腐蚀与防护-第二章 电化学腐蚀热力学

合集下载

金属腐蚀与防护

金属腐蚀与防护

第一章绪论腐蚀:由于材料与其介质相互作用(化学与电化学)而导致的变质和破坏。

腐蚀控制的方法:1)、改换材料 2)、表面涂漆/覆盖层3)、改变腐蚀介质和环境 4)、合理的结构设计5)、电化学保护均匀腐蚀速率的评定方法:失重法和增重法;深度法;容量法(析氢腐蚀);电流密度;机械性能(晶间腐蚀);电阻性.第二章电化学腐蚀热力学热力学第零定律状态函数(温度)热力学第一定律(能量守恒定律) 状态函数(内能)热力学第二定律状态函数(熵)热力学第三定律绝对零度不可能达到2.1、腐蚀的倾向性的热力学原理腐蚀反应自发性及倾向性的判据:∆G:反应自发进行<∆G:反应达到平衡=∆G:反应不能自发进行>注:ΔG的负值的绝对值越大,该腐蚀的自发倾向性越大.热力学上不稳定金属,也有许多在适当条件下能发生钝化而变得耐蚀.2.2、腐蚀电池2.2.1、电化学腐蚀现象与腐蚀电池电化学腐蚀:即金属材料与电解质接触时,由于腐蚀电池作用而引起金属材料腐蚀破坏.腐蚀电池(或腐蚀原电池):即只能导致金属材料破坏而不能对外做工的短路原电池.注:1)、通过直接接触也能形成原电池而不一定要有导线的连接;2)、一块金属不与其他金属接触,在电解质溶液中也会产生腐蚀电池.丹尼尔电池:(只要有电势差存在)a)、电极反应具有热力学上的可逆性;b)、电极反应在无限接近电化学平衡条件下进行;c)、电池中进行的其它过程也必须是可逆的.电极电势略高者为阴极电极电势略低者为阳极电化学不均匀性微观阴、阳极微观、亚微观腐蚀电池均匀腐蚀2.2.2、金属腐蚀的电化学历程腐蚀电池:四个部分:阴极、阳极、电解质溶液、连接两极的电子导体(即电路)三个环节:阴极过程、阳极过程、电荷转移过程(即电子流动)1)、阳极过程氧化反应++-M nM→ne金属变为金属离子进入电解液,电子通过电路向阴极转移.2)、阴极过程还原反应[]--⋅DDne+ne→电解液中能接受电子的物质捕获电子生成新物质.(即去极化剂)3)、金属的腐蚀将集中出现在阳极区,阴极区不发生可察觉的金属损失,只起到了传递电荷的作用金属电化学腐蚀能够持续进行的条件是溶液中存在可使金属氧化的去极化剂,而且这些去极化剂的阳极还原反应的电极电位比金属阴极氧化反应的电位高2.2.3、电化学腐蚀的次生过程难溶性产物称二次产物或次生物质由于扩散作用形成,且形成于一次产物相遇的地方阳极——[]+n M(金属阳离子浓度)(形成致密对金属起保护作用) 阴极——pH高2.3、腐蚀电池类型宏观腐蚀电池、微观腐蚀电池、超微观腐蚀电池2.3.1、宏观腐蚀电池特点:a)、阴、阳极用肉眼可看到;b)、阴、阳极区能长时间保持稳定;c)、产生明显的局部腐蚀1)、异金属(电偶)腐蚀电池——保护电位低的阴极区域2)浓差电池由于同一金属的不同部位所接触的介质浓度不同所致a、氧浓差电池——与富氧溶液接触的金属表面电位高而成为阳极区eg:水线腐蚀——靠近水线的下部区域极易腐蚀b、盐浓差电池——稀溶液中的金属电位低成为阴极区c、温差电池——不同材料在不同温度下电位不同eg:碳钢——高温阳极低温阴极铜——高温阴极低温阳极2.3.2、微观腐蚀电池特点:a)、电极尺寸与晶粒尺寸相近(0.1mm-0.1μm);b)、阴、阳极区能长时间保持稳定;c)、引起微观局部腐蚀(如孔蚀、晶间腐蚀)原因:a)、化学成分的不均匀性;b)、金属组织结构的不均匀性;多项合金不同相的电位不同c)、金属物理状态的不均匀性——应变、内应力不均匀;d)、金属表面膜(涂层)的不完整性.由于以上原因而形成的微观电池并不是金属发生电化学腐蚀的充分条件,还应在溶液中具有去极化剂才可发生2.3.3、超微观腐蚀电池特点:a)、电极用肉眼和普通显微镜难以分辨(100-1000nm);b)、阴、阳极区随时间不断变化;c)、引起均匀腐蚀2.4、电极电位与电化学腐蚀倾向性的判断2.4.1、电极和电极电位电极:指电子导体和离子导体组成的体系,常以金属/溶液表示注:腐蚀中的电极只指电子导体电极电位的表示:1)、金属浸入溶液中经水化作用而形成双电层 负点性金属水化后金属阳离子进入溶液——水化能 > 金属键能难溶性金属水化后从溶液中吸附阳离子——水化能 < 金属键能2)、形成气体电极——极难溶金属(Pt)和非金属导体(石墨)特点:电极导体本身不参与反应,仅起导电和反应载体作用2.4.2、平衡电极电位和非平衡电极电位平衡电极电位:水合与脱水达到动态平衡时的电极电位能斯特方程:⎪⎪⎭⎫ ⎝⎛+=R a a nF RT e e 0ln θ其中:e θ为标准电极电位; F 为法拉第常数;R aa 0为氧化态物质与还原态物质的活化比 注:浓度对电极电位有影响对于非平衡电极电位,其电极反应是不可逆的,因为电极过程中,即使阴极与阳极过程反应速率相等,达到了电子交换的平衡,但物质交换达不到平衡. 非平衡电极电位可以是稳定的也可以是不稳定的.电荷转移速率相等时即为稳定点位,也称开路电位或自腐蚀电位,即外电流为零时的电位.非平衡电极电位不服从能斯特方程,只能实验测得.2.4.3、电化学腐蚀倾向性的判断和电动序∵nFE G P T -=∆, e A e C E E E -=其中:F 为法拉第常数,F =96500 C/mol ; n 为参与反应的电子数;e C E 、e A E 分别为阴、阳极反应的平衡电位e A e C E E <:电位为e A E 的金属不会发生腐蚀 ∴电极电位判据 e A e C E E =:平衡状态e A e C E E >:电位为e A E 的金属自发进行腐蚀电动序:按金属在标准电极电位值E e 由低(负)值到高(正)值逐渐增大的次序排 列,得到的次序表称电动序.标准氢电极电位为零,电位比其低的为负电性金属,比其高的为正点性金属. 金属负电性越强,其在酸性溶液中越易发生析氢腐蚀.在可自发发生的反应中,电极电位较负的反应是氧化反应,较正的反应是还原反应.电偶序:金属或合金在一定电解质溶液中测得的稳定电位的相对大小排列而成的 次序表.电偶序比电动序更能反映金属实际腐蚀的性质.2.5、电位-pH 图及其应用2.5.1、水的E-pH 图要素:两条直线三个区域:a ---氢电极反应平衡电位-pH 关系的直线;b ---氧电极反应平衡电位-pH 关系的直线.b 线以上: 水被阳极电解为氧气;a 线以下: 水被阴极电解为氢气;a 、b 线之间: 水稳定区.2.5.2、电位-pH 图的绘制A 、列出可能发生的反应方程;B 、列出每个反应相应的Nernst 公式;C 、在水的电位-pH 图上绘制平衡关系。

材料腐蚀与防护:第二章 腐蚀电化学理论基础 (2)

材料腐蚀与防护:第二章 腐蚀电化学理论基础 (2)

2.3.3 极化的种类和原因
— 电化学极化 — 浓差极化 — 电阻极化 — 混合极化
电化学极化(活化极化)
阳极电化学极化(活化极化):阳极过程控制步骤=电化学步骤
电子从阳极流走(流向阴极)的速度
>金属离子进入溶液的速度(电化学反应速度)
金属表面由于电子流失 比反应快而积累正电荷
——电位升高
电化学极化(活化极化)
E Ec0
2 1
I Ec0 Ea0 Pa Pc R
Ea0 I1
I2 I
Pc1 Pc2: I1 I2
• 氢过电位对腐蚀电流影响:
析氢腐蚀,阴极反应(H++e→H2)
在不同金属的表面上,极化程度有很大不 +E
同,即过电位不同,导致腐蚀电流不同;
Fe ia
Fe
2
2e
ic
• 处于平衡态时: ia = ic = i0
i0:交换电流密度
• 溶解速度>沉积速度,相当于阳极溶解反应,
ia > ic Fe ia Fe2 2e
– 形成净阳极电流 ia (净)= ia − ic 阳极溶解
– 电位向正方向移动,阳极极化
– 过电位ηa=Ea-E0
• 溶解速度<沉积速度,相当于阴极还原反应,
2.3.1 腐 蚀 速 率
• 单位时间内,单位面积上的金属失重为:
∆g It ⋅ N 1 ( I / S ) ⋅ N i ⋅ N
υ失重 = S ⋅ t = F S ⋅ t = F
=F
– i 腐蚀电流密度 mA/cm2 – 腐蚀电池的电流密度越大,金属腐蚀速率越大
• 我们了解了腐蚀速率与腐蚀电流密度的关系,那么实际 的腐蚀速率究竟如何呢?

材料腐蚀与防护 第二章

材料腐蚀与防护 第二章
阴极附近反应物或反应生成物扩散较慢也会引起极化。
例如,氧或氢离子到达阴极的速度不足反应速度的需 要,造成电子积聚,引起极化。
消除阴极极化的作用,叫做阴极去极化。与阳极去极化 一样,阴极去极化同样可以加速腐蚀过程。
去极化
凡是在电极上吸收电子的还原反应都能起到去极化的作用 最常见最重要的阴极去极化过程有二: 1.氢离子放电逸出H 2
当金属电极上只有惟一的一种电极反应,并且该反应处
于动态平衡时,金属的溶解速度等于金属离子的沉积速度电 极获得了一个不变的电位值,通常称该电位值为平衡电极电 位----可逆。
平衡电极电位可用能斯特公式计算:
2.非平衡电极电位
Zn浸泡在硫酸锌和Zn浸泡在稀硫酸中是否具有相同的电 极反应?
Zn Zn2 2e
2)不同的金属与同一电解质溶液相接触。
3)浓差电池。
同一种金属浸入同一种电解质溶液中,若局部的浓 度(或温度)不同,即可形成腐蚀电池。
2 微电池:
由于金属表面的电化学不均匀性,在金属表面上出现 许多微小的电极由此而构成的电池称为微电池。
肉眼难以辨别电极的极性
产生原因:
•化学成份不均匀性
将一块工业纯锌浸入稀硫酸溶液中,由于工业纯锌 中合有少量的杂质(如铁),因为杂质Fe(以FeZn7的形式 存在)的电位较纯锌为高,此时锌为阳极,杂质为阴极, 于是构成腐蚀电池,锌被腐蚀。此时构成的腐蚀电池位 于局部微小的区域内,故称之谓微电池。
(2)浓差极化 金属溶解时,在阳极过程中产生的金属离子首先进入阳极
表面附近的溶液中,如果进入溶液中的金属离子向外扩散得很 慢,结果就会使得阳极附近的金属离子浓度逐渐增加,阻碍金 属继续溶解(腐蚀),必然使阳极电位往正的方向移动,产生阳 极极化。从能斯特方程式

腐蚀与防护复习题(2)

腐蚀与防护复习题(2)

《金属腐蚀与防护》复习题2022.6第一章绪论.什么是金属的腐蚀?局部腐蚀主要有哪些类型?1.金属腐蚀速度的三种主要表达方式?为什么可以用阳极溶解电流来评价金属腐蚀的速度?2.化学腐蚀和电化学腐蚀的共性与差异?其次章电化学腐蚀热力学.平衡电极电位是如何定义的?在什么条件下才可能建立体系的平衡电极电位?铁放在酸性溶液中能够建立起平衡电极电位吗?平衡电极电位对金属的腐蚀的倾向和腐蚀的速度有什么影响?1.什么是非平衡电极电位?它通常是如何获得的?2.标准电极电位的定义?标准电极电位是如何获得的?3.对参比电极的最基本要求是什么?4.电化学腐蚀发生的根本条件是什么?合金中杂质或其次相的存在对金属腐蚀倾向和腐蚀速度有何影响?5.金属发生腐蚀时,外表至少会有几个电极反响?金属在无氧的自身离子中性溶液中会始终发生溶解腐蚀吗?为什么?金属在有氧的自身离子中性溶液中会始终发生溶解腐蚀吗?6. 一根装运弱酸性化学溶液的碳钢管,由于匀称腐蚀,一年要更换一次。

为了改善管子的耐腐蚀性能,提高使用寿命,对管子内外表实施了化学镀Ni-P非晶镀层的处理,可是管子在投入使用不到2个月却发生了穿孔泄漏。

请从电化学腐蚀的角度分析其可能成因。

第三章电化学腐蚀动力学.什么是电极的极化现象?极化发生的本质缘由是什么?极化对金属腐蚀的速度有什么影响?1.试解释金属的自腐蚀电位和自腐蚀电流的含义?自腐蚀电位是平衡电极电位吗?他们与金属的腐蚀速度有什么关系?金属铁板放置在3%NaCl水溶液中,稳定一段时间后,通过试验测得的开路电位是平衡电位吗?2.阳极极化有儿种类型?成因是什么?3.由图3.11,分析溶液中硫化物及金属中其次相的存在对金属腐蚀速度的影响。

4.塔菲尔方程的基本表达式〃=成立图3.11钢在非氧化酸中的腐蚀极化图5 .电化学极化(活化极化)和浓差极化的形成缘由是什么?第四章析氢腐蚀与吸氧腐蚀•依据n 产曲+6log 九,分析影响析氢过电 位的因素。

《材料腐蚀与防护》习题与思考题

《材料腐蚀与防护》习题与思考题

《材料腐蚀与防护》习题与思考题第一章绪论1.何谓腐蚀?为何提出几种不同的腐蚀定义?2.表示均匀腐蚀速度的方法有哪些?它们之间有何联系?3.镁在海水中的腐蚀速度为 1.45g/m2.d, 问每年腐蚀多厚?若铅以这个速度腐蚀,其ϖ深(mm/a)多大?4.已知铁在介质中的腐蚀电流密度为0.1mA/cm2,求其腐蚀速度ϖ失和ϖ深。

问铁在此介质中是否耐蚀?第二章电化学腐蚀热力学1.如何根据热力学数据判断金属腐蚀的倾向?如何使用电极电势判断金属腐蚀的倾向?2.何谓电势-pH图?举例说明它在腐蚀研究中的用途及其局限性。

3.何谓腐蚀电池?有哪些类型?举例说明可能引起的腐蚀种类。

4.金属化学腐蚀与电化学腐蚀的基本区别是什么?5.a)计算Zn在0.3mol/LZnSO4溶液中的电解电势(相对于SHE)。

b) 将你的答案换成相对于SCE的电势值。

6.当银浸在pH=9的充空气的KCN溶液中,CN-的活度为1.0和Ag(CN)2-的活度为0.001时,银是否会发生析氢腐蚀?7.Zn浸在CuCl2溶液中将发生什么反应?当Zn2+/Cu2+的活度比是多少时此反应将停止?第三章电化学腐蚀反应动力学1.从腐蚀电池出发,分析影响电化学腐蚀速度的主要因素。

2.在活化极化控制下决定腐蚀速度的主要因素是什么?3.浓差极化控制下决定腐蚀速度的主要因素是什么?4.混合电位理论的基本假说是什么?它在哪方面补充、取代或发展了经典微电池腐蚀理论?5.何谓腐蚀极化图?举例说明其应用。

6.试用腐蚀极化图说明电化学腐蚀的几种控制因素以及控制程度的计算方法。

7.何谓腐蚀电势?试用混合电位理论说明氧化剂对腐蚀电位和腐蚀速度的影响。

8.铁电极在pH=4.0的电解液中以0.001A/cm2的电流密度阴极化到电势-0.916V(相对1mol/L甘汞电极)时的氢过电势是多少?9.Cu2+离子从0.2mol/LCuSO4溶液中沉积到Cu电极上的电势为-0.180V(相对1mol/L甘汞电极),计算该电极的极化值。

材料腐蚀与防护-金属的电化学腐蚀原理(2)

材料腐蚀与防护-金属的电化学腐蚀原理(2)
已测知Zn和Cu在质量分数为0.03的NaCl水 溶液中的开路电位分别为EZn= -0.83V和 ECu=0.05V,回路电阻R=250。
此时,两电极的稳定电位差0.05+0.83=0.88V,
铜-锌腐蚀原电池示意图
电池刚接通时,毫安表指示的起始瞬间电流 值
电流变化
瞬间电流很快下降,经过一段时间 后,达到一个比较稳定的电流值, I2=0.15mA ???
腐蚀极化图
+E EeC
β
假定任何电流下,阴极阳极的极 化率为常数,称为Evans图(U. R. Evans)。 S所对应的电位Emix,称为混合电 位。由于Emix电位下的金属处于 腐蚀状态,故混合电位就是金属 的自腐蚀电位Ecorr,对应的电流 称为腐蚀电流,用Icorr表示。 I 腐蚀电位是一种不可逆非平 衡电位,需由实验测得,腐蚀 电流表示金属腐蚀的速率,对 于均匀腐蚀和局部腐蚀都适用。
CA
PA E A E A 100% 100% 100% e e PC PA PR EC E A ER EC E A
PR ER ER 100% 100% 100% e e PC PA PR EC E A ER EC E A
S2O62 +2e 2SO42
3.溶液中中性分子的还原反应 吸氧反应 氯的还原反应
如:
O2 +H2O+4e 4OH Cl2 2e 2Cl
4.不溶性化合物的还原反应
如:
Fe(OH)3 +e Fe(OH)2 OH
电路接通
腐蚀电池接通前后电位变化
过电位
电极电位的偏离值称为极化值。 通常引入一新术语--过电位或超电位(取正值)来表征电 极极化的程度。

09化工腐蚀与防护 第二章 金属电化学腐蚀基本理论

09化工腐蚀与防护 第二章 金属电化学腐蚀基本理论
将偏离平衡电位。 *因为金属腐蚀要进行电极反应必然偏离平衡, 故非平衡电位的讨论十分重要。
电极电位
平衡电极电位 能斯特方程
气体的平衡电极电位
标准状态:温度298 K, 氢离子活度为1,氢压 101325 Pa
非平衡电极电位
不能用Nernst方程计算电极电位,实验测定
电化学腐蚀倾向的判断
自由焓准则 当△G<0,则腐蚀反应能自发进行。 |G|愈大,则腐蚀倾向愈大。 当△G= 0,腐蚀反应达到平衡。 当△G> 0,腐蚀反应不能自发进行。
EeK - Eea > 0 或EeK > Eea
判断电化学腐蚀倾向的电位比较准则: 如果金属发生氧化反应的平衡电位Eea低于溶液中某种氧
化剂(即去极化剂)发生还原反应的平衡电位Eec,则电化 学腐蚀能够发生。二者的差值(Eec - Eea)愈大,腐蚀的 倾向愈大。
金属自发发生电化学腐蚀的条件: Ee,M <E< EeK
2Hg + 2Cl-= Hg2Cl2 + 2e 气体电极反应和氧化还原电极反应都可
能作为腐蚀电池的阴极反应,其中以氢 电极反应和氧电极反应最为普遍。
氢电极反应构成了最基本的参考电极: 标准氢电极。
金属和溶液的界面特性——双层电子
双电层:由于金属和溶液的内电位不同,在电极系统的金属相和溶液相之间存 在电位差,因此,两相之间有一个相界区,叫做双电层*电极系统中发生电极 反应,两相之间有电荷转移,是形成双电层的一个重要原因。 例如:Zn/Zn2+,Cu/Cu2+
电极反应 Ni=Ni2++2e Mo=Mo3++3e Sn=Sn2++2e Pb=Pb2++2e Fe=Fe3++3e H2=2H++2e Cu=Cu2++2e Cu=Cu++e 2HAgg==HAgg22++++e2e Hg=Hg2++2e Pt=Pt2++2e Au=Au3++3e

腐蚀与防护

腐蚀与防护

2020.02.25第一章绪论总结:第一章概论要点:腐蚀速率的评价指标,集中腐蚀速率计算公式需要掌握作业:P12:1-5题1.5金属腐蚀的分类1.按照腐蚀机理分类金属腐蚀按照腐蚀机理可分为化学腐蚀、电化学腐蚀和物理腐蚀。

2.按金属的破坏形态分类根据金属的破坏形态,可将腐蚀分为均匀腐蚀和局部腐蚀两大类.1)均匀腐蚀均匀腐蚀是指发生在金属表面的全部或大部损坏,也称全面腐蚀,腐蚀的结果是材料的质量减少,厚度变薄。

均匀腐蚀危害性较小,只要知道材料的腐蚀速率,就可计算出材料的使用寿命。

2)局部腐蚀局部腐蚀是指只发生在金属表面的狭小区域的破坏。

其危害性比均匀腐蚀严重得多,它约占设备机械腐蚀破坏总数的70%,而且可能是突发性和灾难性的,会引起爆炸、火灾等事故。

局部腐蚀主要有5种不同的类型。

A.电偶腐蚀。

电偶腐蚀是两种电极电位不同的金属或合金互相接触,并在一定的介质中发生电化学反应,使电位较负的金属发生加速破坏的现象。

B.小孔腐蚀。

小孔腐蚀又称坑蚀和点蚀,在金属表面上极个别的区域产生小而深的孔蚀现象。

一般情况下蚀孔的深度要比其直径大的多,严重时可将设备穿通。

C.缝隙腐蚀。

缝隙腐蚀是指在电解液中金属与金属或金属与非金属表面之间构成狭窄的逢隙,缝隙内离子的移动受到了阻滞,形成浓差电池,从而使金属局部破坏的现象。

D.晶间腐蚀。

晶间腐蚀是指金属在特定的腐蚀介质中,沿着材料的晶界出现的腐蚀,使晶粒之间丧失结合力的一种局部破坏现象。

E.选择性腐蚀。

选择性腐蚀是指多元合金在腐蚀介质中,较活泼的组分优先涪解,结果造成材料强度大大下降的现象.另外,应力腐蚀也属于局部腐蚀,是力学作用引起材料的局部破坏,即金属在特定的介质中和在静拉伸应力(包括外加载荷、热应力、冷加工、热加工、焊接等所引起的残余应力等)条件下,局部所出现的低于强度极限的脆性开裂现象。

1.6金属腐蚀速率的表示方法1.金属庸蚀逸率的重量指标金属腐蚀速率的重量指标就是把金属因腐蚀而发生的重量变化换算成相当于单位金属表面积与单位时间内的重量变化的数值。

腐蚀与防护第2章

腐蚀与防护第2章
• 电子通过锌与铜之间的导线 传递,构成一个腐蚀原电池。
5

最常见的原电池是由中心碳棒(正电极),外围锌皮(负 电极)及两极间的电解质溶液(如NH4Cl)所组成的。当外 电路接通,灯泡即通电发光。
化学能
电能
正极——电位高——阴极 负极——电位低——阳极
6
• 电化学腐蚀过程由以下三个环节构成:
1)阳极过程 阳极是指在腐蚀原电池中发生氧化反应的电极。腐蚀电 池工作时,阳极上金属材料溶解,以离子形式进入溶液, 把电子留在阳极上,用以下通式表示:
27
非平衡电极电位:金属电极上可能同时存在两个或两 个以上不同物质参与的电化学反应,当动态平衡时, 电极上不可能出现物质交换和电荷交换均达到平衡的 情况,这种情况下的电极电位称为非平衡电极电位, 或不可逆电极电位。 稳定电极电位:在一个电极表面上同时进行两个不同 的氧化、还原过程,当平衡时仅仅是电荷平衡而无物 质平衡的电极电位称为稳定电极电位,也可称作开路 电位。
15
温差电池:金属的电位与介质温度有关。浸入腐蚀介 质中金属各部分,常由于所处介质环境温度不同,形 成温差腐蚀电池。 • 如,碳钢制造的热交换器,由于高温部位碳钢电位 低,为阳极,使得高温部位比低温部位腐蚀严重。
16
典型的微观腐蚀电池
微观腐蚀电池是由于金属表面的电化学不均匀性,使金属 材料表面存在微小的电位高低不等的区域造成的。微观电池 主要有以下几种: 1)化学成分不均匀引起的微电池 碳钢中的渗碳体 Fe3C ,工业纯锌中的铁杂质 FeZn7 ,铸铁 中的石墨等都是以阴极形式出现; 2)金属组织不同或结构不均匀性引起的微电池 双相合金或合金中析出第二相,多数第二相为阴极;晶粒 和晶界间电位有差异,一般晶界为阳极;

腐蚀与防护-第二章电化学腐蚀热力学资料

腐蚀与防护-第二章电化学腐蚀热力学资料
微观腐蚀电池是造成潮湿大气中洁净金属表 面腐蚀的主要原因。特点:尺寸小,间距近。
由于几方面的不均匀性造成。
① 材料本身相的不均匀性
化学成分、组织结构、物理状态、表面膜的不 完整性 ② 液相的不均匀性 ③ 系统外界条件的不均匀性
温度、光能
微观腐蚀电池
• 化学成分不均匀性。如:金属中杂质。 • 杂质的组成、性质不同于基体,有的相对
2.1 电池过程
➢原电池
把化学能转化为电能的装置
原电池的组成
(c) 电极: 电池中发生 氧化还原反 应的场所。
(a)外电路:负载, 电流的外部通路
(b)盐桥: 电流的内 部通路
()Zn ZnSO4(水溶液) CuSO4(水溶液)Cu()
阳极反应: Zn Zn2 2e 阴极反应: Cu2 2e Cu 总反应: Zn Cu2 Zn2 Cu
电位、位于不同位置; (2)阳极和阴极之间要有电性连接(电子导体
通道);
(3)阳极与阴极均处于有导电能力的腐蚀环 境内(离子导体通道)。 总之,要有两种电极(阳极、阴极)和 两种通道(电子通道、离子通道)。
以锌在酸溶液中腐蚀为例,腐蚀电池工作过 程如图2-1所示。
• 腐蚀电池的工作历程 (电化学腐蚀的过程)
(1)以(+)表示原电池的正极,正极总是写在右边;以(-)表示原电池的 负极,负极总是写在左边。
(2)正、负极中总是有一种导电的物质,如Zn、Cu、Ag、等还原态物质可 作为电极导体,导体总是写在紧邻(+)、(-)的最旁边的位置。如果 电对中的还原态物质不是导体,如Fe3+/Fe2+、 H+/ H2 、Cl2/Cl- 等,就需 要加惰性电极,如:C(石墨)、Pt等。
构成温差电池。

第二章 电化学腐蚀热力学

第二章  电化学腐蚀热力学



确定腐蚀电池的意义: 明确腐蚀电池及其对应的电极过程是研究各种腐蚀类型和腐蚀形 态的基础;
四、电位—pH图
金属的电化学腐蚀绝大多数是金属同水溶液相接触时
发生的腐蚀过程。水溶液中除了其它离子外,总是存在H+ 和
OH-离子。这两种离子含量的多少由溶液的pH值表示。金属在 水溶液中的稳定性不但与它的电极电位有关,还与水溶液的 pH值有关。
RT ln aM n nF
其中E0为标准状态下的平衡电极电位,可查表得到
不同的金属在不同溶液中的离子化倾向 不同。当达到平衡时,金属在溶液中建立起平 衡电极电位。若以标准氢电极为参比电极(规 定其电位为零),则电极电位的大小(即可看 作为原电池的电动势)和自由能变化值一样, 可以表示腐蚀的自发倾向,二者具有以下关系:
(2)气体电极 金属在含有气体和气体离子的溶液中构成的电极 称为气体电极。如氢电极(2H++2e = H2)、氧电极( O2十 2H2O +4e = 4OH-)等。将铂片浸入氢离子浓度为1mol/L 的硫酸溶液中, 然后在25℃不断地通入1个大气压的纯氢气流 就构成了标准氢电极,它又可表示为H+│H2(Pt)。
金属在充气的流动海水中的腐蚀电位
三、腐蚀电池
1、腐蚀电池的工作过程 Zn + H2SO4 = ZnSO4 + H2 腐蚀电池的定义:只能导致金属材料破坏而不 能对外界作功的短路原电池。 2、腐蚀电池的特点 ★腐蚀电池的阳极反应是金属的氧化反应,结果造 成金属材料的破坏。 ★腐蚀电池的阴、阳极短路(即短路的原电池), 电池产生的电流全部消耗在内部,转变为热, 不对外做功。 ★腐蚀电池中的反应是以最大限度的不可逆方式进 行。
ESHE =0.2415十ESCE

第2章3 腐蚀的电化学基础(电化学腐蚀动力学)

第2章3 腐蚀的电化学基础(电化学腐蚀动力学)

阳极过电位:ηa=E-E平=∆E
阴极过电位:ηc=E平-E =-∆E
电 子 转 移 步 骤 反 应 速 度 与 电 极 电 位 关 系 的 推 导
因此可将上两式改写为:
nF ia i exp RT a 2.303RT 2.303RT 0 a log i log ia nF nF
i i i
0 a 0 c
0
交换电流密度,是平衡电位下单 向氧化或单向还原的电流密度,它与 反应体系中各组分的浓度有关,是衡 量电化学极化难易的主要标志。
电 子 转 移 步 骤 反 应 速 度 与 电 极 电 位 关 系 的 推 导
当氧化反应按照R→O+ne进行时,反应过程中反
应体系的势能曲线1上升为曲线2
E是极化电位),则有:
W1 nF E ia nFva nFAa CR exp RT nF E 0 nF 0 nFK a CR exp E i exp RT RT
电 子 转 移 步 骤 反 应 速 度 与 电 极 电 位 关 系 的 推 导
2RT i T ln 0 nF i
②当id≈ i<<i0时,过电位主要由浓差极化引起。
T
RT id ln nF id i
在两类导体界面上发生的 电极过程是一种有电子参加的 异相氧化还原反应。
电极过程应当服从异相 催化反应的一般规律。
电 极 过 程 的 特 征
首先,反应是在两相界面上发生的,反应
速度与界面面积的大小和界面的特性有关。
其次,反应速度在很大程度上受电极表面 附近很薄的液层中反应物和产物的传质过程的 影响。
总过电位ηT的表达式由电化学极化过电位η和浓差

《材料腐蚀与防护》习题与思考题

《材料腐蚀与防护》习题与思考题

《材料腐蚀与防护》习题与思考题第一章绪论1.何谓腐蚀?为何提出几种不同的腐蚀定义?2.表示均匀腐蚀速度的方法有哪些?它们之间有何联系?3.镁在海水中的腐蚀速度为 1.45g/m2.d, 问每年腐蚀多厚?若铅以这个速度腐蚀,其ϖ深(mm/a)多大?4.已知铁在介质中的腐蚀电流密度为0.1mA/cm2,求其腐蚀速度ϖ失和ϖ深。

问铁在此介质中是否耐蚀?第二章电化学腐蚀热力学1.如何根据热力学数据判断金属腐蚀的倾向?如何使用电极电势判断金属腐蚀的倾向?2.何谓电势-pH图?举例说明它在腐蚀研究中的用途及其局限性。

3.何谓腐蚀电池?有哪些类型?举例说明可能引起的腐蚀种类。

4.金属化学腐蚀与电化学腐蚀的基本区别是什么?5.a)计算Zn在0.3mol/LZnSO4溶液中的电解电势(相对于SHE)。

b) 将你的答案换成相对于SCE的电势值。

6.当银浸在pH=9的充空气的KCN溶液中,CN-的活度为1.0和Ag(CN)2-的活度为0.001时,银是否会发生析氢腐蚀?7.Zn浸在CuCl2溶液中将发生什么反应?当Zn2+/Cu2+的活度比是多少时此反应将停止?第三章电化学腐蚀反应动力学1.从腐蚀电池出发,分析影响电化学腐蚀速度的主要因素。

2.在活化极化控制下决定腐蚀速度的主要因素是什么?3.浓差极化控制下决定腐蚀速度的主要因素是什么?4.混合电位理论的基本假说是什么?它在哪方面补充、取代或发展了经典微电池腐蚀理论?5.何谓腐蚀极化图?举例说明其应用。

6.试用腐蚀极化图说明电化学腐蚀的几种控制因素以及控制程度的计算方法。

7.何谓腐蚀电势?试用混合电位理论说明氧化剂对腐蚀电位和腐蚀速度的影响。

8.铁电极在pH=4.0的电解液中以0.001A/cm2的电流密度阴极化到电势-0.916V(相对1mol/L甘汞电极)时的氢过电势是多少?9.Cu2+离子从0.2mol/LCuSO4溶液中沉积到Cu电极上的电势为-0.180V(相对1mol/L甘汞电极),计算该电极的极化值。

第2章1腐蚀的电化学基础(电化学腐蚀热力学)

第2章1腐蚀的电化学基础(电化学腐蚀热力学)

负极(氧化反应):
Zn(s) → Zn2+(aq) + 2e 正极(还原反应):
MnO2(s) + H+(aq) + e → MnO(OH)(s) 2 MnO(OH)(s) → Mn2O3(s) + H2O(l) 合并,得总的放电反应:
Zn(s) + 2 MnO2(s) + 2 H+(aq) → Zn2+(aq) + Mn2O3(s) + H2O(l)
2H+ + 2e → H2
第二章 腐蚀的电化学基础电化学腐蚀热力学
§2.1 腐蚀原电池 对于一般中性溶液,通常是溶液中的氧被还原为氢氧根离子,即: O2 +2H2O + 4e → 4OH— 对于含有贵金属离子的溶液,则会发生金属离子的还原,例如: Cu2+ + 2e → Cu
腐蚀过程示意图
第二章 腐蚀的电化学基础电化学腐蚀热力学
属)作电接触,并同时处于电解质溶液中的原电池体系,其腐蚀反应可
以概括为:
阳极:
M — ne → Mn+
电子流动:
e阳 → e阴
阴极:从阳极流来的电子被阴极表面附近溶液中某种物质D所吸收,
变成其还原态eD:
D + e → [eD] 上述反应,对于无强氧化剂和重金属离子的酸性溶液通常会发生氢
离子的还原,即:
金属的腐蚀与防护
教学课件
第二章 腐蚀的电化学基础电化学腐蚀 热力学
§2.1 腐蚀原电池 §2.2 热力学概念 §2.3 电位-pH图
第二章 腐蚀的电化学基础电化学腐蚀热力学
§2.1 腐蚀原电池
溶解 氧化反应、阳极
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
2
•(相对)电极电位
为了使用方便,采用标准氢电极作为相对标准,并 规定其电极电位为零,待测电极的电极电位数值规定为 该电极与标准氢电极组成原电池电动位的数值。
氢离子与被吸附的氢气建立下列平衡:
规定:
在任何温度下
φθ(H+/H2)=0.00000V
电极电位
标准氢电极作负极,待测电极作正极,测得 的电动势就是该电极的电极电势。例如
微观腐蚀电池
• 化学成分不均匀性。如:金属中杂质。 • 杂质的组成、性质不同于基体,有的相对 基体呈阳极,减缓腐蚀;有的杂质呈阴极, 加速腐蚀。
• 如: 金属锌中的Al、Pb、Hg等杂质,呈阳 极,它们可以减缓金属锌在硫酸中腐蚀; • 金属锌中的Fe、Cu等杂质,呈阴极, 它们 加速锌在硫酸中腐蚀。
电极(Electrode)
电极材料/电解质
Zn|Zn2+,SO42-, Pt|H2,H+
•传递电荷 •氧化或还原反应
的地点 •“半电池”
电极的命名(name of electrode)
阳极(anode electrode): 发生氧化反应的电极。
发生还原反应的电极。
阴极(cathode electrode):
宏观腐蚀电池
• 电极大小可用肉眼区分开的腐蚀电池称为 宏观腐蚀电池。 • 产生原因有:异种金属接触、环境中腐蚀 介质浓度差异、 温度差异。
• 异种金属接触 • 不同金属或合金接触后,当处于同一 溶液中时,电位较负的材料成为阳极, 不断被腐蚀,电位较正的材料得到保 护。
• 海水中航行的船体钢壳与铜合金推进 器构成这类电池,它们又称为腐蚀电 偶。
• 环境中腐蚀介质浓度差异
• 环境腐蚀成分浓度差异构成的电池通称为“浓差 电池”。 • 常见浓差电池有ቤተ መጻሕፍቲ ባይዱ盐浓差电池”和“充气差异电 池”。前者由氯离子等盐浓度差异造成,后者为 含空气(主要是氧气)量的差异产生。这类电池 用来解释“缝隙腐蚀”、“水线腐蚀”及“垢下 腐蚀”等现象。
• 温度差异 • 同种金属的个部分处于不同温度中,可以 构成温差电池。 • 研究这种温度差对腐蚀影响的报道不多。 有报道说,硫酸铜溶液中,高温铜是阴极, 低温铜是阳极。铅的行为与铜类似,但银 的极性与铜相反。
常见参比电极(25℃)
电极 标准氢电极 饱和甘汞电极 电位 0 0.2415 优点 缺点 使用和携带 不方便 电位稳定性好,再现 对温度敏感 性好,扩散电位小 可直接投入中性氯化 物溶液中使用,用于 微区测量,高温稳定 性好
银/氯化银电极 0.288
铜/硫酸铜电极 0.318
工业条件下使用
电极电位是电子导体和离子导体接触时 的界面电位差。 因界面两侧导体的电荷交换能力不同 (电荷密度不同或者携带电荷载体运动速度 不同),达到平衡时,必定会在界面上产生 电位差,以维持两侧的电荷交换速度相等。
不同导体的界面电位差
• 绝对电极电位的不可测性
单独电极的绝对电位如 Zn / Zn ,Cu / Cu 目前尚无法测量, 这是因为绝对电极电位的物理意义是,单位正电荷从真空无 限远处移动到电极内部某点处所作的功,其中的化学功部分 是不可测的,结果导致整个电极的绝对电极电位不可测。
腐蚀电池工作要素
• 电化学腐蚀的本质是形成了腐蚀电池。 • 腐蚀电池起作用的要素为:
(1)材料表面产生阳极和阴极,二者具有不同 电位、位于不同位置; (2)阳极和阴极之间要有电性连接(电子导体 通道);
(3)阳极与阴极均处于有导电能力的腐蚀环 境内(离子导体通道)。
总之,要有两种电极(阳极、阴极)和 两种通道(电子通道、离子通道)。 以锌在酸溶液中腐蚀为例,腐蚀电池工作过 程如图2-1所示。
组织结构不均匀性
• 金属或合金内部存在粒子、成分和排列方 式不同区域。如,晶粒和晶界。 • 晶界原子排列疏松和混乱,易富集杂质, 化学性质较活泼,电位比晶粒电位更负。
• 工业纯铝晶粒电位0.585 V,而晶界电位 0.494 V。
物理状态不均匀性
• 机械加工造成局部材料变形或应力集中。
• 应力集中和变形大的地方易成为阳极,例 如铁板弯曲处及铆钉头部区域容易优先发 生腐蚀。
的电动势就等于铜电极的标准电极电势。
负极
正极
标准 氢电极
标准 铜电极
电池反应: Cu2+ + H2 ⇌ Cu + 2H+
E = θ(Cu2+/Cu) - θ(H+/H2)
= θ(Cu2+/Cu)=0.337V
• 参比电极
条件:① 电极反应是可逆的
② 电位稳定而不随时间变化 ③ 交换电流密度大,不极化或难极化 ④ 参比电极内溶液与腐蚀介质不渗污 ⑤ 温度系数小
化学腐蚀 条件 现象 本质 金属和氧化剂直 接接触 无电流 金属被氧化的过 程
电化学腐蚀 不纯金属或合金与电解 质溶液接触 产生有微弱电流产生 较活泼的金属被氧化的 过程
相互关系:化学腐蚀和电化学腐蚀往往同时发生
2.2 电极与电极电位
1. 电极
腐蚀电池:两个电极 一个电极:半电池 包括:电极本身,电解质溶液
正极(positive electrode):
电势较高的电极。
负极(negative electrode):
电势较低的电极。
可逆电池
1 可逆电池的定义(The definition of reversible cell) 在化学能和电能相互转化时,始终处于热力学平 衡状态的电池。
2 可逆电池的条件
(1)金属电极(metal electrode)
金属(板、棒或条)浸入含有该金属离子的溶液 中所形成的电极。 以铜电极为例,电极可表示为
Cu( s ) Cu 2 (a )
Cu 2 2e Cu
电极符号:
电极反应:
(2)气体电极(gas electrode)
电极符号:
Pt ( s ), H 2 ( p ) H (a )
电极反应:
2H 2e H 2
电极结构,见右图
• 多重电极
例如:锌板插入盐酸中,Zn、H+都在锌板上 发生反应。
• 参比电极
条件:① 电极反应是可逆的 ② 电位稳定而不随时间变化 ③ 交换电流密度大,不极化或难极化 ④ 参比电极内溶液与腐蚀介质不渗污 ⑤ 温度系数小
2. 电极电位
• 电极电位产生原因
• 腐蚀电池的工作历程 (电化学腐蚀的过程) ① 阳极过程 ② 阴极过程 ③ 电荷的传递
• 电化学腐蚀的次生过程 如:铁和铜在氯化钠溶液中组成腐蚀电池, 形成次生产物沉淀 Fe(OH) 2
腐蚀电池的类型
• 宏观腐蚀电池
① 电偶腐蚀(异种金属腐蚀)
② 浓差电池 分为:溶液浓差电池、氧浓差电池、温 差电池
• 腐蚀是以电化学反应为主的化学变化,用热力学 理论来刻画其变化方向,回答材料在具体环境中 是否发生腐蚀和发生腐蚀的倾向大小。 • 腐蚀热力学以电极电位作为腐蚀倾向判别函数, 建立相应理论和方法。 • 注意:腐蚀倾向不等于腐蚀速度。没有倾向,不 会有速度;小的倾向,不可能出现大的速度;但 大的倾向和大的速度没有必然。
表面膜不完整性
• 金属表面膜如果不完整,孔隙或破损处金属相对 带膜表面有较负电位,易成为阳极。腐蚀往往先 从这些点上开始。
• 显色指示剂可以用于观察微腐蚀电池的存在。 • 采用酚酞检测阴极区附近因阴极反应积累的OH- ; 用铁氰化钾溶液检测铁阳极区所积累的亚铁离子; 用茜素酒精溶液检测铝阳极区溶出的铝离子等等。 实际腐蚀过程往往是以上各类微腐蚀电池和各类 宏腐蚀电池的某种混合形式。
电化学腐蚀与化学腐蚀的比较
项目 介质 反应式 过程规律 化学腐蚀 干燥气体或非电解质溶 液 电化学腐蚀 电解质溶液
vi M in ne 0
vi M i 0
化学反应动力学
i
电极过程动力学
i
能量转换
电子传递 反应区 产物 温度
化学能与热
化学能与电能
直接的,不具备方向性, 间接的,有一定的方向性,能 测不出电流 测出电流 在碰撞点瞬时完成 在碰撞点直接形成 主要在高温条件下 在相对独立的阴、阳极区同时 完成 一次产物在电极上完成,二次 产物在一次产物相遇处形成 室温和高温条件下
电化学腐蚀热力学
§2.1 电池过程 §2.2 电极与电极电位 §2.3 腐蚀过程的热力学判据 §2.4 电位-pH图
腐蚀热力学的研究内容
• 热力学研究体系的状态、反应的方向性等。 • 自然界中的自发过程,其体系能量是降低的。 • 化学热力学中引入各种状态函数,来判断化学反 应的方向。如:用吉普斯函数判断定压过程的反 应方向;用赫姆霍兹函数判断定容过程变化方向。
电极反应
负极: 正极: Zn-2e- =Zn2+ 2H++2e- =H2↑
Zn+2H+=Zn2++H2↑ 总反应: Zn+H2SO4=ZnSO4+H2↑
简单原电池的正负极和电子流向如何判断? 负极(–):是活泼金属,本身失去电子,
电 子 电 流
发生氧化反应。
是不活泼金属或非金属, 进电子 , 正极(+):
总反应: Zn Cu 2 Zn2 Cu
负极 Zn = Zn2+ + 2e 电子从原电池流 出(到外电路) 的一极。 负极上总是发生 氧化反应。 极板上电子是富 余的,带负电荷 。
正极 Cu2+ + 2e = Cu 电子(从外电路) 流入原电池的一 极。 正极上总是发生 还原反应, 极板上是缺电子 的,带正电荷。
原电池的符号表示 为了书写的方便,常用下列符号来表示原电池的结构:
(1)以(+)表示原电池的正极,正极总是写在右边;以(-)表示原电池的 负极,负极总是写在左边。 (2)正、负极中总是有一种导电的物质,如Zn、Cu、Ag、等还原态物质可 作为电极导体,导体总是写在紧邻(+)、(-)的最旁边的位置。如果 电对中的还原态物质不是导体,如Fe3+/Fe2+、 H+/ H2 、Cl2/Cl- 等,就需 要加惰性电极,如:C(石墨)、Pt等。
相关文档
最新文档