三角形单元整理与复习课件
《三角形的复习与整理》(教案)四年级下册数学人教版
《三角形的复习与整理》(教案)四年级下册数学人教版一、教学内容:本次教学主要针对人教版四年级下册数学第五章《三角形》进行复习与整理。
该章节主要内容包括:三角形的定义、性质、分类和三角形的三边关系。
二、教学目标:1. 使学生掌握三角形的定义和性质,能够识别和分类三角形;2. 培养学生运用三角形知识解决实际问题的能力;3. 帮助学生理解和掌握三角形的三边关系。
三、教学难点与重点:1. 教学难点:三角形的三边关系的理解和运用;2. 教学重点:三角形的分类和性质的运用。
四、教具与学具准备:1. 教具:黑板、粉笔、三角板;2. 学具:练习本、尺子、铅笔。
五、教学过程:1. 实践情景引入:让学生观察教室里的三角形物体,引导学生发现三角形在日常生活中的应用。
2. 知识回顾:复习三角形的基本概念,如三角形的定义、性质等。
3. 例题讲解:利用三角板演示三角形的三边关系,讲解三角形的分类及识别方法。
4. 随堂练习:让学生自主完成练习本上的相关习题,巩固所学知识。
六、板书设计:板书内容主要包括三角形的定义、性质、分类和三边关系。
用简洁的语言和图示展示三角形的各种特点,方便学生理解和记忆。
七、作业设计:1. 作业题目:a. 有一个角是直角的三角形是直角三角形。
b. 两边之和大于第三边的三角形是锐角三角形。
c. 等边三角形的三个角都相等。
a. 三角形的______叫做三角形的底。
b. 有一个角是直角的三角形叫做______三角形。
c. 等腰三角形的两个底角______。
2. 答案:(1)判断题答案:a. 正确 b. 错误 c. 正确;(2)填空题答案:a. 任意两边 b. 直角 c. 相等。
八、课后反思及拓展延伸:1. 课后反思:回顾课堂教学,检查教学目标是否达成,学生掌握情况如何,针对存在的问题进行改进;2. 拓展延伸:让学生在生活中寻找三角形,并运用三角形知识解释相关现象,如解释自行车的三角形架构为什么稳定。
重点和难点解析:1. 三角形的三边关系的讲解;2. 三角形分类方法的引导学生自主发现;3. 实践情景引入环节的设计;对于这些重点细节,我将进行详细的补充和说明。
人教版四年级下册《三角形》整理与复习
任意三条线段都能围成一个三角形吗?
三角形任意两边之和要大于第三边。 三角形任意两边之差要小于第三边
三角形任意两边之和要大于第三边。
下列两组线段可以围成三角形吗?
(1)4厘米、5厘米、3厘米
4厘米+3厘米>5厘米
4厘米+5厘米>3厘米 小窍门:
5厘米+3厘米>4厘米 最小的两
(2)3米、8米、5米
23+32+32=87cm。 答:它的周长是87cm。
① ②③
小窍门: 1+2+3=6。
图中有( 6 )个三角形。 有( 4 )个直角三角形。 有( 1 )个锐角三角形。 有( 1 )个钝角三角形。
A
底
底
高 高高
B
底
C
A F
E
B
C
D
1、如果以边BC为底,则(AD)是它的高;
2、如果BE是高,则它的底为边( AC );
3、以边AB为底,AD是它的高,这种说法对吗?
(×)
底 高
高
底Leabharlann 底高你发现了什么
你发现了什么
你发现了什么
你发现了什么
讨论
通过以上这些图片,你发现了什么?
发现这些物体都用到了三角形,为什么呢?
什么叫做高和底?
从三角形的一个顶点到它的对边做一 条垂线,顶点和垂足之间的线段叫三角形 的高,这条对边叫做三角形的底。
每个三角形都有(三 )组底和高,每 一组的底和高都相互(垂直)。
小明画了三角形的一条高,他画的对吗? 顶点
高
×
请在图1三角形上选一条边为底,画出 和这条底相对应的高。
一个三角形最多可以画几条高?
2020届中考数学总复习讲义课件:第四单元 第20课时 直角三角形和勾股定理
跟踪训练 1.[2018·湘潭]《九章算术》是我国古代最重要的数学著作之一,在“勾 股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺, 问折者高几何?”翻译成数学问题是:如图 20-8 所示,△ABC 中,∠ACB=90°, AC + AB = 10 , BC = 3 , 求 AC 的 长 , 如 果 设 AC = x , 则 可 列 方 程 为 x_2_+___3_2_=___(1__0_-___x_).2
第四单元 三角形
第20课时 直角三角形和勾股定理
1.在 Rt△ABC 中,∠C=90°,∠B=30°,斜边 AB 的长为 2 cm,则 AC 长为( C )
A.4 cm
B.2 cm
C.1 cm
1 D.2 cm
2.[2019·毕节]如图 20-1,点 E 在正方形 ABCD 的边 AB 上,若 EB=1,EC=2, 那么正方形 ABCD 的面积为( B )
3.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛 藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图 20-15,把 枯木看做一个圆柱体,因一丈是十尺,则该圆柱的高为 20 尺,底面周长为 3 尺, 有葛藤自点 A 处缠绕而上,绕五周后其末端恰好到达点 B 处.则问题中葛藤的最 短长度是____2_5_____尺.
1.面积法 用面积法证明是常用的技巧之一,勾股定理的证明通常用面积法,即利用某个图 形的多种面积求法或面积之间的和差关系列出等式,从而得到证明的结论. 2.数形结合思想 在解决一些实际问题时,如立体图形侧面两点的距离问题,折叠问题,航海问题, 梯子下滑问题等,常直接或间接运用勾股定理及其逆定理,解决这些问题的过程, 充分体现了数形结合思想,这是中考的热点.
人教版六年级数学 下册第6单元《整理和复习》2图形与几何【全单元】课件
13、圆的半径扩大3倍,直径扩大( 3 )倍,周长扩 大(3 )倍;面积扩大( 9 )倍。
14、小铁环直径6分米,大铁环直径8分米。小铁环和大 铁环半径的比是( 3:4 );周长的比是( 3:4 ); 面积的比是( 9:16 )。如果它们滚过相同的路程, 则转动的圈数的比是( 3:4 )。
(二)复习平面图形的特点及关系
提问:我们先复习平面图形。那对于这些平面图形你又有哪些了解 呀?那这样吧,你可以结合这几个问题,先自己想一想,再和 小伙伴商量商量,建议大家做好相应的记录。如果有困难可以 向老师举手示意。
课件出示: (1)直线、射线和线段有什么联系和区别?同一平面内的两条直
线有哪几种位置关系? (2)我们学过哪些角?在放大镜下看角,它的大小会变化吗? (3)关于三角形,你知道些什么? (4)关于平行四边形,你知道些什么? (5)圆与上面的平面图形有什么不同?圆有哪些特点?
监控:长、正方体的棱长总和 长方体、正方体和圆柱的表面积 长方体、正方体、圆柱和圆锥的体积、容积
(教师随着学生的发言在黑板上梳理出表格)
二、回顾梳理 构建联系
(三)复习立体图形的特征、联系及公式
立体图形 棱长总和 表面积
体积(容积)
长方体
正方体
圆柱
圆锥
二、回顾梳理 构建联系
(三)复习立体图形的特征、联系及公式
课件出示:
二、回顾梳理 构建联系
(三)复习立体图形的特征、联系及公式
提问9:这些图形有没有一个共同的体积计算公式呢? (长方体、正方体和圆柱的体积都可以用底面积乘高,圆锥的体积再 乘 1 即可。)
全等三角形复习资料(搜集整理版)
特别鸣谢资源原创者,本人仅仅便于自己的备课整理排版了一下。
第十一章全等三角形复习一、全等三角形能够完全重合的两个三角形叫做全等三角形。
一个三角形经过平移、翻折、旋转可以得到它的全等形.2、全等三角形有哪些性质(1):全等三角形的对应边相等、对应角相等。
(2):全等三角形的周长相等、面积相等。
(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等.3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS")边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”))2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。
三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等"或“有两边及其中一边的对角对应相等”的两个三角形不一定全等; (4)时刻注意图形中的隐含条件,如“公共角”、“公共边"、“对顶角”第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴.这时我们也说这个图形关于这条直线(成轴)对称.2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。
这条直线叫做对称轴.折叠后重合的点是对应点,叫做对称点4。
轴对称的性质①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
二、线段的垂直平分线1。
经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线.2.线段垂直平分线上的点与这条线段的两个端点的距离相等3.与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数。
第十一章 三角形复习整理 (第1课时 知识要点)数学八年级上册同步教学课件(人教版)
解:延长BC交OD于点M,如图所示.
∵多边形的外角和为360°,
∴∠OBC+∠MCD+∠CDM
=360°-225°=135°.
M
∵∠BOD+∠OBC+∠MCD+∠CDM=180°,
∴∠BOD=45°.
针对练习
1.已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长
为 (C ) A.16
B.20或16
C.20
D.12
2.若(a-1)2+|b-2|=0,则以a,b为边长的等腰三角形的周长为 5 .
考点二 三角形中的重要线段 例3. 如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中
∠1=∠2=(180°-108°)÷2=36° ∠3=∠4=∠1=∠2=36°, ∴ ∠CAD=∠BAE-∠1-∠3=108°-36°-36°=36°.
课堂练习
1.长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木
棒允许连接,但不允许折断),得到的三角形的最长边为( B )
A.4
B.5
知识四 三 角 形 的 高 、 中 线 与 角 平 分 线
2.三角形的中线: ① 两个三角形的面积相等; ② 两个三角形的周长的差等于这两个三角形另两边的差. ③ 三条中线相交于一点(重心)
3.三角形的角平分线 A
B
D
∵ ∠ ABD= ∠ CBD
∴ AD是△ABC的角平分线
B
D
C
A EC
知识五 三 角 形 的 内 角 和 与 外 角 的 性 质
1.三角形的内角和: ① 三角形三个内角的和等于180°. ② 直角三角形的两个锐角互余.
A A
B
C
第十一章 三角形复习整理 (第3课时 数学模型)数学八年级上册同步教学课件(人教版)
解:根据△ ABC 的面积=12AB·CE=12BC·AD,得 12×3·CE=12×6·AD, 所以 CE=2AD.
4.如图,已知四边形ABCD,∠α,∠β分别是∠BAD,∠BCD的邻补角,
且∠B+∠ADC=140°,则∠α+∠β等于(A ) A.140° B.40° C.260° D.不能确定
飞镖模型
A
D B
C
结论1 ∠BDC=∠A+∠B+∠C.
结论2 AB+AC < BD+CD.
例3 (1)将一副直角三角板如图放置,两直角边重合,则∠α的度数为
(D )
A.75°
B.105°
C.135°
D.165°
(2) 如图,若∠ACE=∠ACD,∠ABE=∠ABD,猜想∠A,∠CEB和 ∠CDB之间的数量关系为_2_∠__A_+_∠__C__D_B_=__3_∠__CEB .
6.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2
之间有一种数量关系始终保持不变.请试着找一找这个规律,这个规律是( B )
A.∠A=∠1+∠2
B.2∠A=∠1+∠2
C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)
解:∵ ∠A+∠AED+∠ADE=180°, ∴ 2∠A+2∠AED+2∠ADE=360°. ∵∠1+2∠AED=180°,∠2+2∠ADE=180°, ∴∠1+∠2+2∠AED+2∠ADE=360°. ∴ 2∠A=∠1+∠2.
复习整理
数学模型
|第 3 课时|
第十一章 三角形复习整理 (第3课时)
【学习目标】
【学习目标】
8字 模型
全等三角形单元复习(一线三等角模型)课件 (共18张PPT)2023-2024学年人教版八年级上学期
(1)求证:CF=BE+EF;
(2)连接BF,BE=3,CF=9,
求∆BFE的面积.
感谢聆听
S∆BMC:S∆ABO.
D
图2
C
课堂小结
分层作业
必做题:1、如图,在△ABC中,∠B=∠C,点D、E、
F分别在AB、BC、AC边上,BE=CF,且∠B=∠DEF,
求证:DB=EC.
选做题:2.如图,在∆ABC中,AB=AC,∠BAC=90°,
P在BC靠近B处,连接AP,线段BE⊥AP于点E,线段
当AB=BC时,求证:∆ABD≌∆BCE .
A
C
D
B
E
第3关
第2关
第1关
第二关
变式1.如图,D、A、E三点都在直线m上,若
∠1=∠2=∠3,且BA=CA,求证:DE=BD+CE.
第二关
变式2.如图,在∆ABC中,∠B=∠C,BE=CF,
且∠AEF=∠B,求证:AC=EC.
第3关
第2关
第1关
第三关
全等三角形 AAS定理
一线三等角模型
学习目标
1.经历观察、分析、归纳的学习过程,归纳整理出
“一线三等角”图形的基本特征;
2.能在不同背景中提取基本模型,并运用其解决问题;
3.在学习过程中感受几何直观图形对几何学习的
重要性.
创设情境,探究1.如图,AD⊥DE,CE⊥ED,∠ABC=90°,
探究2.如图,CA⊥BP,DB⊥BP,
∠DPC=90°,且CP=DP,AC=4,
BD=3,求AB的长.
明晰概念,归纳模型
应用模型,解决问题
12.1 全等三角形 课件 人教版八年级数学上册(22张PPT)
新课讲授
探究:请同学们把课前准备好的三角尺按在纸片上, 划下图形,照图形裁下来的纸片和三角尺的形状、 大小完全一样吗?把三角尺和裁得的纸片放在一起 能够完全重合吗?
归纳总结
全等形的定义: 能够完全重合的两个图形称为全等形. 全等形的性质: 形状相同,大小相等.
练一练 下面哪些图形是全等形?
看大小、形状 是否完全相同
课堂小结
定义
能够完全重合的两个三角形叫做全等三角形
全
对应边相等
等 三
基本性质
对应角相等
角
长对长,短对短,中对中
形
对应边 公共边一般是对应边
对应元素 确定方法
对应角
大角对大角,小角对小角 公共角一般是对应角 对顶角一般是对应角
作业布置
1.完成课本P33页1-4题; 2.复习整理本节课知识框架,预习全等三角 形的判定并尝试整理思维导图; 3.探究性作业:利用全等形设计美丽的图案, 比比看谁的设计最好。
“全等”用符号“≌”表示,读作“全等于”.
A
D
B
C
E
F
△ABC≌△DEF
注意:记两个三角形全等时,通常把表示对应顶点
的字母写在对应的位置上.
全等三角形的性质
A
D
B
C
E
F
∵△ABC≌△DEF,
∴ AB = DE,AC = DF,BC = EF (全等三角形的对应边 相等),
∠A =∠D,∠B =∠E,∠C =∠F(全等三角形对应角相等).
牛刀小试
如图,△ABC 与△ADC 全等,请用数学符号表示出
这两个三角形全等,并写出相等的边和角. D 解:△ABC≌△ADC.
A
小学数学北师大版四年级下整理与复习 三角形和四边形 课件(共16张PPT)
第2课时 三角形和四边形
一、回顾整理
认识三角形和四边形
复习三角形的分类 复习三角形的内角和 复习三角形边的关系 复习四边形的分类
一、回顾整理
复习三角形的分类
按边分
等腰三角形 等边三角形 任意三角形
三角形
按角分
锐角三角形 直角三角形 钝角三角形
一、回顾整理
复习三角形的分类
按照角的不同,给三角形分类。
三角形任意两边之和大于第三边 。
一、回顾整理
复习四边形的分类 四边形
梯形 长方形
平行四边形边形的分类
平行四边形 长方形 正方形
梯形 四边形
一、回顾整理
复习四边形的分类 两组对边分别平行。
只有一组对边平行。
一、回顾整理
复习四边形的分类 两组对边分别平行,四个角是直角。
4 8
4
4
4
√
4
三、巩固练习
11.数学游戏:猜图形。 小组四人一起做游戏。一人事先 画好一个图形,另外三人通过轮 流提问猜这个图形的形状。谁先 猜出,谁获胜。
三、巩固练习
12.标出下面每个四边形各边的中点,然后将相邻两条边的中点连接 起来,围成一个新的图形。你发现了什么?
把线段分成相等 的两部分的点叫 线段的中点。
两组对边分别平行,四个角是直角, 四条边都相等。
二、知识应用
7.填一填。
C
45°
A
B
∠B=__4_5_°__
C
60°
A
B
∠B=__3_0_°__
A
36°
72°
B
C
∠C=__7_2_°__
二、知识应用
8.在能摆成三角形的小棒下面画“√”。(单位:厘米)
四年级数学下册第五单元三角形单元整理与复习ppt课件
完整版课件
41
一、判断
√ 1、一个三角形不能有两个钝角。( )
2、等腰三角形一定是锐角三角形。(×)
3、最大的角是锐角的三角形是锐角三角形。
(√ )
4、由2厘米、3厘米、5厘米这样三根小棒可以
围成一个三角形。(× )
5、自行车的三角架是应用了三角形的稳定性的
√ 特性。( )
完整版课件
42
二、填空。
小窍门: 最小的两
(2)3米、8米、5米
3米+8米>5米 5米+8米>3米 5米+3米=8米
边之和是 否大于第 三边
完整版课件
23
挑战自我
(1)任何三条线段都能组成一个三角形。 (× )
(2)因为a+b>c,所以a、b、c三边可以
构成三角形.
(×)
(3) 以长为3cm、5cm、7cm、10cm、 12cm的五条线段中的三条线段为边,可构 成__5__个三角形。
四边形的内角和:180°×2=360° 六边形的内角和:180°×4=720°
完整版课件
33
(按“角”分)三 角 形
锐角三角形
直角 三角形
钝角 三角形
完整版课件
34
3 1 2 1 2
完整版课件
35
小窍门:看最大的角
(1)∠1=42° ∠2=48° ∠3=90°,
这是( 直角 )三角形。
(2)∠1=60° ∠2=80° ∠3=40°,
完整版课件
38
思考:
等边三角形是锐角三角形,等腰三角形可能是 什么三角形?
等腰三角形的两个底角最大能不能是90°?
完整版课件
39Βιβλιοθήκη 顶角腰腰底角 底角
新人教版八年级上册数学[《三角形》全章复习与巩固—知识点整理及重点题型梳理](提高)
新人教版八年级上册数学知识点梳理及巩固练习重难点突破课外机构补习优秀资料《三角形》全章复习与巩固(提高)知识讲解【学习目标】1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线,要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n 边形一个顶点可以引(n -3)条对角线,将多边形分成(n -2)个三角形;(2)n 边形共有(3)2n n 条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n 边形的内角和为(n -2)·180°(n ≥3,n 是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n 边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n 边形的内角和等于(n -2)·180°(n ≥3,n 是正整数),可见多边形内角和与边数n 有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1.定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用.【典型例题】类型一、三角形的三边关系1.(2016?长沙模拟)一个三角形的三边长分别是3,2a-1,6,则整数a 的值可能是( ).A.2,3 B.3,4 C.2,3,4 D.3,4,5【思路点拨】直接利用三角形三边关系,得出a 的取值范围.【答案】B【解析】解:∵一个三角形的三条边长分别为3,2a-1,6,∴21 219 aa>3<解得:2<a<5,则整数a的值可能是3,4,故选 B.【总结升华】主要考察了三角形三边关系,正确得出a的取值范围是解题关键.举一反三:【变式】(2014秋?孝感月考)已知a、b、c是三角形三边长,试化简:|b+c-a|+|b-c-a|+|c-a-b|﹣|a-b+c|.【答案】解:∵a、b、c是三角形三边长,∴b+c-a>0,b-c-a<0,c-a-b<0,a-b+c>0,∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|,=b+c-a-b+c+a-c+a+b-a+b-c=2b.2.如图,O是△ABC内一点,连接OB和OC.(1)你能说明OB+OC<AB+AC的理由吗?(2)若AB=5,AC=6,BC=7,你能写出OB+OC的取值范围吗?【答案与解析】解:(1)如图,延长BO交AC于点E,根据三角形的三边关系可以得到,在△ABE中,AB+AE>BE;在△EOC中,OE+EC>OC,两不等式相加,得AB+AE+OE+EC>BE+OC.由图可知,AE+EC=AC,BE=OB+OE.所以AB+AC+OE>OB+OC+OE,即OB+OC<AB+AC.(2)因为OB+OC>BC,所以OB+OC>7.又因为OB+OC<AB+AC,所以OB+OC<11,所以7<OB+OC<11.【总结升华】充分利用三角形三边关系的性质进行解题.【与三角形有关的线段例1】类型二、三角形中的重要线段3.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为12cm和15cm两部分,求三角形的各边长.【思路点拨】因为中线BD的端点D是AC边的中点,所以AD=CD,造成两部分不等的原因是BC边与AB、AC边不等,故应分类讨论.【答案与解析】解:如图(1),设AB=x,AD=CD=12 x.(1)若AB+AD=12,即1122x x,所以x=8,即AB=AC=8,则CD=4.故BC=15-4=11.此时AB+AC>BC,所以三边长为8,8,11.(2)如图(2),若AB+AD=15,即1152x x,所以x=10.即AB=AC=10,则CD=5.故BC=12-5=7.显然此时三角形存在,所以三边长为10,10,7.综上所述此三角形的三边长分别为8,8,11或10,10,7.【总结升华】BD把△ABC的周长分为12cm和15cm两部分,哪部分是12cm,哪部分是15cm,问题中没有交代,因此,必须进行分类讨论.【与三角形有关的线段例5、】举一反三:【变式】有一块三角形优良品种试验田,现引进四个品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的方案供选择.【答案】解:方案1:如图(1),在BC上取D、E、F,使BD=ED=EF=FC,连接AE、AD、AF.方案2:如图(2),分别取AB、BC、CA的中点D、E、F,连接DE、EF、DF.方案3:如图(3),取AB中点D,连接AD,再取AD的中点E,连接BE、CE.方案4:如图(4),在 AB取点 D,使DC=2BD,连接AD,再取AD的三等分点E、F,连接CE、CF.类型三、与三角形有关的角4.(2015春?石家庄期末)已知△ABC中,AE平分∠BAC(1)如图1,若AD⊥BC于点D,∠B=72°,∠C=36°,求∠DAE的度数;(2)如图2,P为AE上一个动点(P不与A、E重合,PF⊥BC于点F,若∠B>∠C,则∠EPF=是否成立,并说明理由.【思路点拨】(1)利用三角形内角和定理和已知条件直接计算即可;(2)成立,首先求出∠1的度数,进而得到∠3的度数,再根据∠EPF=180°﹣∠2﹣∠3计算即可.【答案与解析】证明:(1)如图1,∵∠B=72°,∠C=36°,∴∠A=180°﹣∠B﹣∠C=72°;又∵AE平分∠BAC,∴∠1==36°,∴∠3=∠1+∠C=72°,又∵AD⊥BC于D,∴∠2=90°,∴∠DAE=180°﹣∠2﹣∠3=18°.(2)成立.如图2,∵AE平分∠BAC,∴∠1===90°﹣,∴∠3=∠1+∠C=90°﹣+,又∵PF⊥BC于F,∴∠2=90°,∴∠EPF=180°﹣∠2﹣∠3=.【总结升华】本题考查了三角形的内角以及角平分线的性质,准确识别图形是解题的关键.举一反三:【与三角形有关的角练习(3)】【变式】如图,AC⊥BC,CD⊥AB,图中有对互余的角?有对相等的锐角?【答案】3,2.类型四、三角形的稳定性5. 如图是一种流行的衣帽架,它是用木条(四长四短)构成的几个连续的菱形(四条边都相等),每一个顶点处都有一个挂钩(连在轴上),不仅美观,而且实用,你知道它能收缩的原因和固定方法吗?【答案与解析】解:这种衣帽架能收缩是利用四边形的不稳定性,可以根据需要改变挂钩间的距离。
《三角形的复习与整理》(教案)四年级下册数学人教版
教案:《三角形的复习与整理》一、教学目标1. 让学生理解和掌握三角形的特性,能够运用三角形的特性解决实际问题。
2. 培养学生的观察能力、操作能力和思维能力。
3. 培养学生合作交流的学习习惯,提高学生解决问题的能力。
二、教学内容1. 三角形的特性2. 三角形的分类3. 三角形的内角和4. 三角形的稳定性三、教学重点与难点1. 教学重点:三角形的特性、分类和内角和。
2. 教学难点:三角形的内角和的理解和应用。
四、教学过程1. 导入新课- 利用多媒体展示生活中的三角形实物,引导学生观察并说出三角形的特性。
- 提问:你们知道三角形有哪些特性吗?让学生举手发言,教师总结。
2. 讲授新课- 讲解三角形的特性,如稳定性、内角和为180度等。
- 讲解三角形的分类,如按边分和按角分。
- 讲解三角形的内角和,通过实际操作验证三角形的内角和为180度。
3. 实践操作- 让学生分组合作,利用三角板拼出不同类型的三角形,并观察其特性。
- 让学生测量三角形的内角和,验证三角形的内角和为180度。
4. 巩固练习- 出示一些关于三角形特性的练习题,让学生独立完成。
- 出示一些关于三角形分类和内角和的练习题,让学生独立完成。
5. 课堂小结- 让学生总结本节课所学的三角形知识,教师进行补充和总结。
6. 作业布置- 布置一些关于三角形特性的练习题,让学生回家完成。
- 布置一些关于三角形分类和内角和的练习题,让学生回家完成。
五、教学反思1. 教师要关注学生对三角形知识的理解和掌握情况,及时进行辅导和指导。
2. 教师要注重培养学生的观察能力、操作能力和思维能力,提高学生解决问题的能力。
3. 教师要关注学生的学习习惯,培养学生的合作交流能力。
六、教学评价1. 学生对三角形知识的理解和掌握情况。
2. 学生在实践操作中的表现,如观察能力、操作能力和思维能力。
3. 学生在合作交流中的表现,如参与度、互动和合作能力。
重点关注的细节:三角形的内角和的理解和应用详细补充和说明:三角形的内角和是三角形的一个重要性质,对于学生理解和掌握三角形知识具有重要意义。
【高效培优】沪教版七年级数学下册第十四章 三角形(章末整理与复习课件)
典例精析
例1 如图:图中的两个三角形全等,
D
B
A和B,C和D是对应顶点.
(1)用符号表示这两个三角形全等;
O
(2)写出它们的对应角,对应边;
A
C
(3)用等号表示各对应角,各对应边之间的关系.
解:(1)AOC BOD
(2)A和B,C和D,AOC和BOD, AO和BO,CO和DO,AC和BD
(3)A=B,C=D,AOC=BOD,
考点突破
解: 因为∠AEF=∠AFE,∠AFE=∠GFC, 所以∠AEF=∠GFC. 因为∠AEF=∠B+∠G, 所以∠GFC=∠B+∠G. 又因为∠ACB=∠GFC+∠G, 所以∠ACB=∠B+2∠G.
1
所以∠G= 2 (∠ACB-∠B).
考点突破
考点
三种线段
线段1 三角形的角平分线
4.现如图所示,D是△ABC的角平分线BD和
名师点拨
三角形全等判定
对应 两边一角
两角一边 三 三边
相等 两边 的元 及其
素 夹角
两边及 两角 两角及 角 一边的 及其 一角的 对角 夹边 对边
三角 一定 不一定 一定 一定 不 一定
形是 (SAS)
(ASA) (AAS) 一 (SSS)
否全
定
等
典例精析
例1 如图,AB=CD,AC=BD,△ABC和△DCB 是否全等?试说明理由.
要点梳理
全等三角形
1.能够完全重合的两个平面图形叫做 全等形.
其中,互相重合的顶点叫做_对应顶_点; 互相重合的边叫做_对_应_边_; 互相重合的角叫做_对_应角_.
2.能够完全重合的叫两做个全三等角三形角形.
3.“全等”用符号“ ”来表≌示,读作“
新人教版八年级上册数学[《三角形》全章复习与巩固—知识点整理及重点题型梳理](提高)
新人教版八年级上册数学知识点梳理及巩固练习重难点突破课外机构补习优秀资料《三角形》全章复习与巩固(提高)知识讲解【学习目标】1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线,要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形. 要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和: 三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n 条边就叫做n 边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1.定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用.【典型例题】类型一、三角形的三边关系1.(2016•长沙模拟)一个三角形的三边长分别是3,2a-1,6,则整数a的值可能是( ).A.2,3 B.3,4 C.2,3,4 D.3,4,5【思路点拨】直接利用三角形三边关系,得出a的取值范围.【答案】B【解析】解:∵一个三角形的三条边长分别为3,2a-1,6,∴21 219 aa-⎧⎨-⎩>3<解得:2<a<5,则整数a的值可能是3,4,故选B.【总结升华】主要考察了三角形三边关系,正确得出a的取值范围是解题关键.举一反三:【变式】(2014秋•孝感月考)已知a、b、c是三角形三边长,试化简:|b+c-a|+|b-c-a|+|c-a-b|﹣|a-b+c|.【答案】解:∵a、b、c是三角形三边长,∴b+c-a>0,b-c-a<0,c-a-b<0,a-b+c>0,∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|,=b+c-a-b+c+a-c+a+b-a+b-c=2b.2.如图,O是△ABC内一点,连接OB和OC.(1)你能说明OB+OC<AB+AC的理由吗?(2)若AB=5,AC=6,BC=7,你能写出OB+OC的取值范围吗?【答案与解析】解:(1)如图,延长BO交AC于点E,根据三角形的三边关系可以得到,在△ABE中,AB+AE>BE;在△EOC中,OE+EC>OC,两不等式相加,得AB+AE+OE+EC>BE+OC.由图可知,AE+EC=AC,BE=OB+OE.所以AB+AC+OE>OB+OC+OE,即OB+OC<AB+AC.(2)因为OB+OC>BC,所以OB+OC>7.又因为OB+OC<AB+AC,所以OB+OC<11,所以7<OB+OC<11.【总结升华】充分利用三角形三边关系的性质进行解题.【与三角形有关的线段例1】类型二、三角形中的重要线段3.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为12cm和15cm两部分,求三角形的各边长.【思路点拨】因为中线BD的端点D是AC边的中点,所以AD=CD,造成两部分不等的原因是BC边与AB、AC边不等,故应分类讨论.【答案与解析】解:如图(1),设AB=x,AD=CD=12 x.(1)若AB+AD=12,即1122x x+=,所以x=8,即AB=AC=8,则CD=4.故BC=15-4=11.此时AB+AC>BC,所以三边长为8,8,11.(2)如图(2),若AB+AD=15,即1152x x+=,所以x=10.即AB=AC=10,则CD=5.故BC=12-5=7.显然此时三角形存在,所以三边长为10,10,7.综上所述此三角形的三边长分别为8,8,11或10,10,7.【总结升华】BD把△ABC的周长分为12cm和15cm两部分,哪部分是12cm,哪部分是15cm,问题中没有交代,因此,必须进行分类讨论.【与三角形有关的线段例5、】举一反三:【变式】有一块三角形优良品种试验田,现引进四个品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的方案供选择.【答案】解:方案1:如图(1),在BC上取D、E、F,使BD=ED=EF=FC,连接AE、AD、AF.方案2:如图(2),分别取AB、BC、CA的中点D、E、F,连接DE、EF、DF.方案3:如图(3),取AB中点D,连接AD,再取AD的中点E,连接BE、CE.方案4:如图(4),在 AB取点 D,使DC=2BD,连接AD,再取AD的三等分点E、F,连接CE、CF.类型三、与三角形有关的角4.(2015春•石家庄期末)已知△ABC中,AE平分∠BA C(1)如图1,若AD⊥BC于点D,∠B=72°,∠C=36°,求∠DAE的度数;(2)如图2,P为AE上一个动点(P不与A、E重合,PF⊥BC于点F,若∠B>∠C,则∠EPF=是否成立,并说明理由.【思路点拨】(1)利用三角形内角和定理和已知条件直接计算即可;(2)成立,首先求出∠1的度数,进而得到∠3的度数,再根据∠EPF=180°﹣∠2﹣∠3计算即可.【答案与解析】证明:(1)如图1,∵∠B=72°,∠C=36°,∴∠A=180°﹣∠B﹣∠C=72°;又∵AE平分∠BAC,∴∠1==36°,∴∠3=∠1+∠C=72°,又∵AD⊥BC于D,∴∠2=90°,∴∠DAE=180°﹣∠2﹣∠3=18°.(2)成立.如图2,∵A E平分∠BAC,∴∠1===90°﹣,∴∠3=∠1+∠C=90°﹣+,又∵PF⊥BC于F,∴∠2=90°,∴∠EPF=180°﹣∠2﹣∠3=.【总结升华】本题考查了三角形的内角以及角平分线的性质,准确识别图形是解题的关键.举一反三:【与三角形有关的角练习(3)】【变式】如图,AC⊥BC,CD⊥AB,图中有对互余的角?有对相等的锐角?【答案】3,2.类型四、三角形的稳定性5. 如图是一种流行的衣帽架,它是用木条(四长四短)构成的几个连续的菱形(四条边都相等),每一个顶点处都有一个挂钩(连在轴上),不仅美观,而且实用,你知道它能收缩的原因和固定方法吗?【答案与解析】解:这种衣帽架能收缩是利用四边形的不稳定性,可以根据需要改变挂钩间的距离。
人教版小学数学四年下册第五单元《三角形的内角和》教学PPT课件
教师讲评时,着重让学生说一说每道题的计算方法及依据,鼓励学生用 不同的方法解答。 讲解(2)、(3)题时,问:一个三角形可能有两个 直角吗?一个三角形可能有两个钝角吗?你能用今天的知识说明吗? 课堂小结:学了这节课,你有什么收获?
七、说板书设计
根据四年级的年龄特点,本课板书内容简单明了,重难点突 出。
(3)折-拼:把三角形的三个内角都向内折,把这三个内角拼组成一个 平角,一个平角是180°,所以得出三角形的内角和是180°。 (4)画:根据长方形的内角和来验证三角形内角和是180°。 一个长方形有4个直角,每个直角90°,那么长方形的内角和就是360°, 每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和 就是180°。从长方形的内角和联想到直角三角形的内角和是180°。
板块四、深化 质疑:大小不同的三角形,它们的内角和会是一样吗? 观察:(指着黑板上两个大小不同但三个角对应相等的三角形并说明原 因,三角形变大了,但角的大小没有变。) 结论:角的两条边长了,但角的大小不变。因为角的大小与边的长短无关。
【设计意图】小学生由于年龄小,容易受图形或物体的外在形式的影响。 教师主要是引导学生与角的有关知识联系起来,通过让学生观察利用“角 的大小与边的长短无关”的旧知识来理解说明。
板块三、验证 (1)量:请学生每人画一个自己喜欢的三角形,接着用量角器量一量, 然后把这三个内角的度数加起来算一算,看看得出的三角形的内角和是 多少度? (2)撕―拼:利用平角是180°这一特点,启发学生能否也把三角形的三 个内角撕下来拼在一起,成为一个平角?请学生同桌合作,从学具中选 出一个三角形,撕下来拼一拼。
总之,在本节课的教学中,我力求充分体现以下特点:以学生为主体, 教师为主导,以观察比较为主线,以师生互动、生生互动,自主探索,分组 讨论交流为主要方式。让数学贴近实际,贴近生活,贴近原有经验。使学生 主动学数学,探究学数学,快乐学数学。并进一步促进学生思维的发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同学们,今天学得高兴吗? 说一说你有什么新的收获。
版权所有-
三角形的定义: 由三条线段围成(每相邻两条线段的端 点相连)的图形叫做三角形。 三角形的特征和特性 三角形的特征: 三个顶点、三个角、三条边、三条高 三角形的特性:具有稳定性 从三角形的一个顶点到它的对边做一条垂 线,顶点和垂足之间的线段叫做三角高。 三条边的关系: 三角形的任意两边之和大于第三边 三角形的高: 锐角三角形 三角形的分类 按角分类 及特点 直角三角形
三 角 形
钝角三角形
不等腰三角形
按边分类 及特点
一般等腰三角形(只有两条边等) 等腰三角形 等边三角形(三条边都相等)
三角形内角和: 三角形的内角和是180度
四边形的内角和: 四边形的内角和是360度
判一判(下面哪些是三角形?
√
×
× √
√
×
你能画出下面三角形的三条高吗?
二、探究新知
版权所有-
1. 盖房时,在窗框未安装好之前,木工师傅常常先在 窗框上 木条后,就形成了两个三角形, 利用三角形的稳定性可以预防 窗框变形。
版权所有-
在能拼成三角形的各组小棒下面画“√”(单位:cm)。
(1) (2)
( (3)
80度 75度
A 13
115度
C B ∠A=( 50)度
B
∠ A=(25 )度 55度 C
我有多少度?
由三条线段围成(每相邻两条线段的端点相连)的图形叫做三角形 ( 任意三条线段都能围成一个三角形 (
√
)
×) 三角形较短的两条边的和一定大于第三边 ( √ ) √ ) 三条一样长的线段一定能围成一个三角形 ( √ ) 一个三角形中只能有一个钝角 ( ×) 一个三角形中有一个锐角,这个三角形一定是锐角三角形 ( 有一个角是45°的直角三角形一定是等腰三角形。 ( √) 用两个同样的三角形拼成一个大三角形,这个大三角形的内角和是360°(× ) √) 在一个三角形中,两个内角的和小于90° ,这个三角形一定是钝角三角形(
耳朵认真听,
眼睛仔细看, 嘴巴大胆说, 心儿细细想。
版权所有-
猜猜我是谁?
顶点 我是由三条线段围 角 成的,我有三条边, 边 边 三个角,三个顶点, 角 角 三条高。 顶点 顶点 边
版权所有-
人教版四年级 数学下册
版权所有-
1厘米、4厘米、4厘米 3厘米、3厘米、3厘米
版权所有-
1 2 3
5 4 6
等腰三角形:( 1、2、4、7 ) 等边三角形:(
7
7
) ) ) )等腰直角三角形( 2 )
锐角三角形:( 4、5、7 直角三角形:( 钝角三角形:(
2、3 1、6
A 13
C B ∠ A=( 25)度 A
√)
(4)
(
√)
(
×)
版权所有-
(
√)
绿色圃中小学教育网
绿色圃中学资源网
绿色圃中小学教育网
绿色圃中学资源网
把一根9厘米长的吸管剪成三段,组成一个三角形。