概率论与数理统计第12讲PPT课件

合集下载

概率论与数理统计课件ppt

概率论与数理统计课件ppt
简化数据结构,解释变量间的关系。
操作步骤
计算相关系数矩阵、求特征值和特征 向量、确定主成分个数。
实例
分析消费者对不同品牌手机的偏好。
聚类分析
聚类分析
常见方法
目的
实例
将类似的对象归为同一 组,即“簇”,不同簇
的对象尽可能不同。
层次聚类、K均值聚类、 DBSCAN等。
揭示数据的内在结构, 用于分类、猜测和决策
用数学符号表示一个随机实验的结果 。
随机变量可以取到任何实数值,且取 每个结果的概率为一个确定的函数。
离散型随机变量
随机变量可以取到所有可能的结果, 且取每个结果的概率为一个确定的数 。
随机变量的函数变换
线性变换
对于随机变量X和常数a、b,有 aX+b的散布与X的散布不同。
非线性变换
对于随机变量X和函数g(x),g(X)的散 布与X的散布不同。
置信区间
根据样本数据对总体参数进行估计的一个范围,表示我们对 估计的可靠程度。
假设检验与置信水平
假设检验
通过样本数据对总体参数或散布进行 假设,然后根据检验结果判断假设是 否成立。
置信水平
假设检验中,我们相信结论正确的概 率,通常表示为百分比。
05 数理统计的应用
方差分析
方差分析(ANOVA)
随机进程在通讯、气象、物理等领域有广泛应用。
马尔科夫链蒙特卡洛方法
01
马尔科夫链蒙特卡洛方法是一种 基于蒙特卡洛模拟的统计推断方 法,通过构造一个马尔科夫链来 到达近似求解复杂问题的目的。
02
马尔科夫链蒙特卡洛方法在许多 领域都有应用,如物理学、化学 、经济学等。
04 数理统计基础
样本与样本空间

概率论与数理统计ppt课件

概率论与数理统计ppt课件

04
理解基本概念和原理
做大量练习题,培养解题能力
05
06
阅读相关书籍和论文,拓宽知识面
02
概率论基础
概率的基本概念
试验
一个具有有限个或无限个 可能结果的随机试验。
事件
试验中的某些结果的总称 。
概率
衡量事件发生可能性的数 值,通常表示为0到1之间 的实数。
必然事件
概率等于1的事件。
不可能事件
概率等于0的事件。
01 点估计
用样本统计量估计总体参数,如用样本均值估计 总体均值。
02 区间估计
给出总体参数的估计区间,如95%置信区间。
03 估计量的性质
无偏性、有效性和一致性。
假设检验
假设检验的基本思想
先假设总体参数具有某种 特性,然后通过样本信息 来判断这个假设是否合理 。
双侧检验
当需要判断两个假设是否 相等时,如总体均值是否 等于某个值。
连续型随机变量
取值无限的随机变 量。
方差
衡量随机变量取值 分散程度的数值。
03
数理统计基础
总体与样本
总体
研究对象的全体。
抽样方法
简单随机抽样、分层抽样、系统抽样等。
样本
从总体中随机抽取的一部分个体,用于估 计和推断总体的特性。
样本大小
样本中包含的个体数量,需要根据研究目 的和资源来确定。
参数估计
单因素方差分析
单因素方差分析的定义
单因素方差分析是方差分析的一种形式,它只涉及一个实验因素。通过对不同组的均值进行比 较,可以确定这个因素对实验结果的影响是否显著。
单因素方差分析的步骤
单因素方差分析通常包括以下步骤:首先,对实验数据进行分组;其次,计算每组的均值;接 着,计算总的均值和总的变异性;然后,计算组间变异性和组内变异性;最后,通过比较这两 种变异,得出因素的显著性。

14级--GZ《概率与统计》_第12讲_5.1大数定律_5.2中心极限定理

14级--GZ《概率与统计》_第12讲_5.1大数定律_5.2中心极限定理

§2 中心极限定理
5.2 中心极限定理
简介
中心极限定理是研究在什么条件下,独立随机变 量序列部分和的极限分布为正态分布的一系列定理 的总称。 在自然界与生产中,一些现象受到许多相互独立 的随机因素的影响,如果每个因素所产生的影响都 很微小时,总的影响可以看作是服从正态分布的。 中心极限定理就是从数学上证明了这一现象 。 它是近两个世纪概率论研究的中心问题,因此这 些定理称为中心极限定理。
P(120000 aX 60000 ) 0.9,即 P( X
由棣莫弗 - 拉普拉斯定理知,
60000 ) 0.9. a
60000 X 60 60000 a 60 P( X ) P( ) 0 . 9. a 60 9.4% 60 9.4%
5.2 中心极限定理
定理1:独立同分布中心极限定理 (变形)
P( k 1
n
X
n
k
n
当n 时 x) ( x)
n
k
X
式中
k 1
n
n
X n n 1 X X
分子分母同时除以n n k 1

k
X 近似 ~ N (0,1) 故: n

X ~ N (,
为什么会有这种规律性?这是由于大量试验过程中,随
机因素相互抵消、相互补偿的结果。
用极限方法来研究大量独立(包括微弱相关)随机试验
的规律性的一系列定律称为大数定律。
5.1 大数定律
弱大数定理(辛钦大数定理)
设随机变量序列 X1, X2, … 独立同分布,具有有限的 数学期望 E(Xk)=μ, k=1, 2, …,则对任给 ε >0 ,有
棣莫弗 – 拉普拉斯定理 (针对二项分布)

概率论与数理统计课件(最新完整版)

概率论与数理统计课件(最新完整版)

“骰子出现2点”
图示 A与B互斥
A B

说明 当AB= 时,可将AB记为“直和”形式 A+B. 任意事件A与不可能事件为互斥.
5. 事件的差 事件 “A 出现而 B 不出现”,称为事件 A 与
B 的差. 记作 A- B(或 AB
)
实例 “长度合格但直径不合格”是“长度合格”
与“直径合格”的差.
实例4 “从一批含有正
其结果可能为:
品和次品的产品中任意抽
取一个产品”.
正品 、次品.
实例5 “过马路交叉口时,
可能遇上各种颜色的交通
指挥灯”.
实例6 “一只灯泡的寿命” 可长可 短. 随机现象的特征: 条件不能完全决定结果
说明 1. 随机现象揭示了条件和结果之间的非确定性联
系 , 其数量关系无法用函数加以描述.
1. 包含关系 若事件 A 出现, 必然导致 B 出现 , 则称事件 B 包含事件 A,记作 B A 或 A B. 实例 “长度不合格” 必然导致 “产品不合 格” 所以“产品不合格” 包含“长度不合格”. 图示 B 包含 A.
A
B

若事件A包含事件B,而且事件B包含事件A, 则称事 件A与事件B相等,记作 A=B. 2. 事件的和(并) “ 二 事 件A, B至 少 发 生 一 个 ” 也 是 个 一事件 , 称 为 事 件A 与 事 件 B的和事件.记 作A B, 显 然 A B {e | e A或e B}. 实例 某种产品的合格与否是由该产品的长度与 直径是否合格所决定,因此 “产品不合格”是“长度 不合格”与“直径不合格”的并. 图示事件 A 与 B 的并.
(2) ABC or AB C;
( 3) ABC ;

概率论与数理统计完整ppt课件

概率论与数理统计完整ppt课件
化学
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的

高等数学第12章 概率论与数理统计

高等数学第12章 概率论与数理统计
记作B A
易知:A B, 即事件A与B为互逆事件
高等数学
6. 事件的运算律
1、交换律:A B=B A,AB=BA 2、结合律:(A B) C=A (B C)
(AB)C=A(BC) 3、分配律:(A B)C=(AC) (BC),
(AB) C=(A C)(B C) 4、对偶(De Morgan)律:
A U B A I B, AB A U B
推广:U Ak I Ak , I U Ak Ak .
k
k
k
k
高等数学
例 甲、乙两人各向目标射击一次,设:
A=甲击中目标,B 乙击中目标
试用A、B的运算关系表示下列事件 :
A1 目标被击中: A U B A2 两人恰有一人击中目标: AB U AB A3 目标未被击中: AB A4 两人都击中目标: AB
P(A | B) 1 3
高等数学
条件概率计算
P( A | B) P( AB) P(B)
P(B | A) P( AB) P( A)
高等数学
概率的乘法公式
两个事件 : P( AB) P( A)P(B | A) P(B)P( A | B)
三个事件 :
P( A1 A2 A3 ) P( A1 )P( A2 | A1 )P( A3 | A2 A1 )
高等数学
概率的性质
1) 对于任一事件 A,有 0 剟P(A) 1
2) 0P() 1, P() 0
3) 若 0AB, 则Æ
0P(A U B) P(A) P(B)
推论: 对于任一事件 ,A有 0P(A) 1 P(A)
推广: n个事件A1,A2,L ,An是互不相容的事件组,有

概率论与数理统计数学PPT课件

概率论与数理统计数学PPT课件

i 1
i 1
且 fn (A) 随n的增大渐趋稳定,记稳定值为p.
13
(二) 概率
定义1:fn ( A)的稳定值p定义为A的概率,记为P(A)=p
定义2:将概率视为测度,且满足:
1。 0 P( A) 1
2。 P(S) 1
k
k
3。 若A1, A2,…,Ak两两互不相容,则 P( Ai ) P( Ai )
3
概率统计中研究的对象:随机现象的数量规律
对随机现象的观察、记录、试验统称为随机试验。 它具有以下特性:
1. 可以在相同条件下重复进行 2. 事先知道可能出现的结果 3. 进行试验前并不知道哪个试验结果会发生
例:
✓ ✓ ✓ ✓
抛一枚硬币,观察试验结果; 对某路公交车某停靠站登记下车人数; 对某批电子产品测试其输入电压; 对听课人数进行一次登记;
①,②,…,n
Ak
)
a n
a
a},Ak
b
{ ①,②,…,a
}
无关,且与 a, b都无关,若a =0呢?对吗?
为什么?
不 是 等 可 能 概
记第k次摸到的球的颜色为一样本点:

S={红色,白色},Ak {红色} P( Ak ) 1 2 22
例7:某接待站在某一周曾接待12次来访,已知所有这12次 接待都是在周二和周四进行的,问是否可以推断接待时间是 有规定的?
----------与k无关
21
解2:
视哪几次摸到红球为一样本点
, , ,, 12 k n
总样本点数为
Cna
,每点出现的概率相等,而其中有
C a1 n 1

样本点使 Ak
发生,
P( Ak )

概率论与数理统计课件 第12讲

概率论与数理统计课件 第12讲
§4.3 协方差与相关系数
对于二维随机向量(X,Y), 除了其分量X 和Y 的期望与方差之外, 还有一些数字特征, 用以刻画X与Y之间的相关程度,其中最主要 的就是下面要讨论的协方差和相关系数。
4.3.1 协方差 定义1:若 E{[ X-E(X)][Y-E(Y)]} 存在,
则称其为X 与Y 的协方差,记为Cov(X,Y), 即 Cov(X, Y) = E{[ X-E(X)][Y-E(Y) ]}. (1)
“=”成立当且仅当X与Y之间有线性 关系,即存在常数a和b,使Y=aX+b.
协方差的大小在一定程度上反映了X 和Y 相互间的关系,但它还受X 和Y 本身度量单位 的影响。
为了克服这一缺点,我们对协方差进行 标准化,这产生了相关系数 。
4.3.2 相关系数
定义2: 设Var(X) > 0, Var(Y) > 0, 则称
当Cov(X, Y) >0时,表明两个随机变量有相同 方向变化的趋势; 当Cov(X, Y) <0时,表明两个随机变量有相反 方向变化的趋势。
协方差性质
(1) Cov(X, Y) =E(XY)-[E(X)][E(Y)] , 当 X 和 Y 相互独立时,Cov(X, Y)=0;
(2) Cov(X, Y) = Cov(Y, X);
(3) 若ρ=0,则称X 与Y 互不相关(不线性相
关)。 若| ρ |=1,则表明X与Y 完全线性相关;
| ρ |越接近1,表明X 与Y的线性关系越强 ; | ρ |越接近0,表明X 与Y的线性关系越弱。
特别注意: 当ρ=0时,X与Y 互不相关只是
表明X 与Y不线性相关,但X 与Y之间可能有 某种的函数关系,因此不能保证X与Y相互独 立。

概率论与数理统计书ppt课件

概率论与数理统计书ppt课件

条件概率与独立性
CHAPTER
随机变量及其分布
02
随机变量的概念与性质
定义随机变量为在样本空间中的实值函数,其取值依赖于随机试验的结果。
随机变量
讨论随机变量的可数性、可加性、正态性等性质。
随机变量的性质
离散型随机变量的概念
定义离散型随机变量为只能取可数个值的随机变量。
离散型随机变量的分布
讨论离散型随机变量的概率分布,如二项分布、泊松分布等。
应用
中心极限定理及其应用
CHAPTER
贝叶斯推断与决策分析
07
贝叶斯推断的基本原理
金融风险管理
贝叶斯推断在金融风险管理领域有着广泛的应用,如信用风险评估、投资组合优化等。
医疗诊断
贝叶斯推断在医疗诊断方面也有着重要的应用,如疾病诊断、预后评估等。
机器学习与人工智能
贝叶斯推断在机器学习算法和人工智能领域中也有着广泛的应用,如朴素贝叶斯分类器、高斯混合模型等。
参数估计与置信区间
01
点估计
用单一的数值估计参数的值。
02
区间估计
给出参数的一个估计区间,通常包括一个置信水平。
比较两个或多个组的均值差异,确定因素对结果的影响。
方差分析
检验两个或多个组的方差是否相等。
方差齐性检验
研究变量之间的关系,并预测结果。
回归分析
假设检验与方差分析
CHAPTER
回归分析与线性模型
应用
在现实生活中,大数定律被广泛应用于保险、赌博、金融等领域,通过统计数据来预测未来的趋势和风险。
大数定律及其应用
在独立随机变量序列中,它们的和的分布近似于正态分布,即中心极限定理。这意味着,当样本量足够大时,样本均值近似于正态分布。

十二讲概率统计ppt课件共54页文档

十二讲概率统计ppt课件共54页文档

n2 = 0.0591 1.7971 0.2641 0.8717 -1.4462 >>n3 = normrnd([1 2 3;4 5 6],0.1,2,3) %mu为均值矩阵
n3 = 0.9299 1.9361 2.9640
4.1246 5.0577 5.9864
>> R=normrnd(10,0.5,[2,3]) %mu为10,sigma为0.5的2行3 列个正态随机数
自由度为N的t分布随机数
16.03.2021
mathworks
8
Frnd gamrnd
frnd(N1, N2,m,n) gamrnd(A, B,m,n)
第一自由度为N1,第二自由度为N2的F分布随机 数 参数为A, B的gamma分布随机数
betarnd lognrnd nbinrnd
betarnd(A, B,m,n) lognrnd(MU,SIGMA, m,n) nbinrnd(R, P,m,n)
均匀分布(离散)随机数
Exprnd Normrnd chi2rnd Trnd
exprnd(Lambda,m,n) 参数为Lambda的指数分布随机数
normrnd(MU,SIGM A,m,n)
chi2rnd(N,m,n)
参数为MU,SIGMA的正态分布随机数 自由度为N的卡方分布随机数
trnd(N,m,n)
ncx2rnd
ncx2rnd(N, delta,m,n) 参数为N,delta的非中心卡方分布随机数
raylrnd
raylrnd(B,m,n)
参数为B的瑞利分布随机数
weibrnd
weibrnd(A, B,m,n)
参数为A, B的韦伯分布随机数

《概率论与数理统计》课件

《概率论与数理统计》课件

条件概率与独立性
条件概率
在某个事件B已经发生的条件下,另 一事件A发生的概率,记为P(A|B)。
独立性
两个事件A和B如果满足 P(A∩B)=P(A)P(B),则称事件A和B是 独立的。
随机变量及其分布
01
随机变量
随机变量是定义在样本空间上的 一个实值函数,表示随机试验的 结果。
02
离散型随机变量
03
连续型随机变量
离散型随机变量的取值可以一一 列举出来,其概率分布可以用概 率质量函数或概率函数表示。
连续型随机变量的取值范围是一 个区间或半开区间,其概率分布 可以用概率密度函数表示。
数理统计初步
02
统计数据的描述
01
统计数据的收集
描述如何通过调查、试验或观测 等方法,获取用于统计分析的数
据。
03
夫链
随机过程的基本概念
随机过程
随机过程是一组随机变量,每个随机 变量对应于时间或空间的一个点。
有限维分布
描述随机过程在有限个时间点上的联 合分布。
独立性
如果随机过程在不相交的时间区间上 的随机变量是独立的,则该随机过程
是独立的。
马尔科夫链及其性质
马尔科夫性
在已知现在状态下,未来与过去独立,即“未来 只取决于现在”。
03
数据的可视化
介绍如何使用图表(如直方图、 散点图等)将数据可视化,以便 更直观地理解数据分布和关系。
02
数据的整理
介绍如何对数据进行分类、排序 和分组,以便更好地理解和分析

04
数据的数字特征
介绍如何使用均值、中位数、众 数、方差等统计量来描述数据的
中心趋势和离散程度。
参数估计与置信区间
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通过上例, 可看到求未知参数q的置信区间的
具体做法如下
(1)寻求一个样本X1,X2,...,Xn的函数:
W=W(X1,X2,...,Xn;q), 它包含待估的参数q, 而不含其它未知参数, 并
且W的分布已知且不依赖于任何未知参数(当
然不依赖于待估参数q);
©wenjie, 福建师范大学 福清分校
概率论与数理统计
第12讲
福建师范大学福清分校数计系
©wenjie, 福建师范大学 福清分校
数学与计算机科学系,2006
1
§3 区间估计
©wenjie, 福建师范大学 福清分校
数学与计算机科学系,2006
2
对一个未知量, 人们在测量或计算时, 常不以 得到近似值为满足, 还需估计误差, 即要求知 道近似值的精确程度(亦即所求真值所在的范
X -m
P
z0.04
s
n
z0.01
0.95,
PX
s
n
z0.01
m
X
s
n
z0.04
0.95.

s
s
X
n z0.01, X
n
z0.04
(4.8)
也是置信水平为0.95的置信区间.
©wenjie, 福建师范大学 福清分校
数学与计算机科学系,2006
13
而比较两个置信区间
X
-
s
n
z0.025 , X
再者, 若由一个观察值算得样本均值的观察值 `x =5.20, 则得到一个区间
(5.200.49), 即 (4.71, 5.69)
©wenjie, 福建师范大学 福清分校
数学与计算机科学系,2006
11
最后得到的区间(4.71,5.69)已经不是随机区间 了, 但我们仍称它为置信水平为0.95的置信区 间. 其含义是: 若反复抽样多次, 每个样本值 (n=16)按(4.7)式确定一个区间, 按上面的解释,
解 我们知X道 是m的无偏估 ,且计有
X-m
~ N(0,1).
sn
X-m所服从的N分 (0,1布 )不依赖于任 sn
参数.
©wenjie, 福建师范大学 福清分校
数学与计算机科学系,2006
8
按标准正态分布的上a分位点的定义, 有
P s X-m nza/2 1-a,
(4.3)
a/2
a/2
(4.6)
©wenjie, 福建师范大学 福清分校
数学与计算机科学系,2006
10
s
X
nza/2.
(4.6)
如果取a=0.05, 即1-a=0.95, 又若s=1, n=16,
查表得za/2=z0.025=1.96. 于是得到一个置信水平 为0.95的置信区间
X11.9 ,6 即 (X0.4)9 . (4.7) 16
在这么多的区间中, 包含m的约占95%, 不包含 m的约仅占5%. 现在抽样得到区间(4.71,5.69), 则该区间属于那些包含m的区间的可信程度为 95%, 或"该区间包含m"这一陈述的可信度为
95%.
©wenjie, 福建师范大学 福清分校
数学与计算机科学系,2006
12
然而, 置信水平为1-a的置信区间并不是惟一 的. 以上例来说, 若给定a=0.05, 则又有
个.
©wenjie, 福建师范大学 福清分校
数学与计算机科学系,2006

6
区间估计的图示
q
©wenjie, 福建师范大学 福清分校
数学与计算机科学系,2006
7
例 设总体X~N(m,s2), s2为已知, m为未知, 设 X1,X2,...,Xn是来自X的样本, 求m的置信水平为 1-a的置信区间.
(4.1)
则称随机区间(q ,`q)是q的置信水平为1-a的 置信区间, q 和`q分别称为置信水平为1-a的
双侧置信区间的置信下限和置信上限.
©wenjie, 福建师范大学 福清分校
数学与计算机科学系,2006
4
当X是连续型随机变量时, 对于给定的a, 总是 按要求P(q < q <`q)=1-a求出置信区间, 而当X 是离散型随机变量时, 对于给定的a, 常常找 不到区间(q ,`q)使得P(q < q <`q)恰为1-a. 此 时去找区间(q ,`q)使得P(q < q <`q)至少为 1-a, 且尽可能地接近1-a.
s
n
z 0 .0 2 5

X
-
s
n
z0.01 , X
s
n
z0.04
前 者 的 区 间 长 度 为3.92 s ,后 者 的 区 间 长 度
n
为4.08 s ,比 前 者 要 大.
n
©wenjie, 福建师范大学 福清分校
数学与计算机科学系,2006
14
易知, 象N(0,1)分布那样其概率密度的图形是 单峰且对称的情况, 当n固定时, 以形如(4.5)那 样的区间其长度为最短. 我们自然选用它.
-za/2
0
za/2
©wenjie, 福建师范大学 福清分校
数学与计算机科学系,2006
9
PsX-mn za/21-a,
(4.3)
PX
s
nza/2
mX
snza/21-a.
(4.4)
这样就得到了m的一个置信水平为1-a的置信
区间 s
s
X-nza/2,Xnza/2 .
(4.5)
常写成
Xsnza/2.
3
置信区间 设总体X的分布函数F(x;q)含有一个 未知参数q, q(是q的可能取值范围), 对于 给定值a(0<a<1), 若由样本X1,X2,...,Xn确定的 两个统计量q = q(X1,X2,...,Xn)和 `q =`q(X1,X2,...,Xn)(q <`q), 对于任意q 满

P{q(X1,X2,...,Xn) < q <`q(X1,X2,...,Xn)}1-a
围). 类似地, 对于未知参数q, 除了求出它的点
估计qˆ 外, 还希望估计出一个范围, 并希望知
道这个范围包含参数q真值的可信程度. 这样
的范围通常以区间的形式给出, 同时还给出此
区间包含参数q真值的可信程度. 这种形式的
估计称为区间估计.
©wenjie, 福建师范大学 福清分校
数学与计算机科学系,2006
©wenjie, 福建师范大学 福清分校
数学与计算机科学系,2006
5
(4.1)式的含义为:若反复抽样多次(各次得到的 样本的容量相等, 都是n), 每个样本值确定一
个区间(q ,`q), 每个这样的区间要么包含q的 真值, 要么不包含q的真值, 按大数定律, 包含q 真值的约占100(1-a)%, 不包含q真值的约占 100a%, 例如, 若a=0.01, 反复抽样1000次, 则 得到的1000个区间中不包含q真值的约仅为10
相关文档
最新文档