激光雷达系统

合集下载

无人机激光雷达工作原理

无人机激光雷达工作原理

无人机激光雷达工作原理
无人机激光雷达的工作原理是利用激光束与周围物体发生反射,通过计算返回时间和光的传播速度,确定目标的距离、速度和方位。

无人机激光雷达系统主要由激光传感器、惯性管理单元(IMU)、全球导航卫星系统(GNSS)接收器和嵌入式电脑组成。

其中,激光传感器由一个光发射器和一个接收器组成,会发出高频光脉冲。

当这些脉冲遇到物体时,其返回的回声将被雷达光接收器捕获并转换为数字信号。

该光在发射器与被反射的障碍物之间传播所需的时间用于测量传感器与所到达物体之间的距离。

此外,由于无人机和雷达始终在移动,因此传感器的位置也在不断移动。

计算每个反射点位置所必需的基本信息之一是雷达在拍摄时的精确位置,这要归功于惯性管理单元(IMU)提供的信息。

同时,全球导航卫星系统(GNSS)接收器用于计算系统的地理位置和发射每个激光脉冲时的精确时间,以及接收其回波。

GNSS接收器的准确性直接影响机载雷达测量。

综上所述,无人机激光雷达通过激光束与目标物体的反射,结合IMU和GNSS提供的位置和时间信息,实现对目标物体的精准距离、速度和方位测量。

第2讲激光及激光雷达系统-激光雷达系统2

第2讲激光及激光雷达系统-激光雷达系统2
散射型激光雷达 探测大气中气溶胶或污染分 布 吸收型激光雷达 探测大气成分,臭氧或水蒸 探测大气成分 臭氧或水蒸 汽 激光荧光雷达 进行植被研究或污染物测定

5
激光雷达的分类
按照照使用用目的分类
6
激光雷达的分类
相互作用 反射 检测对象 比激光波长尺寸大 很多的物质 举例 地形测绘 气溶胶 空气分子 空气分子,水蒸气, SO2等污染物质 NO2等污染物质
8
激光成像雷达发展
四个阶段: 四个阶段 :
激光测距仪 跟踪测角测距雷达 激光成像雷达
9
激光成像雷达
只要发射激光波形具有足够高的波束质量和重复频率, 发射激 波 有 够高的波束质 复频率 接收信号达到一定的信噪比要求,均能通过波束扫描在探 测器的光敏面上得到目标的图像 测器的光敏面上得到目标的图像。

分为外差探测 分为 外差探测, ,零拍探测 零拍探测和 和多频外差探测 多频外差探测等 等
19
激光雷达外差探测原理
一般外差探测激光雷达系统由一台连续工作的激光 一般外差探测 激光雷达系统由一台连续工作的激光 器作为独立辐射源发出参考波 称为本地振荡器 器作为独立辐射源发出参考波,称为本地振荡器 器作为独立辐射源发出参考波,称为 称为本地振荡器 系统接收到的回波 信号与来自本地振 荡器的参考信号混 合之后,由混频器 输出的光束聚焦到 探测器上然后再进 行信号处理。
29
激光遥感观测系统
飞机 激光扫描仪 航摄相机 CCNS4导航控制系统 AEROControl IId 高 精度位置姿态测量系统 (IMU/DGPS) IMU与相机连接架 机载DGPS天线 地面DGPS基站接收机
激光遥感集成系统

《激光雷达简介》课件

《激光雷达简介》课件
激光雷达的测量范围通常在 几十米到几百米之间
测量范围越大,激光雷达的 探测距离就越远
测量范围越小,激光雷达的 探测精度就越高
激光雷达的分辨率是指其能够分辨的最小距离或角度 分辨率越高,激光雷达的精度和探测距离就越高 分辨率受激光雷达的硬件和软件设计影响 分辨率是衡量激光雷达性能的重要指标之一
扫描速率是指激光雷达在一定时间内能够扫描的频率 扫描速率越高,激光雷达的探测范围越广 扫描速率与激光雷达的硬件性能和算法有关 扫描速率是衡量激光雷达性能的重要指标之一
发射激光:激光雷 达发射激光束,形 成光束
接收反射:激光遇 到物体后反射,被 激光雷达接收
计算距离:通过计 算发射和接收的时 间差,计算出物体 与激光雷达的距离
生成图像:通过多次 发射和接收,激光雷 达可以生成三维图像 ,用于定位和导航
自动驾驶汽车:用于感知周围环境,实现自动驾驶 智能机器人:用于导航和避障,提高机器人自主性 测绘和地理信息:用于地形测绘、城市规划等 工业自动化:用于生产线上的物体检测和定位 安防监控:用于监控区域,实现智能安防 航空航天:用于卫星导航、空间探测等
激光雷达性能指标
测量距离:激光雷达可以精确测量物体的距离,误差范围在厘米级 测量角度:激光雷达可以精确测量物体的角度,误差范围在度级 测量速度:激光雷达可以精确测量物体的速度,误差范围在米/秒级 测量分辨率:激光雷达可以精确测量物体的分辨率,误差范围在毫米级
测量范围受到激光雷达的功率、 波长、接收器灵敏度等因素的 影响
工业监控:用 于监测生产设 备、环境、人
员等
环境监控来发展 前景
自动驾驶:激光雷达是自动驾驶汽车的关键传感器,可以提供精确的3D环境信息, 提高自动驾驶的安全性和可靠性。

简述激光雷达的结构原理分类及特点

简述激光雷达的结构原理分类及特点

简述激光雷达的结构原理分类及特点激光雷达(Lidar)是一种利用激光技术进行距离测量的雷达系统。

其原理是通过向周围环境发射激光脉冲,然后根据激光的反射时间和强度来计算目标物体的距离和其他相关信息。

激光雷达的结构主要包括激光器、光电探测器、转台和数据处理器等组件。

激光器负责发射激光脉冲,光电探测器用于接收激光的反射信号,转台则负责控制激光束的方向。

数据处理器则负责处理和分析接收到的信号,计算目标物体的位置、速度等信息。

激光雷达的工作原理是利用光的速度是已知的而目标物体的距离就是激光反射的时间与光速的乘积,从而计算目标物体的距离。

当激光束发射出去后,它会遇到目标物体并被反射回来。

激光雷达的光电探测器会接收到反射回来的光信号,并测量其时间。

通过将时间与光速相乘,就可以得到目标物体的距离。

根据不同的应用需求和工作原理,激光雷达可以分为以下几种类型:1.机械式激光雷达:机械式激光雷达使用旋转转台来扫描激光束的方向,从而获得周围环境的三维点云数据。

机械式激光雷达具有扫描速度较快,成本相对较低等特点,但由于机械部件的限制,其可靠性和寿命相对较低。

2.固态激光雷达:固态激光雷达是使用固态光电元件来控制激光束的方向,而不需要机械转台。

固态激光雷达具有较高的可靠性和寿命,并且可以实现更高的扫描速度和分辨率。

3.接收器式激光雷达:接收器式激光雷达是将激光发射器和接收器集成在一个设备中,可以在较短距离内测量目标物体的距离和速度,适用于自动驾驶和安全监测等应用。

激光雷达具有以下几个特点:1.高精度:激光雷达可以实现高精度的距离测量,通常可达到几毫米的级别。

这使得它在自动驾驶、地图绘制等应用中具有重要的作用。

2.高分辨率:激光雷达可以提供高分辨率的三维点云数据,可以对目标物体进行精确的定位和识别。

3.长距离测量:激光雷达可以在较长的距离范围内进行测量,通常可以达到几百米或更远的距离。

4.快速扫描:激光雷达可以实现快速的扫描速度,可以在较短的时间内获取大量的数据。

激光雷达系统

激光雷达系统

历史沿革
自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用。到 了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成 为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图 测绘的重要技术。
激光雷达系统
激光探测及测距系统的简称
01 简介
03 技术发展 05 基本原理
目录
02 历史沿革 04 主要途径 06 主要用途
激光雷达LiDAR(LightLaser Detection and Ranging),是激光探测及测距系统的简称。
用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟 踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体 激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、 半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式, 探测方法分直接探测与外差探测。
基本原理
LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生 成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为日臻成熟的用于获 得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统 的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIght Detection And Ranging - LIDAR。

简述激光雷达的结构、原理、分类及特点。

简述激光雷达的结构、原理、分类及特点。

简述激光雷达的结构、原理、分类及特点。

激光雷达是一种利用激光技术进行距离测量和目标探测的高精度、高可靠性的雷达系统。

它具有结构简单、测量精度高、抗干扰能力强等优点,被广泛应用于无人驾驶、智能交通、机器人等领域。

本文将从结构、原理、分类及特点四个方面对激光雷达进行简述。

一、激光雷达的结构激光雷达一般由激光器、扫描装置、接收器、信号处理器等组成。

其中,激光器用于发射激光束,扫描装置用于控制激光束的扫描方向,接收器用于接收反射回来的激光信号,信号处理器用于对接收到的信号进行处理和分析。

二、激光雷达的原理激光雷达的原理是利用激光束在空间中的传播和反射来实现距离测量和目标探测。

当激光束照射到目标物体上时,一部分激光能量被物体吸收,另一部分激光能量被反射回来。

接收器接收到反射回来的激光信号后,通过计算激光束的往返时间和光速的值,可以确定目标物体与激光雷达的距离。

同时,通过对激光束的强度、频率等参数的分析,还可以获得目标物体的其他信息,如形状、速度等。

三、激光雷达的分类根据扫描方式的不同,激光雷达可以分为机械式激光雷达和固态激光雷达两种类型。

1.机械式激光雷达机械式激光雷达使用旋转镜片或机械臂等装置来控制激光束的扫描方向。

由于其结构简单、成本低廉等优点,机械式激光雷达在早期的无人驾驶、机器人等领域得到了广泛应用。

但是,机械式激光雷达的扫描速度较慢,对目标物体的探测精度也较低。

2.固态激光雷达固态激光雷达使用电子控制器控制激光束的扫描方向,不需要机械装置。

固态激光雷达具有扫描速度快、精度高、可靠性高等优点,因此在现代无人驾驶、智能交通等领域得到了广泛应用。

四、激光雷达的特点激光雷达具有以下几个特点:1.高精度:激光雷达的测量精度可以达到毫米级别,远高于传统雷达系统。

2.远距离探测:激光雷达可以在百米甚至千米的距离范围内进行目标探测。

3.抗干扰能力强:激光雷达的测量结果不受光照、雨雪等自然环境的影响,抗干扰能力强。

简述激光雷达的结构、原理、分类及特点。

简述激光雷达的结构、原理、分类及特点。

简述激光雷达的结构、原理、分类及特点。

激光雷达是一种高精度、高分辨率、高可靠性的测量设备,广泛应用于自动驾驶、地形测量、工业检测等领域。

本文将从激光雷达的结构、原理、分类及特点等方面进行简述。

一、激光雷达的结构激光雷达通常由激光器、光学系统、控制系统、接收器、信号处理器等组成。

1. 激光器:激光器是激光雷达的核心部件,通常采用半导体激光器或固体激光器,能够发射高功率、高频率的激光束。

2. 光学系统:光学系统包括发射光学系统和接收光学系统。

发射光学系统负责将激光束聚焦成一束细小的光束,以便将激光束精确地照射到目标物体上。

接收光学系统负责收集目标物体反射回来的激光信号,并将其转化为电信号。

3. 控制系统:控制系统是激光雷达的智能核心,负责控制激光器的发射和接收,以及激光束的聚焦和扫描。

4. 接收器:接收器是激光雷达的另一个核心部件,负责接收目标物体反射回来的激光信号,并将其转化为电信号。

接收器的性能直接影响激光雷达的精度和分辨率。

5. 信号处理器:信号处理器负责对接收到的激光信号进行处理和分析,提取目标物体的位置、距离、速度等信息,并将其传递给控制系统进行下一步处理。

二、激光雷达的原理激光雷达的原理是利用激光束与目标物体之间的相互作用,通过测量激光束的反射或散射来确定目标物体的位置、距离、速度等信息。

当激光束照射到目标物体上时,部分激光束会被目标物体吸收,部分激光束会被目标物体反射或散射。

接收器收集到反射或散射的激光信号后,通过计算激光束的传播时间和速度,可以确定目标物体的距离和速度。

同时,通过对激光束的反射或散射特征进行分析,可以确定目标物体的位置、形状等信息。

三、激光雷达的分类激光雷达可以按照使用的激光类型、扫描方式、工作原理等多种方式进行分类。

以下是常见的分类方式:1. 激光类型:根据激光类型的不同,激光雷达可以分为固体激光雷达和半导体激光雷达。

固体激光雷达通常使用固体材料作为激光介质,具有高功率、高频率等优点;半导体激光雷达通常使用半导体材料作为激光介质,具有体积小、功耗低等优点。

fmcw激光雷达距离计算公式

fmcw激光雷达距离计算公式

fmcw激光雷达距离计算公式
FMCW(Frequency Modulated Continuous Wave)激光雷达是一种常用的激光雷达系统,它通过连续改变发射激光的频率并测量回波信号与发射信号之间的频率差来确定目标物体的距离和速度。

FMCW激光雷达测距的基本原理是利用发射信号和接收信号之间的时间差来计算距离。

当激光雷达发射一束激光信号时,该信号会在遇到目标物体后被反射回来,然后被激光雷达接收。

接收信号与发射信号之间会存在一定的时间差,这个时间差与目标物体与激光雷达之间的距离成正比。

对于FMCW激光雷达,距离计算公式可以表示为:
距离 = (光速×时间差) / 2
其中,光速是光在真空中的传播速度,约为3.0 x 10^8 米/秒;时间差是从激光发射到接收到反射信号所经过的时间。

在实际应用中,由于激光雷达系统的工作环境和目标物体的特性等因素的影响,测量结果可能存在一定的误差。

因此,在实际应用中,需要对测量结果进行校准和修正,以提高测量的准确性。

另外,FMCW激光雷达还可以同时测量目标物体的速度。

通过测量发射信号和接收信号之间的频率差,可以确定目标物体的速度。

这种速度测量方法与多普勒效应有关,可以进一步扩展激光雷达的应用范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
并按照一定范围裁切生成的数字正射影像数据集
作业流程
• DTM;数字地形模型(DTM, Digital Terrain Model)最初是为了高速公路的自
动设计提出来的(Miller,1956)。此后,它被用于各种线路选线(铁路、公路、输电 线)的设计以及各种工程的面积、体积、坡度计算,任意两点间的通视判断及任意断 面图绘制
• DEM;数字高程模型(Digital Elevation Model,缩写DEM)是一定范围内规则格
组成
机载激光雷达
测量平台
姿态测量与导航系统
激光系统
数据处理
数码相机
同步控制
惯性导航
差分GPS激光系统 Nhomakorabea工作流程
• • 机载激光雷达测量系统的的数据采集和处理过程 (一)航飞采集激光扫描数据及数码影像 1.在航飞前要制订飞行计划。航飞计划应包括航带划分,确定飞行高度、 速度、激光脉冲频率、航带宽度、激光反射镜转动速度、数码相机方位元素 及定位、相机拍摄时间间隔等,并将各航带的首尾坐标及其他导航坐标输入 导航计算机内,在飞行导航控制软件的辅助下进行飞行作业。 2.安置GPS接收机。为保证飞机飞行各时刻的三维坐标数据的精度,需 要在地面沿航线布设一定数量的GPS基准站,同时将GPS流动站安置在飞机 上。 3.激光扫描测量。预先设置好扫描镜的摆动方向和摆动角度,当飞机飞行 时,红外激光发生器向扫描镜上不停地发射激光,通过飞机的运动和扫描镜 的运动反射,使激光束打到地面并覆盖测区,当激光束到达地面或遇到其它 障碍物时被反射回来,被一光电接收感应器接收并将其转换成电信号。根据 激光发射至接收的时间间隔即可精确测出传感器至地面的距离。 4.惯性测量。当飞机飞行时,惯性测量装置同时也将飞机的飞行姿态测出 来,并和激光的有关数据、扫描镜的扫描角度一起记录在磁带上。 5.数码相机拍摄。利用数码相机进行拍摄时,需要对其拍摄时间间隔和拍 摄位置进行控制。通常是用GPS系统进行时间和位置控制。 6.数据传输。航飞数据采集结束后,将所有的激光扫描测量数据、数码影 像数据、GPS数据及惯性测量数据都传输到计算机中,为后续数据处理作准 备。
网点的平面坐标(X,Y)及其高程(Z)的数据集,它主要是描述区域地貌形态的空 间分布,是通过等高线或相似立体模型进行数据采集(包括采样和量测),然后进行 数据内插而形成的。DEM是对地貌形态的虚拟表示,可派生出等高线、坡度图等信息, 也可与DOM或其它专题数据叠加,用于与地形相关的分析应用,同时它本身还是制作 DOM的基础数据
• DSM:数字表面模型(Digital Surface Model,缩写DSM)是指包含了地表建筑物、桥梁和
树木等高度 的地面高程模型。和DEM相比,DEM只包含了地形的高程信息,并未包含其它地表信 息,DSM是在DEM的基础上,进一步涵盖了除地面以外的其它地表信息的高程.
• DOM:利用数字高程模型(DEM)对航空航天影像进行正射纠正、接边、色彩调整、镶嵌,
组成
• 一、机载激光雷达测量系统的组成 机载激光扫描系统由空中测量平台、激光系统、姿态测量和导航系统、数码相机、 计算机及软件等组成。 1. 空中测量平台 空中测量平台是航空激光扫描测量系统进行作业的空间载体和操作平台,主要为直 升飞机或其它飞机,用来装载航空激光扫描测量系统所需要的各种仪器仪表和操作人 员。 2. 姿态测量和导航系统 GPS接收机、IMU惯性制导仪、导航计算机构成了姿态测量和导航系统。GPS接收 机采用差分定位技术确定平台的坐标。IMU惯性制导仪测量航飞平台的姿态,用于对发 射激光束角度的校正以及地面图像的纠正。 GPS接收机可为飞机提供导航,应能用图文方式向飞行员和系统操作员提供飞机现 在的状态,即飞机现在离任务航线起点终点的距离、航线横向偏差、飞行速度、航线 偏离方向、航线在测区中的位置。系统应能处理区域测量也能处理带状测量。 3. 数字化激光扫描仪 数字化激光扫描仪是本系统的核心部分,它主要用来测量地物地貌的三维空间坐标 信息。 4. 数码相机 数码相机拍摄的航片宽度应该调节到与激光扫描宽度相匹配。航片经过纠正、镶嵌 可形成彩色正射数字影像。 5. 数据处理软件 激光扫描系统获取的数据量非常庞大,由特殊的专业软件来处理。
相关文档
最新文档