PLC控制变频器实现电动机的正反转
变频器试题(答案)
ABB变频器考试试卷一填空(每空3分,共30分)1、在胶带机运行时,各个驱动之间在控制上要保持的关系是功率平衡。
2、协调控制箱、变频控制器采用 Profibus DP 方式进行通讯3、矿用隔爆兼本质安全型控制箱KXJ1-127供电电压是交流127V 。
4、3台驱动电机为 1120 kW,变频器额定功率为 2000 kW。
5、隔爆兼本质安全型高压变频器型号是 MINEX-2000/3.3-FS 。
6、隔爆兼本质安全型高压变频器输入电压为交流2*1905V ,辅助回路供电电压为交流 380V/220V 。
7、变频器“带电指示”灯亮,此时变频器为漏水故障保护。
8、变频器冷却水压力要求为 0.4 MPa。
9、变频器调节流量的方法阀门控制法和转速控制法。
10、笼型异步电动机的变频调速必须按照一定的规律同时改变其定子电压和频率,采用变压变频调速控制。
二判断(每题2分,共20分)1、故障灯闪烁“Fault CustSupSig1 ”预警,是检测到风机底部有积水。
(√)2、变频器使用过程中不可以在移相变压器侧本地合闸。
(√)3、变频器“急停”操作恢复后,需要复位才可以合闸送电操作。
(√)4、多台变频器合闸可以同时进行。
(×)5、只要变频器没有故障显示就可以进行操作,不用检查相关设备。
(×)6、变频器运行过程中,“选中/旁路”旋钮应该在“选中”位置。
(√)7、变频器运行过程中,“正常/联动”旋钮应该在“正常”位置。
(√)8、本套系统用变频器输出电压为交流3300V 。
(√)9、合闸情况下,整流单元一直在工作,冷却水不可以关闭。
(√)10、变频器的冷却水流量与变频器内部温度无关。
(×)三单项选择题((每题2分,共14分)1、协调控制箱和变频器的通讯接口是( B )A Modbus RtuB Profibus DPC EthernetD CAN2、变频器的辅助电源为( D )A两线制127V B两线制220V C三线制380V D四线制380V3、下列哪项不是变频器的常见故障( B )A移变不能合闸 B机芯故障 C风压管被堵住 D 温度高4、变频器合闸后母线电压正常是多少?( C )A 3500VB 4000VC 5200VD 6500V5、风机冷却系统故障“CC1 PressDropFlt”不可能是以下哪个原因( B )A 冷却水流量过大 B辅助电源故障或者控制开关跳闸C 风机损坏或者转速降低 D风压传感器故障、风压管被堵住6、“操作合闸按钮,变频器没有反应”,不可能是以下哪个原因( D )A 变频器有报警信息未复位 B变频器有报警信息未复位C 变压器与变频器之间控制线脱落 D“选中/旁路”位置不对7、疑似通讯故障无法启动皮带时,且无法复位最快的处理方式是( A )A 中转箱断电强制复位B 变频器轮流断电重启C 检查通讯线路是否松动D 联系厂家来矿处理四简答题(每题9分,共36分)1、简述变频器合闸送电过程和分闸断电过程在刮号中按1、2、3、4、5…..编号。
PLC实习报告---触摸屏、PLC、变频器控制电机正反转
课程设计(实习)报告实验项目:触摸屏、PLC、变频器控制电机正反转学院:电气信息工程学院专业:电气工程及其自动化班级学号:电气09-3班16 号姓名:田振指导教师:弭洪涛2012年05月28日目录实习名称--------------------------------------------2 实习内容--------------------------------------------2 实习要求--------------------------------------------2 实习步骤--------------------------------------------2一.硬件组态---------------------------------------2二.PLC程序设计------------------------------------3三.触摸屏程序设计----------------------------------7四.变频器参数设置---------------------------------14五.触摸屏操作-------------------------------------14 参考文献--------------------------------------------16 调试过程--------------------------------------------16 实习心得--------------------------------------------17实习名称:触摸屏、PLC、变频器控制电机正反转实习内容:自行设计触摸屏、PLC控制程序,采用现场总线方式控制变频器实现电机正反转。
实习要求:1.熟练掌握PLC硬件组态方法2.掌握变频器的基本使用方法3.会编写简单的PLC程序4.掌握触摸屏的基本应用实习步骤:一. PLC的硬件组态1创建一个新项目“PLC实习”2.硬件组态在组态CPU时,为PLC新建现场总线连接,采用现场总线的默认设置即可。
触摸屏PLC变频器控制电机正反转
触摸屏PLC变频器控制电机正反转PLC实习报告课题名称:触摸屏、PLC、变频器控制电机正反转学院: 电气信息工程学院专业: 自动化班级: 10-2姓名: 王师会学号: 18指导教师: 弭洪涛日期:2012、12、7目录一、实习内容及要求 (3)1.1 实习内容 (3)1.2 实习要求....................................3 二、实习步骤 (3)2.1 PLC的硬件组态 (3)2.2 PLC程序设计 (5)2.3 触摸屏程序设计 (11)2.4 变频器参数设置 (17)2.5 触摸屏操作................................17 三、实习心得 (17),一、实习内容及要求1.1 实习内容:自行设计触摸屏,PLC 控制程序,采用现场总线方式控制变频器实现电动机正反转。
1.2 实习要求:1. 熟练掌握PLC硬件组态方法。
2. 掌握变频器使用方法。
3. 简单编写PLC的程序。
4. 掌握触摸屏的基本设计与使用。
二、实习步骤:2.1 PLC的硬件组态1. 创建一个新项目“PLC实习”2. 插入西门子PLC300站点。
3. 插入站点后硬件组态设置如下图:,硬件组态设置如下图:硬件组态设置完成后插入变频器设置如下图: ,并且设置变频器地址为“12”I/Q地址设置如下图:保存并编译至PLC。
2.2 PLC程序设计:,1.建立符号表设置如下图:2.插入功能模块FC1.FC2.FC3程序如下图: FC1:,FC2:,FC3: ,,组织模块OB1程序如下图:,,2.3 触摸屏程序设计1.插入HMI站点并选择实验室屏幕编号如下图:新建画面并重命名最终设置如下图:,,连接设置如下: ,,变量设置图下图:最终初始画面如下: ,,出入按钮命名为“正转”“反转”“停止”“显示转速”属性设置如下图所示:在显示转速画面下插入棒状图,并且设置如下图:,,插入刻表设置如下图:插入文本域设置如下图:在显示转速画面中插入按钮“初始画面”设置如下: ,,最终显示转速画面如下图:,,触摸屏程序下载采用MPI/DP模式。
基于PLC变频器三相异步电动机正反的控制
基于PLC变频器三相异步电动机正反的控制【摘要】本文主要探讨了基于PLC变频器控制三相异步电动机正反转的技术及应用。
首先介绍了研究背景和意义,探讨了PLC在电机控制中的应用以及变频器在电机控制中的作用。
然后详细解析了三相异步电动机的工作原理,包括正转控制策略和反转控制策略。
论文对基于PLC变频器控制三相异步电动机正反转的应用前景进行了展望,并提出了未来研究方向。
通过本文的研究,可以更好地了解和掌握基于PLC变频器的电机控制技术,为相关领域的工程应用提供参考和指导。
【关键词】PLC,变频器,三相异步电动机,正反控制,应用前景,工作原理,控制策略,研究意义,研究目的,总结与展望,建议未来研究方向1. 引言1.1 背景介绍电动机是工业生产中常见的驱动设备,广泛应用于各类机械设备、生产线等领域。
传统上,电机的控制主要通过接触器、继电器等传统电气元件实现,存在操作复杂、维护困难、精度低等问题。
而随着自动化技术的发展,基于PLC和变频器的控制方案逐渐成为电机控制的主流模式。
三相异步电动机作为工业生产中最常见的电机类型,其工作原理复杂且性能优越。
正反控制策略是指根据实际需求来控制电机的正转和反转运行,实现精准控制和调节。
本文旨在探讨基于PLC和变频器的控制方案在三相异步电动机正反控制中的应用,为提高电机控制精度、降低能耗、提高生产效率提供技术支持和参考。
1.2 研究意义三相异步电动机在工业生产中应用广泛,其正反控制对于提高生产效率、降低能耗具有重要意义。
通过基于PLC(可编程逻辑控制器)和变频器对三相异步电动机进行控制,可以实现精确的正反转调速控制,提高生产线的灵活性和稳定性。
基于PLC变频器控制的电动机系统能够实现智能化、自动化控制,减少人力成本和操作复杂度。
研究基于PLC变频器三相异步电动机正反控制的意义还体现在技术创新和节能减排方面。
通过优化控制策略和参数设置,可以降低电机运行时的能耗,提高能源利用效率,符合现代工业制造对节能环保的要求。
PLC控制电机正反转设计
PLC控制电机正反转设计专业班级:学生姓名:学号:指导老师姓名:指导老师职称:PLC控制电机正反转设计[摘要]电气控制技术是一门多学科交叉的技术,是实现工业生产自动化的重要技术手段,随着科学技术的不断发展, PLC技术越来越多的应用于机床电气,本文简述了PLC的发展和几种常用电气控制线路的PLC控制。
关键词: 继电器控制系统;基本电气控制线路;PLC控制;电动机前言通过学习,我们初步了解了电气控制技术的一些基本知识和组成,从中也知道了电气控制技术在机械行业的重要性,为了完成的任务,为了更好的掌握机电一体化,我们应该更深入的学习电气控制技术的知识,以满足综合型人才的培养要求,在学习中我们了解到,可编程系统与继电器的传统控制技术比较有以下优点:第一,反应速度快,噪音低,能耗小。
体积小。
第二,功能强大,编程方便,可以随时修改程序。
第三,控制精度高,可进行复杂的程序控制。
第四,能够对控制过程进行自动检测。
第五,系统稳定,安全可靠。
我们应该在继电器的基础上加强可编程控制技术的学习。
可编程控制器是在继电器控制和计算机控制的基础上发展而来的新型工业自动控制装置,可编程系统优于继电器的传统控制技术,我们应该在继电器的基础上加强可编程控制技术的学习。
目录第一章 PLC基础 (1)1.1 PLC的定义 (1)1.2 PLC的产生及发展 (1)1.3 PLC的特点及应用 (2)1.4 PLC的基本结构 (4)1.5 PLC的工作方式 (6)1.6 PLC的设计方法 (6)第二章三相异步电动机控制设计 (9)2.1 电动机可逆运行控制电路 (9)2.2 启动时就星型接法30秒后转为三角形运行直到停止反之亦然 (11)2.3 三相异步电动机正反转PLC控制的梯形图、指令表 (13)2.4 三相异步电动机正反转PLC控制的工作原理 (14)2.5 指令的介绍 (15)结论 (17)设计心得 (18)参考文献 (19)第一章 PLC基础1.1 PLC 的定义1985年,国际电工委员会(IEC)对PLC作出如下定义:可编程序控制器是一种数字运算操作电子系统,专为在工业环境下应用而设计。
控制三相异步电机电机正反转电路有几种方法?
控制三相异步电机正反转的电路有多种方法,每种方法都适用于不同的应用和控制要求。
以下是一些常见的控制三相异步电机正反转的方法:
1.接触器控制法:
这是一种传统的正反转控制方法,通过两个磁性接触器来改变电机的接线顺序。
当一个接触器闭合时,电机正转;当另一个接触器闭合时,电机反转。
必须保证两个接触器不会同时闭合,以避免短路。
2.手动星-三角开关法:
使用手动星-三角开关改变三相电机的接线方式来实现正反转控制。
通过调节开关位置,可以选择电机的运行方向。
3.变频器(Inverter)控制法:
变频器可以通过改变电机供电的频率和相位来控制电机的速度和方向。
改变输出频率的顺序,即可控制电机的正反转。
这种方法能提供平滑的启动、变速和制动控制。
4. PLC控制法:
可编程逻辑控制器(PLC)可以用来控制接触器或其他开关设备,实现电机正反转和其他复杂控制逻辑。
PLC控制提供了高度
的自动化和灵活性。
5.固态继电器(SSR)或功率半导体开关法:
使用固态继电器或者功率半导体设备(如晶闸管、IGBT)来控制电机的供电和断电,从而控制运转方向。
这种方法同样可以实现电机的快速启停和方向切换。
6.电子式正反转器件:
专门设计的电子式正反转控制器可以内嵌到电机控制电路中,为电机提供正反转的指令。
在选择三相异步电机的正反转控制方法时,应基于特定应用的需求考虑成本、复杂度、控制精度、启动电流和保护需求等因素。
例如,对于需要高精度和可编程控制的应用,变频器或PLC可能是更好的选择。
对于简单的开关控制,接触器和手动开关可能更加经济实惠。
基于PLC变频器三相异步电动机正反的控制
基于PLC变频器三相异步电动机正反的控制1. 引言1.1 背景介绍2000 字要求内容,段落结构清晰,语言通顺流畅,符合专业标准。
部分如下:基于PLC变频器三相异步电动机正反的控制研究,旨在深入探讨如何通过PLC和变频器实现对三相异步电动机的正反转控制,进一步提高工业生产中电机控制的精确性和灵活性。
本研究将结合实际案例,通过实验验证控制方法的可行性和效果,为工业生产提供更加可靠、高效的电动机控制解决方案。
通过对正反转控制技术的研究,为工业自动化领域的发展做出贡献,推动新技术在工业控制领域的广泛应用。
1.2 问题阐述在电动机控制领域,如何实现对三相异步电动机的正反控制一直是一个重要的问题。
传统的电动机正反控制往往需要复杂的电路以及大量的元件,不仅成本高昂,而且容易出现故障。
传统控制方式的响应速度也较慢,无法实现高效率的控制。
如何利用现代的技术手段来实现对电动机的正反控制,成为了当前研究的热点。
基于PLC与变频器的结合可以很好地解决上述问题,PLC具有逻辑控制功能强大,能够实现复杂的控制逻辑;而变频器可以实现对电机的精确调速,以及实现正反转控制。
将PLC与变频器相结合,可以实现对三相异步电动机的正反控制,提高控制精度和效率。
本文将研究基于PLC与变频器的三相异步电动机正反控制方法,旨在解决传统方法存在的问题,提高电动机控制的效率和灵活性。
1.3 研究意义本文对基于PLC变频器三相异步电动机正反控制进行了深入研究,旨在探讨如何利用先进的控制技术提高工业生产过程中电动机的运行效率和精度。
随着工业自动化程度的不断提高,电动机在生产线上的应用越来越广泛,其控制质量直接影响到整个生产过程的稳定性和效果。
通过本研究,可以有效地解决电动机在正反转控制过程中可能出现的问题,提高控制精度和反应速度,从而使生产过程更加稳定和高效。
本文还将探讨如何利用PLC技术和变频器技术相结合,实现对三相异步电动机的更精细化控制,进一步提高生产效率和品质。
基于PLC实现的三相异步电动机变频调速控制
基于Plc控制电机调速实验报告电控学院电气0904班李文涛0906060427—、实验名称:基于PLC实现的三相异步电动机变频调速控制二、实验目的:通过综合实验,使学生对所学过的可编程控制器在电动机变频调速控制中的应用有一个系统的认识,并运用自己学过的知识,自己设计变频调速控制系统。
要求用PLC控制变频器,通过光电编码器反馈速度信号达到电动机调速的精确控制,自己设计,自己编程,最后进行硬件、软件联机的综合调试,实现自己的设计思想。
三、实验器材:220V PLC实验台一套、380V变频器实验台一套、万用表一个、导线若干三、实验各部分原理:1.实验主要器件原理1)光电编码器:COM01030002040CH光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。
这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。
光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。
由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。
2)变频器:I原理概述变频调速能够应用在大部分的电机拖动场合,由于它能提供精确的速度控制,因此可以方便地控制机械传动的上升、下降和变速运行。
变频应用可以大大地提高工艺的高效性(变速不依赖于机械部分),同时可以比原来的定速运行电机更加节能,变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波石电感。
矢量控制:U/f控制方式建立于电机的静态数学模型,因此,动态性能指标不高。
对于对动态性能要求较高的应用,可以采用矢量控制方式。
矢量控制的基本思想是将异步电动机的定子电流分解为产生磁场的电流分量(励磁电流)和与其相垂直的产生转矩的电流分量(转矩电流),并分别加以控制。
三菱变频器控制电机正反转调速
变频器控制电机正反转调速实训
一、实训目的
1、通过对变频器控制电机正反转调速线路的安装接线,掌握由电气原理图接成实际操作电路的方法。
2、熟悉三菱F700变频器接线和参数设置。
二、实训说明
(1)、固定三段速:按正转启动按钮,电机以速度1运行20s,再以速度2运行20s,再以速度3运行20s后停止运行。
反转同上。
(2)、六段速正反转:按正转启动按钮,电机以速度1运行10s,再以速度3运行10s,再以速度5运行10s;此后反转以速度2运行10s,再以速度4运行10s,再以速度6运行10s,停止运行。
三、操作过程
1、I/O端口分配功能表
2、接线图
3、梯形图参考程(1)、固定三段速
(2)、六段速正反转。
PLC自动控制技术在变频器中的应用
PLC自动控制技术在变频器中的应用摘要:电气工程中有很多的电动机需要长期或者间歇运行,有的需要变频控制,有的为了更加精细地控制产品指标和生产参数,采用多元化的控制方式,包括直接启动、软启动、正反转启动、降压启动、变频器控制等。
变频器控制在自动控制中有着举足轻重的作用,包括启停控制、运行、故障、电流、频率给定、频率切换等方式,电机扭矩等大量的电信号需要与PLC进行数据交换,采用一对一硬接线的方式可以实现控制目的,但需要很多的接线进入PLC模块,这会影响系统的性能,工作量很大,容易出错,且成本高。
采用PLC与变频器通信的方式来控制电机,可以实现更好的控制效果。
基于此,本文探讨PLC自动控制技术在变频器中的应用。
关键词:PLC;变频器;自动控制应用一、PLC技术概述(一)工作原理PLC为可编译逻辑控制器,是一种新型的控制系统,由于系统中采用了现代化技术,可对被控制模块实施专业化、自动化管理。
PLC技术可分为输入采样、用户程序运行和输出更新三个阶段。
第一阶段,该技术允许综合学习和分析读取相关数据,以相对牢固地存储相关数据。
第二阶段PLC技术主要进行科学合理的扫描。
计算用户显示的梯形数据,确保其逻辑和可靠性,并在固定文件中显示数据的实际处理条件和结果。
在第三阶段,PLC技术允许初始数据传输、在固定区域中完整显示数据,然后向外传输数据。
CPU技术在PLC技术的开发中起着关键作用,因为它能够相应地处理数据,确保这些过程的可靠性和效率,并能够更好地检测和分析自动化系统的实际运行情况。
随着我国科学的发展,近年来,PLC技术从长远来看已有了积极的发展。
但是,PLC的运行机理与我们平常所见或所用的普通电脑装置有很大的区别。
通常,PLC的工作模式是周期性重复扫描,集中数据采集和更新,并按次序指令执行。
我们把整个扫描过程称为一个循环。
从内部工程师的观点,扫描周期可以分为三个阶段:输入信号扫描,工业控制程序的执行,以及输出信号的更新。
PLC电动机正反转控制说课说课稿
《PLC改造电动机双重联锁正反转控制电路》说课稿各位评委:大家好!今天我说课的内容是《PLC改造电动机双重联锁正反转控制电路》。
一、教学分析(一)课程分析:本内容所属课程为《PLC技术基础与编程实训》,是电子电工类专业的必修课程,也是《维修电工》考证、职业学校工业控制类技能竞赛项目所必须掌握的重要课程。
(二)学情分析:本课程的学习对象为职业学校电类专业二年级学生。
前期学过《计算机基础》、《电工基础》、《电机拖动》等相关课程,同时已经在本课程的学习中掌握了一定的电路分析能力,具有一定的专业知识。
本课程采用理实一体化教学方式,不仅锻炼了学生的动手能力,也为后续的《中级工考证》、《变频器》等相关专业课程奠定了坚实的基础。
大部分中职学生因初中阶段没有养成良好的学习习惯和学习方法,存在基础知识薄弱,畏难情绪严重的特点。
但他们的学习情绪化较强,对实践性环节的学习兴趣明显高于理论课程的学习,因此我会通过加强实践教学,来培养学生的学习兴趣。
(三)资源整合:为了教学的有效开展,我对教学资源进行了有效整合,并充分利用,同时,为提高学生动手能力,在PLC实训室(机房三)开展教学;为提高教学效果,利用仿真软件、仿真实训、教学视频、演示动画等信息化资源辅助教学,拓展学生的学习空间。
(四)教材分析:结合我校资源及学生特点,选用科学出版社,许孟烈主编的《PLC技术基础与编程实训》作为本课程的教材。
本教材通过对电路和程序的学习,让学生掌握PLC的具体使用方法,锻炼学生的应用能力,引导学生在职业生涯中能够胜任企业工控设备维护和维修、工控设备销售、工控设备开发等工作,贴近实际工作需要。
充分体现以能力为本位、以职业实践为主线、以学生为主体的模块化课程理念。
(五)教学目标:基于以上分析,确定出本次课的知识、能力、情感三维目标。
知识目标:电动机双重联锁正反转PLC程序的编写与模拟调试;能力目标:了解PLC与电动机之间外围设备的连接与调试;情感目标:培养团队协作及语言表达能力;培养勇于探索的精神及良好的职业素养。
三菱PLC实现对变频器的控制
字符数 1 2 3 4
➢上述数据格式中数据指的是PLC与变频器传输的数据 如频率和参数 。 ➢等待时间是规定变频器从收到PLC来的数据和传输应答数据之间的等 待时间。根据PLC的响应时间在0~150ms之间设定等待时间,最小设定 单位10ms。当变频器的Pr.123参数单元不设为9999时,则等待时间不由 通信数据设定,通信数据格式中无等待时间 少一个字符 。 ➢总和校验码是由被校验的ASCII数据的总和 二进制 的最低一个字节 8 位 表示的两个ASCII数字 十六进制 。
RST D21
FMOV K0 D500 K10 BMOV D500 D600 K10
发送前将 各存储单 元清零
MOV K4 Z1
RST D21 M10
D500~D509为接
FMOV K0 D500 K10 发 送 前 将
M11
BMOV D500 D600 K10
各存储单 元清零
收数据的地 址,D600~D609为
PLC与变频器的连接是利用网线连接的,即用网线的RJ45插头和变频器的PU 插座相接。
二、三菱FR-A500系列变频器 1、FR-A500变频器的端子接线图
2、FR-A500变频器的通信参数设置
➢为了正确地建立通信,必须设置变频器与通信有关的参数,如 站号、通信速率、停止位长/字长、奇偶校验等。
ASCII代码
H02 H03 H05 H06 H0A H0D H15
指令代码是由PLC发给变频器,指明程序要求 例如运行、监 视等 。通过相应的指令代码,变频器可进行各种方式的运行 和监视。
FR-A500指令代码说明
参数号
— — — —
名称
变频器状态监视/运行指令 频率监视 运行频率设定 RAM 通讯请求
plc和变频器通讯接线图详解
plc和变频器通讯接线图详解PLC可编程控制器的存储器可以分为系统程序存储器、用户程序存储器及工作数据存储器等三种。
变频器基本结构图
PLC的变频器控制电机正反转接线图
1、按接线图将线连好后,启动电源,准备设置变频器各参数。
2、按“MODE”键进入参数设置模式,将Pr.79设置为“2”:外部操作模式,启动信号由外部端子(STF、STR)输入,转速调节由外部端子(2、5之间、4、5之间、多端速)输入。
3、连续按“MODE”按钮,退出参数设置模式。
4、按下正转按钮,电动机正转启动运行。
5、按下停止按钮,电动机停止。
6、按下反转按钮,电动机反转启动运行。
7、按下停止按钮,电动机停止。
8、若在电动正转时按下反转按钮,电动机先停止后反转;反之,若在电动机反转时按下正转按钮,电动机先停止后正转。
完整版)基于PLC控制的变频器调速系统
完整版)基于PLC控制的变频器调速系统目录第一章系统的功能设计分析和总体思路1.1 概述本文旨在对系统的功能设计和总体思路进行分析和讨论,以确保系统的高效运行和稳定性。
1.2 系统功能设计分析在系统功能设计分析中,我们需要考虑系统的需求和目标,以及用户的使用惯和需求。
在此基础上,我们可以确定系统的主要功能和模块,并对其进行详细的设计和实现。
1.3 系统设计的总体思路系统设计的总体思路包括系统的整体架构设计、模块之间的关系和数据流程,以及系统的系统性能和稳定性等方面。
在设计过程中,我们需要充分考虑系统的可维护性和可扩展性,并采用合适的技术和工具来实现系统的设计。
第二章 PLC和变频器的型号选择2.1 PLC的型号选择在PLC的型号选择中,我们需要考虑系统的需求和目标,以及PLC的性能和稳定性等方面。
在此基础上,我们可以选择合适的PLC型号,并进行详细的参数设置和调试。
2.2 变频器的选择和参数设置在变频器的选择和参数设置中,我们需要考虑系统的负载和功率需求,以及变频器的性能和稳定性等方面。
在此基础上,我们可以选择合适的变频器型号,并进行详细的参数设置和调试,以确保系统的高效运行和稳定性。
第一章系统功能设计分析和总体思路1.1 概述在工业自动化生产中,调速系统的快速性、稳定性和动态性能是基本要求。
调速系统在国防、汽车、冶金、机械、石油等工业中具有举足轻重的作用。
然而,调速控制系统的工艺过程复杂多变,具有不确定性,因此需要更为先进的控制技术和控制理论。
1.2 可编程控制器(PLC)可编程控制器(PLC)是一种工业控制计算机,它是继续计算机、自动控制技术和通信技术为一体的新型自动装置。
PLC具有抗干扰能力强、价格便宜、可靠性高、编程简单易学等特点,因此在工业领域中被广泛使用。
尽管在控制领域中逐步采用了电子计算机这个先进技术工具,特别是石油化工企业普遍采用了分散控制系统(DCS),但在控制策略方面,常规的PID控制仍然占据主导地位。
最新PLC控制变频器实现电动机的正反转
无锡市技工院校教案首页课题:PLC控制变频器实现电动机的正反转教学目的要求:1.掌握利用PLC和变频器控制电动机正反转的方法2.能够进行PLC与变频器的连接和控制程序的编制3.会根据功能要求设置有关参数教学重点、难点:重点:1. 利用PLC和变频器控制电动机正反转的方法2. PLC与变频器的连接和控制程序的编制难点:PLC与变频器的连接和控制程序的编制授课方法:讲授、分析、图示教学参考及教具(含多媒体教学设备):《变频器原理及应用》机械工业出版社王延才主编授课执行情况及分析:通过本次课的学习,学生已掌握PLC控制变频器实现电动机正反转的方法,在授课中通过任务引入——分析——实施的顺序进行教学,教学效果良好。
板书设计或授课提纲中国自然地理考点搜索〖中国的地形〗地形的总体特征。
各类地形的特征和分布。
地形对中国自然环境和经济发展的影响。
中国地震带和火山的分布。
〖中国的气候〗冬、夏季气温分布特点及其成因。
年降水量的分布特点及其成因。
季风活动对降水的影响。
季风区和非季风区。
气候的主要特征。
主要气象灾害及其对生产、生活的影响。
〖中国的河流、湖泊和海洋〗外流区和内流区。
主要河流及其水文特征。
湖泊的分布。
主要湖泊。
长江概况;水系及水文特征;经济意义;开发利用和治理。
黄河概况;水系及水文特征;经济意义;开发利用和治理。
珠江的水系组成和水文特征。
红水河水能资源的开发利用。
知识要点第一节中国的地形在学习中国主要地形时,应结合中国空白政区图,先将山脉画到图上,并写上名称,然后再填写出其两侧相应的地形区名称。
⒈地势:西高东低,呈三级阶梯状阶梯界线主要地形海拔一昆、祁、横高原、盆地4000米以上二↓三大高原、三大盆地1000-2000米三雪、巫、太、大三大平原、三大丘陵500米以下黄海的全部,东海的大部分和南海的一部分。
大陆架蕴藏着丰富的矿产资源(如石油、天然气)、海洋生物资源和化学资源等。
⒉地势意义:――水汽输入、水运沟通、水能丰富(即“三水”)地势决定河流流向,有利于海洋上湿润气流深入内地,形成降水;使我国许多大河滚滚东流,沟通东西交通,方便沿海和内地的经济联系,同时阶梯交界处落差大、水能资源丰富,但不利航运。
电气控制与PLC技术-变频器控制电动机的正反转运行、任务18 基于PLC的变频器外部端子的电动机正反转控制
单位显示
HZ:显示频率时亮灯;A:显示电流时亮灯;显示电 压时熄灯;显示设定频率监视时闪烁
监视器
4位LED;显示频率、参数编号等
M旋钮
用于变更频率设定、参数的设定值等
模式切换(MODE)
用于切换各设定模式,与“运行模式切换”同时按下可 以用来切换各种运行模式
各设定的确定(SET)
用于频率和参数的设定
(二)课上讲解(续)
1、应用实例(续)
控制要求: 通过变频器参数的设 定,控制电动机的点动正、反转, 并能运用操作面板改变电动机起 动的运行频率和加减速时间。
(2)变频器选型及参数设定
(3)工程调试
(4)器材整理
变频器参数 Pr.1 Pr.2 Pr.7 Pr.8 Pr.9
Pr.160 Pr.79 Pr.178 Pr.179
知识回顾及作业讲评
1、循环移位指令(ROR、ROL) 2、单向移位指令(SFTR、SFTL) 3、条件跳转指令(CJ) 4、主程序结束、子程序调用及返回指令(FEND,CALL,SRET)
任务17:变频器控制电动机的正、反转运行 任务18:基于PLC的变频器外部端子的电动机正、反转控制
任务17:变频器控制电动机的正、反转运行 任务18:基于PLC的变频器外部端子的电动机正、反转控制
任务17:变频器控制电动机的正、反转运行 任务18:基于PLC的变频器外部端子的电动机正、反转控制
二、变频器控制电动机的正、反转运行(续)
(二)课上讲解(续)
2、变频器的PU操作(续)
(2)操作面板
序号 1
2 3 4 5 6 7 8 9 10 11 12
按键及显示符
功能
运行模式显示
PU:处在PU运行模式时亮灯;EXT:处在外部运行模 式时亮灯;NET:处在网络运行模式时亮灯
三相异步电动机的正、反转控制的实现方法
三相异步电动机的正、反转控制的实现方法
三相异步电动机的正、反转控制可以通过以下几种方法来实现:
1. 交叉蓝玩法:将三相交流电源的任意两相进行交叉接线,实现正、反转控制。
当两相接线正常时,电机为正转;当两相接线交叉时,电机为反转。
2. 电磁反转器:通过控制电磁反转器中继电器的工作状态,实现正、反转控制。
电磁反转器可以通过交叉切换电源的相序,使电机正、反转。
3. 变频器:通过控制变频器的输出频率、相序和电压,实现电机的正、反转。
变频器可以改变电源的频率,从而改变电机的转速和方向。
4. PLC控制:使用可编程逻辑控制器(PLC)编写程序,通过
控制电磁继电器的通断,实现电机的正、反转。
通过PLC可
以灵活地控制电机的启停和方向。
以上是几种常见的实现方法,具体的控制方案可以根据实际需求和系统要求选取。
三相异步电动机双速可逆变频调速PLC控制
三相异步电动机双速可逆变频调速PLC控制异步电动机变频调速所要求的变频电源几乎都采用静止式变频器。
利用变频器进行调速控制时,只需改变变频器内部逆变电路换流器件的开关顺序,即可以达到对输出进行换相的目的,很容易实现电动机的正、反转切换。
本文介绍了PLC在三相交流异步电动机变频调速系统方面的设计,说明了系统的控制策略和工作原理,探讨三相异步电动机双速可逆变频调速PLC控制。
1、PLC在三相交流异步电动机变频调速系统设计三相交流异步电动机变频调速系统,以可编程序控制器PLC 作为核心控制部件,通过速度传感器将电动机的转速信号传给PLC, PLC经过控制规律的运算后,给出控制信号,改变电动机输入电压的频率,来调节电动机的转速,从而构成了一个闭环的速度控制系统。
如图1 所示。
2、三相异步电动变频器电路连接的要点2.1变频器前面一定要加接触器输入侧接触器的作用。
一般说来,在断路器和变频器之间,应该有接触器。
a. 可通过按钮开关方便地控制变频器的通电与断电。
b. 发生故障时可自动切断变频器电源,如:变频器自身发生故障,报警输出端子动作时,可使接触器KM迅速断电,从而使变频器立即脱离电源。
另外,当控制系统中有其他故障信号时,也可迅速切断变频器电源。
2.2变频器与电动机之间是否接输出接触器并不要求和工频进行切换时,变频器与电动机接触器,则有可能在变频器的输出频率较高的致变频器跳闸。
a. 当一台变频器只控制一台电动机,且并不要求和工频进行切换时,变频器与电动机之间不要接输出接触器。
因为如果接入了输出接触器,则有可能在变频器的输出频率较高的情况下启动电动机,产生较大的启动电流,导致变频器跳闸。
b. 必须接输出接触器的情况有两种:当一台变频器接多台电动机时,每台电动机必须要有单独控制的接触器。
另外,在变频和工频需要切换的情况下,当电动机接至工频电源时,必须切断和变频器之间的联系。
通用变频器,一般都是采用交、直、交的方式组成,利用普通的电网电源运行的交流拖动系统,为了实现电动机的正、反转切换,必须利用触器等装置对电源进行换相切换。
PLC控制电机变频调速试验系统的设计与实现
PLC控制电机变频调速试验系统的设计与实现一、引言在现代工业控制系统中,电机变频调速技术广泛应用于各个领域。
传统的电机调速方法存在效率低下、能耗高以及响应速度慢等问题,而采用PLC(可编程逻辑控制器)控制电机变频调速系统能够有效解决这些问题。
本文将详细介绍。
二、系统设计与结构1. 系统硬件结构PLC控制电机变频调速试验系统的主要硬件包括电机、PLC、变频器、传感器以及人机界面(HMI)。
其中,电机通过变频器实现变频调速,PLC负责控制变频器的工作,并通过传感器获取电机的运行状态反馈,同时可以通过人机界面设置系统的参数。
2. 系统软件设计系统软件设计主要包括PLC程序设计、HMI设计以及变频器参数设置。
PLC程序设计主要实现电机的启动、停止、正反转和变频调速功能,根据传感器的反馈信息进行接口逻辑控制。
HMI设计提供了人机交互界面,操作者通过HMI可以方便地设置电机的调速参数、监控电机的状态以及实时显示电机的运行数据。
变频器参数设置是为了适应不同负载情况下的电机工作需求,通过设置不同的参数来调整变频器的输出频率,从而实现电机的精确控制。
三、系统实现步骤1. 建立PLC程序首先,根据具体的电机变频调速要求,编写PLC程序实现电机的启动、停止、正反转以及变频调速功能。
根据传感器的反馈信息进行逻辑判断,实现电机与变频器之间的联动控制。
2. 设计HMI界面根据实际需求,设计HMI界面,包括设置电机的调速参数、显示电机的运行状态和实时数据等功能。
通过HMI界面提供的操作按键与PLC进行通讯,实现电机的控制与监测。
3. 配置变频器参数根据不同的负载情况,对变频器进行相应的参数设置。
根据电机的额定功率、转速等参数,结合实际需求,合理设置变频器的输出频率。
四、系统工作原理当PLC接收到用户输入的启动指令后,根据设定好的逻辑控制程序,发送启动指令给变频器,通过变频器控制电机的启动。
同时,传感器会实时监测电机的转速、电流、温度等工作状态,并将这些信息反馈给PLC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无锡市技工院校
教案首页
课题:PLC控制变频器实现电动机的正反转
教学目的要求:1.掌握利用PLC和变频器控制电动机正反转的方法
2.能够进行PLC与变频器的连接和控制程序的编制
3.会根据功能要求设置有关参数
教学重点、难点:
重点:1. 利用PLC和变频器控制电动机正反转的方法
2. PLC与变频器的连接和控制程序的编制
难点:PLC与变频器的连接和控制程序的编制
授课方法:讲授、分析、图示
教学参考及教具(含多媒体教学设备):
《变频器原理及应用》机械工业出版社王延才主编
授课执行情况及分析:
通过本次课的学习,学生已掌握PLC控制变频器实现电动机正反转的方法,在授课中通过任务引入——分析——实施的顺序进行教学,教学效果良好。
板书设计或授课提纲。