线性规划_ppt课件

合集下载

线性规划PPT课件

线性规划PPT课件

线性规划的基本定理
线性规划的解存在性
对于任何线性规划问题,都存在至少一个最优解。
最优解的唯一性
在某些情况下,线性规划问题的最优解是唯一的,这取决于目标函 数和约束条件的形状和位置。
解的稳定性
线性规划问题的最优解是稳定的,即使目标函数或约束条件略有变 化,最优解也不会发生大的变化。
03
线性规划的求解方法
优缺点:内点法具有全局收敛性和对初始点不敏 感的优点,但计算量较大,需要较高的计算资源 。
椭球法
01
总结词:几何方法
02
03
04
详细描述:椭球法是一种基 于几何方法的线性规划算法。 它将可行解的边界表示为椭 球,通过迭代移动椭球中心
来逼近最优解。
算法步骤:椭球法的基本步 骤包括初始化、构建椭球和 迭代更新。在每次迭代中, 根据当前椭球的位置和方向 来更新中心和半径,直到满
运输问题
总结词
运输问题是线性规划在物流和供应链管理中的重要应用,旨在优化运输成本、 运输时间和运输量等目标。
详细描述
运输问题通常需要考虑多个出发地、目的地、运输方式和运输成本等因素。通 过线性规划方法,可以找到最优的运输方案,使得总运输成本最低、运输时间 最短,同时满足运输量和运输路线的限制。
投资组合优化问题
03
单纯形法
单纯形法是线性规划的标 准算法,通过迭代和优化, 找到满足约束条件的最大 或最小目标函数值。
初始解
在应用单纯形法之前,需 要先找到一个初始解,这 可以通过手动计算或使用 软件工具来实现。
迭代过程
单纯形法通过不断迭代和 优化,逐步逼近最优解, 每次迭代都需要重新计算 目标函数值和最优解。
线性规划的几何意义

最新-第三章线性规划数学模型课件-PPT

最新-第三章线性规划数学模型课件-PPT

X1
18
例4、 maxZ=3X1+2X2
X2
-X1 -X2 1
X1 , X2 0
无解
无可行解
-1
0
X1
-1
19
总结
唯一解 有解
无穷多解 无解 无有限最优解
无可行解
20
单纯形法
• 单纯形法(Simplex Method)是美国数学 家但泽(Dantzig)于1947年提出的。基 本思想是通过有限次的换基迭代来求出 线性规划的最优解。
3
线性规划的特点
❖决策变量连续性:求解出的决策变量值 可以是整数、小数;
❖线性函数:目标函数方程和约束条件方 程都是线性方程;
❖单目标:目标函数是单目标,只有一个 极大值或一个极小值;
❖确定性:只能应用于确定型决策问题。
4
例1、生产计划问题
A B 备用资源
煤12
30
劳动日 3 2
60
仓库 0 2
• 利用单纯形法解决线性规划问题,实际上是从 线性规划问题的一个基本可行解转移到另一个 基本可行解,同时目标函数值不减少的过程。
• 对于两个变量的线性规划问题,就是从可行域 的一个端点转移到另一个端点,而使得目标函 数的值不减少。
25
线性规划的扩展
一、整数规划(整数线性规划):部分或 全部的决策变量只能取整数值。
8
一般式
Max(min)Z=C1X1+ C2X2+…+CnXn a11X1+ a12X2+…+ a1nXn (=, )b1 a21X1+ a22X2+…+ a2nXn (=, )b2 ……… am1X1+ am2X2+…+ amnXn (=, )bm Xj 0(j=1,…,n)

第1讲线性规划基本概念.ppt

第1讲线性规划基本概念.ppt

凸集:设集合 X Rn ,如果 X 中任意两点的凸组合 仍然属于X ,则称 X 为凸集.
定义 1 集合 D Rn称为凸的,如果对于任意 x, y D ,有
x (1 ) y D 0 1
则称 D 是Rn中的凸集(convex set).
结论: (1) 空集和全空间Rn是凸集. (2) 设a Rn,a 0, R,则超平面(hyper plane)
X


x
Rn
g(i x) h(j x)
0 0
i 1,, p j 1,,q

若X是凸集, f 是D上的凸函数,称(MP)为非线性 凸规划,简称凸规划.
凸规划性质:
定理
线性函数
对于非线性规划(MP),
min f(x)
s.t. g(i x) 0

h(j x) 0
第1讲 基本概念 Basic conceptions
一.最优化问题简介
二.凸集和凸函数
三.非线性规划方法概述
一.最优化问题简介.
定义:在一切可能的方案中选择一个最好的方案,以 达到最优目标.
(凡是准求最优目标的数学问题都属于最优化问题, Optimization Problems,OP).
三要素: (1)目标; (2)方案; (3)限制条件.
指标集.
解:
c1(x)
2 2
2 ( 2 )2 0, 2
c2 (x) 1 (
2 )2 ( 2
2 )2 0, 2
c3(x)
2 0. 2
A {1,2}. x
x2
c2 (x) 0
c3(x) 0
x
O
c1(x) 0

线性规划课件ppt

线性规划课件ppt
根据实际问题的特点,选择适合的线性规划模型进行建模和优化。
详细描述
在选择线性规划模型时,应根据实际问题的特点进行选择。例如,对于简单的最优化问题,可以使用标准型线性规划模型;对于需要约束条件或特殊处理的问题,可以选择扩展型线性规划模型。在建立模型后,还可以使用优化软件对模型进行优化,以提高求解效率和准确性。
CHAPTER
线性规划的求解方法
总结词
最常用的方法
要点一
要点二
详细描述
单纯形法是一种迭代算法,用于求解线性规划问题。它通过不断地在可行解域内寻找新的解,直到找到最优解或确定无解为止。单纯形法的主要步骤包括建立初始单纯形、确定主元、进行基变换和更新单纯形等。该方法具有简单易行、适用范围广等优点,但在某些情况下可能会出现迭代次数较多、计算量大等问题。
在选择变量时,应考虑其物理意义、数据的可靠性和敏感性等因素。
选择变量时,首先要考虑变量的物理意义和实际背景,以便更好地理解模型和求解结果。同时,要重视数据的可靠性,避免使用不可靠的数据导致模型失真或错误。敏感度分析可以帮助我们了解变量对目标函数的影响程度,从而更好地选择变量。
总结词
详细描述
总结词
线性规划在工业生产中的应用已经非常广泛,未来将会进一步拓展其应用领域。
工业生产
线性规划在物流运输领域中的应用也将会有更广阔的前景,例如货物的合理配载、车辆路径规划等。
物流运输
线性规划在金融管理中的应用也将逐渐增多,例如投资组合优化、风险控制等。
金融管理
非线性优化
将线性规划拓展到非线性优化领域是一个具有挑战性的研究方向,但也为线性规划的应用提供了更广阔的发展空间。
软件特点
Lingo具有强大的求解能力,可以高效地解决大规模线性规划问题,同时具有友好的用户界面,方便用户进行模型输入和结果输出。

第一 线性规划(共188张PPT)

第一 线性规划(共188张PPT)
个要求表述为
x1 ≥0, x2 ≥0
• 综上所述,该问题的数学模型表示为
maxZ= 3x1 +5 x2
x1
≤8
2x2 ≤12
3x1 +4 x2 ≤36
x1 ≥0, x2 ≥0
5
第一节 线性规划一般模型
• 例2. 运输问题 某名牌饮料在国内有三个生产厂,分布在城市A1、 A2、A3,其一级承销商有4个,分布在城市B1、B2、B3、 B4,已知各厂的产量、各承销商的销售量及从Ai到Bj 的每吨饮料运费为Cij,为发挥集团优势,公司要统 一筹划运销问题,求运费最小的调运方案。
(3)约束条件。产量之和等于销量之和,故要满足:
▪ 供应平衡条件
x11+x12+x13+x14=5 x21+x22+x23+x24=2 x31+x32+x33+x34 =3
§ 销售平衡条件
x11+x21+x31=2 x12+x22+x32=3 x13+x23+x33=1 x14+x24+x34=4
§ 非负性约束
29
第三节 线性规划的标准型
§ 标准化2
minZ= x1 +2 (x2′-x 2〃) +3 x3′
函数。可能是最大化,也可能是最小化。 • 线性规划一般模型的代数式 为:
max(min)Z=c1x1+c2x2+…+cnxn a11x1+a12x2+…+a1nxn ≤(≥,=)b1 a21x1+a22x2+…+a2nxn ≤(≥,=)b2 …………… am1x1+am2x2+…+amnxn≤(≥,=)bm x1,x2,…,xn ≥(≤)0

线性规划完整ppt课件

线性规划完整ppt课件
设变量 x、 y 满足 | x|| y|1,则 x 2 y 的最大值和式训练(三)
若 x、 y 满足
y 1
y
2 x -1
x y m
若目标函数 zxy最小值-1,则m的值.
可编辑课件
15结束
变式训练(四)
x y 1
若 x、 y 满足 x y 4
x
y
2
x y 2
可编辑课件
6
问题(四)
用什么方法解决这个问题呢? 根据什么判断这是一个线性规划问题呢?
可编辑课件
7
解:设每天吃x百克苹果,y百克桔子,花 钱z元,则 50x 25y 75
0.2x 0.4y 1 x0 y0
z 0.75x y
可编辑课件
8
M
M
可编辑课件
9
当直线z=0.75x+y经过可行域上的点M时,z有最小值
巩固练习
x y 1
若点M( x , y ) 在平面区域 x y 4 上
x
y
2
x y 2
向量a (1, 2),则 OM a 的最大值.
可编辑课件
12
变式训练(一)
x y 1
若 x、 y
满足
x
x
y y
4 2
x y 2
则 z | x2y| 最大值.
可编辑课件
13
变式训练(二)
解方程组500.2xx++205.y4=y=751
得M的坐标为(1,7) 33
所以,zmin
0.75x
y
31 12
2.6
答:最少可以花约2.6元.
可编辑课件
10
问题(五)
解决线性规划实际问题的步骤:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018/11/17 14
3、模型:min z=cX s.t. AX b Aeq X beq VLB≤X≤VUB
命令:[1] x=linprog(c,A,b,Aeq,beq, VLB,VUB) [2] x=linprog(c,A,b,Aeq,beq, VLB,VUB, X0) 注意:[1] 若没有等式约束: Aeq X beq , 则令Aeq=[ ], beq=[ ]. [2]其中X0表示初始点 4、命令:[x,fval]=linprog(…) 返回最优解x及x处的目标函数值fval.
一、引言
我们从2005年“高教社杯”全国大学生数模
竞 赛的B题“DVD在线租赁”问题的第二问和第三问 谈起.
其中第二个问题是一个如何来分配有限资源, 从而达到人们期望目标的优化分配数学模型. 它 在数学建模中处于中心的地位. 这类问题一般可 以归结为 数学规划模型.
规划模型的应用极其广泛,其作用已为越来 越多的人所重视. 随着计算机的逐渐普及,它越
上述食谱问题就是一个典型的线性规划问题, 它是指在一组线性的等式或不等式的约束条件下,
寻求以线性函数的最大(小)值为目标的数学模
型.
线性规划的数学模型
• max z =
c1 x1 c2 x2 cn xn
S.T
a11 x1 a12 x 2 a1 j x j a1n x n b1 ai1 x1 ai 2 x 2 aij x j ain x n bi a m1 x1 a m 2 x 2 a mj x j a mn x n bm x1 , x 2 ,, x n 0
来越急速地渗透于工农业生产、商业活动、军事
行为核科学研究的各个方面,为社会节省的财富、 创造的价值无法估量. 在数模竞赛过程中,规划模型是最常见的一 类数学模型. 从92-08年全国大学生数模竞赛试题 的解题方法统计结果来看,规划模型共出现了16 次,占到了近50%,也就是说每两道竞赛题中就有
一道涉及到利用规划理论来分析、求解.
min
f=
c x
x≥0
T
s.t
Ax ≥b,
其中f被称作目标函数,目标函数下的等式或不等 式被称作约束条件, T 1 2 n
( x , x ,, x )
(c1 , c2 ,, cn )T
A=
a11 a 21 a m1
a12 a 22 am2
a1n a2n a mn
用MATLAB优化工具箱解线性规划
1、模型: min z=cX s.t. AX b 命令:x=linprog(c,A,b)
2、模型:min z=cX s.t. AX b Aபைடு நூலகம்q X beq
命令:x=linprog(c,A,b,Aeq,beq)
AX b 存在,则令A=[ ],b=[ ]. 注意:若没有不等式:
MATLAB中有关求解线性规划问题的指令
• • • • • X=linprog(f,A,b,Aeq,beq) X=linprog(f,A,b,Aeq,beq,lb,ub) X=linprog(f,A,b,Aeq,beq,lb,ub,x0) X=linprog(f,A,b,Aeq,beq,lb,ub,x0,options) [x,fval,exitflag,output]= linprog(…)
b1 b 2 ,b= b m
一组满足约束条件的变量 x1 , x2 ,, xn 可行解。
的值称为一组
可行解的集合称为可行解域,或可行解空间。
线性规划问题也就是在可行解域上寻找使目标函数取得 极小(或极大)值的可行解,称之为最优解。
2.2 线性规划模型的求解 针对标准形式的线性规划问题,其解的理论 分析已经很完备,在此基础上也提出了很好的算 法——单纯形方法及其相应的变化形式(两阶段 法,对偶单纯形法等). 单纯形方法是线性规划问题的最为基础、也 是最核心的算法。它是一个迭代算法,先从一个 特殊的可行解(极点)出发,通过判别条件去判
线性规划、线性规划的可行解,最优解的概念 线性规划一般可写作 min(or max) f= 1 1 s.t.
c x c2 x2 cn xn
ai1 x1 ai 2 x2 ain xn bi ,
x j 0, j 1,2,, n
i 1,2,, m
线性规划问题还可以用矩阵表示
解 首先根据食物数量及价格可写出食谱费用为 c1 x1 c2 x2 cn xn ,
其次食谱中第 i 种营养素的含量为 ai1 x1 ai 2 x2 ain xn .
因此上述问题可表述为: min c1 x1 c2 x2 cn xn
a11 x1 a12 x2 a1n xn b1 a x a x a x b 21 1 22 2 2n n 2 s .t . a x a x a x b m2 2 mn n m m1 1 x1 0, x2 0, xn 0
二、线性规划模型
线性规划模型是所有规划模型中最基本、最 简单的一种. 2.1 线性规划模型的基本形式
例1.(食谱问题)设有 n 种食物,各含 m 种营养
素,第 j 种食物中第 i 种营养素的含量为 aij , n 种 食物价格分别为c1, c2, …, cn,请确定食谱中n 种食 物的数量x1, x2, …, xn,要求在食谱中 m 种营养素 的含量分别不低于b1, b2, …, bm 的情况下,使得总 总的费用最低.
断该可行解是否为最优解(或问题无界),若不
是最优解,则根据相应规则,迭代到下一个更好
的可行解(极点),直到最优解(或问题无界).
关于线性规划问题解的理论和单纯形法具体的求
解过程可参见相关文献. 然而在实际应用中,特别是数学建模过程中,
遇到线性规划问题的求解,我们一般都是利用现 有的软件进行求解,此时通常并不要求线性规划 问题是标准形式. 比较常用的求解线性规划模型 的软件包有LINGO、LINDO和MATLAB。
相关文档
最新文档