(新)高中数学第一章统计1_4数据的数字特征自主练习北师大版必修3
北师大版高中数学必修3第1章《平均数、中位数、众数、极差、方差、标准差》练习
学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.下列说法正确的是( )A .在两组数据中,平均值较大的一组方差较大B .平均数反映数据的集中趋势,方差则反映数据离平均值的波动大小C .方差的求法是求出各个数据与平均值的差的平方后再求和D .在记录两个人射击环数的两组数据中,方差大的表示射击水平高 【解析】 平均值的大小与方差的大小无任何联系,故A 错,由方差的公式s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]知C 错.对于D ,方差大的表示其射击环数比较分散,而非射击水平高,故D 错.【答案】 B2.一个样本数据按从小到大的顺序排列为13,14,19,x,23,27,28,31,其中位数为22,则x 为 ( )A .21B .22C .20D .23【解析】 由中位数的概念知x +232=22,所以x =21. 【答案】 A3.(2016·长沙四校联考)为了了解某同学的数学学习情况,对他的6次数学测试成绩(满分100分)进行统计,作出的茎叶图如图1-4-3所示,则下列关于该同学数学成绩的说法正确的是( )图1-4-3A .中位数为83B .众数为85C .平均数为85D .方差为19【解析】易知该同学的6次数学测试成绩的中位数为84,众数为83,平均数为85.【答案】 C4.为了了解我国13岁男孩的平均身高,从北方抽取了300个男孩,平均身高为1.60 m;从南方抽取了200个男孩,平均身高为1.50 m.由此可推断我国13岁男孩的平均身高为()A.1.54 m B.1.55 mC.1.56 m D.1.57 m【解析】x=300×1.60+200×1.50300+200=1.56(m).【答案】 C5.为了普及环保知识,增强环境意识,某大学随机抽取30名学生参加环保知识测试,得分(10分制)如图1-4-4所示,假设得分值的中位数为m e,众数为m0,平均值为x,则()图1-4-4A.m e=m0=xB.m e=m0<xC.m e<m0<xD.m0<m e<x【解析】由图知30名学生的得分情况依次为2个人得3分,3个人得4分、10个人得5分、6个人得6分、3个人得7分,2个人得8分、2个人得9分、2个人得10分,中位数为第15、16个数的平均数,即m e=5+62=5.5,5出现次数最多,故m0=5.x=130(2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×10)≈5.97.于是m 0<m e <x . 【答案】 D 二、填空题6.某年级举行校园歌曲演唱比赛,七位评委为学生甲打出的演唱分数的茎叶图如右图1-4-5所示,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为________.图1-4-5【解析】 由茎叶图可知,学生甲的演唱分数分别为79,83,84,86,84,88,93,去掉一个最高分和一个最低分后,得分如下:83,84,84,86,88,则平均数为85,方差为s 2=15×[(-2)2+(-1)2+(-1)2+12+32]=3.2.【答案】 85,3.27.一组数据的方差为s 2,将这一组数据中的每个数都乘2,所得到的一组新数据的方差为________.【解析】 每个数都乘以2,则x =2x , S =1n [(2x 1-2x )2+…+(2x n -2x )2] =4n [(x 1-x )2+…+(x n -x )2]=4s 2. 【答案】 4s 28.由正整数组成的一组数据x 1,x 2,x 3,x 4其平均数和中位数都是2,且标准差等于1,则这组数据为________(从小到大排列).【解析】 不妨设x 1≤x 2≤x 3≤x 4且x 1,x 2,x 3,x 4为正整数. 由条件知⎩⎪⎨⎪⎧x 1+x 2+x 3+x 44=2,x 2+x 32=2,即⎩⎨⎧x 1+x 2+x 3+x 4=8,x 2+x 3=4,又x1、x2、x3、x4为正整数,∴x1=x2=x3=x4=2或x1=1,x2=x3=2,x4=3或x1=x2=1,x3=x4=3. ∵s=1 4[](x1-2)2+(x2-2)2+(x3-2)2+(x4-2)2=1,∴x1=x2=1,x3=x4=3.由此可得4个数分别为1,1,3,3.【答案】1,1,3,3三、解答题9.为了了解市民的环保意识,某校高一(1)班50名学生在6月5日(世界环境日)这一天调查了各自家庭丢弃旧塑料袋的情况,有关数据如下表:(1)求这50(2)求这50户居民每天丢弃旧塑料袋的标准差.【解】(1)平均数x=150×(2×6+3×16+4×15+5×13)=18550=3.7.众数是3,中位数是4.(2)这50户居民每天丢弃旧塑料袋的方差为s2=150×[6×(2-3.7)2+16×(3-3.7)2+15×(4-3.7)2+13×(5-3.7)2]=150×48.5=0.97.所以标准差s≈0.985.10.(2014·广东高考)某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差.【解】 (1)这20名工人年龄的众数为:30;这20名工人年龄的极差为:40-19=21.(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图如下:(3)这20名工人年龄的平均数为:(19+28×3+29×3+30×5+31×4+32×3+40)÷20=30;所以这20名工人年龄的方差为:120(30-19)2+320(30-28)2+320(30-29)2+520(30-30)2+420(30-31)2+320(30-32)2+120(30-40)2=12.6.[能力提升]1.(2015·山东高考)为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图1-4-5所示的茎叶图.考虑以下结论:图1-4-5①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的序号为()A.①③B.①④C.②③D.②④【解析】甲地该月14时的气温数据分布在26和31之间,且数据波动较大,而乙地该月14时的气温数据分布在28和32之间,且数据波动较小,可以判断结论①④正确,故选B.【答案】 B2.对“小康县”的经济评价标准:①年人均收入不小于7 000元;②年人均食品支出不大于收入的35%.某县有40万人口,年人均收入如下表所示,年人均食品支出如图1-4-6所示.则该县()图1-4-6A.是小康县B.达到标准①,未达到标准②,不是小康县C.达到标准②,未达到标准①,不是小康县D.两个标准都未达到,不是小康县【解析】 由图表可知年人均收入为(2 000×3+4 000×5+6 000×5+8 000×6+10 000×7+12 000×5+16 000×3)÷40=7 050(元)>7 000元,达到了标准①;年人均食品支出为(1 400×3+2 000×5+2 400×13+3 000×10+3 600×9)÷40=2 695(元),则年人均食品支出占收入的2 6957 050×100%≈38.2%>35%,未达到标准②.所以不是小康县.【答案】 B3.已知样本9,10,11,x ,y 的平均数为10,方差为4,则xy =________. 【解析】 由题意得⎩⎪⎨⎪⎧9+10+11+x +y5=10,15[(9-10)2+(10-10)2+(11-10)2+(x -10)2+(y -10)2]=4.化简得x +y =20, ① (x -10)2+(y -10)2=18, ② 由①得x 2+y 2+2xy =400, ③ 代入②化简得xy =91. 【答案】 914.某校甲班、乙班各有49名学生,两班在一次数学测验中的成绩(满分100分)统计如下表:(1)甲班的小刚回家对妈妈说:“昨天的数学测验,全班平均79分,得70分的人最多,我得了85分,在班里算是上游了!”(2)请你根据表中数据,对这两个班的测验情况进行简要分析,并提出教学建议.【解】 (1)由中位数可知,85分排在第25名之后,从名次上讲,85分不算是上游.但也不能单以名次来判断学习成绩的好坏,小刚得了85分,说明他对本阶段的学习内容掌握较好.(2)甲班学生成绩的中位数为87分,说明高于或等于87分的学生占一半以上,而平均分为79分,标准差很大,说明低分也多,两极分化严重,建议对学习有困难的同学多给一些帮助;乙班学生成绩的中位数和平均分均为79分,标准差小,说明学生成绩之间差别较小,成绩很差的学生少,但成绩优异的学生也很少,建议采取措施提高优秀率.。
北师大版高中数学必修三第一章《统计》测试卷(包含答案解析)(1)
一、选择题1.某班统计一次数学测验的平均分与方差,计算完毕才发现有位同学的分数还未录入,只好重算一次.已知原平均分和原方差分别为x ,2s ,新平均分和新方差分别为1x ,21s ,若此同学的得分恰好为x ,则( )A .1x x =,221s s = B .1x x =,221s s < C .1x x =,221s s >D .1x x <,221s s =2.若一组数据12345,,,,x x x x x 的平均数为5,方差为2,则12323,23,23x x x ---,4523,23x x --的平均数和方差分别为( )A .7,-1B .7,1C .7,2D .7,83.采用系统抽样的方法从400人中抽取20人做问卷调查,为此将他们随机编号为1,2,3…,400.适当分组后在第一组采用随机抽样的方法抽到的号码为5,则抽到的20人中,编号落入区间[201,319]内的人员编号之和为( ) A .600B .1225C .1530D .18554.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差D .极差5.根据表中提供的全部数据,用最小二乘法得出y 关于x 的线性回归方程是9944y x =+,则表中m 的值为( )A .26B .27C .28D .296. 2.5PM 是衡量空气质量的重要指标,我国采用世卫组织的最宽值限定值,即 2.5PM 日均值在335/g m μ以下空气质量为一级,在335~75/g m μ空气量为二级,超过375/g m μ为超标.如图是某地12月1日至10日的 2.5PM (单位:3/g m μ)的日均值,则下列说法不正确...的是( )A .这10天中有3天空气质量为一级B .从6日到9日 2.5PM 日均值逐渐降低C .这10天中 2.5PM 日均值的中位数是55D .这10天中 2.5PM 日均值最高的是12月6日7.下图是某公司2018年1月至12月空调销售任务及完成情况的气泡图,气泡的大小表示完成率的高低,如10月份销售任务是400台,完成率为90%,则下列叙述不正确的是( )A .2018年3月的销售任务是400台B .2018年月销售任务的平均值不超过600台C .2018年第一季度总销售量为830台D .2018年月销售量最大的是6月份 8.①45化为二进制数为(2)101101;②一个总体含有1000个个体(编号为0000,0001,…,0999),采用系统抽样从中抽取一个容量为50的样本,若第一个抽取的编号为0008,则第六个编号为0128; ③已知a ,b ,c 为ABC ∆三个内角A ,B ,C 的对边,其中3a =,4c =,6A π=,则这样的三角形有两个解.以上说法正确的个数是( ) A .0B .1C .2D .39.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油10.已知x,y的取值如表:x 2678y若x,y之间是线性相关,且线性回归直线方程为,则实数a的值是A.B.C.D.11.某校高中三个年级共有学生1050人,其中高一年级300人,高二年级350人,高三年级400人.现要从全体高中学生中通过分层抽样抽取一个容量为42的样本,那么应从高三年级学生中抽取的人数为A.12 B.14 C.16 D.1812.从存放号码分别为1,2, ,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的频率是()A.0.53 B.0.5 C.0.47 D.0.37二、填空题13.如图,这是某校高一年级一名学生七次数学测试成绩(满分100分)的茎叶图. 去掉一个最高分和一个最低分后,所剩数据的方差是 _____14.为调查某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本.其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生2000人,则该校学生总人数是_______..15.已知数据(1,2,3,4,5)i x i =的平均值为a ,数列2{()}i x a -为等差数列,且3||0.1x a -=________.16.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.17.某公司的广告费支出x 与销售额y (单位:万元)之间有下列对应数据:由资料显示y 对x 呈线性相关关系。
必修3(北师大版)第一章 《统计》测试题
必修三 统计测试题一、选择题(每题只有一个正确答案,每小题5分,共12小题,60分)1.在2008年奥运会开幕之际,某网站想要调查北京市家庭的收入情况,在该问题中,总体是( B )A.北京市B.北京市的所有家庭的收入C.北京市的所有人口D.北京市的工薪阶层 1.解析 :所要研究对象的全体称为统计总体,简称总体,要调查某城市的所有家庭的收入,研究对象就是所有家庭的收入. 答案:B.2.某企业有职工150人,其中高级职称15人,中级职称45人,一般职员90人,现抽取30人进行分层抽样,则各职称人数分别为( B )A .5,10,15B .3,9,18C .3,10,17D .5,9,163. 从N 个编号中抽取n 个号码入样,若采用系统抽样方法进行抽取,则分段间隔应为( C )A .nN B .n C .⎥⎦⎤⎢⎣⎡n N D.1+⎥⎦⎤⎢⎣⎡n N 4. 有50件产品编号从1到50,现在从中抽取5件检验,用系统抽样确定所抽取的编号为( D )A .5,10,15,20,25B .5,15,20,35,40C .5,11,17,23,29D .10,20,30,40,505.用样本频率分布估计总体频率分布的过程中,下列说法正确的是( C )A .总体容量越大,估计越精确B .总体容量越小,估计越精确C .样本容量越大,估计越精确D .样本容量越小,估计越精确6.对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则改样本的中位数、众数、极差分别是 ( A )( )A .46,45,56B .46,45,53C .47,45,56D .45,47,537.据报道,2012年7月2日,正阳县一女子在考驾照的路上不小心撞倒行人.对此,某网站对责任的界定进行了一个调查,结果如下:根据此调查结论,则“认为驾校和学员共同负责”者的频率为( )A.18B.14C.12D.137.解析:参与的人数为8000人, “认为驾校和学员共同负责”的频率为4000180002=.答案:C.8 .小波一星期的总开支分布图如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为(C)( )A .30%B .10%C .3%D .不能确定9 .在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是(D )A .众数B .平均数C .中位数D .标准差A.9%B.18%C.27%D.82% 10.解析:优秀的学生共9人,该班总人数为50人,故优秀率为918%50=. 答案:B.11.容量为20的样本数据,分组后的频数如下表则样本数据落在区间[10,40)的频率为( B )A .0.35B .0.45C .0.55D .0.6512.某地区某种病的发病人数呈上升趋势,统计近四年这种病的新发病人数的线性回归分析如下表所示:如果不加控制,仍按这个趋势发展下去,请预测从2000年初到2003年底的四年时间里,该地区这种病的新发病总人数约为( B )A.1167B.11676C.20987D.209812.解析:由上表可得: yˆ=94.7x -186623,当x 分别取2000,2001,2002,2003时,得估计值分别为:2777, 2871.7, 2966.4, 3061.1,则总人数约为2777+2871.7+2966.4+3061.1≈ 11676 答案:B. 二、填空题(每题5分,共4小题,满分20分)13 .一支田径运动队有男运动员56人,女运动员42人.现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有_6_____人.14.由正整数组成的一组数据1x 、2x 、3x 、4x ,其平均数和中位数都是2,且标准差等于1,则这组数据为_1;1;3;3;________.(从小到大排列)15.采用简单随机抽样从含10个个体的总体中抽取一个容量为4的样本,个体 a 前两次未被抽到,第三次被抽到的概率为_101____________________解析 : 不论先后,被抽取的概率都是11016.则样本在区间[20,50)[60,70)⋃ 上的频率为__________________16.解析:首先可以求出20245423x =-----=,在区间[20,50)[60,70)⋃的样本个数为3+4+5+2=14,故频率为140.720=. 答案:0.7.三、解答题(共6小题,满分70分) 17.(本题满分10分)某学校对甲、乙两班的学习成绩进行抽样分析,各抽5 门功课,得到其平均分数分别如下: 甲:60,80,70,90,70 乙:80,60,70,80,75问:甲、乙两个班哪班平均成绩好?哪班的各门功课发展较平衡?17.解:甲班的各门平均成绩为:11(6080709070)745x =++++=乙班的各门平均成绩为:21(8060708075)735x =++++=甲班成绩的方差为:22222211(1464164)1045s =++++= 乙班成绩的方差为: 22222221(713372)565s =++++=由12x x >,2212S S >可知甲的平均成绩较好,乙的各门功课发展较平衡 18.(本题满分12分)有1个容量为100的样本,数据的分组及各组的频率如下:[12.5,15.5)频数 6; [15.5,18.5)频数16; [18.5,21.5) 频数18; [21.5,24.5)频数 22; [24.5,27.5)频数20; [27.5,30.5) 频数10; [30.5,33.5)频数 8.(1).列出样本的频率分布表(含累积频率); (2).画出频率分布直方图. 18.解:(1).样本的频率分布表如下:(2)频率分布直方图如图10—519.(本题满分12分)某学校选拔学生会主席,在5名参选者中选出1名,规定获胜者的条件如下: (1)在竞选中得票最多;(2)得票总数不低于总票数的一半.如果在计票中周小玉的数据不小心丢失,试根据统计数据回答下列问题:(1)请问:如果周小玉获胜,那么周小玉的得票数x 至少是多少?(2)如果赵琦获胜,求周小玉得票数x 的取值范围.19.解:(1).根据条件,如果周小玉获胜,则周小玉的得票数不低于总票数的一半,且票数最高:则必有:130010030602xx≥++++且300x>,解之得:490x ≥.即周小玉的得票数至少为490票;(2).根据条件,如果赵琦获胜,则赵琦的得票数不低于总票数的一半,且得票数最多,则必有:300130010030602300x x ⎧≥⎪++++⎨⎪>⎩,解之得110x ≤ 即周小玉的得票数取值范围是:0110x ≤≤,x N ∈. 20.(本题满分12分)如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)79.589.5 这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛分数的众数、中位数和平均数; (3)估计这次环保知识竞赛的及格率(60分及以上为及格)解析:(1)频率为:0.025100.25⨯=,频数:600.2515⨯=(2)众数在样本数据的频率分布直方图中就是最高矩形的中点横坐标5.7425.795.69=+;估计众数是75或74;对于中位数,由于样本中的个体有一半小于或等于中位数,因此在排列分布直方图中中位数左边和右边的直方图面积应该相等,由此估计样本中的中位数的大小。
北师大版高中数学必修三第一章《统计》测试题(答案解析)
一、选择题1.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x 万 8.3 8.6 9.9 11.1 12.1 支出y 万5.97.88.18.49.8根据上表可得回归直线方程ˆˆˆy bx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( ) A .12.68万元B .13.88万元C .12.78万元D .14.28万元2.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是( )A .成绩B .视力C .智商D .阅读量3.若一组数据12345,,,,x x x x x 的平均数为5,方差为2,则12323,23,23x x x ---,4523,23x x --的平均数和方差分别为( )A .7,-1B .7,1C .7,2D .7,84.将某选手的7个得分去掉1个最高分,去掉1个最低分,5个剩余分数的平均分为21,现场作的7个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示,则5个剩余分数的方差为( )A .1167B .365C .36D .675.有线性相关关系的变量有观测数据,已知它们之间的线性回归方程是,若,则( ) A .B .C .D .6.一组数据中的每一个数据都乘2,再减去80,得到一组新数据,若求得新数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是 A .81.2,4.4 B .40.6,1.1 C .48.8,4.4D .78.8,1.17.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x (cm )174176176176178儿子身高y (cm )175175176177177则y 对x 的线性回归方程为 A .y = x-1B .y = x+1C .y =88+12x D .y = 1768.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用x (万元) 2 3 4 5 销售额y (万元)25374454根据上表可得回归方程ˆˆˆy bx a =+中的ˆb为9.4,据此模型预报广告费用为6万元时销售额为( ) A .61.5万元 B .62.5万元C .63.5万元D .65.0万元9.若某中学高二年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数是( )A .90.5B .91.5C .90D .9110.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某时间段车流量与PM2.5浓度的数据如下表: 时间周一 周二 周三周四 周五 车流量x (万辆) 100 102 108 114 116 浓度y (微克)7880848890根据上表数据,用最小二乘法求出y 与x 的线性回归方程是( )参考公式:121()()()niii ni i x x y y b x x ==--=-∑∑,a y b x =-⋅;参考数据:108x =,84y =;A .0.6274ˆ.2yx =+ B .0.7264ˆ.2y x =+ C .0.7164ˆ.1y x =+ D .0.6264ˆ.2y x =+ 11.设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位 D .y 平均减少2个单位12.从存放号码分别为1,2,⋯,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的频率是( ) A .0.53B .0.5C .0.47D .0.37二、填空题13.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位: cm ),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有_______株树木的底部周长大于110cm .14.已知一组数1,2,m ,6,7的平均数为4,则这组数的方差为______.15.数列{}n a 是公差不为零的等差数列,其前n 项和为n S ,若记数据1a ,2a ,3a ,⋅⋅⋅,2019a 的标准差为1σ,数据11S ,22S ,33S ,⋅⋅⋅,20192019S 的标准差为2σ,则12σσ=________ 16.一个车间为了规定工作原理,需要确定加工零件所花费的时间,为此进行了5次试验,收集数据如下: 零件数x (个) 15 20 30 40 50 加工时间y (分钟)6570758090由表中数据,求得线性回归方程0.66y x a =+,则估计加工70个零件时间为__________分钟(精确到0.1). 17.已知x ,y 的取值如下表: x 2 3 4 5 y2.23.85.56.5从散点图分析,y 与x 线性相关,且回归方程为y =1.46x +a ,则实数a 的值为________.18.数据1x ,2x ,…,n x 的平均数是3,方差是1,则数据15x -,25x -,…,5n x -的平均数和方差之和是__________.19.某超市统计了一个月内每天光顾的顾客人数,得到如图所示的频率分布直方图,根据该图估计该组数据的中位数为__________.20.已知某市A 社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是________人.三、解答题21.某同学在生物研究性学习中,对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料:(1)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出y 关于x 的线性回归方程y bx a =+;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠? 附:回归直线的斜率和截距的最小二乘估计公式分别为:()()()1122211nniii i i i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.22.假设关于某设备的使用年限x 和所支出的维修费用y (万元),有如下的统计资料:若由资料可知y 对x 呈线性相关关系,试求: (1)回归直线方程;(2)估计使用年限为10年时,维修费用约是多少?(参考:1221ni ii nii x ynxyb xnx ==-=-∑∑,a y bx =-)23.经销商小王对其所经营的某一型号二手汽车的使用年数(010)x x <≤与销售价格y (单位:万元/辆)进行整理,得到如下的对应数据:售价 1613 9.5 7 4.5(1)试求y 关于x 的回归直线方程;(2)已知每辆该型号汽车的收购价格为20.05 1.7517.2=-+w x x 万元,根据(1)中所求的回归方程,预测x 为何值时,小王销售一辆该型号汽车所获得的利润z 最大.附:回归方程ˆybx a =+中,1221ˆˆˆˆ,ni ii nii x ynx y b ay bx xnx -=-==--∑∑ 24.学生甲在一次试验中用显微镜观察某种环境下细菌的个数,发现时间x (分钟)时刻的细菌个数为y 个,统计结果如下:x 1 2 3 4 5 y23445(Ⅰ)在给出的坐标系中画出x ,y 的散点图,说明细菌个数和时间是正相关还是负相关.(Ⅱ)根据表格中的5组数据,求y 关于x 的回归直线方程ˆˆˆy bx a =+,并根据回归直线方程估计从实验开始,什么时刻细菌个数为12.参考公式:(1221ˆˆˆ,ni ii ni i x y nx yx n axby bx ====---∑∑) 25.某市举办了一次“诗词大赛”,分预赛和复赛两个环节,已知共有20000名学生参加了预赛,现从参加预赛的全体学生中随机地抽取100人的预赛成绩作为样本,得到如下的统计数据. 得分(百分[0,20)[20,40)[40,60)[60,80)[80,100]地抽取2人,求恰有1人预赛成绩优良的概率;(2)由样本数据分析可知,该市全体参加预赛学生的预赛成绩Z 服从正态分布()2,N μσ,其中μ可近似为样本中的100名学生预赛成绩的平均值(同一组数据用该组数据的中间值代替),且2361σ=.利用该正态分布,估计全市参加预赛的全体学生中预赛成绩不低于72分的人数;(3)预赛成绩不低于91分的学生将参加复赛,复赛规则如下: ①参加复赛的学生的初始分都设置为100分;②参加复赛的学生可在答题前自己决定答题数量n ,每一题都需要“花”掉一定分数来获取答题资格(即用分数来买答题资格),规定答第k 题时“花”掉的分数为()0.21,2,k k n =; ③每答对一题得2分,答错得0分;④答完n 题后参加复赛学生的最终分数即为复赛成绩.已知学生甲答对每道题的概率均为0.75,且每题答对与否都相互独立,则当他的答题数量n 为多少时,他的复赛成绩的期望值最大?参考数据:若()2~,Z N μσ,则() 6.827P Z μσμσ-<<+≈,()220.9545P Z μσμσ-<<+≈,()330.9973P Z μσμσ-<<+≈26.某校的一个社会实践调查小组,在对该校学生的良好“用眼习惯”的调查中,随机发放了120分问卷.对收回的100份有效问卷进行统计,得到如22⨯下列联表:(1)现按女生是否能做到科学用眼进行分层,从45份女生问卷中抽取了6份问卷,从这6份问卷中再随机抽取3份,并记其中能做到科学用眼的问卷的份数X ,试求随机变量X 的分布列和数学期望;(2)若在犯错误的概率不超过P 的前提下认为良好“用眼习惯”与性别有关,那么根据临界值表,最精确的P 的值应为多少?请说明理由.附:独立性检验统计量22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.独立性检验临界值表:【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由已知求得 x , y ,进一步求得 a ,得到线性回归方程,取16x =求得y 值即可. 【详解】8.38.69.911.1512.1 10x +++=+=, 5.97.88.18.49.858y ++++==.又 0.78b =,∴ 80.78100.2a y bx --⨯===. ∴ 0.780.2y x =+.取16x =,得 0.78160.212.68y ⨯+==万元,故选A . 【点睛】本题主要考查线性回归方程的求法,考查了学生的计算能力,属于中档题.2.D解析:D 【解析】试题分析:由表中数据可得 表1:()25262210140.00916362032K ⨯⨯-⨯=≈⨯⨯⨯;表2: ()2524201216 1.76916362032K ⨯⨯-⨯=≈⨯⨯⨯;表3: ()252824128 1.316362032K ⨯⨯-⨯=≈⨯⨯⨯;表4: ()25214302623.4816362032K ⨯⨯-⨯=≈⨯⨯⨯.其中23.48最大,所以阅读量与性别有关联的可能性最大.故D 正确. 考点:独立性检验.3.D解析:D 【分析】根据平均数的性质,方差的性质直接运算可得结果. 【详解】令23(1,2,,5)i i y x i =-=1234555x x x x x x ++++==,1234523232323232310375x x x x x y x -+-+-+-+-∴==-=-=,(也可()(23)2()32537E y E x E x =-=-=⨯-=)()()()2y 232428D D x D x =-==⨯=故选:D 【点睛】本题主要考查方差及平均值的性质的简单应用,属于中档题.4.B解析:B 【分析】由剩余5个分数的平均数为21,据茎叶图列方程求出x =4,由此能求出5个剩余分数的方差. 【详解】∵将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个分数的平均数为21, ∴由茎叶图得:1724202020215x+++++=得x =4,∴5个分数的方差为: S 2=()()()()()222221361721242120212021242155⎡⎤-+-+-+-+-=⎣⎦ 故选B 【点睛】本题考查方差的求法,考查平均数、方差、茎叶图基础知识,考查运算求解能力,考查数形结合思想,是基础题.5.D解析:D 【解析】 【分析】 先计算,代入回归直线方程,可得,从而可求得结果.【详解】 因为,所以,代入回归直线方程可求得,所以,故选D. 【点睛】该题考查的是有关回归直线的问题,涉及到的知识点有回归直线一定会过样本中心点,利用相关公式求得结果,属于简单题目.6.B解析:B 【分析】先设出原来的数据,然后设出现在的数据,找到两组数据的联系,即可. 【详解】设原来的数据为12,,....,n x x x ,每一个数据都乘以2,再减去80,得到新数据为 12280,280,...,280n x x x --- 已知()122...80 1.2n x x x nn+++-=,则81.240.62X == 方差为:224 4.4, 1.1σσ==,故选B . 【点睛】本道题目考查的是平均数和方差之间的关系,列出等式,探寻两组数据的联系,即可.7.C解析:C 【详解】试题分析:由已知可得176,176x y ==∴中心点为()176,176, 代入回归方程验证可知,只有方程y =88+12x 成立,故选C 8.C解析:C 【分析】先求出所给数据的平均数,得到样本中心点,根据回归直线经过样本中心点,求出ˆa,得到线性回归方程,把6x =代入即可求出答案. 【详解】 由题意知4235 3.54x +++==,44253754404y +++==, 则40ˆˆ9.4 3.57.1a y bx=-=-⨯=, 所以回归方程为9.4.1ˆ7yx =+, 则广告费用为6万元时销售额为9.467.163.5⨯+=, 故答案为C. 【点睛】本题考查了线性回归方程的求法与应用,属于基础题.9.A解析:A 【分析】共有8个数据,中位数就是由小到大中间两数的平均数,求解即可. 【详解】根据茎叶图,由小到大排列这8个数为84,85,89,90,91,92,93,95, 所以中位数为90+91=90.52,故选A. 【点睛】本题主要考查了中位数,茎叶图,属于中档题.10.B解析:B 【解析】 【分析】利用最小二乘法做出线性回归直线的方程的系数,写出回归直线的方程,得到结果. 【详解】 由题意,b=22222210078102801088411488116905108841001021081141165108⨯+⨯+⨯+⨯+⨯-⨯⨯++++-⨯=0.72,a=84﹣0.72×108=6.24, ∴y =0.72x+6.24, 故选:B . 【点睛】本题主要考查线性回归方程,属于难题.求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算211,,,nnii i i i x y x x y ==∑∑的值;③计算回归系数ˆˆ,ab ;④写出回归直线方程为ˆˆˆy bx a =+; 回归直线过样本点中心(),x y 是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.11.C解析:C 【解析】 【分析】细查题意,根据回归直线方程中x 的系数是 1.5-,得到变量x 增加一个单位时,函数值要平均增加 1.5-个单位,结合回归方程的知识,根据增加和减少的关系,即可得出本题的结论. 【详解】因为回归直线方程是2 1.5ˆyx =-, 当变量x 增加一个单位时,函数值平均增加 1.5-个单位,即减少1.5个单位,故选C.【点睛】本题是一道关于回归方程的题目,掌握回归方程的分析时解题的关键,属于简单题目. 12.A解析:A【解析】分析:由题意结合统计表确定频数,然后确定频率即可.详解:由题意可知,取到卡片为奇数的频数为:1356181153++++=,取卡片的次数为100次,则取到号码为奇数的频率是530.53 100=.本题选择A选项.点睛:本题主要考查频率的定义及其应用等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.18【分析】根据频率小矩形的面积小矩形的高组距底部求出周长大于110的频率再根据频数样本容量频率求出对应的频数【详解】由频率分布直方图知:底部周长大于110的频率为所以底部周长大于110的频数为(株解析:18【分析】根据频率=小矩形的面积=小矩形的高⨯组距底部,求出周长大于110cm的频率,再根据频数=样本容量⨯频率求出对应的频数.【详解】由频率分布直方图知:底部周长大于110cm的频率为(0.0200.010)100.3+⨯=,所以底部周长大于110cm的频数为600.318⨯=(株),故答案是:18.【点睛】该题考查的是有关频率分布直方图的应用,在解题的过程中,注意小矩形的面积表示的是对应范围内的频率,属于简单题目.14.【分析】先根据平均数计算出的值再根据方差的计算公式计算出这组数的方差【详解】依题意所以方差为故答案为【点睛】本小题主要考查平均数和方差的有关计算考查运算求解能力属于基础题解析:26 5【分析】先根据平均数计算出m的值,再根据方差的计算公式计算出这组数的方差.【详解】依题意12674,45m m ++++==.所以方差为()()()()()22222114244464745⎡⎤-+-+-+-+-⎣⎦[]126944955=+++=. 故答案为265. 【点睛】本小题主要考查平均数和方差的有关计算,考查运算求解能力,属于基础题.15.2【分析】根据等差数列性质分析两组数据之间关系再根据数据变化规律确定对应标准差变化规律即得结果【详解】因为数列是公差不为零的等差数列其前项和为所以因此即故答案为:2【点睛】本题考查等差数列和项性质以解析:2 【分析】根据等差数列性质分析两组数据之间关系,再根据数据变化规律确定对应标准差变化规律,即得结果. 【详解】因为数列{}n a 是公差不为零的等差数列,其前n 项和为n S ,所以111=+222n n n a a a a n S +=, 因此2112σσ=,即122σσ=故答案为:2 【点睛】本题考查等差数列和项性质以及数据变化对标准差的影响规律,考查综合分析求解能力,属中档题.16.7【解析】【分析】结合题意先求出线性回归方程然后再计算出结果【详解】由题意可得则线性回归方程为当时【点睛】本题考查了求线性回归方程然后求出估计结果需要掌握解题方法较为基础解析:7 【解析】 【分析】结合题意先求出线性回归方程,然后再计算出结果 【详解】 由题意可得1520304050315x ++++==6570758090765y ++++==,760.6631a ∴=⨯+,55.54a =,则线性回归方程为0.66 5.4ˆ55y x =+ 当70x =时,ˆ101.7y≈ 【点睛】本题考查了求线性回归方程,然后求出估计结果,需要掌握解题方法,较为基础17.—061【分析】根据所给条件求出把样本中心点代入回归直线方程可以得到关于的方程解出即可得到答案【详解】根据题意可得则这组数据的样本中心点是代入到回归直线方程故答案为【点睛】本题考查了线性回归方程解题解析:—0.61 【分析】根据所给条件求出x ,y ,把样本中心点()x y ,代入回归直线方程 1.4ˆ6ˆyx a +=,可以得到关于ˆa的方程,解出即可得到答案 【详解】 根据题意可得23453.54x +++== 2.2 3.8 5.5 6.54.54y +++==则这组数据的样本中心点是()3.54.5,代入到回归直线方程 1.4ˆ6ˆyx a += 4.5 1.46 3.ˆ5a∴⨯+= ˆ0.61a=- 故答案为0.61- 【点睛】本题考查了线性回归方程,解题的关键是线性回归方程一定过样本中心点,这是求解线性回归方程的步骤之一,是线性回归方程考查的常见题型,体现了回归直线方程与样本中心点的关联.18.3【解析】分析:由题意结合平均数方差的性质整理计算即可求得最终结果详解:由题意结合平均数和方差的性质可知:数据…的平均数为:方差为:则平均数和方差之和是点睛:本题主要考查均值的性质方差的性质等知识意解析:3 【解析】分析:由题意结合平均数、方差的性质整理计算即可求得最终结果. 详解:由题意结合平均数和方差的性质可知:数据15x -,25x -,…,5n x -的平均数为:532-=,方差为:()2111-⨯=, 则平均数和方差之和是213+=.点睛:本题主要考查均值的性质、方差的性质等知识,意在考查学生的转化能力和计算求解能力.19.75【解析】分析:由频率分布直方图算出各频率然后计算中位数详解:由图可知的频率为的频率为的频率为的频率为的频率为前两组频率前三组频率中位数在第三组设中位数为则解得故该组数据的中位数为点睛:本题考查了解析:75. 【解析】分析:由频率分布直方图算出各频率,然后计算中位数 详解:由图可知,10~20的频率为0.1420~30的频率为0.2430~40的频率为0.32 40~50的频率为0.2 50~60的频率为0.1前两组频率0.140.240.380.5=+=< 前三组频率0.140.240.320.70.5=++=>∴中位数在第三组设中位数为x ,则()300.380.320.510x -+⨯=解得33.75x =故该组数据的中位数为33.75点睛:本题考查了在频率分布直方图中求中位数,此类题目需要先确定中位数所在的组,然后根据公式计算求得结果,较为基础.20.【解析】根据题意可得抽样比为则这次抽样调查抽取的人数是即答案为140 解析:140【解析】根据题意可得抽样比为501,75015= 则这次抽样调查抽取的人数是()114507509002100140,1515++=⨯= 即答案为140.三、解答题21.(1)532y x =-;(2)线性回归方程是可靠的. 【分析】(1)根据最小二乘法公式,分别将数据代入计算,即可得答案;(2)选取的是4月1日与4月30日的两组数据,即10x =和8x =代入判断即可; 【详解】解:(1)由数据得12x =,27y =,3972xy =,23432x =; 又31977i i i x y ==∑,321434i i x ==∑;97797254344322b -==-,5271232a =-⨯=-;所以y 关于x 的线性回归方程为:532y x =-. (2)当10x =时,5103222y =⨯-=,22232-<; 当8x =时,583222y =⨯-=,17162-<, 所得到的线性回归方程是可靠的. 【点睛】本题考查最小二乘法求回归直线方程及利用回归方程进行判断拟合效果,考查数据处理能力,求解时注意回归直线必过样本点中心的应用.22.(1) 1.2308ˆ.0yx =+;(2)12.38万元.. 【分析】(1)由已知表格中的数据,易计算出变量x ,y 的平均数,及2i x ,i i x y 的累加值,代入回归直线系数公式1221ni ii nii x ynxyb xnx ==-=-∑∑,a y bx =-,即可求出回归直线的系数,进而求出回归直线方程.(2)把使用年限10代入回归直线方程,即可估算出维修费用的值. 【详解】 (1)4x =,5y=,52190i i x==∑,51112.3i i i x y ==∑,12215 1.235ni ii nii x yxyb xx ==-==-∑∑,0.08a y bx =-=, 所以回归直线方程为 1.2308ˆ.0yx =+; (2) 1.23100.0812.3ˆ8y=⨯+=, 即估计用10年时维修费约为12.38万元. 【点评】本题考查回归直线的方程求解,关键是要求出回归直线方程的系数,由已知的变量x ,y 的值,我们计算出变量x ,y 的平均数,及2i x ,i i x y 的累加值,代入回归直线系数公式1221ni ii nii x ynxyb xnx ==-=-∑∑,a y bx =-,即可求出回归直线的系数,进而求出回归直线方程.属于中等题.23.(1) 1.4518.7y x =-+;(2)3 【分析】(1)由表中数据计算x 、y ,求出ˆb、ˆa ,即可写出回归直线方程; (2)写出利润函数z y w =-,利用二次函数的图象与性质求出3x =时z 取得最大值. 【详解】解:(1)由表中数据得,1(246810)65x =⨯++++=,1(16139.57 4.5)105y =⨯++++=, 由最小二乘法求得:22222221641369.58710 4.5561058ˆ 1.452468105640b⨯+⨯+⨯+⨯+⨯-⨯⨯-===-++++-⨯, ˆ10( 1.45)618.7a=--⨯=, 所以y 关于x 的回归直线方程为 1.4518.7y x =-+; (2)根据题意,利润函数为:22(1.4518.7)(0.05 1.7517.2)0.050.3 1.5z y w x x x x x =-=-+--+=-++,所以,当0.332(0.05)x =-=⨯-时,二次函数z 取得最大值为1.95;即预测3x =时,小王销售一辆该型号汽车所获得的利润z 最大. 【点睛】本题考查了回归直线方程的求法,以及二次函数的图象与性质的应用,考查计算能力.24.(Ⅰ)图象见解析,正相关;(Ⅱ)ˆ0.7 1.5yx =+,当15x =时细菌个数为12个. 【分析】(Ⅰ)根据数据描点即得散点图,看图即判断结果; (Ⅱ)利用公式代入数据计算即可. 【详解】解:(Ⅰ)图形如下,观察图像可知细菌个数和时间是正相关.(Ⅱ)由数据计算得,()11234535x =⨯++++=,()123445 3.65y =⨯++++=,1122334445561ni ii x y==⨯+⨯+⨯+⨯+⨯=∑,22222211234555n i i x ==++++=∑122216153 3.67ˆ0.7555310ni ii ni i x y nx yxbx n ==-⨯⨯====-⨯--∑∑,ˆˆ 3.60.73 1.5a y bx =-=-⨯=, 所以ˆ0.7 1.5yx =+, 当0.7 1.512x +=时,解得15x =. 所以当15x =时细菌个数为12个. 【点睛】本题考查了散点图、线性回归方程及其应用,属于基础题. 25.(1)2552;(2)3173;(3)当他的答题数量7n =时,他的复赛成绩的期望值最大. 【分析】(1)由表可知,样本中成绩不低于60分的学生共有40人,其中成绩优良的人数为15人,再结合排列组合与古典概型即可得解;(2)先求出样本中的100名学生预赛成绩的平均值,即为μ,从而推出~(53Z N ,219),再根据正态分布的性质即可得解;(3)以随机变量ξ表示甲答对的题数,则~B ξ(,0.75)n ,记甲答完n 题所得的分数为随机变量X ,则2X ξ=,为了获取答n 道题的资格,甲需要“花”掉的分数为20.1()n n +,设甲答完n 题后的复赛成绩的期望值为()f n ,则2()1000.1()()f n n n E X =-++,最后利用配方法即可得解. 【详解】解:(1)由题意得样本中成绩不低于60分的学生共有40分,其中成绩优良的人数为15人,记“从样本中预赛成绩不低于60分的学生中随机地抽取2人,恰有1人预赛成绩优良”为事件A ,则()1125152402552C C P A C == 答:“从样本中预赛成绩不低于60分的学生中随机地抽取2人,恰有1人预赛成绩优良”的概率为2552(2)由题意知样本中的100名学生预赛成绩的平均值为:100.1300.2500.3700.25900.1533x =⨯+⨯+⨯+⨯+⨯=,则53μ=,由2361σ=得19σ=, 所以()()()()17210.158652P Z P Z P Z μσμσμσ≥=≥+=--<≤+≈, 所以,估计全市参加参赛的全体学生中,成绩不低于72分的人数为20000×0.15865=3173,即全市参赛学生中预赛成绩不低于72分的人数为3173.(3)以随机变量ξ表示甲答对的题数,则()~,0.75B n ξ,且()0.75E n ξ=, 记甲答完n 题所加的分数为随机变量X ,则2X ξ=,∴()()2 1.5E X E n ξ==, 依题意为了获取答n 道题的资格,甲需要“花”掉的分数为:()()20.2123...0.1n n n ⨯++++=+,设甲答完n 题后的复赛成绩的期望值为()f n ,则()()()221000.1 1.50.17104.9f n n n n n =-++=--+,由于*n N ∈,所以当7n =时,()f n 取最大值104.9. 即当他的答题数量7n =时,他的复赛成绩的期望值最大. 【点睛】本题考查古典概型、正态分布的性质、二项分布的性质及数学期望的实际应用,考查学生对数据的分析与处理能力,属于中档题.26.(1)分布列见解析,1;(2)0.10=P ,理由见解析. 【分析】(1)按照分层抽样计算“科学用眼”和“不科学用眼”的抽取人数,随机变量X 的取值可能为0,1,2,然后计算概率得出分布列及其数学期望; (2)按照公式计算2K 的值,然后由临界值表得出结果即可. 【详解】(1)“科学用眼”抽156245⨯=人,“不科学用眼”抽306445⨯=人,则随机变量X0=,1,2,∴343641 (0)205====CP XC,122436123(1)205C CP XC====,21243641(2)205C CP XC====,分布列为:0120121555EX=⨯+⨯+⨯=;(2)22100(45153010)3.03075255545⨯-⨯=≈⨯⨯⨯K,由表可知2.706 3.030 3.840<<,∴0.10=P.【点睛】本题考查随机变量的分布列和数学期望,考查独立性检验,考查逻辑思维能力和计算能力,考查学生分析解决问题的能力,属于常考题.。
北师大版高中数学高一第一章 4 数据的数字特征
组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值
相等.
其中正确结论的个数为
√A.1
B.2 C.3 D.4
解析 在这11个数中,数3出现了6次,频率最高,故众数是3;将这11个
数按从小到大的顺序排列得2,2,3,3,3,3,3,3,6,6,10,中间数据是3,故中位数 是3;而平均数 x =2×2+3×611+6×2+故10只=有4. ①正确.
A.5
B.6 C.7 D.8
√
解析 由题意知,10+11+0+3+x+8+9=7×7,解得x=8.
12345
解析 答案
4.若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…, 2x10-1的标准差为__1_6__.
解析 设样本数据x1,x2,…,x10的标准差为s, 则s=8, 可知数据2x1-1,2x2-1,…,2x10-1的标准差为2s=16.
解答
类型三 数据的数字特征的综合应用
例3 在一次科技知识竞赛中,两组学生的成绩如下表:
分数
50 60 70 80 90 100
甲组 2 人数
乙组 4
5 10 13 14
6
4 16 2 12 12
已经算得两个组的平均分都是80分.请根据你所学过的统计知识,进一步 判断这两个组在这次竞赛中的成绩谁优谁劣,并说明理由.
解答
达标检测
1.某市2017年各月的平均气温(℃)数据的茎叶图如图:
则这组数据的中位数是
A.19
√B.20
C.21.5
D.23
解析 由茎叶图知,平均气温在20℃以下的有5个月,在20℃以上的也有
5个月,恰好是20℃的有2个月,由中位数的定义知,这组数据的中位数
2024-2025年北师大版数学必修第一册6.4.1样本的数字特征(带答案)
4.1 样本的数字特征必备知识基础练知识点一平均数、众数、中位数的计算与应用1.(多选题)某学校有1 000名学生,为更好的了解学生身体健康情况,随机抽取了100名学生进行测试,测试成绩(单位:分)的频率分布直方图如图所示,则下列说法正确的有( )A.频率分布直方图中a的值为0.005B.估计这100名学生成绩的中位数约为77C.估计这100名学生成绩的众数为80D.估计总体中成绩落在[60,70)内的学生人数为1602.某医院为了了解病人每分钟呼吸的次数,对20名病人进行检测,记录结果如下:12,20,16,18,20,28,23,16,15,18,20,24,18,21,18,19,18,31,18,13.则这组数据的平均数为________,中位数为________,众数为________.知识点二方差、标准差的计算与应用3.样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均数为1,则样本的方差为( )A.65B.65C.2 D.24.某班20位女同学平均分为甲、乙两组,她们某次的数学考试成绩如下(单位:分):甲组60,90,85,75,65,70,80,90,95,80;乙组85,95,75,70,85,80,85,65,90,85.(1)试分别计算两组数据的极差、方差和标准差;(2)哪一组的成绩较稳定?知识点三估计总体的数字特征5.统计局就某地居民的月收入(元)情况调查了10 000人,并根据所得数据画出了样本频率分布直方图(如图),每个分组包括左端点,不包括右端点,如第一组表示月收入在[500,1 000)内.(1)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用分层随机抽样的方法抽出100人作进一步分析,则月收入在[2 000,2 500)内的应抽取多少人?(2)根据频率分布直方图估计样本数据的中位数;(3)根据频率分布直方图估计样本数据的平均数.关键能力综合练1.下列关于平均数、中位数、众数的说法中正确的一项是( )A .中位数可以准确地反映出总体的情况B .平均数可以准确地反映出总体的情况C .众数可以准确地反映出总体的情况D .平均数、中位数、众数都有局限性,都不能准确地反映出总体的情况2.一个样本的容量为60,分成5组,已知第一组、第三组的频数分别是9,10,第二、五组的频率都为15,则该样本的中位数在( )A .第二组B .第三组C .第四组D .第五组3.从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( )A.3 B 4.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:A .甲B .乙C .丙D .丁5.一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( )A .57.2,3.6B .57.2,56.4C .62.8,63.6D .62.8,3.66.(探究题)甲、乙、丙三人投掷飞镖,他们成绩(环数)的频数条形统计图如图所示,则甲、乙、丙三人训练成绩的方差s 2甲 ,s 2乙 ,s 2丙 的大小关系是( )A .s 2丙 >s 2乙 >s 2甲B .s 2甲 >s 2丙 >s 2乙 C .s 2丙 >s 2甲 >s 2乙 D .s 2乙 >s 2丙 >s 2甲7.样本a 1,a 2,a 3,…,a 10的平均数为12,样本b 1,b 2,…,b 8的平均数为5,则样本a 1,b 1,a 2,b 2,…,a 8,b 8,a 9,a 10的平均数为________.8.(易错题)一组数据的平均值是x -,标准差是s ,将这组数据中的每个数据都乘以2,所得到的一组新数据的平均值是________,标准差是________.9.某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n 小块地,在总共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙.试验时每大块地分成8小块,即n =8,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位:kg/hm 2)如下表:你认为应该种植哪一品种?核心素养升级练1.(多选题)在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下,一定符合没有发生大规模群体感染标志的是( )A.甲地:中位数为2,极差为5B.乙地:总体平均数为2,众数为2C.丙地:总体平均数为1,总体方差大于0D.丁地:总体平均数为2,总体方差为32.(学科素养—数据分析)某蛋糕店计划按天生产一种面包,每天生产量相同,生产成本每个6元,售价每个8元,未售出的面包降价处理,以每个5元的价格当天全部处理完.(1)若该蛋糕店一天生产30个这种面包,求当天的利润y(单位:元)关于当天需求量n(单位:个,n∈N)的函数解析式;(2)蛋糕店记录了30天这种面包的日需求量(单位:个),整理得表:(单位:元)的平均数及方差;(3)蛋糕店规定:若连续10天的日需求量都不超过10个,则立即停止这种面包的生产,现给出连续10天日需求量的统计数据为“平均数为6,方差为2”,试根据该统计数据决策是否一定要停止这种面包的生产?并给出理由.§4 用样本估计总体的数字特征4.1 样本的数字特征必备知识基础练1.答案:AB解析:对于A ,由频率分布直方图可得10(2a +3a +7a +6a +2a )=1,解得a =0.005,所以A 正确;对于B ,由频率分布直方图可知,前2组的频率和为10×5×0.005=0.25<0.5,前3组的频率和为10×12×0.005=0.6>0.5,所以中位数在第3组,设中位数为x ,则0.25+7×0.005(x -70)=0.5,解得x ≈77,所以B 正确;对于C ,由频率分布直方图可知成绩在70到80的最多,所以众数为75,所以C 错误; 对于D ,由频率分布直方图可知成绩在[60,70)的频率为3×0.005×10=0.15,所以总体中成绩落在[60,70)内的学生人数约为0.15×1 000=150人,所以D 错误,故选AB.2.答案:19.3 18 18解析:平均数x - =38620 =19.3,中位数是18,众数为18.3.答案:D解析:由平均数为1可得a +0+1+2+35=1,解得a =-1.所以样本的方差s 2=(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)25 =2,故选D.4.解析:(1)甲组:最高分为95分,最低分为60分,极差为95-60=35(分),平均分x -甲=110 ×(60+90+85+75+65+70+80+90+95+80)=79(分),方差s 2甲 =110×[(60-79)2+(90-79)2+(85-79)2+(75-79)2+(65-79)2+(70-79)2+(80-79)2+(90-79)2+(95-79)2+(80-79)2]=119(分2),标准差s 甲=s 2甲 =119 ≈10.91(分).乙组:最高分为95分,最低分为65分,极差为95-65=30(分),平均分x -乙=110 ×(85+95+75+70+85+80+85+65+90+85)=81.5(分),方差s 2乙 =110×[(85-81.5)2+(95-81.5)2+(75-81.5)2+(70-81.5)2+(85-81.5)2+(80-81.5)2+(85-81.5)2+(65-81.5)2+(90-81.5)2+(85-81.5)2]=75.25(分2).标准差s 乙=s 2乙 =75.25 ≈8.67(分).(2)由于乙组的方差(标准差)小于甲组的方差(标准差),因此乙组的成绩较稳定. 由极差也可得到乙组的成绩比较稳定.5.解析:(1)因为(0.000 2+0.000 4+0.000 3+0.000 1)×500=0.5,所以a =0.51 000=0.000 5,月收入在[2 000,2 500)内的频率为0.25,所以100人中月收入在[2 000,2 500)内的人数为0.25×100=25.(2)因为0.000 2×500=0.1, 0.000 4×500=0.2. 0.000 5×500=0.25. 0.1+0.2+0.25=0.55>0.5,所以样本数据的中位数是1 500+0.5-(0.1+0.2)0.000 5=1 900(元).(3)样本平均数为(750×0.000 2+1 250×0.000 4+1 750×0.000 5+2 250×0.000 5+2 750×0.000 3+3 250×0.000 1)×500=1 900(元).关键能力综合练1.答案:D解析:根据平均数、中位数、众数的定义可知平均数、中位数、众数都有局限性,都不能准确地反映出总体的情况.2.答案:B解析:第二组的频数为60×15 =12,∵9+12=21<30,9+12+10=31>30, ∴中位数在第三组. 3.答案:B解析:因为x =100+40+90+60+10100=3,所以s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]=1100 (20×22+10×12+30×12+10×22)=160100 =85 ,所以s =2105.故选B.4.答案:B解析:方差是反映一组数据离散程度的量,方差越小,数据波动程度越小.反之,方差越大,数据波动程度越大.甲、乙、丙、丁四位选手各10次射击成绩的平均数都相等,且乙选手成绩的方差最小,因此这四人中成绩发挥最稳定的应该是乙.5.答案:D解析:每一个数据都加上60,所得新数据的平均数增加60,而方差保持不变. 6.答案:C解析:由于方差为表示数据离散程度的量,且数据越集中,方差越小,由条形图知,乙图最集中,丙图最分散,故s 2乙 <s 2甲 <s 2丙 .7.答案:809解析:由题知a - =12,b -=5,则新样本的平均数为12×10+5×810+8 =809 .8.答案:2x -2s解析:设该组数据为x 1,x 2,…,x n ,都乘以2后的新数据为2x 1,2x 2,…,2x n . 由题意知x - =x 1+x 2+…+x n n ,则2x 1+2x 2+…+2x n n=2x -.9.解析:品种甲的每公顷产量的样本平均数和样本方差分别为 x -甲=18(403+397+390+404+388+400+412+406)=400(kg/hm 2),s 2甲 =18[32+(-3)2+(-10)2+42+(-12)2+02+122+62]=57.25.品种乙的每公顷产量的样本平均数和样本方差分别为x -乙=18 (419+403+412+418+408+423+400+413)=412(kg/hm 2),s 2乙 =18[72+(-9)2+02+62+(-4)2+112+(-12)2+12]=56.由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙.核心素养升级练1.答案:AD解析:对于A ,因为甲地中位数为2,极差为5,所以最大值不会大于2+5=7,故A 正确;对于B ,若乙地过去10日每日新增疑似病例数分别为0,0,0,2,2,2,2,2,2,8,则满足总体平均数为2,众数为2,但不满足每天新增疑似病例不超过7人,故B 错误;对于C ,若丙地过去10日每日新增疑似病例数分别为0,0,0,0,0,0,0,0,1,9,则满足总体平均数为1,总体方差大于0,但不满足每天新增疑似病例不超过7人,故C 错误;对于D ,利用反证法,若至少有一天疑似病例超过7人,则方差大于110 ×(8-2)2=3.6>3,与题设矛盾,故连续10天,每天新增疑似病例不超过7人,故D 正确.故选AD.2.解析:(1)由题意可知,当天需求量n <30时,当天的利润y =8n +5(30-n )-6×30=3n -30,当天需求量n ≥30时,当天的利润y =8×30-6×30=60.故当天的利润y 关于当天需求量n的函数解析式为:y =⎩⎪⎨⎪⎧3n -30,n <30,60,n ≥30, n ∈N .(2)由题意可得:所以这30天的日利润的平均数为30 =59(元),方差为(54-59)2×3+(57-59)2×4+(60-59)2×2330 =3.8.(3)根据该统计数据,一定要停止这种面包的生产.理由如下: 由s 2=(x 1-x -)2+(x 2-x -)2+…+(x 10-x -)210=(x1-6)2+(x2-6)2+…+(x10-6)210=2,可得(x1-6)2+(x2-6)2+…+(x10-6)2=20,所以(x k-6)2≤20(1≤k≤10,k∈N,x k∈N),所以x k≤10,由此可以说明连续10天的日需求量都不超过10个,即说明一定要停止这种面包的生产.。
2017-2018学年高中数学北师大版三教学案:第一章§4数据的数字特征含答案
[核心必知]1.众数、中位数、平均数(1)众数的定义:一组数据中重复出现次数最多的数称为这组数的众数,一组数据的众数可以是一个,也可以是多个.(2)中位数的定义及求法:把一组数据按从小到大的顺序排列,把处于最中间位置的那个数(或中间两数的平均数)称为这组数据的中位数.(3)平均数:①平均数的定义:如果有n个数x1、x2、…、x n,那么错误!=错误!,叫作这n个数的平均数.②平均数的分类:总体平均数:总体中所有个体的平均数叫总体平均数.样本平均数:样本中所有个体的平均数叫样本平均数.2.标准差、方差(1)标准差的求法:标准差是样本数据到平均数的一种平均距离,一般用s表示.s=错误!.(2)方差的求法:标准差的平方s2叫作方差.s2=错误![(x1-错误!)2+(x2-错误!)2+…+(x n-错误!)2].其中,x n是样本数据,n是样本容量,错误!是样本均值.(3)方差的简化计算公式:s2=错误![(x错误!+x错误!+…+x错误!)-n错误!2]=错误!(x错误!+x错误!+…+x错误!)-错误!2.3.极差一组数据的最大值与最小值的差称为这组数据的极差.4.数字特征的意义平均数、中位数和众数刻画了一组数据的集中趋势,极差、方差刻画了一组数据的离散程度.[问题思考]1.一组数据的众数一定存在吗?若存在,众数是唯一的吗?提示:不一定.若一组数据中,每个数据出现的次数一样多,则认为这组数据没有众数;不是,可以是一个,也可以是多个.2.如何确定一组数据的中位数?提示:(1)当数据个数为奇数时,中位数是按从小到大顺序排列的中间位置的那个数.(2)当数据个数为偶数时,中位数为排列在最中间的两个数的平均值.讲一讲1。
据报道,某公司的33名职工的月工资(单位:元)如下:(1)(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又是什么?(精确到元)(3)你认为哪个统计量更能反映这个公司员工的工资水平,结合此问题谈一谈你的看法.[尝试解答](1)平均数是错误!=1 500+错误!≈1 500+591=2 091(元).中位数是1 500元,众数是1 500元.(2)新的平均数是错误!′=1500+错误!≈1 500+1 788=3 288(元).中位数是1 500元,众数是1 500元.(3)在这个问题中,中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.1.众数、中位数与平均数都是描述一组数据集中趋势的量,平均数是最重要的量.2.众数考查各个数据出现的频率,大小只与这组数据中的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往更能反映问题.3.中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能在所给的数据中,也可能不在所给的数据中.当一组数据中的个别数据变动较大时,可用中位数描述它的某种集中趋势.练一练1.某公司销售部有销售人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:(1)求这15位销售人员该月销售量的平均数、中位数及众数;(2)假设销售部负责人把月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较为合理的销售定额.解:(1)平均数为错误!(1 800×1+510×1+250×3+210×5+150×3+120×2)=320(件),中位数为210件,众数为210件.(2)不合理,因为15人中有13人的销售量未达到320件,也就是说,虽然320是这一组数据的平均数,但它却不能反映全体销售人员的销售水平.销售额定为210件更合理些,这是由于210既是中位数,又是众数,是大部分人都能达到的定额。
北师大版高二数学必修3目录
北师大版高二数学必修3目录目录第一章 统计1.从普查到抽样从普查到抽样习题1—1 阅读材料阅读材料 选举的预测选举的预测2.抽样方法抽样方法2.1简单随机抽样简单随机抽样2.2分层抽样与系统抽样分层抽样与系统抽样习题1—2 3.统计图表统计图表习题1—3 4.数据的数字特征数据的数字特征4.1平均数、中位数、众数、极差、方差平均数、中位数、众数、极差、方差4.2标准差标准差习题1—4 5.用样本估计总体用样本估计总体5.1估计总体的分布估计总体的分布5.2估计总体的数字特征估计总体的数字特征习题1—5 阅读材料阅读材料 标准差的用途标准差的用途6.统计活动:结婚年龄的变化统计活动:结婚年龄的变化习题1—6 7.相关性相关性习题1—7 8.最小二乘估计最小二乘估计习题1—8 阅读材料阅读材料 统计小史统计小史 课题学习课题学习 调查通俗歌曲的流行趋势调查通俗歌曲的流行趋势 本章小结本章小结复习题一复习题一第二章 算法初步1.算法的基本思想算法的基本思想1.1算法案例分析算法案例分析1.2排序问题与算法的多样性排序问题与算法的多样性 习题2—1 阅读材料阅读材料 物不知数物不知数2.算法框图的基本结构及设计算法框图的基本结构及设计 2.1顺序结构与选择结构顺序结构与选择结构 2.2变量与赋值变量与赋值2.3循环结构循环结构习题2—2 阅读材料阅读材料 美索不达米亚人的开方算法美索不达米亚人的开方算法 3.几种基本语句几种基本语句3.1条件语句条件语句3.2循环语句循环语句习题2—3 阅读材料阅读材料 算法的复杂性算法的复杂性 课题学习课题学习 确定线段n 等分点的算法等分点的算法 本章小结本章小结复习题二复习题二第三章 概率1.随机事件的概率随机事件的概率1.1频率与概率频率与概率1.2生活中的概率生活中的概率习题3—1 2.古典概型古典概型2.1古典概型的特征和概率计算公式古典概型的特征和概率计算公式2.2建立概率模型建立概率模型2.3互斥事件互斥事件 习题3—2 3.模拟方法——概率的应用概率的应用 习题3—3 本章小结本章小结复习题三复习题三探究活动探究活动 用模拟方法估计圆周率π的值的值 附录1 4000以下的素数表以下的素数表附录2上机实现参考程序上机实现参考程序附录3 部分数学专业词汇中英文对照表部分数学专业词汇中英文对照表 附录4 信息检索网址导引信息检索网址导引。
高中数学 第一章 统计综合能力测试(含解析)北师大版必修3-北师大版高一必修3数学试题
【成才之路】2015-2016学年高中数学第一章统计综合能力测试北师大版必修3本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.时间120分钟,满分150分.第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.2015年的世界无烟日(5月31日)之前,小华学习小组为了了解本地区大约有多少成年人吸烟,随机调查了100个成年人,结果其中有15个成年人吸烟.对于这个关于数据收集与处理的问题,下列说法正确的是( )A.调查的方式是普查B.本地区约有15%的成年人吸烟C.样本是15个吸烟的成年人D.本地区只有85个成年人不吸烟[答案] B[解析]调查方式显然是抽样调查,∴A错误.样本是这100个成年人.∴C也错误,显然D不正确.故选B.2.某班的78名同学已编号1,2,3,…,78,为了解该班同学的作业情况,老师收取了学号能被5整除的15名同学的作业本,这里运用的抽样方法是( )A.简单随机抽样法 B.系统抽样法C.分层抽样法 D.抽签法[答案] B[解析]所抽出的编号都间隔5,故是系统抽样.3.下列问题,最适合用简单随机抽样的是( )A.某电影院有32排座位,每排有40个座位,座位号为1~40.有一次报告会坐满了听众,报告会结束后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某学校在编人员160人.其中行政人员16人,教师112人,后勤人员32人.教育部门为了解学校机构改革意见,要从中抽取一个容量为20的样本D.某乡农田有:山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩. 现抽取农田480亩估计全乡农田某种作物的平均亩产量[答案] B[解析]A项的总体容量较大,用简单随机抽样法比较麻烦;B项的总体容量较小,用简单随机抽样法比较方便;C项由于学校各类人员对这一问题的看法可能差异较大,不宜采用简单随机抽样法;D 项的总体容量较大,且各类田地的产量差别很大,也不宜采用简单随机抽样法.4.一个容量为50的样本数据,分组后,组距与频数如下:[12.5,15.5),2;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),6;[30.5,33.5),4.根据分组情况估计小于30.5的数据占( )A .18% B.30% C .60% D.92%[答案] D[解析] (2+8+9+11+10+6)÷50=92%.5.如图所示的是2006年至2015年某省城镇居民百户家庭人口数的茎叶图,图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到2006年至2015年此省城镇居民百户家庭人口数的平均数为( )2 9 1 1 5 83 0 2 6 31247[答案] B[解析] 由茎叶图得到2006年至2015年城镇居民百户家庭人口数为:291,291,295,298,302,306,310,312,314,317,所以平均数为291+291+295+298+302+306+310+312+314+31710=3 03610=303.6.6.某地区共有10万户居民,该地区城市住户与农村住户之比为4∶6,根据分层抽样方法,调查了该地区1 000户居民冰箱拥有情况,调查结果如下表所示,那么可以估计该地区农村住户中无冰箱的总户数约为( )万户 C .1.76万户 D.0.24万户[答案] A[解析] 由于城市住户与农村住户之比为4∶6,城市住户有4万户,农村住户有6万户,调查的1 000户居民中共400户城市住户,有600户农村住户,其中农村住户中无冰箱的有160户,所以可估计该地区农村住户中无冰箱的总户数约为10×1601 000=1.6(万户).7.对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )1 2 520 2 3 33 1 24 4 8 94 5 5 5 7 7 8 8 950 0 1 1 4 7 96 17 8A.46,45,56B.46,45,53C.47,45,56 D.45,47,53[答案] A[解析]本题考查了茎叶图的应用及其样本的中位数、众数、极差等数字特征,由茎叶图可知,中位数为46,众数为45,极差为68-12=56.在求一组数据的中位数时,一定不要忘记先将这些数据排序再判断.8.有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为( )A.18 B.36C.54 D.72[答案] B[解析]频率分布直方图中所有小矩形的面积之和为1,每个小矩形的面积表示样本数据落在该区间内的频率,故样本数据落在区间[10,12)内的频率为1-2×(0.02+0.05+0.15+0.19)=0.18,故样本数据落在区间[10,12)内的频数为0.18×200=36.9.已知两个变量x,y之间具有线性相关关系,测得(x,y)的四组值分别为(1,2),(2,4),(3,5),(4,7),则y与x之间的回归直线方程为( )A.y=0.8x+3 B.y=-1.2x+7.5C.y=1.6x+0.5 D.y=1.3x+1.2[答案] C[解析] 利用排除法. ∵x =14(1+2+3+4)= 2.5,y =14(2+4+5+7)=4.5,由于回归直线方程y =bx +a 必过定点(2.5,4.5),故排除A 、D.又由四组数值知y 随x 的增大而增大,知b >0,排除B.10.某路段检查站监控录像显示,在某时段内,有 1 000辆汽车通过该站,现在随机抽取其中的200辆汽车进行车速分析,分析的结果表示为如下图的频率分布直方图,则估计在这一时段内通过该站的汽车中速度不小于90 km/h 的约有( )A .100辆 B.200辆 C .300辆 D.400辆[答案] C[解析] 由题图可知汽车中车速在[60,90)的频率为10×(0.01+0.02+0.04)=0.7, ∴在[90,110]的频率为(1-0.7)=0.3.∴车速不小于90 km/h 的汽车数量约为0.3×1 000=300辆.11.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9,已知这组数据的平均数为10,方差为2,则|x -y |的值为( )A .1 B.2 C .3 D.4[答案] D[解析] 依题意,可得 ⎩⎪⎨⎪⎧10=x +y +10+11+95,2=15[x -102+y -102+10-102+11-102+9-102],⇒⎩⎪⎨⎪⎧x +y =20,x -102+y -102=8,⇒⎩⎪⎨⎪⎧x =12y =8,或⎩⎪⎨⎪⎧x =8y =12,所以|x-y|=4.12.甲,乙,丙三名运动员在某次测试中各射击20次,三人测试成绩的频率分布条形图分别如图1,图2和图3,若s甲,s乙,s丙分别表示他们测试成绩的标准差,则( )A.s甲<s乙<s丙 B.s甲<s丙<s乙C.s乙<s甲<s丙 D.s丙<s甲<s乙[答案] D[解析]由频率分布条形图可得甲,乙,丙三名运动员的平均成绩分别为x-甲=0.25×(7+8+9+10)=8.5;x-乙=0.3×7+8×0.2+9×0.2+10×0.3=8.5;x-丙=0.2×7+8×0.3+9×0.3+10×0.2=8.5,s2甲=0.25×(1.52+0.52+0.52+1.52)=1.25;s2乙=0.3×1.52+0.52×0.2+0.52×0.2+1.52×0.3=1.45;s2丙=0.2×1.52+0.52×0.3+0.52×0.3+1.52×0.2=1.05,∴s丙<s甲<s乙.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4个小题,每小题5分,共20分,将正确答案填在题中横线上)13.一个容量为40的样本,共分成6组,第1~4组的频数分别为10,5,7,6,第5组的频率是0.10,则第6组的频率是________.[答案]0.20[解析]第5组的频数为40×0.10=4,第6组的频数为40-(10+5+7+6+4)=8,则频率为840=0.20.14.(2015·某某文,12)已知样本数据x1,x2,…,x n的均值x=5,则样本数据2x1+1,2x2+1,…,2x n+1的均值为________.[答案]11[解析]因为样本数据x1,x2,…,x n的均值x=5,所以样本数据2x1+1,2x2+1,…,2x n+1的均值为2x+1=2×5+1=11.15.(2014·某某,6)设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有________株树木的底部周长小于100cm.[答案] 24[解析] 本题考查频率分布直方图.由题意在抽测的60株树木中,底部周长小于100cm 的株数为(0.015+0.025)×10×60=24.频率分布直方图中的纵坐标为频率组距,此处经常误认为纵坐标是频率.16.下图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.0 8 9 10 3 5(注:方差s 2=1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2],其中x -为x 1,x 2,…,x n 的平均数)[答案] 6.8[解析] 本题考查茎叶图、方差的概念. 由茎叶图知x -=8+9+10+13+155=11,∴s 2=15[(8-11)2+(9-11)2+(10-11)2+(13-11)2+(15-11)2]=6.8.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)在同等条件下,对30辆同一型号的汽车进行耗油1升所行走路程的试验,得到如下数据(单位:km):14.1 12.3 13.7 14.0 12.8 12.9 13.1 13.6 14.4 13.8 12.6 13.8 12.6 13.2 13.3 14.2 13.9 12.7 13.0 13.2 13.5 13.6 13.4 13.6 12.1 12.5 13.1 13.5 13.2 13.4以前两位数为茎画出上面数据的茎叶图(只有单侧有数据),并找出中位数.[解析]茎叶图如图所示.1213566789130112223445566 6 788914012 4中位数为13.35.18.(本小题满分12分)某高级中学共有学生3 000名,各年级男、女人数如下表:高一年级高二年级高三年级女生523x y男生487490z已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.17.(1)问高二年级有多少名女生?(2)现对各年级用分层抽样的方法在全校抽取300名学生,问应在高三年级抽取多少名学生?[解析](1)由题设可知x3000=0.17,所以x=510.(2)高三年级人数为y+z=3000-(523+487+490+510)=990,现用分层抽样的方法在全校抽取300名学生,应在高三年级抽取的人数为:3003000×990=99名.答:(1)高二年级有510名女生;(2)在高三年级抽取99名学生.19.(本小题满分12分)为了了解一个小水库中养殖的鱼的有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,画出频率分布直方图(如图所示).分组频率[1.00,1.05)(1)(2)估计数据落在[1.15,1.30)中的概率为多少;(3)将上面捕捞的100条鱼分别作一记号后再放回水库,几天后再从水库的多处不同位置捕捞出120条鱼,其中带有记号的鱼有6条,请根据这一情况来估计该水库中鱼的总条数.[解析] (1)根据频率分布直方图可知,频率=组距×频率组距故可得下表:(2)0.30+0.15+0.02=中的概率约为0.47. (3)120×1006=2000.所以水库中鱼的总条数约为2000条.20.(本小题满分12分)某农场为了从三种不同的西红柿品种中选出高产稳定的西红柿品种,分别在5块试验田上试种,每块试验田均为0.5公顷,产量情况如下表:问哪一种西红柿既高产又稳定?[解析] 因为x 甲=15(21.5+20.4+22.0+21.2+19.9)=21.0(kg),x 乙=15(21.3+18.9+18.9+21.4+19.8)=20.06(kg), x 丙=15(17.8+23.3+21.4+19.9+20.9)=20.66(kg),所以s 甲=15[21.5-21.02+…+19.9-21.02]≈0.756(kg);s 乙=15[21.3-21.062+…+19.8-21.062]≈1.104(kg);s 丙=15[17.8-20.662+…+20.9-20.662]≈1.807(kg).由于x 甲>x 丙>x 乙,s 甲<s 乙<s 丙,所以甲种西红柿既高产又稳定.21.(本小题满分12分)某某统计局就某地居民的月收入调查了10 000人,并根据所得数据画出了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500)).(1)求居民月收入在[3 000,3 500)的频率; (2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用分层抽样的方法抽出100人作进一步分析,则月收入在[2 500,3 000)的这段应抽多少人?[解析] (1)月收入在[3 000,3 500)的频率为0.000 3×(3 500-3 000)=0.15. (2)∵0.000 2×(1 500-1 000)=0.1, 0.000 4×(2 000-1 500)=0.2, 0.000 5×(2 500-2 000)=0.25,0.1+0.2+0.25=0.55>0.5.∴样本数据的中位数为2 000+0.5-0.1+0.20.000 5=2 000+400=2 400(元).(3)居民月收入在[2 500,3 000)的频率为0.000 5×(3 000-2 500)=0.25, 所以10 000人中月收入在[2 500,3 000)的人数为0.25×10 000=2 500(人), 再从10 000人中分层抽样方法抽出100人,则月收入在[2 500,3 000)的这段应抽取100×2 50010 000=25(人).22.(本小题满分12分)(2015·新课标Ⅰ理,19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i =x i ,w =,(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题:(①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为word 11 / 11 β^=,α^=v -β^u .[解析] (1)由散点图可以判断,y =c +d x 适合作为年销售量y 关于年宣传费x 的回归方程类型.(2)令w =x ,先建立y 关于w 的线性回归方程,由于d ^=∑i =18w i -wy i -y ∑i =18 w i -w2=108.81.6=68, c ^=y -d ^w =563-68×6.8=100.6.∴y 关于w 的线性回归方程为y ^=100.6+68w ,∴y 关于x 的回归方程为y ^=100.6+68x .(3)①由(2)知,当x =49时,年销售量y 的预报值y ^=100.6+6849=576.6,年利润z 的预报值z ^=576.6×0.2-49=66.32.②根据(2)的结果知,年利润z 的预报值z ^=0.2(100.6+68x )-x=-x +13.6x +20.12,∴当x =13.62=6.8,即x =46.24时,z ^取得最大值. 故年宣传费为46.24千元时,年利润的预报值最大.。
北师大版必修3高中数学1.4数据的数字特征课件
4.如图所示的是甲、乙两名篮球运动员每场 比赛的得分情况的茎叶图,则甲运动员的得分 的中位数是________. 甲 乙 5 0 8 5 2 1 3 4 6 5 4 2 3 6 8 9 7 6 6 2 1 3 3 8 9 9 4 4 0 5 1 [答案] 34
1.下列各数字特征中,能反映一组数据离散 程度的是( ) A.众数 B.平均数 C.标准差 D.中位数 [答案] C [解析] 反应一组数据离散程度的量有极差、 方差、标准差,故选C.
2.在某次考试中,10名同学得分如下: 84,77,84,83,68, 78,70,85,79,95.则这一 组数据的众数和中位数分别为( ) A.84,68 B.84,78 C.84,81 D.78,81 [答案] C
3.关于统计的计算 1 (1) 求方差的公式:①定义法: s = n [(x1 - - x ) 2 + ( x2 - - x )2
2
+„+(xn-- x )2]; 1 2 2 2 ②简化法:s =n[(x1+x2+„+x2 ) - n x ]; n
2
③如果在 n 个数中,x1 出现 f1 次,x2 出现 f2 次,xk 出现 fk 1 2 2 2 次,则加权方差公式 s =n[(f1x2 1+f2x2+„+fkxk )-n x ].
2
1 如果 xk=xk′+a,k=1,2,„,n,则 s =n[(x1′2+x2′2
2
1 +„+xn′ )-n x′ ], 其中 x′ =n(x′1+x′2+„+x′n)= x
2 2
-a.
(2)关于统计的有关性质及规律 ①若 x1, x2 , „, xn 的平均数为- x, 那么 mx1+a, mx2+a, „, mxn+a 的平均数是 m- x +a. ②数据 x1,x2,„,xn 与数据 x1+a,x2+a,„,xn+a 的 方差相等. ③若 x1,x2,„,xn 的方差为 s2,那么 ax1,ax2,„,axn 的方差为 a2s2.
(常考题)北师大版高中数学必修三第一章《统计》检测卷(有答案解析)(4)
一、选择题1.若一组数据12345,,,,x x x x x 的平均数为5,方差为2,则12323,23,23x x x ---,4523,23x x --的平均数和方差分别为( )A .7,-1B .7,1C .7,2D .7,82.图1是某学习小组学生数学考试成绩的茎叶图,1号到16号的同学的成绩依次为1A ,216,,A A ⋯,图2是统计茎叶图中成绩在一定范围内的学生情况的程序框图,那么该程序框图输出的结果是( )A .10B .6C .7D .163.某产品的广告费用与销售额的统计数据如下表:( ) 广告费用(万元) 销售客(万元)根据上表中的数据可以求得线性回归方程中的为,据此模型预报广告费用为万元时销售额为( ) A .万元B .万元C .万元D .万元4.从两个班级各随机抽取5名学生测量身高(单位:cm ),甲班的数据为169,162,150,160,159,乙班的数据为180,160,150,150,165.据此估计甲、乙两班学生的平均身高x 甲,x 乙及方差2s 甲,2s 乙的关系为( )A .x 甲>x 乙,2s 甲>2s 乙B .x 甲>x 乙,2s 甲<2s 乙C .x 甲<x 乙,2s 甲<2s 乙D .x 甲<x 乙,2s 甲>2s 乙5.有200人参加了一次会议,为了了解这200人参加会议的体会,将这200人随机号为001,002,003,…,200,用系统抽样的方法(等距离)抽出20人,若编号为006,036,041,176, 196的5个人中有1个没有抽到,则这个编号是( ) A .006B .041C .176D .1966.在一段时间内,某种商品的价格x (元)和销售量y (件)之间的一组数据如下表: 价格x (元) 4 6 8 10 12 销售量y (件)358910若y 与x 呈线性相关关系,且解得回归直线ˆˆˆybx a =+的斜率0.9b ∧=,则a ∧的值为( ) A .0.2B .-0.7C .-0.2D .0.77. 2.5PM 是衡量空气质量的重要指标,我国采用世卫组织的最宽值限定值,即 2.5PM 日均值在335/g m μ以下空气质量为一级,在335~75/g m μ空气量为二级,超过375/g m μ为超标.如图是某地12月1日至10日的 2.5PM (单位:3/g m μ)的日均值,则下列说法不正确...的是( )A .这10天中有3天空气质量为一级B .从6日到9日 2.5PM 日均值逐渐降低C .这10天中 2.5PM 日均值的中位数是55D .这10天中 2.5PM 日均值最高的是12月6日8.某班有50名学生,在一次考试中统计出平均分数为70,方差为75,后来发现有2名学生的成绩统计有误,学生甲实际得分是80分却误记为60分,学生乙实际得分是70分却误记为90分,更正后的平均分数和方差分别是( ) A .70和50 B .70和67C .75和50D .75和679.通过实验,得到一组数据如下:2,5,8,9,x ,已知这组数据的平均数为6,则这组数据的方差为( ) A .3.2B .4C .6D .6.510.总体由编号为01,02,,29,30的30个个体组成,利用下面的随机数表选取4个个体.选取的方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出的第4个个体的编号为( ).7806 6572 0802 6314 2947 1821 98003204 9234 4935 3623 4869 6938 7481A .02B .14C .18D .2911.如图是两组各7名同学体重(单位:kg )数据的茎叶图,设1、2两组数据的平均数依次为1x 和2x ,标准差依次为12s s 、,那么( )(注:标准差222121[()()...()]n s x x x x x x n=-+-++-A .1212,x x s s >>B .1212,x x s s ><C .1212,x x s s <<D .1212,x x s s12.若某中学高二年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数是( )A .90.5B .91.5C .90D .91二、填空题13.对两个变量y 和x 进行回归分析,得到一组样本数据()11,x y ,()22,x y ,…,(),n n x y ,则下列说法中正确的序号是______.①由样本数据得到的回归直线方程y bx a =+必过样本点的中心 ②残差平方和越小的模型,拟合的效果越好③用相关指数2R 来刻画回归效果,2R 越小说明拟合效果越好④若变量y 和x 之间的相关系数为0.946r =-,则变量y 和x 之间线性相关性强 14.已知一组数据6,7,8,x ,y 的平均数是8,且90xy =,则该组数据的方差为_______. 15.上海市普通高中学业水平等级考成绩共分为五等十一级,各等级换算成分数如表所示: 等级A + AB + BB -C + CC -D + DE 分数 7067646158555249464340上海某高中2018届高三()1班选考物理学业水平等级考的学生中,有5人取得A +成绩,其他人的成绩至少是B级及以上,平均分是64分,这个班级选考物理学业水平等级考的.人数至少为______人16.玉林市有一学校为了从254名学生选取部分学生参加某次南宁研学活动,决定采用系统抽样的方法抽取一个容量为42的样本,那么从总体中应随机剔除的个体数目为__________.17.调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:^y=0.245x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加_______万元.18.某高中有高一学生320人,高二学生400人,高三学生360人.现采用分层抽样调查学生的视力情况.已知从高一学生中抽取了8人,则三个年级一共抽取了__________人。
新版高中数学北师大版必修3习题:第一章统计 检测
第一章检测(时间:120分钟满分:150分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.现从100件产品中随机抽出10件进行质量检测,下列说法正确的是()A.100件产品是总体B.10件产品是样本C.样本容量为100D.样本容量为10解析:这里考查统计的基本概念,总体是100件产品的质量;样本是抽取的10件产品的质量;总体容量为100,样本容量为10.答案:D2.下列说法中,不正确的是()A.系统抽样是先将差异明显的总体分成几个小组,再进行抽取B.分层抽样是将差异明显的几部分组成的总体分成几层,然后进行抽取C.简单随机抽样是从个体无差异且个体数较少的总体中逐个抽取个体D.系统抽样是从个体无差异且个数较多的总体中,将总体均分,再按事先确定的规则在各部分抽取解析:当总体中个体差异明显时,用分层抽样;当总体中个体无差异且个体数较多时,用系统抽样;当总体中个体无差异且个体数较少时,用简单随机抽样.所以A不正确.答案:A3.重庆市2016年各月的平均气温(单位:℃)数据的茎叶图如图所示,则这组数据的中位数是()A.19B.20C.21.5D.23答案:B4. 如图是容量为100的样本数据(质量)的频率分布直方图,已知样本质量均在[5,20]内,其分组为[5,10),[10,15),[15,20],则样本质量落在[15,20]内的频数为()A.10B.20C.30D.40解析:由题意得,组距为5,则样本质量在[5,10),[10,15)内的频率分别为0.3和0.5,所以样本质量在[15,20]内的频率为1-0.3-0.5=0.2.故频数为100×0.2=20.答案:B5.某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示,以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,得到的频率分布直方图是()解析:由分组可知C,D一定不对;由题中茎叶图可知[0,5)有1人,[5,10)有1人,所以第一、二小组频率相同,频率分布直方图中矩形的高应相同,可排除B.故选A.答案:A6.已知两组数据x1,x2,…,x n与y1,y2,…,y n,它们的平均数分别是x和y,则新的一组数据2x1−5y1+3,2x2−5y2+3,…,2x n−5y n+3的平均数是()A.2x−5yB.2x−5y+3C.4x−25yD.4x−25y+3答案:B7.在抽查样本中,用频率分布直方图表示尺寸的过程中,将其尺寸分成若干组,[a,b)是其中的一组,抽查出的个数在该组内的频率为m,表示该组的小矩形的高为h,则b-a等于()A.hmB.ℎmC.mℎD.与m,ℎ无关解析:b-a是组距,在频率分布直方图中,频率组距是表示该组的小矩形的高h,所以mb-a=ℎ,所以b-a=mℎ.答案:C8.某班有48名学生,在一次考试中统计出平均分为70分,方差为75分2,后来发现有2名同学的分数登错了,甲实得80分却记成了50分,乙实得70分却记成了100分,更正后平均分和方差分别为()A.70分,75分2B.70分,50分2C.70分,1.04分2D.65分,25分2解析:注意到平均数没有变化,只是方差变动.s2=148[…+(50-70)2+(100-70)2+…]=75分2,实际上s2=148[…+(80-70)2+(70-70)2+…]=50分2,故选B.答案:B9.某校高三年级有男生500人,女生400人,为了了解该年级学生的健康状况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是()A.简单随机抽样B.抽签法C.随机数法D.分层抽样解析:样本容量n=25+20=45,男生和女生的抽样比都是120,即按抽样比为120的分层抽样方法抽取样本.答案:D10.某示范农场的鱼塘放养鱼苗8万条,根据这几年的经验知道,鱼苗的成活率为95%,一段时间后准备打捞出售,第一网捞出40条,称得平均每条鱼2.5 kg,第二网捞出25条,称得平均每条鱼2.2 kg,第三网捞出35条,称得平均每条鱼2.8 kg,估计这时鱼塘中鱼的总质量为()A.192 280 kgB.202 280 kgC.182 280 kgD.172 280 kg解析:样本平均数x=40×2.5+25×2.2+35×2.840+25+35=2.53(kg),可知样本中平均每条鱼重2.53 kg,所以估计鱼塘中鱼的总质量约为80 000×95%×2.53=192 280(kg).答案:A11.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7例”.根据过去10天甲、乙、丙、丁四地新增疑似病例的数据,一定符合该标志的是()A.甲地:总体均值为3,中位数为4B.乙地:总体均值为1,总体方差大于0C.丙地:中位数为2,众数为3D.丁地:总体均值为2,总体方差为3解析:x=2,则s2=110[(x1−2)2+(x2−2)2+⋯+(x10-2)2],若有一天超过7人,不妨设x10=8,则s2≥110×(8−2)2=3.6>3,不合题意.故任何一天都不超过7人.答案:D12. 已知两个相关变量满足如下关系:A.y=0.56x+997.4B.y=0.63x-231.2C.y=50.2x+501.4D.y=60.4x+400.7解析:因为b=x1y1+x2y2+…+x5y5-5x yx12+x22+…+x52-5x2=0.56,a=y−b x=997.4.所以线性回归方程为y=0.56x+997.4.答案:A二、填空题:本大题共4小题,每小题5分.13.某市有大型超市200家、中型超市400家、小型超市1 400家.为掌握各类超市的营业情况,现按分层抽样方法抽取一个容量为100的样本,则应抽取中型超市家.解析:本题为分层抽样,所以应抽取中型超市400×100400+200+1400=20(家).答案:2014.某考察团对全国10大城市职工人均工资水平x(单位:千元)与居民人均消费水平y(单位:千元)进行统计调查,y与x具有线性相关关系,线性回归方程为y=0.66x+1.562.若某城市居民人均消费水平为7.675千元,估计该城市人均消费额占人均工资收入的百分比约为.解析:将y=7.675代入y=0.66x+1.562,得x=611.366.所以7.675611.366≈83%.答案:83%15.如图是一个容量为100的样本的频率分布直方图,试根据图中的数据回答下列问题:(1)样本数据落在区间[2,6)内的频率为;(2)样本数据落在区间[6,10)内的频数为.解析:由频率分布直方图可得数据落在区间[2,6)内的频率为相应的小矩形的面积,即0.02×4=0.08,数据落在区间[6,10)内的频率为0.08×4=0.32,故数据落在区间[6,10)内的频数为100×0.32=32.答案:(1)0.08(2)3216.甲、乙两个班级各随机选出15名同学进行测验,成绩的茎叶图如图所示,则甲班、乙班的最高成绩各是,从图中看班的平均成绩较高.解析:从题图可以看出乙班的成绩集中在70分以上,且在80分以上的有6人,而甲班80分以上的只有4人,甲班的最低成绩是46分,对平均分影响较大.答案:96,92乙三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)小明家2016年四个季度的用电量如下表:第三季度400第四季度200其中各种电器用电量如下表:根据如图所示三幅统计图回答:(1)从哪幅统计图可看出各个季度用电量变化情况??(2)从哪幅统计图可看出冰箱用电量超过总用电量的14(3)从哪幅统计图可以清楚地看出空调用电量?解:三幅统计图分别为折线统计图、扇形统计图和条形统计图,各自的优点如下:18.(本小题满分12分)农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下(单位:cm): 甲:9,10,11,12,10,20 乙:8,14,13,10,12,21.(1)绘出所抽取的甲、乙两种麦苗株高的茎叶图;(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况. 解:(1)茎叶图如图所示:(2)x 甲=9+10+11+12+10+206=12,x 乙=8+14+13+10+12+216=13,s 甲2≈13.67,s 乙2≈16.67.因为x 甲<x 乙,所以乙种麦苗平均株高较高.又因为s 甲2<s 乙2,所以甲种麦苗长得较为整齐.19. (本小题满分12分)2017年春节前,公安交警部门在321国道沿线设立了多个长途行驶摩托车驾乘人员休息站,让过往返乡的摩托车驾驶人有一个停车休息的场所.交警小李在某休息站连续5天对进站休息的驾驶人员每隔50辆摩托车就进行一次省籍询问,询问结果如图所示:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法?(2)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的抽取5人,则四川籍的应抽取几人?解:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是系统抽样法.(2)从题图可知,被询问了省籍的驾驶人员中广西籍的有5+20+25+20+30=100(人); 四川籍的有15+10+5+5+5=40(人).设四川籍的驾驶人员应抽取x人,依题意得5100=x40,解得x=2,即四川籍的应抽取2人.20.(本小题满分12分)某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.解:(1)由题中表可知,众数为30岁.极差为40-19=21(岁).(2)(3)这20名工人年龄的平均数为(19+28×3+29×3+30×5+31×4+32×3+40)÷20=30(岁),所以这20名工人年龄的方差为s2=120[(19−30)2+3(28−30)2+3(29−30)2+5(30−30)2+4(31−30)2+3(32−30)2+(40−30)2]=12.6(岁2).21.(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均数及方差;(同一组中的数据用该组区间的中点值作代表)(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?解:(1)(2)质量指标值的样本平均数为x=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.22.(本小题满分12分)某种瓶装溶液,因为装瓶机的不稳定性,所以很可能使每瓶的含量都不是标准的含量,我们随机抽出了20瓶,测得它们的含量(单位:百毫升)如下:12.1 11.9 12.2 12.2 12.0 12.1 12.9 12.1 12.3 12.5 11.7 12.4 12.3 11.8 11.3 12.1 11.4 11.6 11.2 12.2(1)根据数据列出频率分布表,画出频率分布直方图; (2)计算出这组数据的平均数和标准差;(结果精确到0.01)(3)结合(1)(2)的结果,根据实际意义写一个简短的报告.(对总体情况作出估计) 解:(1)频率分布表如下:频率分布直方图如图所示.(2)平均数x =120×(12.1+11.9+12.2+…+12.2) ≈12.02(百毫升).标准差s ≈√(12.1−12.02)2+(11.9−12.02)2+⋯+(12.2−12.02)220≈0.41(百毫升).(3)标准差相对于平均数来说比较小.从频率分布直方图中可以看出,每瓶的含量大致位于1 150毫升到1 250毫升之间.因此可判断装瓶机工作稳定.。
(常考题)北师大版高中数学必修三第一章《统计》检测卷(含答案解析)(2)
一、选择题1.某商场为了了解毛衣的月销售量y (件)与月平均气温x (C ︒)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表: 月平均气温x C ︒171382月销售量y (件)24334055由表中数据算出线性回归方程y bx a =+中的2b =-,气象部门预测下个月的平均气温为6C ︒,据此估计该商场下个月毛衣销售量约为( )A .58件B .40件C .38件D .46件2.有线性相关关系的变量有观测数据,已知它们之间的线性回归方程是,若,则( ) A .B .C .D .3.某班有50名学生,在一次考试中统计出平均分数为70,方差为75,后来发现有2名学生的成绩统计有误,学生甲实际得分是80分却误记为60分,学生乙实际得分是70分却误记为90分,更正后的平均分数和方差分别是( ) A .70和50B .70和67C .75和50D .75和674.下列说法正确的是( )①设某大学的女生体重(kg)y 与身高(cm)x 具有线性相关关系,根据一组样本数据(,)(1,2,3,,)i i x y i n =,用最小二乘法建立的线性回归方程为0.8585.71y x =- ,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;②关于x 的方程210(2)x mx m -+=>的两根可分别作为椭圆和双曲线的离心率; ③过定圆C 上一定点A 作圆的动弦AB ,O 为原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;④已知F 是椭圆22143x y +=的左焦点,设动点P 在椭圆上,若直线FP 的斜率大于3OP (O 为原点)的斜率的取值范围是3333(,)(,)282-∞-. A .①②③B .①③④C .①②④D .②③④5.某宠物商店对30只宠物狗的体重(单位:千克)作了测量,并根据所得数据画出了频率分布直方图如下图所示,则这30只宠物狗体重(单位:千克)的平均值大约为( )A.15.5 B.15.6 C.15.7 D.166.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为()A.30 B.25 C.20 D.157.高二某班共有学生60名,座位号分别为01, 02, 03,···, 60.现根据座位号,用系统抽样的方法,抽取一个容量为4的样本.已知03号、18号、48号同学在样本中,则样本中还有一个同学的座位号是()A.31号B.32号C.33号D.34号8.为了了解某社区居民是否准备收看电视台直播的“龙舟大赛”,某记者分别从社区60~70岁,40~50岁,20~30岁的三个年龄段中的128,192,x人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x为()A.64 B.96 C.144 D.1609.已知x,y的取值如表:x2678y若x,y之间是线性相关,且线性回归直线方程为,则实数a的值是A.B.C.D.10.某校为了提高学生身体素质,决定组建学校足球队,学校为了解报名学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如右图),已知图中从左到右3个小组的频率之比为1:2:3,其中第2小组的频数为12,则该校报名学生总人数()A .40B .45C .48D .5011.在学校组织的考试中,45名学生的数学成绩的茎叶图如图所示,若将学生按成绩由低到高编为1-45号,再用系统抽样方法从中抽取9人,则其中成绩在区间[120,135]上的学生人数是( )A .4B .5C .6D .712.已知一组数据12,,,n x x x 的平均数3x =,则数据1232,32,,32n x x x +++的平均数为( ) A .3B .5C .9D .11二、填空题13.随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,则在[50,60)年龄段抽取的人数为______.14.玉林市有一学校为了从254名学生选取部分学生参加某次南宁研学活动,决定采用系统抽样的方法抽取一个容量为42的样本,那么从总体中应随机剔除的个体数目为__________.15.已知x ,y 的取值如下表: x 2 3 4 5 y2.23.85.56.5从散点图分析,y 与x 线性相关,且回归方程为y =1.46x +a ,则实数a 的值为________.16.某学校高一年级男生人数占该年级学生人数的45%,在一次考试中,男、女生平均分数依次为72、74,则这次考试该年级学生的平均分数为__________.17.下表为生产A 产品过程中产量x (吨)与相应的生产耗能y (吨)的几组相对应数据:x3 4 5 6y23.5 55.5根据上表提供的数据,得到y 关于x 的线性回归方程为0.7y x a =+,则a =__________. 18.已知某人连续5次射击的环数分别是8,9,10,x ,8,若这组数据的平均数是9,则这组数据的方差为 .19.某班60名学生参加普法知识竞赛,成绩都在区间[40100],上,其频率分布直方图如图所示,则成绩不低于60分的人数为___.20.某校对全校1200名男女学生进行健康调查,采用分层抽样法抽取一个容量为200的样本,已知女生抽了95人,则该校的男生数是__________.三、解答题21.某食品厂为了检测某批袋装食品的质量,从该批食品中抽取了一个容量为100的样本,测量它们的质量(单位:克).根据数据分为[)92,94,[)94,96,[)96,98,[)99,100,[)100,102,[)102,104,[]104,106七组,其频率分布直方图如图所示.(1)根据频率分布直方图,估计这批袋装食品质量的中位数.(保留一位小数) (2)记产品质量在[)98,102内为优等品,每袋可获利5元;产品质量在[)92,94内为不合格品,每袋亏损2元;其余的为合格品,每袋可获利3元.若该批食品共有10000袋,以样本的频率代替总体在各组的频率,求该批袋装食品的总利润.22.学校食堂统计了最近5天到餐厅就餐的人数x (百人)与食堂向食材公司购买所需食材(原材料)的数量y (袋),得到如下统计表:第一天 第二天 第三天 第四天 第五天 就餐人数x (百人) 13 9 8 10 12 原材料y (袋)3223182428(1)根据所给的5组数据,求出关于的线性回归方程ˆˆˆy bx a =+;(2)已知购买食材的费用C (元)与数量y (袋)的关系为()()40020,036380,36y y x N C y y y N ⎧-<<∈⎪=⎨≥∈⎪⎩,投入使用的每袋食材相应的销售单价为700元,多余的食材必须无偿退还食材公司,据悉下周一大约有1500人到食堂餐厅就餐,根据(1)中求出的线性回归方程,预测食堂应购买多少袋食材,才能获得最大利润,最大利润是多少?(注:利润L =销售收入-原材料费用)参考公式:()()()1122211nniii i i i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-参考数据:511343i ii x y==∑,521558i i x ==∑,5213237i i y ==∑23.为了了解高中新生的体能情况,某学校抽取部分高一学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从 左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12﹒(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.24.某校2011年到2019年参加“北约”“华约”考试而获得加分的学生人数(每位学生只能参加“北约”“华约”中的一种考试)可以通过以下表格反映出来.(为了方便计算,将2011年编号为1,2012年编号为2,依此类推) 年份x 1 2 3 4 5 6 7 8 9 人数y23545781010(1)求这九年来,该校参加“北约”“华约”考试而获得加分的学生人数的平均数和方差; (2)根据最近五年的数据,利用最小二乘法求出y 与x 的线性回归方程,并依此预测该校2020年参加“北约”“华约”考试而获得加分的学生人数.(最终结果精确至个位) 参考数据:回归直线的方程是y bx a =+,其中()()()1221121niii nnin i i ii ii x y nx y b n x x x xy x xy ====-=---=-∑∑∑∑,a y bx =-.95293i ii x y==∑,925255i i x ==∑.25.新能源汽车的春天来了!2018年3月5日上午,李克强总理做政府工作报告时表示,将新能源汽车车辆购置税优惠政策再延长三年,自2018年1月1日至2020年12月31日,对购置的新能源汽车免征车辆购置税.某人计划于2018年5月购买一辆某品牌新能源汽车,他从当地该品牌销售网站了解到近五个月实际销量如下表:(1)经分析,可用线性回归模型拟合当地该品牌新能源汽车实际销量y(万辆)与月份编号t之间的相关关系.请用最小二乘法求y关于t的线性回归方程y bt a=+,并预测2018年5月份当地该品牌新能源汽车的销量;(2)2018年6月12日,中央财政和地方财政将根据新能源汽车的最大续航里程(新能源汽车的最大续航里程是指理论上新能源汽车所装的燃料或电池所能够提供给车跑的最远里程)对购车补贴进行新一轮调整.已知某地拟购买新能源汽车的消费群体十分庞大,某调研机构对其中的200名消费者的购车补贴金额的心理预期值进行了一个抽样调查,得到如下一份频数表:将频率视为概率,现用随机抽样方法从该地区拟购买新能源汽车的所有消费者中随机抽取3人,记被抽取3人中对补贴金额的心理预期值不低于3万元的人数为ξ,求ξ的分布列及数学期望()Eξ.参考公式及数据:①回归方程y bx a=+,其中()()()1122211ˆn ni i i ii in ni ii ix x y y x y nxybx x x nx====---==--∑∑∑∑,a y bx=-,②5118.8i iit y ==∑.26.随着各国经贸关系的进一步加深,许多国外的热带水果进入国内市场,牛油果作为一种热带水果,越来越多的中国消费者对这种水果有了一种全新的认识,它富含多种维生素、丰富的脂肪和蛋白质,钠、钾、镁、钙等含量也高,除作生果食用外也可作菜肴和罐头.牛油果原产于墨西哥和中美洲,后在加利福尼亚州被普遍种植.因此加利福尼亚州成为世界上最大的牛油果生产地,在全世界热带和亚热带地区均有种植,但以美国南部、危地马拉、墨西哥及古巴栽培最多,并形成了墨西哥系、危地马拉系、西印度系三大种群,我国的广东、海南、福建、广西、台湾、云南及四川等地都有少量栽培.市场上的牛油果大部分都是进口的.为了调查市场上牛油果的等级代码数值x与销售单价y之间的关系,经统计得到如下数据:等级代码数值x 38 48 58 68 78 88 销售单价y (元/kg )16.818.820.822.82425.8(1)已知销售单价y 与等级代码数值x 之间存在线性相关关系,利用前5组数据求出y 关于x 的线性回归方程;(2)若由(1)中线性回归方程得到的估计值与最后一组数据的实际值之间的误差不超过1,则认为所求回归方程是有效可靠的,请判断所求回归直线方程是否有效可靠? (3)若一果园估计可以收获等级代码数值为85的牛油果980kg ,求该果园估计收入为多少元.参考公式:对一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归直线y bx a =+的斜率和截距的最小二乘估计分别为:1221ni ii nii x y nx yb xnx==-=-∑∑,b y bx =-.参考数据:516169.6i ii x y==∑,52117820i i x ==∑.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】试题分析:由表格得(),x y 为:()10,38,因为(),x y 在回归方程y bx a =+上且2b =-,()38102a ∴=⨯-+,解得58a =∴2ˆ58y x =-+,当6x =时,26ˆ5846y=-⨯+=,故选D. 考点:1、线性回归方程的性质;2、回归方程的应用.2.D解析:D 【解析】 【分析】 先计算,代入回归直线方程,可得,从而可求得结果.【详解】因为,所以,代入回归直线方程可求得,所以,故选D.【点睛】该题考查的是有关回归直线的问题,涉及到的知识点有回归直线一定会过样本中心点,利用相关公式求得结果,属于简单题目.3.B解析:B【解析】【分析】根据平均数、方差的概念表示出更正前的平均数、方差和更正后的平均数、方差,比较其异同,然后整体代入即可求解.【详解】设更正前甲,乙,…的成绩依次为a1,a2,…,a50,则a1+a2+…+a50=50×70,即60+90+a3+…+a50=50×70,(a1﹣70)2+(a2﹣70)2+…+(a50﹣70)2=50×75,即102+202+(a3﹣70)2+…+(a50﹣70)2=50×75.更正后平均分为x=150×(80+70+a3+…+a50)=70;方差为s2=150×[(80﹣70)2+(70﹣70)2+(a3﹣70)2+…+(a50﹣70)2]=150×[100+(a3﹣70)2+…+(a50﹣70)2]=150×[100+50×75﹣102﹣202]=67.故选B.【点睛】本题考查平均数与方差的概念与应用问题,是基础题.4.C解析:C【分析】利用线性回归方程系数的几何意义,圆锥曲线离心率的范围,椭圆的性质,逐一判断即可.【详解】①设某大学的女生体重y(kg)与身高x(cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的线性回归方程为y∧=0.85x﹣85.71,则若该大学某女生身高增加1cm,则其体重约增加0.85kg,正确;②关于x的方程x2﹣mx+1=0(m>2)的两根之和大于2,两根之积等于1,故两根中,一根大于1,一根大于0小于1,故可分别作为椭圆和双曲线的离心率.正确;③设定圆C的方程为(x﹣a)2+(x﹣b)2=r2,其上定点A(x0,y0),设B(a+r cosθ,b+r sinθ),P(x,y),由12OP =(OA OB+)得22x a rcosxy b rsinyθθ++⎧=⎪⎪⎨++⎪=⎪⎩,消掉参数θ,得:(2x﹣x0﹣a)2+(2y﹣y0﹣b)2=r2,即动点P的轨迹为圆,∴故③不正确;④由22143x y+=,得a2=4,b2=3,∴1c==.则F(﹣1,0),如图:过F作垂直于x轴的直线,交椭圆于A(x轴上方),则x A=﹣1,代入椭圆方程可得32Ay=.当P为椭圆上顶点时,P(0FPk=32OAk=-,∴当直线FPOP的斜率的取值范围是32⎛⎫-∞-⎪⎝⎭,.当P为椭圆下顶点时,P(0,∴当直线FPOP,32),综上,直线OP(O为原点)的斜率的取值范围是32⎛⎫-∞-⎪⎝⎭,∪,32).故选C【点睛】本题以命题真假的判断为载体,着重考查了相关系数、离心率、椭圆简单的几何性质等知识点,属于中档题.5.B解析:B【分析】由频率分布直方图分别计算出各组得频率、频数,然后再计算出体重的平均值【详解】由频率分布直方图可以计算出各组频率分别为:0.10.20.250.250.15,,,,,0.05频数为:367.57.54.51.5,,,,,则平均值为:113136157.5177.519 4.521 1.515.630⨯+⨯+⨯+⨯+⨯+⨯=故选B 【点睛】本题主要考查了由频率分布直方图计算平均数,需要注意计算不要出错6.C解析:C【详解】抽取比例为1501 30000200=,1400020200∴⨯=,抽取数量为20,故选C.7.C解析:C【解析】【分析】根据系统抽样知,组距为604=15÷,即可根据第一组所求编号,求出各组所抽编号.【详解】学生60名,用系统抽样的方法,抽取一个容量为4的样本,所以组距为604=15÷,已知03号,18号被抽取,所以应该抽取181533+=号,故选C.【点睛】本题主要考查了抽样,系统抽样,属于中档题.8.D解析:D【解析】【分析】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81= 12816,因为共抽出30人,所以总人数为3016=480⨯人,即可求出20~30岁年龄段的人数.【详解】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81= 12816,因为共抽出30人,所以总人数为3016=480⨯人,所以,20~30岁龄段的人有480128192160--=,故选D.【点睛】本题主要考查了分层抽样,抽样,样本容量,属于中档题9.B解析:B【解析】【分析】根据所给的两组数据,做出横标和纵标的平均数,写出这组数据的样本中心点,根据线性回归方程一定过样本中心点,得到线性回归直线一定过的点的坐标. 【详解】 根据题意可得,,由线性回归方程一定过样本中心点,.故选:B . 【点睛】本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题.10.C解析:C 【分析】根据频数关系,求出前三段每段的频数,由直方图求出四五组的频率,进而求出前三组的频率和,从而可求该校报名学生的总人数. 【详解】从左到右3个小组的频率之比为1:2:3,其中第2小组的频数为12,∴从左到右3个小组的频数分别为6,12,18,共有36人,第4,5小组的频率之和为()0.03750.012550.25+⨯=, 则前3小组的频率之和为10.250.75-=, 则该校报名学生的总人数为360.7548÷=,故选C. 【点睛】本题主要考查频率分布直方图的应用,属于中档题. 直方图的主要性质有:(1)直方图中各矩形的面积之和为1;(2)组距与直方图纵坐标的乘积为该组数据的频率;(3)每个矩形的中点横坐标与该矩形的纵坐标相乘后求和可得平均值;(4)直观图左右两边面积相等处横坐标表示中位数.11.B解析:B 【解析】分析:首先写出所有学生的乘积,然后结合系统抽样的方法整理计算即可求得最终结果. 详解:由题意可知,学生的成绩如下:111,111,112,113,113; 116,117,117,118,118; 120,120,121,122,122; 123,124,124,126127; 128,128,129,129,129; 131,131,131,132,132; 132,133,134,134,135; 137,138,138,138,139;140,142,142,143,144.用系统抽样方法从中抽取9人,则每5人中抽取一人,即上述分组中每组抽取一人, 则所抽取的学生的成绩在区间[]120,135上的学生人数为5. 本题选择B 选项.点睛:本题主要考查系统抽样的概念及其应用,茎叶图的识别等知识,意在考查学生的转化能力和计算求解能力.12.D解析:D 【解析】分析:一组数据中的每一个数加或减一个数,它的平均数也加或减这个数;;依此规律求解即可.详解::∵一组数据12,,,n x x x 的平均数为3, ∴另一组数据1232,32,,32n x x x +++的平均数121211323232[32]33211n n x x x x x x n n n=++++⋯++=++⋯++=⨯+=()(), 故选D.点睛:本题考查了平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.二、填空题13.3【分析】根据频率分布直方图求得不小于40岁的人的频率及人数再利用分层抽样的方法即可求解得到答案【详解】根据频率分布直方图得样本中不小于40岁的人的频率是0015×10+0005×10=02所以不小解析:3 【分析】根据频率分布直方图,求得不小于40岁的人的频率及人数,再利用分层抽样的方法,即可求解,得到答案. 【详解】根据频率分布直方图,得样本中不小于40岁的人的频率是0.015×10+0.005×10=0.2, 所以不小于40岁的人的频数是100×0.2=20;从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人, 在[50,60)年龄段抽取的人数为0.0051010012320⨯⨯⨯=.【点睛】本题主要考查了频率分布直方图的应用,其中解答中熟记频率分布直方图的性质,以及频率分布直方图中概率的计算方法是解答的关键,着重考查了推理与运算能力,属于基础题.14.2【解析】【分析】根据系统抽样的概念结合可得最后结果为2【详解】学生总数不能被容量整除根据系统抽样的方法应从总体中随机剔除个体保证整除∵故应从总体中随机剔除个体的数目是2故答案为2【点睛】本题主要考解析:2 【解析】 【分析】根据系统抽样的概念结合2544262=⨯+,可得最后结果为2. 【详解】学生总数不能被容量整除,根据系统抽样的方法,应从总体中随机剔除个体,保证整除. ∵2544262=⨯+,故应从总体中随机剔除个体的数目是2,故答案为2. 【点睛】本题主要考查系统抽样,属于基础题;从容量为N 的总体中抽取容量为n 的样本,系统抽样的前面两个步骤是:(1)将总体中的N 个个体进行编号;(2)当Nn为整数时,抽样距即为N n ;当N n不是整数时,从总体中剔除一些个体,使剩下的总体中的个体的个数N '能被n 整除.15.—061【分析】根据所给条件求出把样本中心点代入回归直线方程可以得到关于的方程解出即可得到答案【详解】根据题意可得则这组数据的样本中心点是代入到回归直线方程故答案为【点睛】本题考查了线性回归方程解题解析:—0.61 【分析】根据所给条件求出x ,y ,把样本中心点()x y ,代入回归直线方程 1.4ˆ6ˆyx a +=,可以得到关于ˆa的方程,解出即可得到答案 【详解】 根据题意可得23453.54x +++== 2.2 3.8 5.5 6.54.54y +++==则这组数据的样本中心点是()3.54.5,代入到回归直线方程 1.4ˆ6ˆyx a += 4.5 1.46 3.ˆ5a ∴⨯+= ˆ0.61a=- 故答案为0.61- 【点睛】本题考查了线性回归方程,解题的关键是线性回归方程一定过样本中心点,这是求解线性回归方程的步骤之一,是线性回归方程考查的常见题型,体现了回归直线方程与样本中心点的关联.16.1【解析】分析:根据平均数与对应概率乘积的和得总平均数计算结果详解:点睛:本题考查平均数考查基本求解能力解析:1 【解析】分析:根据平均数与对应概率乘积的和得总平均数,计算结果. 详解:7245%74(145%)72.1⨯+⨯-=. 点睛:本题考查平均数,考查基本求解能力.17.【解析】分析:首先求得样本中心点然后利用回归方程的性质求得实数a 的值即可详解:由题意可得:线性回归方程过样本中心点则:解得:点睛:本题主要考查线性回归方程的性质及其应用等知识意在考查学生的转化能力和 解析:0.85【解析】分析:首先求得样本中心点,然后利用回归方程的性质求得实数a 的值即可. 详解:由题意可得:34569==42x +++,2 3.55 5.544y +++==, 线性回归方程过样本中心点9,42⎛⎫⎪⎝⎭,则:940.72a =⨯+,解得:0.85a =.点睛:本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.18.【解析】分析:先根据平均数求x 的值再求数据的方差详解:由题得所以数据的方差为故答案为点睛:(1)本题主要考查平均数和方差的计算意在考查学生对这些基础知识的掌握水平(2)方差公式为解析:45【解析】分析:先根据平均数求x 的值,再求数据的方差. 详解:由题得8+9+8109,10.5x x ++=∴=所以数据的方差为22222214[(89)(99)(109)(109)(89)]55S =-+-+-+-+-=.故答案为45. 点睛:(1)本题主要考查平均数和方差的计算,意在考查学生对这些基础知识的掌握水平.(2) 方差公式为222121[()()()]n S x x x x x x n=-+-+⋅⋅⋅+-. 19.30【解析】由题意可得:则成绩不低于分的人数为人解析:30 【解析】 由题意可得:()400.0150.0300.0250.0051030⨯+++⨯=则成绩不低于60分的人数为30人20.630【解析】每层的抽样比为女生抽了95人所以男生抽取105人因此共有男生人故填630解析:630 【解析】 每层的抽样比为200112006=,女生抽了95人,所以男生抽取105人,因此共有男生1056630⨯=人,故填630.三、解答题21.(1)99.6;(2)35600元. 【分析】(1)根据频率分布直方图中的中位数在长方形面积为0.5的地方取得得解. (2)求出批食品中优等品、不合格品、合格品的袋数得总利润. 【详解】(1)因为(0.020.040.12)20.360.5,0.360.0920.540.5++⨯=<+⨯=>, 所以样本质量的中位数在[98,100)内.设样本质量的中位数为m ,则980.0920.360.52m -⨯⨯+=, 解得99.6m ≈,故这批袋装食品质量的中位数为99.6.(2)由题意可得,这批食品中优等品有10000(0.090.10)23800⨯+⨯=袋, 这批食品中不合格品有100000.022400⨯⨯=袋, 这批食品中合格品有1000038004005800--=袋.故该批袋装食品的总利润为3800558003400235600⨯+⨯-⨯=元. 【点睛】频率分布直方图中的中位数求法在长方形面积为0.5的地方取得是解题关键,属于基础题. 22.(1) 2.51y x =-;(2)食堂购买36袋食,能获得最大利润,最大利润为11520元. 【分析】(1)本题首先可根据题中所给数据求出x 、y ,然后根据51522155i ii ii x y x yb xx==-⋅=-∑∑求出b ,最后根据a y bx =-求出a ,即可得出结果;(2)本题首先可根据 2.51y x =-得出预计需要购买食材36.5袋,然后分为36y <、36y ≥两种情况进行讨论,分别求出最大值后进行比较,即可得出结果.【详解】(1)由所给数据可得:1398101210.45x ++++==,3223182428255y ++++==,515222151343510.4252.5558510.45i ii i i x y x yb x x==-⋅-⨯⨯===-⨯-∑∑,25 2.510.41a y bx =-=-⨯=-,故y 关于x 的线性回归方程为 2.51y x =-.(2)因为 2.51y x =-,所以当15x =时36.5y =,即预计需要购买食材36.5袋,因为()()40020,036380,36y y x N C y y y N ⎧-<<∈⎪=⎨≥∈⎪⎩, 所以当36y <时,利润()7004002030020L y y y =--=+, 此时当35y =时,max 300352010520L =⨯+=, 当36y ≥时,由题意可知,剩余的食材只能无偿退还, 此时当36y时,700363803611520L =⨯-⨯=,当37y =时,利润70036.53803711490L =⨯-⨯=,综上所述,食堂应购买36袋食,才能获得最大利润,最大利润为11520元. 【点睛】本题考查线性回归直线方程,考查回归方程的应用,考查学生的数据处理能力以及运算求解能力.考查分类讨论思想,属于中档题.23.(1)0.08,150;(2)88%;(3)第四小组,理由见解析 【解析】试题分析:(1)由频率分布直方图中各小矩形面积之和为1结合面积之比得到第二小组的频率,从而求得样本容量;(2)由频率分布直方图中各小矩形的面积和为1与面积之比可求出达标的频率即达标率;(3)求出前四组的频数即可得到中位数所在的区间. 试题(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为: 又因为频率=所以(2)由图可估计该学校高一学生的达标率约为(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内. 考点:频率分布直方图 24.(1)6;689;(2) 1.3 1.1y x =-,12人. 【分析】(1)由表格中的数据,利用平均数和方差的公式,即可求解;(2)由表中近五年的数据,利用公式,求得ˆˆ,b a ,求得回归直线方程,代入10x =,即可作出结论. 【详解】(1)由表格中的数据,利用平均数的计算公式,可得2354578101069++++++++=.由方差的公式,可得()()()2222168263610699s ⎡⎤=-+-++-=⎣⎦.(2)由表中近五年的数据知,7x =,8y =,95293i ii x y ==∑,925255i i x ==∑,9592255293578ˆ 1.32555495i ii i i x y xybx x==--⨯⨯===-⨯-∑∑,又a y bx =-,所以8 1.37 1.1a =-⨯=-, 故y 与x 的线性回归方程为 1.3 1.1y x =-, 当10x =时, 1.310 1.111.912y =⨯-=≈,故估计该校2020年参加“北约”“华约”考试而获得加分的学生有12人. 【点睛】本题主要考查了平均数与方差的计算,以及回归直线方程的求解及应用,其中解答中认真审题,根据公式准确计算是解答的关键,着重考查运算与求解能力. 25.(1)约为2万辆;(2)见解析 【分析】(1)利用最小二乘法求y 得关于t 的线性回归方程为0.3208ˆ.0yt =+,再令6t =得到2018年5月份当地该品牌新能源汽车的销量.(2)先分析得到ξ~33,5B ⎛⎫ ⎪⎝⎭,再根据二项分布求ξ的分布列及数学期望()E ξ. 【详解】 (1)易知1234535t ++++==,0.50.61 1.4 1.71.045y ++++==,522222211234555ii t ==++++=∑,218.853 1.040.32555ˆ3b -⨯⨯==-⨯,1.040.320ˆ3.08a=-⨯= 则y 关于t 的线性回归方程为0.3208ˆ.0yt =+, 当6t =时,ˆ 2.00y=,即2018年5月份当地该品牌新能源汽车的销量约为2万辆. (2)根据给定的频数表可知,任意抽取1名拟购买新能源汽车的消费者,对补贴金额的心理预期值不低于3万元的概率为12032005=,由题意可知ξ~33,5B ⎛⎫⎪⎝⎭,ξ的所有可能取值为0,1,2,3ξ的分布列为:()0303328055125P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ()12133236155125P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ()21233254255125P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ()30333227355125P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭所以()5E ξ= 【点睛】(1)本题主要考查回归方程的求法,考查二项分布,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生K 次的概率是()(1)kkn kn n P k C p p ξ-==-,(0,1,2,3,...k n =).正好是二项式[(1)]n p p -+的展开式的第1k +项.所以记作ξ~(,)B n p ,读作ξ服从二项分布,其中,n p 为参数.26.(1)0.1849.968y x =+;(2)所求回归直线方程是有效可靠的;(3)该果园预计收入25095.84元. 【分析】(1)求出x 的平均值x ,y 的平均值y ,再根据公式求出b 和a ,即可得出回归方程;。
高中数学 第一章 统计 1.2.1 简单随机抽样课时作业(含解析)北师大版必修3-北师大版高一必修3
课时作业2 简单随机抽样时间:45分钟满分:100分——基础巩固类——一、选择题(每小题5分,共40分)1.关于简单随机抽样,下列说法中不正确的是(B)A.当总体中个体数不多时,可以采用简单随机抽样B.采用简单随机抽样不会产生任何代表性差的样本C.利用随机数表抽取样本时,读数的方向可以向右,也可以向左、向下、向上等D.抽签法抽取样本对每个个体来说都是公平的解析:简单随机抽样可能产生代表性差的样本.故选B.2.抽签法中确保样本具有代表性的关键是(B)A.制签B.搅拌均匀C.逐一抽取D.抽取不放回解析:要确保样本具有代表性,用抽签法时,最重要的是要使总体“搅拌均匀”,使每个个体被抽到的可能性相等.使用抽签法制作号签后一定要搅拌均匀.3.下列说法正确的是(B)A.抽签法中可一次抽取两个个体B.随机数法中每次只取一个个体C.简单随机抽样是放回抽样D.抽签法中将号签放入箱子中,可以不搅拌直接抽取4.从总数为N的一批零件中抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则N为(D)A.150B.200C.100D.120解析:N=3025%=120.5.用随机数表法进行抽样有以下几个步骤:①将总体中的个体编号;②获取样本;③选定开始的数字.这些步骤的先后顺序应为( B )A .①②③B .①③②C .③②①D .③①②解析:用随机数表法抽样应先将个体编号,然后从随机数表中选取开始的数字读数,得到符合条件的样本,对应样本的个体为所得的样本.6.在简单随机抽样中,某一个个体被抽到的可能是( C )A .与第n 次抽样有关,第一次被抽中的可能性大些B .与第n 次抽样有关,最后一次被抽中的可能性较大C .与第n 次抽样无关,每次被抽中的可能性相等D .与第n 次抽样无关,每次都是等可能被抽取,但各次被抽取的可能性不一样解析:在总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等.7.对于简单随机抽样,下列说法中正确的命题有( D )①它要求被抽取样本的总体的个数是有限的,以便对其中每个个体被抽取的概率进行分析;②它是从总体中逐个地进行抽取,以便在抽取实践中进行操作;③它是一种不放回抽样;④它是一种等概率抽样,不仅每次从总体中抽取一个个体时,每个个体被抽取的概率相等,而且在整个抽样过程中,每个个体被抽取的概率也相等,从而保证了这种抽样方法的公平性.A .①②③B .①②④C .①③④D .①②③④解析:命题①②③④都正确.8.某校高一共有10个班,编号为1~10,现用抽签法从中抽取3个班进行调查,每次抽取一个,共抽3次,设高一(5)班第一次被抽到的可能性为a ,第二次被抽到的可能性为b ,则( D )A .a =310,b =29B .a =110,b =19C .a =310,b =310D .a =110,b =110解析:由简单随机抽样的定义,知每个个体在每次抽取中都有相同的可能性被抽到,故高一(5)班在每次抽取中被抽到的可能性都是110. 二、填空题(每小题5分,共15分)9.为了了解某班学生的身高情况,决定从50名同学中选取10名进行测量(已编号为00~49),利用随机数法进行抽取,得到如下3组编号,你认为正确的是②.(填序号)①26,94,29,27,43,99,55,19,81,06;②20,26,31,40,24,36,19,34,03,48;③04,00,45,32,44,22,04,11,08,49.解析:获取的样本应跳过不在样本编号内的,并应去掉重复.10.用随机数法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的可能性是0.2.解析:因为样本容量为20,总体容量为100,所以总体中每一个个体被抽到的可能性都为20100=0.2. 11.用简单随机抽样的方法从含有6个个体的总体中,抽取一个容量为2的样本,某一个个体a “第一次被抽到的概率”,“第二次被抽到的概率”,“在整个抽样过程中被抽到的概率”分别是16,16,13. 解析:从6个个体中抽1个个体,每个个体被抽到的概率均为16,与抽取的次数无关,第二次被抽到的概率仍为16.但由于在整个抽样过程中是从6个个体中抽2个样本,故个体a 被抽到的概率为13. 三、解答题(共25分,解答应写出必要的文字说明、证明过程或演算步骤)12.(12分)某老现在课堂上对全班同学进行了两次模拟抽样,第一次采用抽签法,第二次采用随机数法.在这两次抽样中,小明第一次被抽到了,第二次没有被抽到,那么用这两种方法抽样时,小明被抽到的可能性一样吗?解:虽然都是简单随机抽样,但是每次抽出的结果可能会不相同,被抽到的可能性不是看最终结果,而是看在抽样前被抽到的可能性是不是相同,这主要取决于抽样是不是随机的,只要没有人为因素的干扰,在两次抽样中,小明被抽到的可能性都是一样的.13.(13分)现要从20名学生中抽取5名进行问卷调查,写出抽取样本的过程.解:简单随机抽样分两种:抽签法和随机数法.本题可采用抽签法进行抽取.(1)先将20名学生进行编号,从1编到20;(2)把写在形状、大小均相同的号签上;(3)将号签放在某个箱子中进行充分搅拌,力求均匀,然后依次从箱子中抽取5个号签,按这5个号签上的抽取对应的学生,即得样本.——能力提升类——14.(5分)从一群玩游戏的小孩中随机抽出k 人,一人分一个桃子后,让他们返回继续玩游戏,一会儿后,再从中任意抽出m 人,发现其中有n 个小孩曾分过桃子,估计一共有小孩子km n个. 解析:估计一共有小孩x 人,则有k x =n m, ∴x =km n. 15.(15分)公共汽车管理部门要考察一下其所管辖的30辆公共汽车的卫生状况,现决定从中抽取10辆进行检查.如果以抽签法做实验,请叙述具体的做法;如果该管理部门管辖的是70辆车,利用随机数法抽取一个简单随机样本,样本容量为30.解:(1)抽签法的步骤:第一步 编号.给所管辖的30辆车编号;第二步 定签.可以用各种不同的签,最简单的可以用纸条,将30辆车的编号写在纸条上;第三步 抽取.将纸条混合均匀,依次随机地抽取10个;第四步 调查.调查抽出的纸条所对应的车辆.(2)随机数法的步骤:第一步编号.将70辆车编上号:00,01,02, (69)第二步选数.由于总体是一个两位数的编号,所以从随机数表中随机选取一个位置开始,向某一方向依次选取两位数字,大于69的舍去,重复的舍去,直到取满30个数为止;第三步调查.调查抽出的数所对应的车辆.。
北师大版高二数学必修3电子课本课件【全册】
第一章 统计
北师大版高二数学必修3电子课本 课件【全册】
1.从普查到抽样
北师大版高二数学必修3电子课本 课件【全册】
习题1—1
北师大版高二数学必修3电子课本 课件【全册】
北师大版高二数学必修3电子课 本课件【全册】目录
0002页 0083页 0131页 0133页 0175页 0223页 0251页 0311页 0391页 0431页 0448页 0494页 0525页 0565页 0589页 0618页 0672页
第一章 统计 习题1—1 2.抽样方法 2.2分层抽样与系统抽样 3.统计图表 4.数据的数字特征 4.2标准差 5.用样本估计总体 5.2估计总体的数字特征 阅读材料 标准差的用途 习题1—6 习题1—7 习题1—8 课题学习 调查通俗歌曲的流行趋势 复习题一 1.算法的基本思想 1.2排序问题与算法的多样性
阅读材料 选举的预测
北师大版高二数学必修3电子课本 课件【全册】
2.抽样方法
北师大版高二数学必修ห้องสมุดไป่ตู้电子课本 课件【全册】
数学三同步训练:数据的数字特征(附答案)
§4数据的数字特征1.某班一次语文测验的成绩如下:得100分的3人,得95分的5人,得90分的6人,得80分的2人,70分的16人,60分的5人,则该班这次语文测验的众数是()A.70分B.80分C.16人D.10人2.一组数据为168,170,165,172,180,163,169,176,148,则这组数据的中位数是()A.168 B.169 C.168。
5 D.1703.已知容量为40的样本方差s2=4,则其标准差s等于() A.4 B.3 C.2 D。
错误!4.已知下列一组数据:10 20 80 40 30 90 50 40 50 40试分别求出该组数据的众数、中位数与平均数.答案:1.A 众数即出现次数最多的数.由题意知,该班这次语文测验的众数是70分.故选A.2.B 将一组数据按从小到大的顺序依次排列,处在中间位置的一个(或最中间两个数据的平均数)即为该组数据的中位数,所以169是所求的中位数.3.C s=s2=2.4.解:将数据由小到大排列得:10 20 30 40 40 40 50 50 80 90在上面数据中,40出现了3次,是出现次数最多的,所以这组数据的众数为40;最中间的两个数均为40,所以中位数为40;平均数错误!=错误!(10+20+30+40+40+40+50+50+80+90)=45.1.下列说法错误的是( )A .一组数据的众数、中位数和平均数不可能是同一个数B .极差、方差和标准差都是刻画数据离散程度的统计量C .一组数据的平均数既不可能大于,也不可能小于这组数据中的所有数据D .众数、中位数和平均数从不同角度描述了一组数据的集中趋势 2.期中考试结束以后,班长算出了全班40个人数学成绩的平均分为M ,若把M 当成一个同学的分数,与原来的40个分数一起,算出这41个分数的平均值为N,则MN 等于( )A 。
错误!B .1 C.错误! D .23.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各1人,则该小组数学成绩的平均数、众数、中位数分别为… ( )A .85,85,85B .87,85,86C .87,85,85D .87,85,904.5个数1,2,3,4,a 的平均数是3,则a =______,这5个数的标准差是________.5.在一次歌手大奖赛中,6位评委现场给每位歌手打分,然后去掉一个最高分和一个最低分,其余分数的平均数作为该歌手的成绩.已知6位评委给某位歌手的打分是:9.2 9。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学 第一章 统计 1.4 数据的数字特征自主练习 北师大版必修3 我夯基我达标 1.刻画数据离散程度的统计量有( )
A.极差
B.方差与标准差
C.极差、方差与标准差
D.平均数与标准差 思路解析:极差、方差与标准差均是刻画数据离散程度的统计量.
答案:C
2.如果数据x 1,x 2,…,x n 的平均数为x ,方差为s 2
,则3x 1+5,3x 2+5,…,3x n +5的平均数和方差分别为…( )
A.x 和s 2
B.3x +5和9s 2
C.3x +5和s
2 D.3x +5和9s 2+30s+25 思路解析:n 1(3x 1+5+3x 2+5+…+3x n +5)=3×n
1(x 1+x 2+…+x n )+5=3x +5, n
1[(3x 1+5-3x -5)2+(3x 2+5-3x -5)2+…+(3x n +5-3x -5)2] =n
9[(x 1-x )2+(x 2-x )2+…+(x n -x )2]=9s 2. 答案:B
3.标准差的计算公式是( )
A.∑=n
i i x n 11 B.∑=-n i i x x n 1
2)(1 C.∑=-n i i x x n 12)(1
D.∑=-n
i i x x n 1||1 思路解析:s =∑=-=-+⋯+-+-n i i n x x n x x x x x x n 1
222221)(1])()()[(1. 答案:C
4.某班50名学生右眼视力的检查结果如下表所示.
视力 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0 1.2 1.5 人数 1 1 3 4 3 4 4 6 8 10 6 则该班学生右眼视力的众数为_______,中位数为_______.
思路解析:最中间位置的一个数据(或最中间两个数据的平均数)称为中位数,一组数据中,出现次数最多的数据叫众数.
答案:1.2 0.8
5.已知两组数据:
甲:9.9,10.3,9.8,10.1,10.4,10,9.8,9.7.
乙:10.2,10,9.5,10.3,10.5,9.6,9.8,10.1.
分别计算这两组数据的方差,并判断哪组数据波动大.
思路分析:先用公式s2=∑
=-
n
i
i
x x
n1
2
) (
1
计算出两组数据的方差,其中数值大的波动大.
解:s甲2=0.055,s乙2=0.105,乙组数据比甲组数据波动大.
6.某单位为了寻找高产稳定的油菜品种,选了三个不同的油菜品种进行试验,每一品种在五块试验田上试种,每块试验田的面积为0.7公顷,产量情况如下表.
品种各试验田产量(kg)
1 2 3 4 5
1 21.5 20.4 22.0 21.
2 19.9
2 21.
3 23.6 18.9 21.
4 19.8
3 17.8 23.3 21.
4 19.1 20.9
试评定哪一个品种既高产又稳定.
思路解析:分别计算出三组数据的平均值,数据大的产量高,再计算出各组数据的方差,值小的为稳定的油菜品种.
答案:第一个油菜品种既高产又稳定.
我综合我发展
7.下列数据是30个不同国家中每100 000名男性患某种疾病的死亡率:
27.0 23.9 41.6 33.1 40.6 18.8 13.7
28.9 13.2 14.5 27.0 34.8 28.9 3.2
50.1 5.6 8.7 15.2 7.1 5.2 16.5
13.8 19.2 11.2 15.7 10.0 5.6 1.5
33.8 9.2
(1)作出这些数据分布的频率分布直方图;
(2)请由这些数据计算平均数、标准差等,并对它们的含义进行解释.
思路分析:先作频率分布表,统计出数据的规律,再根据图示进行解释.
解:(1)画频率分布直方图如下图.
(2)平均数是19.3;标准差是12.5.说明30个国家中每十万名男性患某种疾病的平均死亡率为19.3%;但各个国家的差异较大.
8.在一次人才招聘会上,有一家公司的招聘员告诉你,“我们公司的收入水平很高”“去年,在50名员工中,最高年收入达到了100万,他们年收入的平均数是3.5万”.
(1)你是否能够判断自己可以成为此公司的一名高收入者?
(2)如果招聘员继续告诉你,“员工收入的变化范围是从0.5万到100万”,这个信息是否足
以使你作出自己是否受聘的决定?为什么?
(3)如果招聘员继续给你提供如下信息,员工收入的中间50%(即去掉最少的25%和最多的25%后所剩下的)的变化范围是1万到3万,你又该如何使用这条信息来作出是否受聘的决定? (4)为什么平均数比中间50%高很多?你能估计出收入的中位数是多少吗?
思路分析:中位数、众数、平均数可以从不同角度反映这组数据的特征.
解:(1)不能判断一定能成为此公司的一名高收入者.
(2)由此可知员工收入的变化范围及平均数.高收入者只是极少数,不能作为受聘的决定.
(3)大部分员工的收入是1万到3万,这也是我们受聘该公司后最有可能的收入状况.
(4)收入极高的少数人对平均数影响较大,他们的收入与平均数相差太多,可以估计收入的中位数大约是2万元.
9.对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下表.
甲27 38 30 37 35 31
乙33 29 38 34 28 36
(1)画出茎叶图,由茎叶图你能获得哪些信息?
(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、中位数、极差、标准差,并判断选谁参加比赛更合适.
思路分析:(1)根据表中数据,可以将十位数字作为茎,个位数字作为叶,画出茎叶图.茎叶图可直观地反映各数据的分布情况.(2)平均数、中位数、极差、标准差这些基本特征量能从不同侧面刻画样本数据的数字信息,以帮助我们用于判断.
解:(1)画茎叶图如下图所示,中间数为数据的十位数.
从这个茎叶图上可以看出,甲、乙的得分情况都是分布均匀的,只是乙更好一些;乙的中位数是33.5,甲的中位数是33.因此乙发挥比较稳定,总体得分情况比甲好.
(2)利用科学计算器:x甲=33,x乙=33;s甲=3.96,s乙=3.56;甲的中位数是33,极差11,乙的中位数是33.5,极差是10.
综合比较以上数据可知,选乙参加比赛较为合适.。