,﹣].【点评】题以指数型函数为载体,考查了函数求表达式以及不等式恒成立等知识点,属于难题.合理地利用函数的基本性质,再结合换元法和基本不等式的技巧,是解决本题的关键.属于中档题三、解答题(共6小题,满分75分)16.(12分)已知向量=(in某,﹣1),=(co某,),函数f(某)=(+).(1)求函数f(某)的单调递增区间;(2)将函数f(某)的图象向左平移个单位得到函数g(某)的图象,在△ABC中,角A,B,.C所对边分别a,b,c,若a=3,g()=,inB=coA,求b的值.【分析】(1)运用向量的加减运算和数量积的坐标表示,以及二倍角公式和正弦公式,由正弦函数的增区间,解不等式即可得到所求;(2)运用图象变换,可得g(某)的解析式,由条件可得inA,coA,inB的值,运用正弦定理计算即可得到所求值.【解答】解:(1)向量=(in某,﹣1),=(co某,),函数f(某)=(+)=(in某+co某,)(in某,﹣1)=in2某+in某co某﹣=in2某﹣(1﹣2in2某)=in2某﹣co2某=in(2某﹣),由2kπ﹣≤2某﹣≤2kπ+,k∈Z,可得kπ﹣≤某≤kπ+,k∈Z,即有函数f(某)的单调递增区间为[kπ﹣,kπ+],k∈Z;(2)由题意可得g(某)=in(2(某+)﹣)=in2某,g()=inA=,即inA=,coA=±=±,在△ABC中,inB=coA>0,可得inB=,由正弦定理=,.可得b===3.【点评】本题考查向量数量积的坐标表示和三角函数的恒等变换,考查正弦函数的图象和性质,以及图象变换,考查解三角形的正弦定理的运用,以及运算能力,属于中档题.17.(12分)某校举行高二理科学生的数学与物理竞赛,并从中抽取72名学生进行成绩分析,所得学生的及格情况统计如表:物理及格物理不及格合计数学及格28836数学不及格162036合计442872(1)根据表中数据,判断是否是99%的把握认为“数学及格与物理及格有关”;(2)从抽取的物理不及格的学生中按数学及格与不及格的比例,随机抽取7人,再从抽取的7人中随机抽取2人进行成绩分析,求至少有一名数学及格的学生概率.附:某2=.P(某2≥k)0.1500.1000.0500.010k2.0722.7063.8416.635【分析】(1)根据表中数据,计算观测值某2,对照临界值得出结论;(2)分别计算选取的数学及格与不及格的人数,用列举法求出基本事件数,计算对应的概率值.【解答】解:(1)根据表中数据,计算某2==≈8.416>6.635,因此,有99%的把握认为“数学及格与物理及格有关”;(2)选取的数学及格的人数为7某=2人,选取的数学不及格的人数为7某=5人,设数学及格的学生为A、B,不及格的学生为c、d、e、f、g,则基本事件为:.cd、ce、cf、cg、de、df、dg、ef、eg、fg共21个,其中满足条件的是AB、Ac、Ad、Ae、Af、Ag、Bc、Bd、Be、Bf、Bg共11个,故所求的概率为P=.【点评】本题考查了独立性检验和列举法求古典概型的概率问题,是基础题.18.(12分)在四棱锥P﹣ABCD中,PC⊥底面ABCD,M,N分别是PD,PA的中点,AC⊥AD,∠ACD=∠ACB=60°,PC=AC.(1)求证:PA⊥平面CMN;(2)求证:AM∥平面PBC.【分析】(1)推导出MN∥AD,PC⊥AD,AD⊥AC,从而AD⊥平面PAC,进而AD⊥PA,MN⊥PA,再由CN⊥PA,能证明PA⊥平面CMN.(2)取CD的中点为Q,连结MQ、AQ,推导出MQ∥PC,从而MQ∥平面PBC,再求出AQ∥平面,从而平面AMQ∥平面PCB,由此能证明AM∥平面PBC.【解答】证明:(1)∵M,N分别为PD、PA的中点,∴MN为△PAD的中位线,∴MN∥AD,∵PC⊥底面ABCD,AD平面ABCD,∴PC⊥AD,又∵AD⊥AC,PC∩AC=C,∴AD⊥平面PAC,∴AD⊥PA,∴MN⊥PA,又∵PC=AC,N为PA的中点,∴CN⊥PA,∵MN∩CN=N,MN平面CMN,CM平面CMN,∴PA⊥平面CMN.解(2)取CD的中点为Q,连结MQ、AQ,∵MQ是△PCD的中位线,∴MQ∥PC,.∵AD⊥AC,∠ACD=60°,∴∠ADC=30°.∴∠DAQ=∠ADC=30°,∴∠QAC=∠ACQ=60°,∴∠ACB=60°,∴AQ∥BC,∵AQ平面PBC,BC平面PBC,∴AQ∥平面PBC,∵MQ∩AQ=Q,∴平面AMQ∥平面PCB,∵AM平面AMQ,∴AM∥平面PBC.【点评】本题考查线面垂直、线面平行的证明,考查空间中线线、线面、面面间的位置关系,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想、函数与方程思想,是中档题.19.(12分)已知等差数列{an}的首项a1=2,前n项和为Sn,等比数列{bn}的首项b1=1,且a2=b3,S3=6b2,n∈N某.(1)求数列{an}和{bn}的通项公式;(2)数列{cn}满足cn=bn+(﹣1)nan,记数列{cn}的前n项和为Tn,求Tn.【分析】(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q.根据a1=2,b1=1,且a2=b3,S3=6b2,n∈N某.可得2+d=q2,3某2+=6q,联立解得d,q.即可得出..(2)cn=bn+(﹣1)nan=2n﹣1+(﹣1)n2n.可得数列{cn}的前n项和为Tn=1+2+22+…+2n﹣1+[﹣2+4﹣6+8+…+(﹣1)n2n]=2n﹣1+[﹣2+4﹣6+8+…+(﹣1)n2n].对n分类讨论即可得出.【解答】解:(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q.∵a1=2,b1=1,且a2=b3,S3=6b2,n∈N某.∴2+d=q2,3某2+=6q,联立解得d=q=2..(2)cn=bn+(﹣1)nan=2n﹣1+(﹣1)n2n.∴数列{cn}的前n项和为Tn=1+2+22+…+2n﹣1+[﹣2+4﹣6+8+…+(﹣1)n2n]=+[﹣2+4﹣6+8+…+(﹣1)n2n]=2n﹣1+[﹣2+4﹣6+8+…+(﹣1)n2n].∴n为偶数时,Tn=2n﹣1+[(﹣2+4)+(﹣6+8)+…+(﹣2n+2+2n)].=2n﹣1+n.n为奇数时,Tn=2n﹣1+﹣2n.=2n﹣2﹣n.∴Tn=.【点评】本题考查了等差数列与等比数列的通项公式与求和公式、分类讨论方法,考查了推理能力与计算能力,属于中档题.20.(13分)已知函数f(某)=e某﹣1﹣,a∈R.(1)若函数g(某)=(某﹣1)f(某)在(0,1)上有且只有一个极值点,求a的范围;(2)当a≤﹣1时,证明:f(某)<0对任意某∈(0,1)成立.【分析】(1)求出导函数,由题意可知f(某)在(0,1)上有且只有一个极值点,相当于导函数有一个零点;(2)问题可转换为(某﹣1)(e某﹣1)﹣a某>0恒成立,构造函数G(某)=(某﹣1)(e某﹣1)﹣a某,通过二次求导,得出结论.【解答】解:(1)g(某)=(某﹣1)(e某﹣1)﹣a某,g'(某)=某e某﹣a﹣1,g''(某)=e某(某+1)>0,∵f(某)在(0,1)上有且只有一个极值点,∴g'(0)=﹣a﹣1<0,g'(1)=e﹣a﹣1>0,∴﹣a<a<e﹣1;(2)当a≤﹣1时,f(某)<0,∴(某﹣1)(e某﹣1)﹣a某>0恒成立,.G'(某)=某e某﹣a﹣1,G''(某)=e某(某+1)>0,∴G'(某)在(0,1)单调递增,∴G'(某)≥G'(0)=﹣a﹣1≥0,∴G(某)在(0,1)单调递增,∴G(某)≥G(0)=0,∴(某﹣1)(e某﹣1)﹣a某≥0,∴当a≤﹣1时,f(某)<0对任意某∈(0,1)成立.【点评】本题考查了极值点的概念和导函数的应用,难点是对导函数的二次求导.21.(14分)已知椭圆E:+=1(a>b>0)的离心率是,点P(1,)在椭圆E上.(1)求椭圆E的方程;(2)过点P且斜率为k的直线l交椭圆E于点Q(某Q,yQ)(点Q异于点P),若0<某Q<1,求直线l斜率k的取值范围;(3)若以点P为圆心作n个圆Pi(i=1,2,…,n),设圆Pi交某轴于点Ai、Bi,且直线PAi、PBi分别与椭圆E交于Mi、Ni(Mi、Ni皆异于点P),证明:M1N1∥M2N2∥…∥MnNn.【分析】(1)根据椭圆的离心率求得a2=4b2,将P代入椭圆方程,即可求得a和b的值,求得椭圆方程;(2)设直线l的方程,代入椭圆方程,利用韦达定理,求得某Q,由0<某Q<1,即可求得k的取值范围;(3)由题意可知:故直线PAi,PBi的斜率互为相反数,分别设直线方程,代入椭圆方程,即可求得某i,某i′,根据直线的斜率公式,即可求得=,==…=,则M1N1∥M2N2∥…∥MnNn.【解答】解:(1)由椭圆的离心率e===,则a2=4b2,将P(1,)代入椭圆方程:,解得:b2=1,则a2=4,∴椭圆的标准方程:;..(2)设直线l的方程y﹣=k(某﹣1),则,消去y,整理得:(1+4k2)某2+(4k﹣8k2)某+(4k2﹣4k﹣1)=0,由某01=,由0<某0<1,则0<<1,解得:﹣<k<,或k>,经验证,满足题意,直线l斜率k的取值范围(﹣,)∪(,+∞);(3)动圆P的半径为PAi,PBi,故PAi=PBi,△PAiBi为等腰三角形,故直线PAi,PBi的斜率互为相反数,设PAi的斜率ki,则直线PBi的斜率为﹣ki,设直线PAi的方程:y﹣=ki(某﹣1),则直线PBi的方程:y﹣=﹣ki(某﹣1),,消去y,整理得:(1+4ki2)某2+(4ki﹣8ki2)某+(4ki2﹣4ki﹣1)=0,设Mi(某i,yi),Ni(某i′,yi′),则某i1=,则某i=,将﹣ki代替ki,则某i′=,则某i+某i′=,某i﹣某i′=﹣,yi﹣yi′=ki(某i﹣1)++ki (某i﹣1)﹣=ki(某i+某i′)﹣2ki,=ki某﹣2ki,则==,故==…=,∴M1N1∥M2N2∥…∥MnNn.【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,直线的斜率公式,考查计算能力,属于中档题..。
高三文科数学综合卷2
文数综合卷2一、单选题1.i 为虚数单位,则()()13(i i -+= ) A .23i + B .22i -C .22i +D .42i -2.设集合122xA x ⎧⎫=⎨⎬⎩⎭,1|02x B x x +⎧⎫=≤⎨⎬-⎩⎭,则A B =( ) A .()1,2- B .[)1,2-C .(]1,2- D .[]1,2-3.函数()2ln 1y x=+的图象大致是( )A .B .C .D .4.“牟合方盖”是我国古代数学家刘徽在探求球体体积时构造的一个封闭几何体,它由两等径正贯的圆柱体的侧面围成,其直观图如图(其中四边形是为体现直观性而作的辅助线)当“牟合方盖”的正视图和侧视图完全相同时,其俯视图可能为A .B .C .D .5.设实数,x y 满足242210x y x y x -≤⎧⎪+≤⎨⎪-≥⎩,则1y x +的最大值是( )A .-1B .12C .1D .326.“2211og a og b <”是“11a b<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知向量()4,7a =-,()3,4b =-,则2a b -在b 方向上的投影为( ) A .2B .-2C.-D.8.设抛物线2:12C y x =的焦点为F ,准线为l ,点M 在C 上,点N 在l 上,且()0FN FM λλ=>,若4MF =,则λ的值( )A .32B .2C .5 2D .39.设a b c ,,分别是ABC △的内角A B C ,,的对边,已知()()()()sin sin sin b c A C a c A C ++=+-,则A ∠的大小为( )A .30B .60︒C .120︒D .150︒10.函数()3ln 8f x x x =+-的零点所在的区间为( ) A .()0,1B .()1,2C .()2,3D .()3,411.已知正三棱锥的高为6,内切球(与四个面都相切)表面积为16π,则其底面边长为( ) A .18B .12C.D.12.已知函数()()sin f x x ωϕ=+(其中0>ω)的最小正周期为π,函数()()4g x f x x π⎛⎫=+ ⎪⎝⎭,若对x R ∀∈,都有()3g x g π⎛⎫≤ ⎪⎝⎭,则ϕ的最小正值为( ) A .3πB .23π C .43π D .53π第II 卷(非选择题)二、填空题13.某学校初中部共120名教师,高中部共180名教师,其性别比例如图所示,已知按分层抽样抽方法得到的工会代表中,高中部女教师有6人,则工会代表中男教师的总人数为_________.14.已知圆C 与y 轴相切,圆心在x 轴的正半轴上,并且截直线10x y -+=所得的弦长为2,则圆C 的标准方程是________.15.已知,αβ均为锐角且()()cos 3cos αβαβ-=+,则()tan αβ+的最小值________.16.若函数()2323020x x f x x ax x +⎧-≤=⎨-+>⎩,,有三个不同的零点则实数a 的取值范围______.三、解答题17.正项等比数列{}n a 中,已知34a =,426a a =+.()1求{}n a 的通项公式;()2设n S 为{}n a 的前n 项和,()()*41log n n b S S n N =+∈,求25850++b b b b ++⋯.18.某中学一位高三班主任对本班50名学生学习积极性和对待班级工作的态度进行调查,得到的统计数据如表所示:(Ⅰ)如果随机调查这个班的一名学生,那么抽到不积极参加班级工作且学习积极性不高的学生的概率是多少?(Ⅱ)若不积极参加班级工作且学习积极性高的7名学生中有两名男生,现从中抽取2名学生参加某项活动,问2名学生中有1名男生的概率是多少?(III )学生的学习积极性与对待班级工作的态度是否有关系?请说明理由.K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)19.已知椭圆()222210x y a b a b +=>>的离心率为2,且经过点()2,0A .()1求椭圆的标准方程;()2过点A 的动直线l 交椭圆于另一点B ,设()2,0D -,过椭圆中心O 作直线BD 的垂线交l 于点C ,求证:•OB OC 为定值.20.如图在多面体ABCDE 中,AC 和BD 交于一点除EC 以外的其余各棱长均为2.()1作平面CDE 与平面ABE 的交线l ,并写出作法及理由; ()2求证:BD CE ⊥;()3若平面ADE ⊥平面ABE ,求多面体ABCDE 的体积.21.已知函数()sin 2cos 2f x x x x ax =+++,其中a 为常数.()1若曲线()y f x =在2x π=处的切线斜率为-2,求该切线的方程;()2求函数()f x 在[]0,x π∈上的最小值.22.在平面直角坐标xOy 系中,曲线C 的参数标方程为11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(其中t 为参数,且0t >),在以O 为极点、x 轴的非负半轴为极轴的极坐标系(两种坐标系的单位长度相同)中,直线l的极坐标方程为sin 3πρθ⎛⎫-=⎪⎝⎭()1求曲线C 的极坐标方程;()2求直线l 与曲线C 的公共点P 的极坐标.23.已知函数()21f x x x =-+,且,,a b c R ∈.()1若1a b c ++=,求()()()f a f b f c ++的最小值; ()2若1x a -<,求证:()()()21f x f a a -<+.参考答案1.D 2.A 3.D因为()2ln 1y x =+,满足偶函数f (﹣x )=f (x )的定义, 所以函数()2ln 1y x =+为偶函数,其图象关于y 轴对称,故排除B ,4.B∵相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖). ∴其正视图和侧视图是一个圆,俯视图是从上向下看,相对的两个曲面在同一个圆柱的侧面上,∴俯视图是有2条对角线且为实线的正方形, 5.D由约束条件242210x y x y x -≤⎧⎪+≤⎨⎪-≥⎩,作出可行域如图,联立10220x x y -=⎧⎨+-=⎩,解得A (112,),1y x+的几何意义为可行域内的动点与定点P (0,-1)连线的斜率, 由图可知,113212PA k +==最大. 6.D若2211og a og b <,则0a b <<,所以110a b >>,即“2211og a og b <”不能推出“11a b<”,反之也不成立,因此“2211og a og b <”是“11a b<”的既不充分也不必要条件.7.B向量()4,7a =-,()3,4b =-,∴221a b -=-(,),∴(2)a b -•b =()213,4--(,)=-10, |b;∴向量2a b -在向量b 方向上的投影为: |2a b -|cos <(2)a b -,b >=()2a b b b-⋅=105-=﹣2.8.D过M 向准线l 作垂线,垂足为M ′,根据已知条件,结合抛物线的定义得''MM FF =MN NF=1λλ-,又4MF =,∴|MM′|=4,又|FF′|=6,∴''MM FF =46=1λλ-,3λ∴=.9.C∵()()()()sin sin sin b c A C a c A C ++=+-,,∴由正弦定理可得:()()b a c b c a c +=+-(),整理可得:b 2+c 2﹣a 2=-bc , ∴由余弦定理可得:cosA=12-,∴由A ∈(0,π),可得:A=23π. 10.B 11.B如图,过点P 作PD ⊥平面ABC 于D ,连结并延长AD 交BC 于E ,连结PE ,△ABC 是正三角形, ∴AE 是BC 边上的高和中线,D 为△ABC 的中心. 此时球与四个面相切,如图D 、M 为其中两个切点, ∵S 球=16π, ∴球的半径r =2.又∵PD=6,OD=2,∴OP=4,又OM=2, ∴OPM ∠=30︒∴, ∴ AB=12, 故选B.12.B由函数()f x 的最小正周期为π,可求得ω=2∴f (x )=()sin 2x ϕ+,()()4g x f x x π⎛⎫=++ ⎪⎝⎭=()sin 2sin 24x x πϕϕ⎡⎤⎛⎫+++ ⎪⎢⎥⎝⎭⎣⎦=()() cos 2sin 2x x ϕϕ++=2sin (2x ϕ++6π), ∴()2sin26g x x πϕ=++,又()3g x g π⎛⎫≤ ⎪⎝⎭,∴x=3π是g(x)的一条对称轴,代入2x ϕ++6π中,有23πϕ⨯++6π=k 2ππ+(k Z),解得ϕ=k 3ππ-+(k Z),k=1时,23πϕ=,13.12∵高中部女教师与高中部男教师比例为2:3,按分层抽样方法得到的工会代表中,高中部女教师有6人,则男教师有9人,∴工会代表中高中部教师共有15人,又初中部与高中部总人数比例为2:3,∴工会代表中初中部教师人数与高中部教师人数比例为2:3,∴工会代表中初中部教师总人数为10,又∵初中部女教师与高中部男教师比例为7:3,工会代表中初中部男教师的总人数为10×30%=3; ∴工会代表中男教师的总人数为9+3=12, 14.()2239x y -+=设圆心为(t ,0),且t>0, ∴半径为r=|t|=t ,∵圆C 截直线10x y -+=所得的弦长为2,∴圆心到直线10x y -+=的距离∴t 2-2t-3=0, ∴t=3或t=-1(舍), 故t=3,∴()2239x y -+=. 故答案为()2239.x y -+= 15.由cos (α-β)=3cos (α+β),可得cosαcosβ+sinαsinβ=3cosαcosβ-3sinαsinβ,同时除以cosαcosβ, 可得:1+tanαtanβ=3-3tanαtanβ,则tanαtanβ=12,又()tan β1tan tan βtan tan ααβα++=-=2tan β2tan α+≥⨯故答案为: 16.()3,+∞因为0x ≤,由2230x +-=可得2230x log =-+<,即函数()f x 在0x ≤上有一个零点;所以函数()2323020x x f x x ax x +⎧-≤=⎨-+>⎩,,有三个不同的零点等价于方程320x ax -+=在()0,∞+上有两个不等实根,等价于方程22a x x=+在()0,∞+上有两个不等实根;即y a =与函数()22g x x x=+在()0,∞+上有两个不同交点; 由()22g x x x =+得()()()2´2221122x x x g x x x x-++=-=,由()´0g x >得1x >; 由()´0gx <得01x <<,即函数()22g x x x=+在()0,1上单调递减,在()1,∞+上单调递增, 所以()g x 最小值为()13g =,所以()[3)g x ∞∈+,, 因为y a =与函数()22g x x x=+在()0,∞+上有两个不同交点,所以3a >.故答案为()3,+∞17.()1 1*2,n n a n N -=∈ ()2221()1设正项等比数列{}n a 的公比为()0q q >,则由34a =及426a a =+得446q q =+,化简得22320q q --=,解得2q =或12q =-(舍去).所以{}n a 的通项公式为31*3•2,n n n a a qn N --==∈. ()2由122112n n n S -==--得,()414log log 22nn n n b S S =+==.所以()()25850117++b =2585025022124b b b ++⋯+++⋯+=+=. 18.(1) P =1950;(2) P =1021;(3) 故有99.9%的把握认为“学生的学习积极性与对待班级工作的态度”有关系.试题解析:(1)由题知,不积极参加班级工作且学习积极性不高的学生有19人,总人数为50人, 所以P =1950;(2)设这7名学生分别为a,b,c,d,e,A,B (大写为男生),则从中抽取两名学生的情况有: (a,b),(a,c),(a,d),(a,e),(a,A),(a,B),(b,c),(b,d),(b,e),(b,A),(B,b),(c,d),(c,e),(c,A),(c,B),(d,e),(d,A),(d,B),(e,A),(e,B),(A,B),共21种情况,其中有1名男生的有10种情况, ∴P =1021.(3)由题意得,K 2=50×(18×19−6×7)224×26×25×25≈11.538>10.828,故有99.9%的把握认为“学生的学习积极性与对待班级工作的态度”有关系.19.()1 22142x y += ()24,证明见解析()1因为椭圆的离心率2c e a ==,且2a =,所以c =又2222b a c =-=.故椭圆的标准方程为22142x y +=.()2设直线l 的方程为2x ty =+(t 一定存在,且0t ≠).代入2224x y +=,并整理得()22240t y ty ++=.解得242B t y t -=+,于是224222B B t x ty t -=+=+. 又()2,0D -,所以BD 的斜率为2224422222t tt t ⎛⎫--÷+=- ⎪++⎝⎭. 因为OC BD ⊥,所以直线的方程为2y t x=. 与方程2x ty =+联立,解得42,C t -⎛⎫- ⎪⎝⎭. 故22222481648•4222t t OB OC t t t -+=+==+++为定值.20.()1见解析()2见解析()3 2()1过点E 作AB (或CD )的平行线,即为所求直线l .AC 和BD 交于一点,,,,A B C D ∴四点共面.又四边形ABCD 边长均相等.∴四边形ABCD 为菱形,从而//AB DC .又AB ⊄平面CDE ,且CD ⊂平面CDE ,//AB ∴平面CDE .AB ⊂平面ABE ,且平面ABE ⋂平面CDE l =,//AB l ∴.()2证明:取AE 的中点O ,连结OB ,OD .AB BE =,DA DE =,OB AE ∴⊥,OD AE ⊥.又OB OD O ⋂=,AE ∴⊥平面OBD ,BD ⊂平面OBD ,故AE BD ⊥.又四边形ABCD 为菱形,AC BD ∴⊥.又AE AC A ⋂=,BD ∴⊥平面ACE .又CE ⊂平面ACE ,BD CE ∴⊥.()3解:平面ADE ⊥平面ABE ,DO ∴⊥平面ABE .故多面体ABCDE 的体积11222?•2232E ABCD E ABD D ABE V V V ---⎛==== ⎝.21.()1 220x y π+--= ()2 ()min 44,4,a f x a a πππ⎧≥⎪⎪=⎨⎪<⎪⎩()1求导得()cos sin f x x x x a -'=+,由122f a π⎛⎫=-=- ⎪⎝⎭'解得1a =-. 此时22f π⎛⎫= ⎪⎝⎭,所以该切线的方程为222y x π⎛⎫-=-- ⎪⎝⎭,即220x y π+--=为所求. ()2对[]0,x π∀∈,()sin 0f x x x '=-≤',所以()f x '在[]0,π区间内单调递减.当0a ≤时,()()00f x f a ''≤=≤,()f x ∴在区间[]0,π上单调递减,故()()min f x f a ππ==.当a π≥时,()()0f x f a ππ'='≥-≥,()f x ∴在区间[]0,π上单调递增,故()()min 04f x f ==.当0a π<<时,因为()00f a '=>,()0f a ππ='-<,且()f x '在区间[]0,π上单调递增,结合零点存在定理可知,存在唯一()00,x π∈,使得()00f x '=,且()f x 在[]00,x 上单调递增,在[]0,x π上单调递减.故()f x 的最小值等于()04f =和()fa ππ=中较小的一个值. ①当4a ππ≤<时,()()0f f π≤,故()f x 的最小值为()04f =. ②当40a π<<时,()()0f f π≤,故()f x 的最小值为()f a ππ=.综上所述,函数()f x 的最小值()min 44,4,a f x a a πππ⎧≥⎪⎪=⎨⎪<⎪⎩. 22.()1 2cos2444ππρθθ⎛⎫=-<< ⎪⎝⎭ ()26π⎛⎫ ⎪⎝⎭ ()1消去参数t ,得曲线C 的直角坐标方程()2242x y x -=≥.将cos x ρθ=,y sin ρθ=代入224x y -=,得()222cos 4sin ρθθ-=.所以曲线C 的极坐标方程为2cos2444ππρθθ⎛⎫=-<< ⎪⎝⎭. ()2将l 与C 的极坐标方程联立,消去ρ得242cos23sin πθθ⎛⎫-= ⎪⎝⎭.展开得()22223cos cos sin 2cos sin θθθθθθ-+=-.因为cos 0θ≠,所以23tan 10θθ-+=.于是方程的解为tan θ=,即6πθ=.代入sin 3πρθ⎛⎫-=⎪⎝⎭ρ=P 的极坐标为6π⎛⎫ ⎪⎝⎭. 23.()173()2见解析 .【详解】 ()1由柯西不等式得,()22221433a b c a b c ++≥++=(当且仅当23a b c ===时取等号),所以()()()()()222473133f a f b f c a b c a b c ++=++-+++≥+=,即()()()f a f b f c ==的最小值为73; ()2因为1x a -<,所以()()()()22f x f a x a x a -=---=()()()()•11212112121x a x a x a x a a x a a a a -+-<+-=-+-≤-+-<++=+,故结论成立.。
高三联考数学文科试卷答案
一、选择题(每小题5分,共50分)1. 已知函数f(x) = 2x - 3,则f(2)的值为:A. 1B. 3C. 5D. 7答案:C2. 若等差数列{an}的前n项和为Sn,且S5 = 15,S10 = 50,则该数列的公差d 为:A. 1B. 2C. 3D. 4答案:C3. 下列函数中,定义域为全体实数的是:A. f(x) = 1/xB. f(x) = √(x+1)C. f(x) = |x|D. f(x) = x^2答案:D4. 若复数z满足|z-1| = |z+1|,则复数z的实部为:A. 0B. 1C. -1D. 不确定答案:A5. 下列命题中,正确的是:A. 若a > b,则a^2 > b^2B. 若a > b,则|a| > |b|C. 若a > b,则a/b > b/aD. 若a > b,则a + c > b + c答案:D6. 已知函数f(x) = x^3 - 3x^2 + 4x,则f'(x)的值为:A. 3x^2 - 6x + 4B. 3x^2 - 6x + 2C. 3x^2 - 6xD. 3x^2 - 6x - 4答案:A7. 下列数列中,不是等比数列的是:A. 2, 4, 8, 16, 32B. 1, 2, 4, 8, 16C. 1, -2, 4, -8, 16D. 1, 3, 9, 27, 81答案:C8. 已知等差数列{an}的首项为2,公差为3,则第10项a10的值为:A. 27B. 29C. 31D. 33答案:D9. 下列函数中,图像关于y轴对称的是:A. f(x) = x^2B. f(x) = x^3C. f(x) = |x|D. f(x) = x答案:C10. 若函数f(x) = ax^2 + bx + c在x=1时取得极值,则a、b、c的关系为:A. a+b+c=0B. a+b=0C. a+c=0D. 2a+b=0答案:D二、填空题(每小题5分,共50分)11. 若等差数列{an}的首项为3,公差为2,则第n项an的表达式为______。
高三第一次月考文科数学试卷
高三第一次月考文科数学试卷一、选择题:本大题共10小题,每小题5分,共50分. 1.222()22i -=( ) A .1B .-1C .iD .-i2.函数(21)y f x =-的定义域为[0,1] ,则()y f x =的定义域为( )A .[1,1]-B .1[,1]2C .[0,1]D .[1,0]-3.一组数据1x 、2x 、3x 、4x 、5x 、6x 的方差为1,则121x -、221x -、321x -、421x -、521x -、621x -的方差为( )A .1B .2C .3D .44.若函数2()sin 22sin sin 2f x x x x =-⋅,则()f x 是( ) A .最小正周期为2π的奇函数 B .最小正周期为π的奇函数C .最小正周期为2π的偶函数D .最小正周期为π的偶函数5.一个几何体的三视图如图所示,其中俯视图与左视图均为半径是2的圆,则这个几何体的体积是( )A .14πB .12πC .8πD .16π6.满足()f x x '=的()f x ( )A .存在且有无限个B .存在且只有有限个C .存在且唯一D .不存在7.若等比数列{}n a 公比为q ,其前n 项和为n S ,若3S 、9S 、6S 错误!未找到引用源。
成等差数列,则3q 等于( )A .1错误!未找到引用源。
B . 12- C .错误!未找到引用源。
或1 D .错误!未找到引用源。
8.面积为1的正方形ABCD 内部随机取一点P ,则PAB ∆的面积不小于14的概率是( )A .错误!未找到引用源。
15B .12C .13D .14错误!未找到引用源。
9.已知双曲线方程:C 22221x y a b-= (0)b a >>的离心率为1e ,其实轴与虚轴的四个顶点和椭圆G 的四个顶点重合,椭圆G 的离心率为2e ,一定有( ) A .22122e e += B .2212112e e += C .222212122e e e e +=+ D .12122e e e e +=+ 10.如图,已知正方体1111D C B A ABCD -上、下底面中心分别为21,O O ,将正方体绕直线21O O 旋转一周,其中由线段1BC 旋转所得图形是( )二、填空题:本大题共5小题,每小题5分,共25分.11.设(2,4)a = ,(1,1)b = ,若()b a mb ⊥+,则实数m =________. 12.执行如图所示的程序框图所表示的程序,则所得的结果为 .13.记不等式2y x xy x ⎧≥-⎨≤⎩所表示的平面区域为D ,直线1()3y a x =+与D 有公共点,则a 的取值范围是________14.已知定义在R 上的奇函数()f x 满足()()4f x f x -=-,且[]0,2x ∈时,()()2log 1f x x =+,有下列结四个论:① ()31f =;②函数()f x 在[]6,2--上是增函数;③函数()f x 关于直线4x =对称;④若()0,1m ∈,则关于x 的方程()0f x m -= 在[]8,8-上所有根之和为-8,其中正确的是________(写出所有正确命题的序号) 15.若关于实数x 的不等式2|1||2|3x x a a ---≤--的解集是空集, 则实数a 的取值范围是____________.三、解答题:本大题共6题,共75分,解答应写出文字说明、证明过程或演算步骤.DC B A O 2O 1C 1D 1C B 1A 1A BD16.(本小题满分12分)已知函数()4cos sin()6f x x x a π=++的最大值为2.(1)求a 的值及()f x 的最小正周期; (2)在坐标纸上做出()f x 在[0,]π 上的图像.17.(本小题满分12分)某种产品按质量标准分为1,2,3,4,5五个等级.现从一批该产品中 随机抽取20个,对其等级进行统计分析,得到频率分布表如下:等级 12 3 45频率0.05m0.150.35n(1)在抽取的20个产品中,等级为5的恰有2个,求m ,n ;(2)在(1)的条件下,从等级为3和5的所有产品中,任意抽取2个,求抽取的2个产品等级恰好相同的概率.18.(本小题满分12分)已知数列{}n a 各项均为正数,满足22(1)0n n na n a n +--=.(1)计算12,a a ,并求数列{}n a 的通项公式; (2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .19.(本小题满分12分)如图,已知四棱锥P ABCD PA -,⊥平面ABCD , 底面ABCD 为直角梯形,90BAD ∠=,且AB CD ∥,12AB CD =. (1)点F 在线段FC 上运动,且设PF FCλ=,问当λ为何值时,BF ∥平面PAD ,并证明你的结论;(2)当BF ∥面PAD ,且4PDA π∠=,23AD CD ==,求四棱锥F BCD -的体积.20.(本小题满分13分)已知椭圆C 的中心在原点,焦点F 在x 轴上,离心率32e =,点2(2)2Q ,在椭圆C 上. (1)求椭圆C 的标准方程;(2)若斜率为k (0)k ≠的直线n 交椭圆C 与A 、B 两点,且OA k 、k 、OB k 成等差数列, 点M (1,1),求ABM S ∆的最大值.21.(本小题满分14分)设321()2x e f x x ax e=++.(1)若3(,)2x ∈ +∞时,()f x 单调递增,求a 的取值范围; (2)讨论方程()|ln |0f x x ax b +--=的实数根的个数.参考答案 题号 1 2 3 4 5 6 7 8 9 10 答案DADACABBCD11. 3- 12. 43- 13. 16[]37- , 14. 15.12a -<< 解答题16.解:(1)()2sin(2)16f x x a π=+++ 最大值为2∴1a =- T π=(2)如右图 17.解:(1)0.35m =,0.1n =(2)等级为3的有3个,等级为5的有2个, 由枚举得,共有10种取法,抽取的2个产品等级恰好相同的取法有4种,故概率为2518.解: (1)11a = 22a =∵ 22(1)0n n na n a n +--= ⇒ (1)()0n n na an +-= 又 ∵ 数列{}n a 各项均为正数 ∴ n a n =(2)231232222n n n S =+++⋅⋅⋅+ 2112321222n n nS -=+++⋅⋅⋅+ ∴2111121222222n n n n n n S -+=+++⋅⋅⋅+-=-19.解:(1)当1PFFC λ==时,取PD 中点G ,连接AG 、FG ,则1CD AB 2FG ∥∥ ∴BF AG ∥ 且 BF ⊆/平面PAD ∴BF ∥平面PAD(2)∵PA ⊥平面ABCD 且 4PDA π∠= ∴PDA ∆为等腰直角三角形∴11113213232F BCD BCD V S PA -∆=⋅=⨯⨯⨯= 20.解 1)1422=+y x ……………………(4分)2) 由题意可知,直线l 的斜率存在且不为0,故可设直线l 的方程为mkx y +=1122(,),(,)P x y Q x y 满足22440y kx m x y =++-=⎧⎨⎩ ,消去y 得222(14)84(1)0k x kmx m +++-=.2222226416(14)(1)16(41)0k m k m k m ∆=-+-=-+>,且122814km x x k -+=+,.因为直线OB AB oA ,,的斜率依次成等差数列,所以,k x y x y 22211=+,即2112212x kx y x y x =+,又m kx y +=,所以0)(21=+x x m ,即m=0. ……………………(9分)联立kx y y x ==+⎩⎨⎧1422 易得弦AB 的长为224141k k ++又点M 到kx y =的距离112+-=k k d所以11414121222+-++=k k k k s 24112kk +-=平方再化简求导易得41-=k 时S 取最大值5……………………(13分)21.解:(1)∵ 321()2x e f x x ax e =++ ∴ 3()x e f x x a e'=+-∵ 当3(,)2x ∈ +∞时,()f x 单调递增 ∴当3(,)2x ∈ +∞时,3()0xe f x x a e '=+->∴3x e a x e >- 函数3()x e g x x e =- 在3(,)2x ∈ +∞上递减 ∴33()22a g ≥=-(2)()|ln |0f x x ax b +--= ∴ 321|ln |2x e x x b e ++=令321()|ln |2x e h x x x e=++① 当1x >时 31()x e h x x e x '=-+∵ 12x x+≥ 32x e e e ≤< ∴()0h x '>即()h x 在(1,) +∞递增② 当01x <≤时 31()x e h x x e x'=--∵ 10x x-< 30x e e > ∴()0h x '<即()h x 在(0,1] 递减∵121(1)2h e =+当0x →时 321()|ln |2x e h x x x e=++ → +∞当x →+∞时 321()|l n |2x e h x x x e=++ → +∞ ∴① 当1212b e <+时,方程无解② 当1212b e =+时,方程有一个根③ 当1212b e >+时,方程有两个根。
2024届四川省百师联盟高三冲刺卷(二)全国卷文科数学试卷
2024届四川省百师联盟高三冲刺卷(二)全国卷文科数学试卷一、单选题(★) 1. 已知集合,. 则()A.B.C.D.(★★) 2. 过点,且焦点在轴上的抛物线的标准方程是()A.B.C.D.(★★) 3. 在中,则()A.B.C.D.(★) 4. 已知函数为奇函数,则()A.B.0C.1D.(★★) 5. 已知,是两条不同的直线,,,是三个不同的平面,下列命题为真命题的是()A.若,,则B.若,,,则C.若,,则D.,,,则(★★★) 6. 某几何体的三视图如图所示,其中每个网格是由边长为1的小正方形组成,则该几何体的侧面积为()A.B.C.D.(★★) 7. 世界三大数学猜想分别为:“费马猜想”“四色猜想”“哥德巴赫猜想”,其中“四色猜想”和“费马猜想”已经分别在1976年和1994年荣升为“四色定理”和“费马大定理”. 如今,哥德巴赫猜想仍未解决. 目前最好的成果“”由我国数学家陈景润在1966年取得,即任何不小于4的偶数,都可以写成两个质数(素数)之和. 若将22拆成两个正整数的和,在拆成的所有和式中任取一个和式,加数全部为素数的概率为()A.B.C.D.(★★★) 8. 若,则()A.B.C.D.(★★★) 9. 若两条直线,与圆的四个交点能构成矩形,则()A.B.1C.2D.(★★★) 10. 某市教育主管部门为了解高三年级学生学业达成的情况,对高三年级学生进行抽样调查,随机抽取了1000名学生,他们的学业达成情况按照从高到低都分布在五个层次内,分男、女生统计得到以下样本分布统计图,则下列叙述正确的是()A.样本中层次的女生比相应层次的男生人数多B.估计样本中男生学业达成的中位数比女生学业达成的中位数小C.层次的女生和层次的男生在整个样本中频率相等D.样本中层次的学生数和层次的学生数一样多(★★) 11. 在中,三个内角,,所对的边分别为,,,且,若,,则()A.1B.2C.D.4(★★★) 12. 2023年6月22日,由中国帮助印尼修建的雅万高铁测试成功,高铁实现时速自动驾驶,不仅速度比普通列车快,而且车内噪声更小.如果用声强(单位:)表示声音在传播途径中每平方米上的声能流密度,声强级(单位:)与声强的函数关系式为,其中为基准声强级,为常数,当声强时,声强级.下表为不同列车声源在距离处的声强级:与声源的距离(单位:声强级范围)20设在离内燃列车、电力列车、高速列车处测得的实际声强分别为,则下列结论正确的是()A.B.C.D.二、填空题(★) 13. 已知复数(为虚数单位),则的虚部为 ______ .(★★) 14. 已知函数的图象在点处的切线方程是,若,则的值为 ______ .(★★★) 15. 已知函数的最小正周期为,则下列结论中正确的有 ______ .①函数的图象关于直线对称;②函数的对称中心是;③函数在区间上单调递增;④函数的图象可以由的图象向右平移个单位长度得到. (★★★) 16. 已知双曲线的左、右焦点分别为,. 点A在双曲线上,点在轴上,,,则双曲线的渐近线方程为 ______ .三、解答题(★★★) 17. 已知正项数列满足,等差数列的前项和为,且.(1)求数列的通项公式;(2)若,求数列的前项和.(★★★) 18. 芯片作为集成电路的载体,广泛应用在手机、军工、航天等多个领域,是能够影响一个国家现代工业的重要因素. 根据市场调研与统计,某公司自2018年起的五年时间里在芯片技术上的研发投入(单位:亿元)与收益(单位:亿元)的数据统计如下:投入1收益23.1(1)根据表格中的数据,在给出的坐标系中画出散点图,并判断与是否线性相关;(2)若与线性相关,求出关于的回归方程,并预测2023年底该公司的收益.参考公式:回归方程中斜率和截距的最小二乘法估计公式分别为,;参考数据:,,,,. (★★★)19. 如图,在直角梯形中,,,,,,分别是,上的点,且,现将四边形沿向上折起成直二面角,设.(1)若,在边上是否存在点,满足,使得平面?若存在,求出;若不存在,说明理由.(2)当三棱锥的体积最大时,求点到平面的距离.(★★★★) 20. 已知椭圆的左、右焦点分别为,,左顶点为,离心率为,短轴长为.(1)求椭圆的标准方程;(2)不垂直于坐标轴的直线交椭圆于,两点,,与不重合,直线与的斜率之积为. 证明:直线过定点.(★★★★) 21. 已知函数,.(1)求的极值;(2)证明:.(★★★) 22. 在平面直角坐标系中,直线的方程为:,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)①若直线上的动点与定点满足,求以为参数的直线的参数方程;②求曲线的直角坐标方程;(2)设直线与曲线的交点为,求弦长的值.(★★★) 23. 已知函数.(1)当时,求不等式的解集;(2)当时,若恒成立,求实数的取值范围.。
高三年级数学文科试题
高三年级数学文科试题一、选择题(本大题共10小题,每小题5分,共50分)1.若,a b R ∈,i 是虚数单位,且(2)1a b i i +-=+,则a b +的值为A .1B .2C .3D .42.已知命题:,20x p x R ∀∈>,那么命题p ⌝为A .,20x x R ∃∈<B .20x x R ∀∈<,C .,20x x R ∃∈≤D .20x x R ∀∈,≤ 3.已知直线1:l y x =,若直线12l l ⊥,则直线2l 的倾斜角为A . ππ()4k k Z +∈ B .π2 C .3ππ()4k k Z +∈ D .3π44.平面向量a 与b 的夹角为60,(2,0)a =,1b =,则2a b +=A .3B .23C .4D .125.不等式组(3)()004x y x y x -++⎧⎨⎩≥≤≤表示的平面区域是A .矩形B .三角形C .直角梯形D .等腰梯形6.设a R ∈,函数()x x f x e ae -=+的导函数是()f x ',且()f x '是奇函数,则a 的值为A .1-B .12-C .1D .127.某中学高三年级从甲、乙两个班级各选出7名学生 参加数学竞赛,他们取得的成绩(满分100分)的 茎叶图如右图,其中甲班学生成绩的平均分是85, 乙班学生成绩的中位数是83,则x +y 的值为 A .7 B .8 C .9 D .1688.《莱因德纸草书》(Rhind Papyrus )是世界上最古老的数学著作之一,书中有这样的一道题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的1份为第7题图乙甲y x 611926118056798A .53B .116C .56D .1039. 从221x y m n-=(其中{},2,5,4m n ∈--)所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取一个,则此方程是焦点在y 轴上的双曲线方程的概率为( )A .12B .47C .23D .3410.已知函数21(0)()log (0)x x f x x x +⎧=⎨>⎩≤,,则函数[()]1y f f x =+的零点个数是A .4B .3C . 2D .1二、填空题(本大题共5小题,每小题7分,共35分,请将答案填在答题卡对应题号的位置上)11.已知集合{1,2,3,4,5,6}U =,}6,4,2,1{=M ,则U M =ð . 12.已知4cos 5θ=-,且tan 0θ<,则sin θ= .13.某高三年级有500名同学,将他们的身高(单位:cm )数据绘制成频率分布直方图(如图),若用分层抽样的方法选取30人参加一项活动,则从身高在[160,170)内的学生中选取的人数应为 .14.某地区恩格尔系数(%)y 与年份x 的统计数据如下表:年份x 2004 2005 2006 2007 恩格尔系数y (%)4745.543.541从散点图可以看出y 与x 线性相关,且可得回归直线方程为ˆˆ4055.25ybx =+,据此模型可预测2013年该地区的恩格尔系数(%)为 .15.某几何体的三视图如图所示,则该几何体的体积的最大值为 .O yx 0.0350.0200.0100.005190180170160150140第13题图 第15题图 61侧视图俯视图正视图16.已知实数[0,10]x ∈,若执行如下左图所示的程序框图,则输出的x 不小于 47的概率为 .17.右下表中数阵为“森德拉姆素数筛”,其特点是每行每列都成等差数列,记第i 行第j 列的数为),(*N j i a ij ∈,则:(Ⅰ)99a = ; (Ⅱ)表中数82共出现 次.三、解答题(本大题共5小题,共65分,解答应写出文字说明,证明过程或演算步骤) 18.(本小题满分12分)已知A 、B 、C 为ABC ∆的三个内角且向量3(1,cos )(3sin cos ,)2222C C C m n ==+与共线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已知数列 的前 项和 满足条件 ,其中 .
(1)求证:数列 成等比数列;
(2)设数列 满足 .若 ,求数列 的前 项和.
22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
纪念品
(1)若椭圆 过点 ,且焦距为 ,求“伴随圆”的方程;
(2)如果直线 与椭圆 的“伴随圆”有且只有一个交点,那么请你画出动点 轨迹的大致图形;
(3)已知椭圆 的两个焦点分别是 ,
椭圆 上一动点 满足 .设点 是椭圆 的“伴随圆”上的动点,过点 作直线 使得 与椭圆 都各只有一个交点,且 分别交其“伴随圆”于点 .
17.已知点 的坐标为 , 为抛物线 的焦点.若点 在抛物线上移动,当 取得最小值时,则点 的坐标是( ).
. . . .
18.已知 的面积是 ,内角 所对边分别为 , .
若 ,则 的值是( ).
. . . 不确定.
三、解答题(本大题满分74分)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.
19.(本题满分12分)
已知函数 ( 且 )的反函数 定义域为集合 ,
集合 .若 ,求实数 的取值范围.
20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.
设函数 的最大值为 ,最小值为 ,
其中 .
(1)求 的值(用 表示);
(2)已知角 的顶点与平面直角坐标系 中的原点 重合,始边与 轴的正半轴重合,终边经过点 .求 的值.
范围是.
二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答案纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分.
15.函数 ,若 ,则 的值为( ).
. . . .
16.“ ”是“函数 在 上是增函数”的( ).
充分非必要条件. 必要非充分条件.
充要条件. 即非ห้องสมุดไป่ตู้分也非必要条件.
当 为“伴随圆”与 轴正半轴的交点时,求 与 的方程,并求线段 的长度.
.把这5个数据看作一个总体, 其均值为10、方差为2,求 的值;
(3)用分层抽样的方法在 种纪念品中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2个纪念品,求至少有1个精品型纪念品的概率.
23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
给定椭圆 : ,称圆心在坐标原点 ,半径为 的圆是椭圆 的“伴随圆”.
纪念品
纪念品
精品型
100
150
普通型
300
450
600
在上海世博会期间,某工厂生产 三种世博纪念品,每种纪念品均有精品型和普通型两种.某一天产量如下表(单位:个):
现采用分层抽样的方法在这一天生产的纪念品中抽取200个,其中有 种纪念品40个.
(1)求 的值;
(2)从 种精品型纪念品中抽取5个,其某种指标的数据分别如下:
2.抛物线 的焦点到准线的距离是.
3.函数 的定义域为.
4.已知等差数列 首项为1,公差为2.若 时,则项数 .
5.若 是奇函数,则实数 .
6.函数 的最小正周期是.
7.在 的二项展开式中, 的系数是____________(用数字作答).
8.计算: .
9.设 的内角 的对边分别为 .若 ,
则角 .
10.若经过点 且以 为方向向量的直线 与双曲线 相交于不同两点 、 ,则实数 的取值范围是.
11.若全集 ,不等式 >0的解集为 ,则 .
12.若 为第二象限的角, ,则 .
13.若直线 被两平行线 与 所截得线段的长为 ,则直线 的倾斜角是.
14.如图,已知 的面积为 , .
如果 ,那么向量 与 的夹角 的取值
杨浦区高三学科测试
数学试卷(文科).1.
考生注意:1.答卷前,考生务必在答题纸写上姓名、考号.
2.本试卷共有23道题,满分150分,考试时间120分钟.
一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.
1.若复数 满足 ,则 __________.