2017年江苏省高考数学模拟应用题选编(三)

合集下载

2017届江苏省高考冲刺试题选编(三)数学试题

2017届江苏省高考冲刺试题选编(三)数学试题
(2)在哪些年份里,当年建造的廉价住房的面积占该年建造住房面积的比例会大于85%?
(参考数据: )
分析:本题将数列、函数、不等式等知识融为一体,考查了等差数列、等比数列、数列的单调性等数列核心知识.
选用该题的意图是熟悉一下数列应用题的解题格式.
解析:由题意知,以2016年为第一年,每年新建住房面积构成等比数列(单位:万平方米),记为 ,其中 ,公比 ;以2016年为第一年,每年新建廉价住房面积构成等差数列(单位:万平方米),记为 ,其中 ,公差 .
(1)若活动中心的门面高 米,求其前后宽度 的最大值;
(2)设活动中心侧面的面积为 ,活动中心的“美观系数” ,那么在用足空间的前提下,当门面高 为多少米时,可使得“美观系数” 最大?
(参考数据:计算中 取3)
分析:本题是本届高三南京市、盐城市第一次模拟考试第18题的改编题.本题将函数、导数、不等式、解析几何等内容融于一体,涉及到直线方程、圆的方程、多项式函数、解不等式、函数最值、导数运算等知识,对学生的阅读理解能力、运算能力的要求较高,能较好地考查学生运用所学知识解决实际问题的能力.
题4某市2016 年新建住房400万平方米,其中有250万平方米是廉价住房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,廉价住房的面积均比上一年增加50万平方米.
(1)到哪一年底,该市历年所建廉价住房的累计面积(以2016年为累计的第一年)将首次不少于4750万平方米?
2017年高考冲刺数学学科试题选编(三)
应用题
应用题部分,建议考前还要将图形背景的问题再做些强化训练.
另外,近几年高考江苏从没有考过数列方面的应用题,所以平时训练得比较少.尽管今年考的可能性也不大,但预防万一,最好用一道题训练一下.

2017年江苏省南京市高考数学三模试卷与解析PDF

2017年江苏省南京市高考数学三模试卷与解析PDF

2017年江苏省南京市⾼考数学三模试卷与解析PDF2017年江苏省南京市⾼考数学三模试卷⼀、填空题:(本⼤题共14⼩题,每⼩题5分,共70分)1.(5分)已知全集U={1,2,3,4},集合A={1,4},B={3,4},则?U(A∪B)=.2.(5分)甲盒⼦中有编号分别为1,2的两个乒乓球,⼄盒⼦中有编号分别为3,4,5,6的四个乒乓球.现分别从两个盒⼦中随机地各取出1个乒乓球,则取出的乒乓球的编号之和⼤于6的概率为.3.(5分)若复数z满⾜,其中i为虚数单位,为复数z的共轭复数,则复数z的模为.4.(5分)执⾏如图所⽰的伪代码,若输出的y值为1,则输⼊x的值为.5.(5分)如图是甲、⼄两名篮球运动员在五场⽐赛中所得分数的茎叶图,则在这五场⽐赛中得分较为稳定(⽅差较⼩)的那名运动员的得分的⽅差为.6.(5分)在同⼀直⾓坐标系中,函数的图象和直线y=的交点的个数是.7.(5分)在平⾯直⾓坐标系xoy中,双曲线的焦距为6,则所有满⾜条件的实数m构成的集合是.8.(5分)已知函数f(x)是定义在R上且周期为4的偶函数,当x∈[2,4]时,,则的值为.9.(5分)若等⽐数列{a n}的各项均为正数,且a3﹣a1=2,则a5的最⼩值为.10.(5分)如图,在直三棱柱ABC﹣A1B1C1中,AB=1,BC=2,BB1=3,∠ABC=90°,点D为侧棱BB1上的动点,当AD+DC1最⼩时,三棱锥D﹣ABC1的体积为.11.(5分)函数f(x)=e x(﹣x2+2x+a)在区间[a,a+1]上单调递增,则实数a 的最⼤值为.12.(5分)在凸四边形ABCD中,BD=2,且,,则四边形ABCD的⾯积为.13.(5分)在平⾯直⾓坐标系xOy中,圆O:x2+y2=1,圆M:(x+a+3)2+(y﹣2a)2=1(a为实数).若圆O和圆M上分别存在点P,Q,使得∠OQP=30°,则a 的取值范围为.14.(5分)已知a,b,c为正实数,且,则的取值范围为.⼆、解答题:本⼤题共6⼩题,共90分.解答应写出必要的⽂字说明或推理、验算过程.15.(14分)如图,在三棱锥A﹣BCD中,E,F分别为BC,CD上的点,且BD∥平⾯AEF.(1)求证:EF∥平ABD⾯;(2)若AE⊥平⾯BCD,BD⊥CD,求证:平⾯AEF⊥平⾯ACD.。

【江苏省南通市、扬州市、泰州市】2017年高考三模数学试卷-答案

【江苏省南通市、扬州市、泰州市】2017年高考三模数学试卷-答案

江苏省南通市、扬州市、泰州市2017年高考三模数学试卷答 案1.12-2.2|}0{x x <<3.564.3 5.75006.110789.10.111.812.[46]-,13.214.3(,2)2- 15.解:(1)由条件,周期2πT =,即2π2πω=,所以1ω=,即πsin 3f x A x =+()().因为f x ()的图象经过点π()32,所以2πsin 32A =. ∴1A =, ∴πsin 3f x x =+()().(2)由12f παα+=()(-),得πππsin 1323αα++=()(-),即ππsin 133αα++=()(),可得:ππ2sin 133[]α=(+)-,即1sin 2α=. 因为0πα∈(,),解得:π6α=或5π6. 16.证明:(1)因为M 、N 分别为PD 、PC 的中点, 所以//MN DC ,又因为底面ABCD 是矩形,所以//AB DC .所以//MN AB ,又AB ⊂平面PAB ,MN ⊄平面PAB ,所以//MN 平面PAB .(2)因为AP AD =,P 为PD 的中点,所以AM PD ⊥.因为平面PAD ⊥平面ABCD ,又平面PAD 平面ABCD =AD ,CD AD ⊥,CD ⊂平面ABCD ,所以CD ⊥平面PAD ,又AM ⊂平面PAD ,所以CD AM ⊥.因为CD 、PD ⊂平面PCD ,CDPD D =,∴AM ⊥平面PCD .17.解:(1)由题意,10F (-,),由焦点210F (,),且经过31,2P (), 由22PF PF a +=,即24a =,则2a =,2223b a c ==-, ∴椭圆的标准方程22143x y +=; (2)设直线AB 的方程为1y k x =+().①若0k =时,24AB a ==,1FD FO +=, ∴4ABDF =.②若0k ≠时,11Ax y (,),22B x y (,),AB 的中点为00M x y (,), 22(1)143y k x x y =+⎧⎪⎨+=⎪⎩,整理得:22224384120k x k x k +++=()-, ∴2122834k x x k +=-+,则202434k x k =-+,则0023134k y k x k =+=+(). 则AB 的垂直平分线方程为2223143434k k y x k k k =+++--(), 由DA DB =,则点D 为AB 的垂直平分线与x 轴的交点, ∴22034k D k +(-,),∴22223313434k k DF k k +=-+=++, 由椭圆的左准线的方程为4x =-,离心率为12,由1142AF x =+,得11(4)2AF x =+, 同理21(4)2BF x =+, ∴212211212()4234k AB AF BF x x k +=+=++=+, ∴4ABDF = 则综上,得ABDF 的值为4.18.解:(1)设DQ 与半圆相切于点Q ,则由四边形CDEF 是等腰梯形知,OQ DE ⊥,以CF 所在直线为x 轴,OQ 所在直线为y 轴,建立平面直角坐标系xOy .设EF 与圆切于G 点,连接OG ,过点E 作EH OF ⊥,垂足为H .∵EH OG =,OFG EFH ∠=∠,GOF HEF ∠=∠,∴Rt EHF Rt OGF △≌△,∴12HF FG EF t ==-. ∴222111()2EF HF EF t =+=+-, 解得1024t EF t t=+(<<). (2)设修建该参观线路的费用为y 万元. ①当103t <≤,由1325[2()]5()42t y t t t t =++=+.2325(02)y t '=-<,可得y 在1(0,]3上单调递减, ∴13t =时,y 取得最小值为32.5. ②当123t <<时,2111632(8)[2()]1242t y t t t t t t=-++=+--. 22331624(1)(331)'12t t t y t t t -+-=-+=. ∵123t <<,∴23310t t +->. ∴1(,1)3t ∈时,0y '<,函数y 此时单调递减;12t ∈(,)时,0y '>,函数y 此时单调递增. ∴1t =时,函数y 取得最小值24.5.由 ①②知,1t =时,函数y 取得最小值为24.5.答:(1)1024t EF t t =+(<<)(百米).(2)修建该参观线路的最低费用为24.5万元.19.解:(1)∵122331a b a b a b +=+=+,∴21111112a b q a d b q a d b +=++=++,化为:2210q q =--,1q ≠±. 解得12q =-. (2)m p p r r m a b a b a b +=+=+,即p m p r a a b b =--,∴p m r m m p m d b q q =--(-)(-),同理可得:1r m m r p d b q =-(-)(-).∵m ,p ,r 成等差数列,∴12p m r p r m ==--(-),记p m q t =-,则2210t t =--, ∵1q ≠±,1t ≠±,解得12t =.即12p m q =-,∴10q -<<, 记p m α=-,α为奇函数,由公差大于1,∴3α≥. ∴11311()()22a q =≥,即131()2q ≤-, 当3α=时,q 取得最大值为131()2-. (3)满足题意的数组为23E m m m =++(,,),此时通项公式为:1133()(1)288m n n a m -=---,*m N ∈. 例如134E =(,,),31188n a n =-. 20.(1)证明:12a =时,21cos 2f x x x =+(), 故sin f x x x '=()-,即sin g x x x =()-,1cos 0g x x '=≥()-, 故g x ()在R 递增;(2)解:∵2sin g x f x ax x ='=()()-,∴2cos g x a x '=()-, ①12a ≥时,1cos 0g x x '≥≥()-,函数f x '()在R 递增, 若0x >,则00f x f '=()>(), 若0x <,则00f x f ''=()<(),故函数f x ()在0+∞(,)递增,在0∞(-,)递减, 故f x ()在0x =处取极小值,符合题意; ②12a ≤-时,1cos 0g x x '≤≤()--,f x '()在R 递减, 若0x >,则00f x f ''=()<(), 若0x <,则00f x f '=()>(), 故f x ()在0+∞(,)递减,在0∞(-,)递增, 故f x ()在0x =处取极大值,不合题意; ③1122a -<<时,存在00x π∈(,),使得0cos 2x a =,即00g x '=(), 但当00x x ∈(,)时,cos 2x a >,即0g x '()<,f x '()在00x (,)递减, 故00f x f ''=()<(),即f x ()在00x (,)递减,不合题意, 综上,a 的范围是1[2+∞,); (3)解:记2cos ln 0h x ax x x x x =+-()(>),①0a >时,ln x x <,则1122ln x x <,即ln x <,当2x >时,112sin 1ln 2222022h x ax x x ax a a+'==()--->--﹣﹣)>,故存在21(2m a+=,函数h x ()在m +∞(,)递增; ②0a ≤时,1x >时,2sin 1ln sin 1ln 0h x ax x x x x '=()---<---<, 故存在1m =,函数h x ()在m +∞(,)递减;综上,函数ln y f x x x =()-在0+∞(,)上广义单调.21.解:连结PA 、PB 、CD 、BC ,因为PAB PCB ∠=∠,又点P 为弧AB 的中点,所以PAB PBA ∠=∠,所以PCB PBA ∠=∠,又DCB DPB ∠=∠,所以PFE PBA DPB PCB DCB PCD ∠=∠+∠=∠+∠=∠,所E 、F 、D 、C 四点共圆.所以PE PC PF PD =.22.解:由题意,111115a b -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,即1115a b -=-⎧⎨--=-⎩,解得2a =,4b =,所以矩阵1214M ⎡⎤=⎢⎥-⎣⎦. 所以矩阵M 的特征多项式为2125614f λλλλλ--==+-()-,令0f λ=(),得矩阵M 的特征值为2和3. 23.解:因为圆心C 在极轴上且过极点,所以设圆C 的极坐标方程为:cos a ρθ=,又因为点)4π在圆C 上,所以cos 4a π=,解得6a =, 所以圆C 的极坐标方程为:6cos ρθ=.24.证明:∵a ,b ,c ,d 是正实数,且1abcd =,∴54a b c d a +++≥=,同理可得:54a b c d b +++≥=,54a b c d c +++≥=,54a b c d d +++≥=,将上面四式相加得:555533334444a b c d a b c d a b c d +++++++≥+++,∴5555a b c d a b c d +++≥+++.25.解:(1)以D 为原点建立如图所示的空间直角坐标系D xyz -,则000D (,,),220B (,,),010C (,,),002S (,,) ∴(2,2,2)SB =-,(0,1,2)SC =-,(0,0,2)DS =设面SBC 的法向量为(,,)m x y z =由222020m SB x y z m SC y z ⎧=+-=⎪⎨=-=⎪⎩可取(1,2,1)m =-∵SD ⊥面ABC ,∴取面ABC 的法向量为(0,0,1)n = 6cos ,m n =∵二面角S BC A --为锐角.二面角S BC A --(2)由(1)知101E (,,),则(2,1,0)CB =,(1,1,1)CE =-, 设CP CB λ=,01λ≤≤().则(2,,0)CP λλ=,(12,1,1)PE CE CP λλ=-=---易知CD ⊥面SAD ,∴面SAD 的法向量可取(0,1,0)CD =cos ,13PE CD ==, 解得13λ=或119λ=(舍去). 此时21(,,0)33CP =,∴5CP =∴线段CP26.解:(1)102()bc ad f x f x ax b -='=+()(), 2132[]2()()()bc ad ax b a bc ad f x f x ax b -+--='='=+()(); (2)猜想111(1)()!()n n n n a bc ad n f x ax b --+-++-++()=,*n N ∈, 证明:①当1n =时,由(1)知结论正确;②假设当n k =,*k N ∈时,结论正确, 即有111(1)()!()k k k k a bc ad k f x ax b --+-+-+=+() 11112(1)()1?1])[(k k k k k k a bc ad k a bc ad k ax b ax b -++-++-+=+++'=+---()(-)(-)()() 所以当10n k =+时结论成立,由①②得,对一切*n ∈N 结论正确.江苏省南通市、扬州市、泰州市2017年高考三模数学试卷解析1.【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、复数相等即可得出.【解答】解:∵a+bi=(4+3i)i=﹣3+4i.∴a=﹣3,b=4.∴ab=﹣12.故答案为:﹣12.2.【考点】1F:补集及其运算.【分析】根据补集的定义写出运算结果即可.【解答】解:集合U={x|x>0},A={x|x≥2},则∁U A={x|0<x<2}.故答案为:{x|0<x<2}.3.【考点】CB:古典概型及其概率计算公式.【分析】先求出基本事件总数n==6,甲、乙2首歌曲至少有1首被播放的对立事件是甲、乙2首歌曲都没有被播放,由此能求出甲、乙2首歌曲至少有1首被播放的概率.【解答】解:∵随机播放甲、乙、丙、丁4首歌曲中的2首,∴基本事件总数n==6,甲、乙2首歌曲至少有1首被播放的对立事件是甲、乙2首歌曲都没有被播放,∴甲、乙2首歌曲至少有1首被播放的概率:p=1﹣=.故答案为:.4.【考点】EF:程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,循环可得结论.【解答】解:模拟程序的运行,可得S=1,k=1S=2,不满足条件S>10,k=2,S=6不满足条件S>10,k=3,S=15满足条件S>10,退出循环,输出k的值为3.故答案为:3.5.【考点】B3:分层抽样方法.【分析】由题意,其他年级抽取200人,其他年级共有学生3000人,即可求出该校学生总人数.【解答】解:由题意,其他年级抽取200人,其他年级共有学生3000人,则该校学生总人数是=7500.故答案为:7500.6.【考点】85:等差数列的前n项和.【分析】利用等差数列通项公式求出首项a1=2,由此利用等差数列前n项和公式能求出S10.【解答】解:∵等差数列{a n}的前n项和为S n,若公差d=2,a5=10,∴a5=a1+4×2=10,解得a1=2,∴S10=10×2+=110.故答案为:110.7.【考点】HR:余弦定理;HP:正弦定理.【分析】利用三角形的面积公式求出A,再利用余弦定理求出BC.【解答】解:因为锐角△ABC的面积为3,且AB=3,AC=4,所以×3×4×sinA=3,所以sinA=,所以A=60°,所以cosA=,所以BC===.故答案为:.8.【考点】KC:双曲线的简单性质.【分析】根据题意,由抛物线的方程可得其焦点坐标,将其代入双曲线的方程可得a2的值,即可得双曲线的方程,计算可得c的值,由双曲线离心率公式计算可得答案.【解答】解:根据题意,抛物线的方程为y2=8x,其焦点为(2,0),若双曲线﹣y2=1(a>0)经过点(2,0),则有﹣0=1,解可得a2=4,即双曲线的方程为:﹣y2=1,则a=2,c==,则双曲线的离心率e==;故答案为:.9.【考点】L5:旋转体(圆柱、圆锥、圆台).【分析】利用扇形的弧长等于圆锥底面周长作为相等关系,列方程求解得到圆锥的底面半径,然后利用勾股定理确定圆锥的高即可.【解答】解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=,r=1;圆锥的高为: =2.故答案为:2.10.【考点】6H:利用导数研究曲线上某点切线方程.【分析】先设出切点坐标P(x0,e x0+x0),再利用导数的几何意义写出过P的切线方程,最后由直线是y=2x+b 是曲线y=e x+x的一条切线,求出实数b的值.【解答】解:∵y=e x+x,∴y′=e x+1,设切点为P(x0,e x0+x0),则过P的切线方程为y﹣e x0﹣x0=(e x0+1)(x﹣x0),整理,得y=(e x0+1)x﹣e x0•x0+e x0,∵直线是y=2x+b是曲线y=e x+x的一条切线,∴e x0+1=2,e x0=1,x0=0,∴b=1.故答案为1.11.【考点】7F:基本不等式.【分析】根据题意,将变形可得则=+=+﹣1=(x+y)(+)﹣1=(1+4++)﹣1=(+)+4,由基本不等式分析可得答案.【解答】解:根据题意,x,y满足x+y=1,则=+=+﹣1=(x+y)(+)﹣1=(1+4++)﹣1=(+)+4≥2+4=8,即的最小值是8;故答案为:8.12.【考点】9R:平面向量数量积的运算.【分析】依题意,设=λ(0≤λ≤),=μ(﹣1≤μ≤0),由=+, =+,可求得=(+)•(+)=λ+μ=9λ+4μ;再由0≤λ≤,﹣1≤μ≤0,即可求得﹣4≤9λ+4μ≤6,从而可得答案.【解答】解:∵AB∥DC,∠ABC=90°,AB=3,BC=DC=2,且E,F分别是线段DC和BC上的动点,∴=λ(0≤λ≤),=μ(﹣1≤μ≤0),又=+, =+,∴=(+)•(+)=(+)•(λ+μ)=λ+μ=9λ+4μ.∵0≤λ≤,∴0≤9λ≤6①,又﹣1≤μ≤0,∴﹣4≤4μ≤0②,①+②得:﹣4≤9λ+4μ≤6.即的取值范围是[﹣4,6],故答案为:[﹣4,6].13.【考点】J9:直线与圆的位置关系.【分析】设出=t,化简可得圆的方程,运用两圆相减得交线,考虑圆心到直线的距离不大于半径,即可得出结论.【解答】解:设P(x,y),=t,则(1﹣t2)x2+(1﹣t2)y2﹣2x+(2﹣4t2)y+2﹣4t2=0,圆x2+y2=2两边乘以(1﹣t2),两圆方程相减可得x﹣(1﹣2t2)y+2﹣3t2=0,(0,0)到直线的距离d=,∵t>0,∴0<t≤2,∴的最大值是2,故答案为2.14.【考点】54:根的存在性及根的个数判断.【分析】求出g(x)的解析式,计算g(x)的零点,讨论g(x)在区间[a,+∞)上的零点个数,得出g(x)在(﹣∞,a)上的零点个数,列出不等式解出a的范围.【解答】解:g(x)=,显然,当a=2时,g(x)有无穷多个零点,不符合题意;当x≥a时,令g(x)x=0得x=0,当x<a时,令g(x)=0得x=0或x2=,(1)若a>0且a≠2,则g(x)在[a,+∞)上无零点,在(﹣∞,a)上存在零点x=0和x=﹣,∴≥a,解得0<a<2,(2)若a=0,则g(x)在[0,+∞)上存在零点x=0,在(﹣∞,0)上存在零点x=﹣,符合题意;(3)若a<0,则g(x)在[a,+∞)上存在零点x=0,∴g(x)在(﹣∞,a)上只有1个零点,∵0∉(﹣∞,a),∴g(x)在(﹣∞,a)上的零点为x=﹣,∴﹣<a,解得﹣<a<0.综上,a的取值范围是(﹣,2).故答案为(﹣,2).15.【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式;H2:正弦函数的图象.【分析】(1)由条件可求周期,利用周期公式可求ω=1,由f(x)的图象经过点(,),可求Asin =.解得A=1,即可得解函数解析式.(2)由已知利用三角函数恒等变换的应用化简可得sin.结合范围α∈(0,π),即可得解α的值.16.【考点】LW:直线与平面垂直的判定;LS:直线与平面平行的判定.【分析】(1)推导出MN∥DC,AB∥DC.从而MN∥AB,由此能证明MN∥平面PAB.(2)推导出AM⊥PD,CD⊥AD,从而CD⊥平面PAD,进而CD⊥AM,由此能证明AM⊥平面PCD.17.【考点】KL:直线与椭圆的位置关系.【分析】(1)根据椭圆的定义,即可求得2a=4,由c=1,b2=a2﹣c2=3,即可求得椭圆的标准方程;(2)分类讨论,当直线的斜率存在时,代入椭圆方程,由韦达定理及中点坐标公式求得M点坐标,求得直线AB垂直平分线方程,即可求得D点坐标,由椭圆的第二定义,求得丨AF丨=(x1+4),即丨BF丨=(x2+4),利用韦达定理即可求得丨AB丨,即可求得的值.18.【考点】6K:导数在最大值、最小值问题中的应用.【分析】(1)设DQ与半圆相切于点Q,则由四边形CDEF是等腰梯形知,OQ⊥DE,以CF所在直线为x 轴,OQ所在直线为y轴,建立平面直角坐标系xoy.设EF与圆切于G点,连接OG,过点E作EH⊥OF,垂足为H.可得Rt△EHF≌Rt△OGF,HF=FG=EF﹣t.利用EF2=1+HF2=1+,解得EF.(2)设修建该参观线路的费用为y万元.①当,由y=5=5.利用y′,可得y在上单调递减,即可得出y的最小值.②当时,y==12t+﹣﹣.利用导数研究函数的单调性极值最值即可得出.19.【考点】84:等差数列的通项公式.【分析】(1)由a1+b2=a2+b3=a3+b1,利用等差数列与等比数列的通项公式可得:a1+b1q==a1+2d+b1,化简解出即可得出.(2)a m+b p=a p+b r=a r+b m,即a p﹣a m=b p﹣b r,可得(p﹣m)d=b m(q p﹣m﹣q r﹣m),同理可得:(r﹣p)d=b m(q r ﹣m﹣1).由m,p,r成等差数列,可得p﹣m=r﹣p=(r﹣m),记q p﹣m=t,解得t=.即q p﹣m=,由﹣1<q<0,记p﹣m=α,α为奇函数,由公差大于1,α≥3.可得|q|=≥,即q,即可得出.(3)满足题意的数组为E=(m,m+2,m+3),此时通项公式为:a n=,m∈N*.20.【考点】6D:利用导数研究函数的极值;6B:利用导数研究函数的单调性.【分析】(1)求出函数的导数,根据导函数的符号,求出函数的单调区间即可;(2)求出函数的导数,通过讨论a的范围求出函数的单调区间,单调函数的极小值,从而确定a的具体范围即可;(3)记h(x)=ax2+cosx﹣xlnx(x>0),求出函数的导数,通过讨论a的范围结合函数的单调性证明即可.21.【考点】NC:与圆有关的比例线段.【分析】连结PA、PB、CD、BC,推导出∠PFE=∠PBA+∠DPB=∠PCB+∠DCB=∠PCD,从而E、F、D、C四点共圆.由此能证明PE•PC=PF•PD.22.【考点】OV:特征值与特征向量的计算.【分析】设出矩阵,利用特征向量的定义,即二阶变换矩阵的概念,建立方程组,即可得到结论.[选修4-4:坐标系与参数方程]23.【考点】Q4:简单曲线的极坐标方程.【分析】因为圆心C在极轴上且过极点,所以设圆C的极坐标方程为:ρ=acosθ,又因为点(3,)在圆C上,代入解得ρ即可得出圆C的极坐标方程.[选修4-5:选修4-5:不等式选讲]24.【考点】R6:不等式的证明.【分析】由不等式的性质可得:a5+b+c+d≥4=4a,同理可得其他三个式子,将各式相加即可得出结论.解答题25.【考点】MI:直线与平面所成的角;MT:二面角的平面角及求法.【分析】以D为原点建立如图所示的空间直角坐标系D﹣xyz,则D(0,0,0),B(2,2,0),C(0,1,0),S(0,0,2),利用空间向量求解.26.【考点】RG:数学归纳法;63:导数的运算.【分析】(1)利用条件,分别代入直接求解;(2)先说明当n=1时成立,再假设n=K(K∈N*)时,猜想成立,证明n=K+1时,猜想也成立.从而得证.。

【试题】江苏省南通扬州泰州市2017届高三第三次模拟考试数学试题Word版含答案

【试题】江苏省南通扬州泰州市2017届高三第三次模拟考试数学试题Word版含答案

【关键字】试题江苏省南通、扬州、泰州2017届高三第三次模拟考试数学试题第Ⅰ卷(共70分)一、填空题(每题5分,满分70分,将答案填在答题纸上)1.设复数为虚数单位),若,则的值是.2.已知集合,则.3. 某人随机播放甲、乙、丙、丁首歌曲中的首,则甲、乙首歌曲至少有首被播放的概率是.4. 如图是一个算法流程图,则输出的的值是.5.为调査某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为的样本,其中大一年级抽取人,大二年级抽取人.若其他年级共有学生人,则该校学生总人数是.6.设等差数列的前项和为,若公差,则的值是.7.在锐角中,,若的面积为,则的长是.8.在平面直角坐标系中,若双曲线经过抛物线的焦点,则该双曲线的离心率是.9. 已知圆锥的侧面展开图是半径为,圆心角为的扇形,则这个圆锥的高为.10.若直线为曲线的一条切线,则实数的值是.11.若正实数满足,则的最小值是.12.如图,在直角梯形中,,若分别是线段和上的动点,则的取值范围是.13. 在平面直角坐标系中,已知点,点为圆上一动点,则的最大值是.14.已知函数若函数恰有个不同的零点,则实数的取值范围是.第Ⅱ卷(共90分)二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15. 已知函数图象的相邻两条对称轴之间的距离为,且经过点.(1)求函数的解析式;(2)若角满足,求角值.16. 如图,在四棱锥中,底面是矩形,平面平面分别为棱的中点.求证:(1)平面;(2)平面.17. 在平面直角坐标系中,已知椭圆的左焦点为,且经过点.(1)求椭圆的标准方程;(2)已知椭圆的弦过点,且与轴不垂直.若为轴上的一点,,求的值.18. 如图,半圆是某爱国主义教育基地一景点的平面示意图,半径的长为百米.为了保护景点,基地管理部门从道路上选取一点,修建参观线路,且,均与半圆相切,四边形是等腰梯形,设百米,记修建每百米参观线路的费用为万元,经测算.(1)用表示线段的长;(2)求修建参观线路的最低费用.19. 已知是公差为的等差数列,是公比为的等比数列,,正整数组.(1)若,求的值;(2)若数组中的三个数构成公差大于的等差数列,且,求的最大值.(3)若,试写出满足条件的一个数组和对应的通项公式.(注:本小问不必写出解答过程) 20. 已知函数),记的导函数为.(1)证明:当时,在上的单调函数;(2)若在处取得极小值,求的取值范围;(3)设函数的定义域为,区间.若在上是单调函数,则称在上广义单调.试证明函数在上广义单调.数学Ⅱ(附加题)21. 【选做题】本题包括A、B、C、四个小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分. 解答应写出文字说明、证明过程或演算步骤.A. 选修4-1:几何证明选讲如图,已知为圆的一条弦,点为弧的中点,过点任作两条弦分别交于点.求证:.B. 选修4-2:距阵与变换已知矩阵,点在对应的变换作用下得到点,求矩阵的特征值.C. 选修4-4:坐标系与参数方程在坐标系中,圆的圆心在极轴上,且过极点和点,求圆的极坐标方程.D. 选修4-5:选修4-5:不等式选讲已知是正实数,且,求证:.【必做题】第22、23题,每题10分,共计20分,解答时应写出文字说明、证明过程或演算步骤.22. 如图,在四棱锥S ABCD -中,SD ⊥平面ABCD ,四边形ABCD 是直角梯形,90,2,1ADC DAB SD AD AB DC ∠=∠=====.(1)求二面角S BC A --的余弦值;(2)设P 是棱BC 上一点,E 是SA 的中点,若PE 与平面SAD 所成角的正弦值为13,求线段CP 的长. 23. 已知函数()()00,0cx df x a ac bd ax b+=≠-≠+,设()n f x 为()1n f x -的导数,n ∈N *. (1)求()()12,f x f x ;(2)猜想()n f x 的表达式,并证明你的结论.江苏省南通、扬州、泰州2017届高三第三次模拟考试数学试题参考答案一、填空题:1.12- 2.{}|02x x << 3.564.35.75006.1101 11.8 12:[]4,6-13.2 14.3,22⎛⎫-⎪⎝⎭二、解答题:15. 解:(1)由条件,周期2T π=,即22ππω=,所以1ω=,即()sin 3f x A x π⎛⎫=+ ⎪⎝⎭.因为()f x 的图象经过点,32π⎛⎝⎭,所以()2sin 1,sin 33A A f x x ππ⎛⎫=∴=∴=+ ⎪⎝⎭.(2)由()12f παα⎛⎫+-= ⎪⎝⎭,得sin 1332πππαα⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,即sin 1,2sin 13333ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+-+=∴+-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,即1sin 2α=.因为()0,,6παπα∈∴=或56π. 16. 解:(1)因为,M N 分别为棱,PD PC 的中点,所以//MN DC ,又因为底面ABCD 是矩形,所以//,//AB DC MN AB ∴.又AB ⊂平面,PAB MN ⊄平面PAB ,所以//MN 平面PAB .(2)因为,AP AD M =为PD 的中点,所以AM PD ⊥.因为平面PAD ⊥平面ABCD ,又平面PAD平面,,ABCD AD CD AD CD =⊥⊂平面ABCD ,所以CD ⊥平面PAD ,又AM ⊂平面PAD ,所以CD AM ⊥.因为,CD PD ⊂平面,,PCD CDPD D AM =∴⊥平面PCD .17. 解:(1)由题意,知24,2a a ==∴=.又2221,,c a b c b ==+∴=22143x y +=.(2)设直线AB 的方程为()1y k x =+.①若0k =时,24,1,4ABAB a FD FO DF====∴=. ②若0k ≠时,()()1122,,,,A x y B x y AB 的中点为()00,M x y ,代入椭圆方程,整理得()22223484120k x k x k +++-=,所以()2120002243,13434k k x x x y k x k k ==∴=-∴=+=++,所以AB 的垂直平分线方程为2223143434k k y x k k k ⎛⎫-=-+ ⎪++⎝⎭.因为DA DB =,所以点D为AB 的垂直平分线与x 轴的交点,所以22222233,0,1343434k k k D DF k k k ⎛⎫+-∴=-+= ⎪+++⎝⎭,因为椭圆的左准线的方程为4x =-,离心率为12,由1142AF x =+,得()1142AF x =+,同理()()2212021112124,442234k BF x AB AF BF x x x k +=+∴=+=++=+=+,所以4ABDF=,综上,得ABDF的值为4. 18. 解:设DE 与半圆相切于点Q ,则由四边形CDEF 是等腰梯形知,,OQ l DQ QE ⊥=,以OF 所在直线为x 轴,OQ 所在直线为y 轴,建立平面直角坐标系xOy . (1)设EF 圆切于G ,连结OG 过点E 作EH AB ⊥,垂足为H .因为,,EH OG OFG EFH GOF HEF =∠=∠∠=∠,所以1,2Rt EHF Rt OGF HF FG EF t ∆≅∆∴==-.由()2221111,0224t EF HF EF t EF t t⎛⎫=+=+-∴=+<< ⎪⎝⎭.(2) 设修建该参观线路的费用为y 万元. ①当11320,525342t t y t t t t ⎡⎤⎛⎫⎛⎫<≤=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由232'502y t ⎛⎫=-< ⎪⎝⎭ ,则y 在10,3⎛⎤⎥⎝⎦上单调递减,所以当13t =时,y 取得最小值为32.5. ②当123t <<时, 2111632821242t y t t t t t t ⎡⎤⎛⎫⎛⎫=-++=+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以()()223316241331'12t t t y t t t-+-=-+=, 212,33103t t t <<∴+->,且当1,13t ⎛⎫∈ ⎪⎝⎭时,'0y <;当()1,2t ∈时,'0y >,所以y在1,13⎛⎫⎪⎝⎭上单调递减,在()1,2上单调递增.所以当1t =时,y 取得最小值为24.5. 由 ①②知,y 取得最小值为24.5.答:(1)EF 的长为114t ⎛⎫+⎪⎝⎭百米;(2)修建该参观线路的最低费用为24.5万元. 19. 解:(1)由条件,知21111211112a b q a d b q a d b q a d b ⎧+=++⎪⎨++=++⎪⎩,即()()21221,2101d b q q q q d b q ⎧=-⎪∴--=⎨=-⎪⎩,11,2q q ≠±∴=-.(2)由m p p r a b a b +=+,即p m p r a a b b -=-,所以()()p m r m m p m d b q q ---=-,同理可得,()()1r m m r p d b q --=-,因为,,m p r 成等差数列,所以()12p m r p r m -=-=-.记p m q t -=,则有2210t t --=,1,1q t ≠±∴≠±,故12t =-,即1,102p mq q -=-∴-<<.记p m α-=,则α为奇函数,又公差大于1,所以113113,22q αα⎛⎫⎛⎫≥∴=≥ ⎪ ⎪⎝⎭⎝⎭,即1312q ⎛⎫≤- ⎪⎝⎭,当3α=时,q 取最大值为1312⎛⎫- ⎪⎝⎭.(3)满足题意的数组(),2,3E m m m =++,此时通项公式为11331,288m n a n m m -⎛⎫⎛⎫=---∈ ⎪⎪⎝⎭⎝⎭N *.例如:()3111,3,4,88==-n E a n . 20. 解:(1)当12a =时,()()21cos ,'sin 2f x x x f x x x =+∴=-,即()()sin ,'1cos 0g x x x g x x =-∴=-≥,()g x ∴在R 上单调递增.(2)()()()'2sin ,'2cos g x f x ax x g x a x ==-∴=-. ①当12a ≥时,()'1cos 0g x x ≥-≥,所以函数()'f x 在R 上单调递增.若0x >,则()()'00f x f >=;若0x <,则()()''00f x f <=,所以函数()f x 的单调增区间是()0,+∞,单调减区间是(),0-∞,所以()f x 在0x =处取得极小值,符合题意.②当12a ≤-时,()'1cos 0g x x ≤--≤,所以函数()'f x 在R 上单调递减.若0x >,则()()''00f x f <=;若0x <,则()()''00f x f >=,所以()f x 的单调减区间是()0,+∞,单调增区间是(),0-∞,所以()f x 在0x =处取得极大值,不符合题意. ③当1122a -<<时,()00,x π∃∈,使得0cos 2x a =,即()0'0g x =,但当()00,x x ∈时,cos 2x a >,即()'0g x <,所以函数()'f x 在()00,x 上单调递减,所以()()''00f x f <=,即函数()f x 在()00,x 单调递减,不符合题意.综上所述,a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.(3)记()()2cos ln 0h x ax x x x x =+->. ①若0a >,注意到ln x x <,则1122ln x x <,即ln x < 当212x a ⎛> ⎝⎭时,()'2sin 1ln 22h x ax x x ax =--->-20=>.所以212m a ⎛+∃= ⎝⎭,函数()h x 在(),m +∞上单调递增.②若0a ≤,当1x >时,()'2sin 1ln sin 1ln 0h x ax x x x x =---<---<,所以1m ∃=,函数()h x 在(),m +∞上单调递减,综上所述,函数()ln y f x x x =-在区间()0,+∞上广义单调.数学Ⅱ(附加题)21. A. 解:连结,,,PA PB CD BC ,因为PAB PCB ∠=∠,又点P 为弧AB 的中点,所以,PAB PBA PCB PBA ∠=∠∴∠=∠,又DCB DPB ∠=∠,所以PFE PBA DPB PCB DCB PCD ∠=∠+∠=∠+∠=∠,所以,,,E F D C 四点共圆.所以PE PC PF PD ⋅=⋅.B. 解:由题意,111115a b -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,即1115a b -=-⎧⎨--=-⎩,解得2,4a b ==,所以矩阵1214M ⎡⎤=⎢⎥-⎣⎦.所以矩阵M 的特征多项式为()11f λλ-= 22564λλλ-=-+-,令()0f λ=,得122,3λλ==,所以M 的特征值为2和3.C. 解:因为圆心C 在极轴上且过极点,所以设圆C 极坐标方程为cos a ρθ=,又因为点4π⎛⎫ ⎪⎝⎭在圆C上,所以cos 4a π=,解得6a =,所以圆C 极坐标方程为6cos ρθ=.D. 解:因为,,,a b c d是正实数,且51,4abcd a b c d a =∴+++≥=,① 同理54b b c d b +++≥,② 54c b c d c +++≥, ③ 54d b c d d +++≥,④ 将①②③④式相加并整理,即得5555d b c d a b c d +++≥+++. 22. 解:(1)以D 为坐标原点,建立如图所示空间直角坐标系D xyz -,则()()()()0,0,0,2,2,0,0,1,0,0,0,2D B C S ,所以()()()2,2,2,0,1,2,0,0,2SB SC DS =-=-=,设平面SBC 的法向量为()1,,n x y z =,由110,0n SB n SC ⋅=⋅=,得2220x y z +-=且20y z -=,取1z =,得1,2x y =-=,所以()11,2,1n =-是平面SBC 的一个法向量.因为SD ⊥平面ABC ,取平面ABC 的一个法向量()20,0,1n =,设二面角S BC A --的大小为θ,所以12121cos 6n n n n θ⋅===,由图可知二面角S BC A --为锐二面角,所以二面角S BC A --(2)由(1)知()1,0,1E ,则()()2,1,0,1,1,1CB CE ==-.设()01CP CB λλ=≤≤,则()()()2,1,02,,0,12,1,,1CP PE CE CP λλλλλ==∴=-=---,易知CD ⊥平面(),0,1,0SAD CD ∴=是平面SAD 的一个法向量.设PE 与平面SAD 所成的角为α,所以sin cos ,5PE CD PE CDPE CDα⋅====13λ=或119λ=(舍).所以215,,0,333CP CP ⎛⎫== ⎪⎝⎭,所以线段CP 23. 解:(1)()()()()()()()()'''10212232',+-+--⎡⎤⎡⎤======⎢⎥⎢⎥+⎣⎦+++⎣⎦cx d bc ad cb ad a bc ad f x f x f x f x ax b ax b ax b ax b . (2)猜想()()()()1111!,n n n n a bc ad n f x n N ax b --*+-⋅⋅-⋅=∈+.证明:① 当1n =时,由(1)知结论正确;②假设当,n k k N *=∈时,结论正确,即有()()()()1111!k k k k a bc ad k f x ax b --+-⋅⋅-⋅=+.当1n k =+时,()()()()()'11'111!--++⎡⎤-⋅⋅-⋅==⎢⎥+⎣⎦k k k k k a bc ad k f x f x ax b ()()()()'1111!--+-⎡⎤=-⋅⋅-⋅+⎣⎦k k k a bc ad k ax b ()()()()211!+-⋅⋅-⋅+=+k k k a bc ad k ax b ,所以当1n k =+时结论成立,由①②得,对一切n N *∈结论正确.此文档是由网络收集并进行重新排版整理.word 可编辑版本!。

2017年江苏省南通市、扬州市高考数学三模试卷 有答案

2017年江苏省南通市、扬州市高考数学三模试卷 有答案

2017年江苏省南通市、扬州市、泰州市高考数学三模试卷一、填空题(每题5分,满分70分,将答案填在答题纸上)1.设复数z=a+bi(a,b∈R,i为虚数单位),若z=(4+3i)i,则ab的值是.2.已知集合U={x|x>0},A={x|x≥2},则∁U A=.3.某人随机播放甲、乙、丙、丁4首歌曲中的2首,则甲、乙2首歌曲至少有1首被播放的概率是.4.如图是一个算法流程图,则输出的k的值是.5.为调査某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本,其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生3000人,则该校学生总人数是.6.设等差数列{a n}的前n项和为S n,若公差d=2,a5=10,则S10的值是.7.在锐角△ABC中,AB=3,AC=4,若△ABC的面积为3,则BC的长是.8.在平面直角坐标系xOy中,若双曲线﹣y2=1(a>0)经过抛物线y2=8x的焦点,则该双曲线的离心率是.9.圆锥的侧面展开图是半径为3,圆心角为的扇形,则这个圆锥的高是.10.若直线y=2x+b为曲线y=e x+x的一条切线,则实数b的值是.11.若正实数x,y满足x+y=1,则的最小值是.12.如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=3,BC=DC=2,若E,F分别是线段DC和BC上的动点,则的取值范围是.13.在平面直角坐标系xOy中,已知点A(0,﹣2),点B(1,﹣1),P为圆x2+y2=2上一动点,则的最大值是.14.已知函数f(x)=若函数g(x)=2f(x)﹣ax恰有2个不同的零点,则实数a的取值范围是.二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.已知函数f(x)=Asin(ωx+)(A>0,ω>0)图象的相邻两条对称轴之间的距离为π,且经过点(,)(1)求函数f(x)的解析式;(2)若角α满足f(α)+f(α﹣)=1,α∈(0,π),求α值.16.如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,平面PAD⊥平面ABCD,AP=AD,M,N分别为棱PD,PC的中点.求证:(1)MN∥平面PAB(2)AM⊥平面PCD.17.在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的左焦点为F(﹣1,0),且经过点(1,).(1)求椭圆的标准方程;(2)已知椭圆的弦AB过点F,且与x轴不垂直.若D为x轴上的一点,DA=DB,求的值.18.如图,半圆AOB是某爱国主义教育基地一景点的平面示意图,半径OA的长为1百米.为了保护景点,基地管理部门从道路l上选取一点C,修建参观线路C﹣D﹣E﹣F,且CD,DE,EF均与半圆相切,四边形CDEF是等腰梯形,设DE=t百米,记修建每1百米参观线路的费用为f(t)万元,经测算f(t)=(1)用t表示线段EF的长;(2)求修建参观线路的最低费用.19.已知{a n}是公差为d的等差数列,{b n}是公比为q的等比数列,q≠±1,正整数组E=(m,p,r)(m<p<r)(1)若a1+b2=a2+b3=a3+b1,求q的值;(2)若数组E中的三个数构成公差大于1的等差数列,且a m+b p=a p+b r=a r+b m,求q的最大值.(3)若b n=(﹣)n﹣1,a m+b m=a p+b p=a r+b r=0,试写出满足条件的一个数组E和对应的通项公式a n.(注:本小问不必写出解答过程)20.已知函数f(x)=ax2+cosx(a∈R)记f(x)的导函数为g(x)(1)证明:当a=时,g(x)在R上的单调函数;(2)若f(x)在x=0处取得极小值,求a的取值范围;(3)设函数h(x)的定义域为D,区间(m,+∞)⊆D.若h(x)在(m,+∞)上是单调函数,则称h(x)在D上广义单调.试证明函数y=f(x)﹣xlnx在0,+∞)上广义单调.[选修4-1:几何证明选讲]21.如图,已知AB为圆O的一条弦,点P为弧的中点,过点P任作两条弦PC,PD分别交AB于点E,F求证:PE•PC=PF•PD.[选修4-2:距阵与变换]22.已知矩阵M=,点(1,﹣1)在M对应的变换作用下得到点(﹣1,5),求矩阵M的特征值.[选修4-4:坐标系与参数方程]23.在坐标系中,圆C的圆心在极轴上,且过极点和点(3,),求圆C的极坐标方程.[选修4-5:选修4-5:不等式选讲]24.知a,b,c,d是正实数,且abcd=1,求证:a5+b5+c5+d5≥a+b+c+d.解答题25.如图,在四棱锥S﹣ABCD中,SD⊥平面ABCD,四边形ABCD是直角梯形,∠ADC=∠DAB=90°,SD=AD=AB=2,DC=1(1)求二面角S﹣BC﹣A的余弦值;(2)设P是棱BC上一点,E是SA的中点,若PE与平面SAD所成角的正弦值为,求线段CP的长.26.已知函数f0(x)=(a≠0,ac﹣bd≠0),设f n(x)为f n(x)的导数,n∈N*.﹣1(1)求f1(x),f2(x)(2)猜想f n(x)的表达式,并证明你的结论.2017年江苏省南通市、扬州市、泰州市高考数学三模试卷参考答案与试题解析一、填空题(每题5分,满分70分,将答案填在答题纸上)1.设复数z=a+bi(a,b∈R,i为虚数单位),若z=(4+3i)i,则ab的值是﹣12.【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、复数相等即可得出.【解答】解:∵a+bi=(4+3i)i=﹣3+4i.∴a=﹣3,b=4.∴ab=﹣12.故答案为:﹣12.2.已知集合U={x|x>0},A={x|x≥2},则∁U A={x|0<x<2} .【考点】1F:补集及其运算.【分析】根据补集的定义写出运算结果即可.【解答】解:集合U={x|x>0},A={x|x≥2},则∁U A={x|0<x<2}.故答案为:{x|0<x<2}.3.某人随机播放甲、乙、丙、丁4首歌曲中的2首,则甲、乙2首歌曲至少有1首被播放的概率是.【考点】CB:古典概型及其概率计算公式.【分析】先求出基本事件总数n==6,甲、乙2首歌曲至少有1首被播放的对立事件是甲、乙2首歌曲都没有被播放,由此能求出甲、乙2首歌曲至少有1首被播放的概率.【解答】解:∵随机播放甲、乙、丙、丁4首歌曲中的2首,∴基本事件总数n==6,甲、乙2首歌曲至少有1首被播放的对立事件是甲、乙2首歌曲都没有被播放,∴甲、乙2首歌曲至少有1首被播放的概率:p=1﹣=.故答案为:.4.如图是一个算法流程图,则输出的k的值是3.【考点】EF:程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,循环可得结论.【解答】解:模拟程序的运行,可得S=1,k=1S=2,不满足条件S>10,k=2,S=6不满足条件S>10,k=3,S=15满足条件S>10,退出循环,输出k的值为3.故答案为:3.5.为调査某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本,其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生3000人,则该校学生总人数是7500.【考点】B3:分层抽样方法.【分析】由题意,其他年级抽取200人,其他年级共有学生3000人,即可求出该校学生总人数.【解答】解:由题意,其他年级抽取200人,其他年级共有学生3000人,则该校学生总人数是=7500.故答案为:7500.6.设等差数列{a n}的前n项和为S n,若公差d=2,a5=10,则S10的值是110.【考点】85:等差数列的前n项和.【分析】利用等差数列通项公式求出首项a1=2,由此利用等差数列前n项和公式能求出S10.【解答】解:∵等差数列{a n}的前n项和为S n,若公差d=2,a5=10,∴a5=a1+4×2=10,解得a1=2,∴S10=10×2+=110.故答案为:110.7.在锐角△ABC中,AB=3,AC=4,若△ABC的面积为3,则BC的长是.【考点】HR:余弦定理;HP:正弦定理.【分析】利用三角形的面积公式求出A,再利用余弦定理求出BC.【解答】解:因为锐角△ABC的面积为3,且AB=3,AC=4,所以×3×4×sinA=3,所以sinA=,所以A=60°,所以cosA=,所以BC===.故答案为:.8.在平面直角坐标系xOy中,若双曲线﹣y2=1(a>0)经过抛物线y2=8x的焦点,则该双曲线的离心率是.【考点】KC:双曲线的简单性质.【分析】根据题意,由抛物线的方程可得其焦点坐标,将其代入双曲线的方程可得a2的值,即可得双曲线的方程,计算可得c的值,由双曲线离心率公式计算可得答案.【解答】解:根据题意,抛物线的方程为y2=8x,其焦点为(2,0),若双曲线﹣y2=1(a>0)经过点(2,0),则有﹣0=1,解可得a2=4,即双曲线的方程为:﹣y2=1,则a=2,c==,则双曲线的离心率e==;故答案为:.9.圆锥的侧面展开图是半径为3,圆心角为的扇形,则这个圆锥的高是2.【考点】L5:旋转体(圆柱、圆锥、圆台).【分析】利用扇形的弧长等于圆锥底面周长作为相等关系,列方程求解得到圆锥的底面半径,然后利用勾股定理确定圆锥的高即可.【解答】解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=,r=1;圆锥的高为:=2.故答案为:2.10.若直线y=2x+b为曲线y=e x+x的一条切线,则实数b的值是1.【考点】6H:利用导数研究曲线上某点切线方程.【分析】先设出切点坐标P(x0,e x0+x0),再利用导数的几何意义写出过P的切线方程,最后由直线是y=2x+b是曲线y=e x+x的一条切线,求出实数b的值.【解答】解:∵y=e x+x,∴y′=e x+1,设切点为P(x0,e x0+x0),则过P的切线方程为y﹣e x0﹣x0=(e x0+1)(x﹣x0),整理,得y=(e x0+1)x﹣e x0•x0+e x0,∵直线是y=2x+b是曲线y=e x+x的一条切线,∴e x0+1=2,e x0=1,x0=0,∴b=1.故答案为1.11.若正实数x,y满足x+y=1,则的最小值是8.【考点】7F:基本不等式.【分析】根据题意,将变形可得则=+=+﹣1=(x+y)(+)﹣1=(1+4++)﹣1=(+)+4,由基本不等式分析可得答案.【解答】解:根据题意,x,y满足x+y=1,则=+=+﹣1=(x+y)(+)﹣1=(1+4++)﹣1=(+)+4≥2+4=8,即的最小值是8;故答案为:8.12.如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=3,BC=DC=2,若E,F分别是线段DC和BC上的动点,则的取值范围是[﹣4,6] .【考点】9R:平面向量数量积的运算.【分析】依题意,设=λ(0≤λ≤),=μ(﹣1≤μ≤0),由=+,=+,可求得=(+)•(+)=λ+μ=9λ+4μ;再由0≤λ≤,﹣1≤μ≤0,即可求得﹣4≤9λ+4μ≤6,从而可得答案.【解答】解:∵AB∥DC,∠ABC=90°,AB=3,BC=DC=2,且E,F分别是线段DC和BC上的动点,∴=λ(0≤λ≤),=μ(﹣1≤μ≤0),又=+,=+,∴=(+)•(+)=(+)•(λ+μ)=λ+μ=9λ+4μ.∵0≤λ≤,∴0≤9λ≤6①,又﹣1≤μ≤0,∴﹣4≤4μ≤0②,①+②得:﹣4≤9λ+4μ≤6.即的取值范围是[﹣4,6],故答案为:[﹣4,6].13.在平面直角坐标系xOy中,已知点A(0,﹣2),点B(1,﹣1),P为圆x2+y2=2上一动点,则的最大值是2.【考点】J9:直线与圆的位置关系.【分析】设出=t,化简可得圆的方程,运用两圆相减得交线,考虑圆心到直线的距离不大于半径,即可得出结论.【解答】解:设P(x,y),=t,则(1﹣t2)x2+(1﹣t2)y2﹣2x+(2﹣4t2)y+2﹣4t2=0,圆x2+y2=2两边乘以(1﹣t2),两圆方程相减可得x﹣(1﹣2t2)y+2﹣3t2=0,(0,0)到直线的距离d=,∵t>0,∴0<t≤2,∴的最大值是2,故答案为2.14.已知函数f(x)=若函数g(x)=2f(x)﹣ax恰有2个不同的零点,则实数a的取值范围是(﹣,2).【考点】54:根的存在性及根的个数判断.【分析】求出g(x)的解析式,计算g(x)的零点,讨论g(x)在区间[a,+∞)上的零点个数,得出g(x)在(﹣∞,a)上的零点个数,列出不等式解出a的范围.【解答】解:g(x)=,显然,当a=2时,g(x)有无穷多个零点,不符合题意;当x≥a时,令g(x)x=0得x=0,当x<a时,令g(x)=0得x=0或x2=,(1)若a>0且a≠2,则g(x)在[a,+∞)上无零点,在(﹣∞,a)上存在零点x=0和x=﹣,∴≥a,解得0<a<2,(2)若a=0,则g(x)在[0,+∞)上存在零点x=0,在(﹣∞,0)上存在零点x=﹣,符合题意;(3)若a<0,则g(x)在[a,+∞)上存在零点x=0,∴g(x)在(﹣∞,a)上只有1个零点,∵0∉(﹣∞,a),∴g(x)在(﹣∞,a)上的零点为x=﹣,∴﹣<a,解得﹣<a<0.综上,a的取值范围是(﹣,2).故答案为(﹣,2).二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.已知函数f(x)=Asin(ωx+)(A>0,ω>0)图象的相邻两条对称轴之间的距离为π,且经过点(,)(1)求函数f(x)的解析式;(2)若角α满足f(α)+f(α﹣)=1,α∈(0,π),求α值.【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式;H2:正弦函数的图象.【分析】(1)由条件可求周期,利用周期公式可求ω=1,由f(x)的图象经过点(,),可求Asin=.解得A=1,即可得解函数解析式.(2)由已知利用三角函数恒等变换的应用化简可得sin.结合范围α∈(0,π),即可得解α的值.【解答】解:(1)由条件,周期T=2π,即=2π,所以ω=1,即f(x)=Asin(x+).因为f(x)的图象经过点(,),所以Asin=.∴A=1,∴f(x)=sin(x+).(2)由f(α)+f(α﹣)=1,得sin(α+)+sin(α﹣+)=1,即sin(α+)﹣cos(α+)=1,可得:2sin[()﹣]=1,即sin.因为α∈(0,π),解得:α=或.16.如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,平面PAD⊥平面ABCD,AP=AD,M,N分别为棱PD,PC的中点.求证:(1)MN∥平面PAB(2)AM⊥平面PCD.【考点】LW:直线与平面垂直的判定;LS:直线与平面平行的判定.【分析】(1)推导出MN∥DC,AB∥DC.从而MN∥AB,由此能证明MN∥平面PAB.(2)推导出AM⊥PD,CD⊥AD,从而CD⊥平面PAD,进而CD⊥AM,由此能证明AM⊥平面PCD.【解答】证明:(1)因为M、N分别为PD、PC的中点,所以MN∥DC,又因为底面ABCD是矩形,所以AB∥DC.所以MN∥AB,又AB⊂平面PAB,MN⊄平面PAB,所以MN∥平面PAB.(2)因为AP=AD,P为PD的中点,所以AM⊥PD.因为平面PAD⊥平面ABCD,又平面PAD∩平面ABCD=AD,CD⊥AD,CD⊂平面ABCD,所以CD⊥平面PAD,又AM⊂平面PAD,所以CD⊥AM.因为CD、PD⊂平面PCD,CD∩PD=D,∴AM⊥平面PCD.17.在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的左焦点为F(﹣1,0),且经过点(1,).(1)求椭圆的标准方程;(2)已知椭圆的弦AB过点F,且与x轴不垂直.若D为x轴上的一点,DA=DB,求的值.【考点】KL:直线与椭圆的位置关系.【分析】(1)根据椭圆的定义,即可求得2a=4,由c=1,b2=a2﹣c2=3,即可求得椭圆的标准方程;(2)分类讨论,当直线的斜率存在时,代入椭圆方程,由韦达定理及中点坐标公式求得M点坐标,求得直线AB垂直平分线方程,即可求得D点坐标,由椭圆的第二定义,求得丨AF丨=(x1+4),即丨BF丨=(x2+4),利用韦达定理即可求得丨AB丨,即可求得的值.【解答】解:(1)由题意,F(﹣1,0),由焦点F2(1,0),且经过P(1,),由丨PF丨+丨PF2丨=2a,即2a=4,则a=2,b2=a2﹣c2=3,∴椭圆的标准方程;(2)设直线AB的方程为y=k(x+1).①若k=0时,丨AB丨=2a=4,丨FD丨+丨FO丨=1,∴=4.②若k≠0时,A(x 1,y1),B(x2,y2),AB的中点为M(x0,y0),,整理得:(4k2+3)x2+8k2x+4k2﹣12=0,∴x1+x2=﹣,则x0=﹣,则y0=k(x0+1)=.则AB的垂直平分线方程为y﹣=﹣(x+),由丨DA丨=丨DB丨,则点D为AB的垂直平分线与x轴的交点,∴D(﹣,0),∴丨DF丨=﹣+1=,由椭圆的左准线的方程为x=﹣4,离心率为,由=,得丨AF丨=(x1+4),同理丨BF丨=(x2+4),∴丨AB丨=丨AF丨+丨BF丨=(x1+x2)+4=,∴=4则综上,得的值为4.18.如图,半圆AOB是某爱国主义教育基地一景点的平面示意图,半径OA的长为1百米.为了保护景点,基地管理部门从道路l上选取一点C,修建参观线路C﹣D﹣E﹣F,且CD,DE,EF均与半圆相切,四边形CDEF是等腰梯形,设DE=t百米,记修建每1百米参观线路的费用为f(t)万元,经测算f(t)=(1)用t表示线段EF的长;(2)求修建参观线路的最低费用.【考点】6K:导数在最大值、最小值问题中的应用.【分析】(1)设DQ与半圆相切于点Q,则由四边形CDEF是等腰梯形知,OQ⊥DE,以CF所在直线为x轴,OQ所在直线为y轴,建立平面直角坐标系xoy.设EF与圆切于G点,连接OG,过点E作EH⊥OF,垂足为H.可得Rt△EHF≌Rt△OGF,HF=FG=EF﹣t.利用EF2=1+HF2=1+,解得EF.(2)设修建该参观线路的费用为y万元.①当,由y=5=5.利用y′,可得y在上单调递减,即可得出y的最小值.②当时,y==12t+﹣﹣.利用导数研究函数的单调性极值最值即可得出.【解答】解:(1)设DQ与半圆相切于点Q,则由四边形CDEF是等腰梯形知,OQ⊥DE,以CF所在直线为x轴,OQ所在直线为y轴,建立平面直角坐标系xoy.设EF与圆切于G点,连接OG,过点E作EH⊥OF,垂足为H.∵EH=OG,∠OFG=∠EFH,∠GOF=∠HEF,∴Rt△EHF≌Rt△OGF,∴HF=FG=EF﹣t.∴EF2=1+HF2=1+,解得EF=+(0<t<2).(2)设修建该参观线路的费用为y万元.①当,由y=5=5.y′=<0,可得y在上单调递减,∴t=时,y取得最小值为32.5.②当时,y==12t+﹣﹣.y′=12﹣+=.∵,∴3t2+3t﹣1>0.∴t∈时,y′<0,函数y此时单调递减;t∈(1,2)时,y′>0,函数y此时单调递增.∴t=1时,函数y取得最小值24.5.由①②知,t=1时,函数y取得最小值为24.5.答:(1)EF=+(0<t<2)(百米).(2)修建该参观线路的最低费用为24.5万元.19.已知{a n}是公差为d的等差数列,{b n}是公比为q的等比数列,q≠±1,正整数组E=(m,p,r)(m<p<r)(1)若a1+b2=a2+b3=a3+b1,求q的值;(2)若数组E中的三个数构成公差大于1的等差数列,且a m+b p=a p+b r=a r+b m,求q的最大值.(3)若b n=(﹣)n﹣1,a m+b m=a p+b p=a r+b r=0,试写出满足条件的一个数组E和对应的通项公式a n.(注:本小问不必写出解答过程)【考点】84:等差数列的通项公式.【分析】(1)由a1+b2=a2+b3=a3+b1,利用等差数列与等比数列的通项公式可得:a1+b1q==a1+2d+b1,化简解出即可得出.(2)a m+b p=a p+b r=a r+b m,即a p﹣a m=b p﹣b r,可得(p﹣m)d=b m(q p﹣m﹣q r﹣m),同理可得:(r﹣p)d=b m(q r﹣m﹣1).由m,p,r成等差数列,可得p﹣m=r﹣p=(r﹣m),记q p﹣m=t,解得t=.即q p﹣m=,由﹣1<q<0,记p﹣m=α,α为奇函数,由公差大于1,α≥3.可得|q|=≥,即q,即可得出.(3)满足题意的数组为E=(m,m+2,m+3),此时通项公式为:a n=,m ∈N*.【解答】解:(1)∵a1+b2=a2+b3=a3+b1,∴a1+b1q==a1+2d+b1,化为:2q2﹣q﹣1=0,q ≠±1.解得q=﹣.(2)a m+b p=a p+b r=a r+b m,即a p﹣a m=b p﹣b r,∴(p﹣m)d=b m(q p﹣m﹣q r﹣m),同理可得:(r﹣p)d=b m(q r﹣m﹣1).∵m,p,r成等差数列,∴p﹣m=r﹣p=(r﹣m),记q p﹣m=t,则2t2﹣t﹣1=0,∵q≠±1,t≠±1,解得t=.即q p﹣m=,∴﹣1<q<0,记p﹣m=α,α为奇函数,由公差大于1,∴α≥3.∴|q|=≥,即q,当α=3时,q取得最大值为﹣.(3)满足题意的数组为E=(m,m+2,m+3),此时通项公式为:a n=,m ∈N*.例如E=(1,3,4),a n=.20.已知函数f(x)=ax2+cosx(a∈R)记f(x)的导函数为g(x)(1)证明:当a=时,g(x)在R上的单调函数;(2)若f(x)在x=0处取得极小值,求a的取值范围;(3)设函数h(x)的定义域为D,区间(m,+∞)⊆D.若h(x)在(m,+∞)上是单调函数,则称h(x)在D上广义单调.试证明函数y=f(x)﹣xlnx在0,+∞)上广义单调.【考点】6D:利用导数研究函数的极值;6B:利用导数研究函数的单调性.【分析】(1)求出函数的导数,根据导函数的符号,求出函数的单调区间即可;(2)求出函数的导数,通过讨论a的范围求出函数的单调区间,单调函数的极小值,从而确定a的具体范围即可;(3)记h(x)=ax2+cosx﹣xlnx(x>0),求出函数的导数,通过讨论a的范围结合函数的单调性证明即可.【解答】(1)证明:a=时,f(x)=x2+cosx,故f′(x)=x﹣sinx,即g(x)=x﹣sinx,g′(x)=1﹣cosx≥0,故g(x)在R递增;(2)解:∵g(x)=f′(x)=2ax﹣sinx,∴g′(x)=2a﹣cosx,①a≥时,g′(x)≥1﹣cosx≥0,函数f′(x)在R递增,若x>0,则f′(x)>f(0)=0,若x<0,则f′(x)<f′(0)=0,故函数f(x)在(0,+∞)递增,在(﹣∞,0)递减,故f(x)在x=0处取极小值,符合题意;②a≤﹣时,g′(x)≤﹣1﹣cosx≤0,f′(x)在R递减,若x>0,则f′(x)<f′(0)=0,若x<0,则f′(x)>f′(0)=0,故f(x)在(0,+∞)递减,在(﹣∞,0)递增,故f(x)在x=0处取极大值,不合题意;③﹣<a<时,存在x0∈(0,π),使得cosx0=2a,即g′(x0)=0,但当x∈(0,x0)时,cosx>2a,即g′(x)<0,f′(x)在(0,x0)递减,故f′(x)<f′(0)=0,即f(x)在(0,x0)递减,不合题意,综上,a的范围是[,+∞);(3)解:记h(x)=ax2+cosx﹣xlnx(x>0),①a>0时,lnx<x,则ln<,即lnx<2,当x>时,h′(x)=2ax﹣sinx﹣1﹣lnx>2ax﹣2﹣2=2(﹣)(﹣)>0,故存在m=,函数h(x)在(m,+∞)递增;②a≤0时,x>1时,h′(x)=2ax﹣sinx﹣1﹣lnx<﹣sinx﹣1﹣lnx<0,故存在m=1,函数h(x)在(m,+∞)递减;综上,函数y=f(x)﹣xlnx在(0,+∞)上广义单调.[选修4-1:几何证明选讲]21.如图,已知AB为圆O的一条弦,点P为弧的中点,过点P任作两条弦PC,PD分别交AB于点E,F求证:PE•PC=PF•PD.【考点】NC:与圆有关的比例线段.【分析】连结PA、PB、CD、BC,推导出∠PFE=∠PBA+∠DPB=∠PCB+∠DCB=∠PCD,从而E、F、D、C四点共圆.由此能证明PE•PC=PF•PD.【解答】解:连结PA、PB、CD、BC,因为∠PAB=∠PCB,又点P为弧AB的中点,所以∠PAB=∠PBA,所以∠PCB=∠PBA,又∠DCB=∠DPB,所以∠PFE=∠PBA+∠DPB=∠PCB+∠DCB=∠PCD,所E、F、D、C四点共圆.所以PE•PC=PF•PD.[选修4-2:距阵与变换]22.已知矩阵M=,点(1,﹣1)在M对应的变换作用下得到点(﹣1,5),求矩阵M的特征值.【考点】OV:特征值与特征向量的计算.【分析】设出矩阵,利用特征向量的定义,即二阶变换矩阵的概念,建立方程组,即可得到结论.【解答】解:由题意,=,即,解得a=2,b=4,所以矩阵M=.所以矩阵M的特征多项式为f(λ)==λ2﹣5λ+6,令f(λ)=0,得矩阵M的特征值为2和3.[选修4-4:坐标系与参数方程]23.在坐标系中,圆C的圆心在极轴上,且过极点和点(3,),求圆C的极坐标方程.【考点】Q4:简单曲线的极坐标方程.【分析】因为圆心C在极轴上且过极点,所以设圆C的极坐标方程为:ρ=acosθ,又因为点(3,)在圆C上,代入解得ρ即可得出圆C的极坐标方程.【解答】解:因为圆心C在极轴上且过极点,所以设圆C的极坐标方程为:ρ=acosθ,又因为点(3,)在圆C上,所以=acos,解得a=6,所以圆C的极坐标方程为:ρ=6cosθ.[选修4-5:选修4-5:不等式选讲]24.知a,b,c,d是正实数,且abcd=1,求证:a5+b5+c5+d5≥a+b+c+d.【考点】R6:不等式的证明.【分析】由不等式的性质可得:a5+b+c+d≥4=4a,同理可得其他三个式子,将各式相加即可得出结论.【解答】证明:∵a,b,c,d是正实数,且abcd=1,∴a5+b+c+d≥4=4a,同理可得:a+b5+c+d≥4=4b,a+b+c5+d≥4=4c,a+b+c+d5≥4=4d,将上面四式相加得:a5+b5+c5+d5+3a+3b+3c+3d≥4a+4b+4c+4d,∴a5+b5+c5+d5≥a+b+c+d.解答题25.如图,在四棱锥S﹣ABCD中,SD⊥平面ABCD,四边形ABCD是直角梯形,∠ADC=∠DAB=90°,SD=AD=AB=2,DC=1(1)求二面角S﹣BC﹣A的余弦值;(2)设P是棱BC上一点,E是SA的中点,若PE与平面SAD所成角的正弦值为,求线段CP的长.【考点】MI:直线与平面所成的角;MT:二面角的平面角及求法.【分析】以D为原点建立如图所示的空间直角坐标系D﹣xyz,则D(0,0,0),B(2,2,0),C(0,1,0),S(0,0,2),利用空间向量求解.【解答】解:(1)以D为原点建立如图所示的空间直角坐标系D﹣xyz,则D(0,0,0),B(2,2,0),C(0,1,0),S(0,0,2)∴,,设面SBC的法向量为由可取∵SD⊥面ABC,∴取面ABC的法向量为|cos|=,∵二面角S﹣BC﹣A为锐角.二面角S﹣BC﹣A的余弦值为(2)由(1)知E(1,0,1),则,,设,(0≤λ≤1).则,易知CD⊥面SAD,∴面SAD的法向量可取|cos|=,解得λ=或λ=(舍去).此时,∴||=,∴线段CP的长为26.已知函数f0(x)=(a≠0,ac﹣bd≠0),设f n(x)为f n(x)的导数,n∈N*.﹣1(1)求f1(x),f2(x)(2)猜想f n(x)的表达式,并证明你的结论.【考点】RG:数学归纳法;63:导数的运算.【分析】(1)利用条件,分别代入直接求解;(2)先说明当n=1时成立,再假设n=K(K∈N*)时,猜想成立,证明n=K+1时,猜想也成立.从而得证.【解答】解:(1)f1(x)=f0′(x)=,f2(x)=f1′(x)=[]′=;(2)猜想f n(x)=,n∈N*,证明:①当n=1时,由(1)知结论正确;②假设当n=k,k∈N*时,结论正确,即有f k(x)==(﹣1)k﹣1a k﹣1(bc﹣ad)•(k+1)![(ax+b)﹣(k+1)]′=所以当n=k+10时结论成立,由①②得,对一切n∈N*结论正确.。

2017年江苏省扬州市高考数学三模试卷

2017年江苏省扬州市高考数学三模试卷

2017年江苏省扬州市高考数学三模试卷一、填空题(每题5分,满分70分,将答案填在答题纸上)1.(5分)设复数z=a+bi(a,b∈R,i为虚数单位),若z=(4+3i)i,则ab的值是.2.(5分)已知集合U={x|x>0},A={x|x≥2},则∁U A=.3.(5分)某人随机播放甲、乙、丙、丁4首歌曲中的2首,则甲、乙2首歌曲至少有1首被播放的概率是.4.(5分)如图是一个算法流程图,则输出的k的值是.5.(5分)为调査某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本,其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生3000人,则该校学生总人数是.6.(5分)设等差数列{a n}的前n项和为S n,若公差d=2,a5=10,则S10的值是.7.(5分)在锐角△ABC中,AB=3,AC=4,若△ABC的面积为3,则BC的长是.8.(5分)在平面直角坐标系xOy中,若双曲线﹣y2=1(a>0)经过抛物线y2=8x的焦点,则该双曲线的离心率是.9.(5分)圆锥的侧面展开图是半径为3,圆心角为的扇形,则这个圆锥的高是.10.(5分)若直线y=2x+b为曲线y=e x+x的一条切线,则实数b的值是.11.(5分)若正实数x,y满足x+y=1,则的最小值是.12.(5分)如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=3,BC=DC=2,若E,F分别是线段DC和BC上的动点,则的取值范围是.13.(5分)在平面直角坐标系xOy中,已知点A(0,﹣2),点B(1,﹣1),P 为圆x2+y2=2上一动点,则的最大值是.14.(5分)已知函数f(x)=若函数g(x)=2f(x)﹣ax恰有2个不同的零点,则实数a的取值范围是.二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.(15分)已知函数f(x)=Asin(ωx+)(A>0,ω>0)图象的相邻两条对称轴之间的距离为π,且经过点(,)(1)求函数f(x)的解析式;(2)若角α满足f(α)+f(α﹣)=1,α∈(0,π),求α值.16.(15分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,平面PAD⊥平面ABCD,AP=AD,M,N分别为棱PD,PC的中点.求证:(1)MN∥平面PAB(2)AM⊥平面PCD.17.(15分)在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的左焦点为F(﹣1,0),且经过点(1,).(1)求椭圆的标准方程;(2)已知椭圆的弦AB过点F,且与x轴不垂直.若D为x轴上的一点,DA=DB,求的值.18.(15分)如图,半圆AOB是某爱国主义教育基地一景点的平面示意图,半径OA的长为1百米.为了保护景点,基地管理部门从道路l上选取一点C,修建参观线路C﹣D﹣E﹣F,且CD,DE,EF均与半圆相切,四边形CDEF是等腰梯形,设DE=t百米,记修建每1百米参观线路的费用为f(t)万元,经测算f(t)=(1)用t表示线段EF的长;(2)求修建参观线路的最低费用.19.(15分)已知{a n}是公差为d的等差数列,{b n}是公比为q的等比数列,q ≠±1,正整数组E=(m,p,r)(m<p<r)(1)若a1+b2=a2+b3=a3+b1,求q的值;(2)若数组E中的三个数构成公差大于1的等差数列,且a m+b p=a p+b r=a r+b m,求q的最大值.(3)若b n=(﹣)n﹣1,a m+b m=a p+b p=a r+b r=0,试写出满足条件的一个数组E和对应的通项公式a n.(注:本小问不必写出解答过程)20.(15分)已知函数f(x)=ax2+cosx(a∈R)记f(x)的导函数为g(x)(1)证明:当a=时,g(x)在R上的单调函数;(2)若f(x)在x=0处取得极小值,求a的取值范围;(3)设函数h(x)的定义域为D,区间(m,+∞)⊆D.若h(x)在(m,+∞)上是单调函数,则称h(x)在D上广义单调.试证明函数y=f(x)﹣xlnx 在0,+∞)上广义单调.[选修4-1:几何证明选讲]21.(10分)如图,已知AB为圆O的一条弦,点P为弧的中点,过点P任作两条弦PC,PD分别交AB于点E,F求证:PE•PC=PF•PD.[选修4-2:距阵与变换]22.(10分)已知矩阵M=,点(1,﹣1)在M对应的变换作用下得到点(﹣1,5),求矩阵M的特征值.[选修4-4:坐标系与参数方程]23.在坐标系中,圆C的圆心在极轴上,且过极点和点(3,),求圆C的极坐标方程.[选修4-5:选修4-5:不等式选讲]24.知a,b,c,d是正实数,且abcd=1,求证:a5+b5+c5+d5≥a+b+c+d.解答题25.(10分)如图,在四棱锥S﹣ABCD中,SD⊥平面ABCD,四边形ABCD是直角梯形,∠ADC=∠DAB=90°,SD=AD=AB=2,DC=1(1)求二面角S﹣BC﹣A的余弦值;(2)设P是棱BC上一点,E是SA的中点,若PE与平面SAD所成角的正弦值为,求线段CP的长.26.(10分)已知函数f0(x)=(a≠0,ac﹣bd≠0),设f n(x)为f n﹣1(x)的导数,n∈N*.(1)求f1(x),f2(x)(2)猜想f n(x)的表达式,并证明你的结论.2017年江苏省扬州市高考数学三模试卷参考答案与试题解析一、填空题(每题5分,满分70分,将答案填在答题纸上)1.(5分)设复数z=a+bi(a,b∈R,i为虚数单位),若z=(4+3i)i,则ab的值是﹣12.【分析】利用复数的运算法则、复数相等即可得出.【解答】解:∵a+bi=(4+3i)i=﹣3+4i.∴a=﹣3,b=4.∴ab=﹣12.故答案为:﹣12.【点评】本题考查了复数的运算法则、复数相等,考查了推理能力与计算能力,属于基础题.2.(5分)已知集合U={x|x>0},A={x|x≥2},则∁U A={x|0<x<2} .【分析】根据补集的定义写出运算结果即可.【解答】解:集合U={x|x>0},A={x|x≥2},则∁U A={x|0<x<2}.故答案为:{x|0<x<2}.【点评】本题考查了补集的定义与运算问题,是基础题.3.(5分)某人随机播放甲、乙、丙、丁4首歌曲中的2首,则甲、乙2首歌曲至少有1首被播放的概率是.【分析】先求出基本事件总数n==6,甲、乙2首歌曲至少有1首被播放的对立事件是甲、乙2首歌曲都没有被播放,由此能求出甲、乙2首歌曲至少有1首被播放的概率.【解答】解:∵随机播放甲、乙、丙、丁4首歌曲中的2首,∴基本事件总数n==6,甲、乙2首歌曲至少有1首被播放的对立事件是甲、乙2首歌曲都没有被播放,∴甲、乙2首歌曲至少有1首被播放的概率:p=1﹣=.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.4.(5分)如图是一个算法流程图,则输出的k的值是3.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,循环可得结论.【解答】解:模拟程序的运行,可得S=1,k=1S=2,不满足条件S>10,k=2,S=6不满足条件S>10,k=3,S=15满足条件S>10,退出循环,输出k的值为3.故答案为:3.【点评】本题给出程序框图,要我们求出最后输出值,着重考查了算法语句的理解和循环结构等知识,属于基础题.5.(5分)为调査某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本,其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生3000人,则该校学生总人数是7500.【分析】由题意,其他年级抽取200人,其他年级共有学生3000人,即可求出该校学生总人数.【解答】解:由题意,其他年级抽取200人,其他年级共有学生3000人,则该校学生总人数是=7500.故答案为:7500.【点评】本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.6.(5分)设等差数列{a n}的前n项和为S n,若公差d=2,a5=10,则S10的值是110.【分析】利用等差数列通项公式求出首项a1=2,由此利用等差数列前n项和公式能求出S10.【解答】解:∵等差数列{a n}的前n项和为S n,若公差d=2,a5=10,∴a5=a1+4×2=10,解得a1=2,∴S10=10×2+=110.故答案为:110.【点评】本题考查等差数列的前10项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.7.(5分)在锐角△ABC中,AB=3,AC=4,若△ABC的面积为3,则BC的长是.【分析】利用三角形的面积公式求出A,再利用余弦定理求出BC.【解答】解:因为锐角△ABC的面积为3,且AB=3,AC=4,所以×3×4×sinA=3,所以sinA=,所以A=60°,所以cosA=,所以BC===.故答案为:.【点评】本题考查三角形的面积公式,考查余弦定理的运用,比较基础.8.(5分)在平面直角坐标系xOy中,若双曲线﹣y2=1(a>0)经过抛物线y2=8x的焦点,则该双曲线的离心率是.【分析】根据题意,由抛物线的方程可得其焦点坐标,将其代入双曲线的方程可得a2的值,即可得双曲线的方程,计算可得c的值,由双曲线离心率公式计算可得答案.【解答】解:根据题意,抛物线的方程为y2=8x,其焦点为(2,0),若双曲线﹣y2=1(a>0)经过点(2,0),则有﹣0=1,解可得a2=4,即双曲线的方程为:﹣y2=1,则a=2,c==,则双曲线的离心率e==;故答案为:.【点评】本题考查双曲线、抛物线的几何性质,注意由抛物线的几何性质求出其焦点坐标.9.(5分)圆锥的侧面展开图是半径为3,圆心角为的扇形,则这个圆锥的高是2.【分析】利用扇形的弧长等于圆锥底面周长作为相等关系,列方程求解得到圆锥的底面半径,然后利用勾股定理确定圆锥的高即可.【解答】解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=,r=1;圆锥的高为:=2.故答案为:2.【点评】主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.10.(5分)若直线y=2x+b为曲线y=e x+x的一条切线,则实数b的值是1.【分析】先设出切点坐标P(x0,e x0+x0),再利用导数的几何意义写出过P的切线方程,最后由直线是y=2x+b是曲线y=e x+x的一条切线,求出实数b的值.【解答】解:∵y=e x+x,∴y′=e x+1,设切点为P(x0,e x0+x0),则过P的切线方程为y﹣e x0﹣x0=(e x0+1)(x﹣x0),整理,得y=(e x0+1)x﹣e x0•x0+e x0,∵直线是y=2x+b是曲线y=e x+x的一条切线,∴e x0+1=2,e x0=1,x0=0,∴b=1.故答案为1.【点评】本题考查导数的几何意义,解题时要注意发现隐含条件,辨别切线的类型,分别采用不同策略解决问题.11.(5分)若正实数x,y满足x+y=1,则的最小值是8.【分析】根据题意,将变形可得则=+=+﹣1=(x+y)(+)﹣1=(1+4++)﹣1=(+)+4,由基本不等式分析可得答案.【解答】解:根据题意,x,y满足x+y=1,则=+=+﹣1=(x+y)(+)﹣1=(1+4++)﹣1=(+)+4≥2+4=8,即的最小值是8;故答案为:8.【点评】本题考查基本不等式的应用,关键是将变形为(+)+4.12.(5分)如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=3,BC=DC=2,若E,F分别是线段DC和BC上的动点,则的取值范围是[﹣4,6] .【分析】依题意,设=λ(0≤λ≤),=μ(﹣1≤μ≤0),由=+,=+,可求得=(+)•(+)=λ+μ=9λ+4μ;再由0≤λ≤,﹣1≤μ≤0,即可求得﹣4≤9λ+4μ≤6,从而可得答案.【解答】解:∵AB∥DC,∠ABC=90°,AB=3,BC=DC=2,且E,F分别是线段DC 和BC上的动点,∴=λ(0≤λ≤),=μ(﹣1≤μ≤0),又=+,=+,∴=(+)•(+)=(+)•(λ+μ)=λ+μ=9λ+4μ.∵0≤λ≤,∴0≤9λ≤6①,又﹣1≤μ≤0,∴﹣4≤4μ≤0②,①+②得:﹣4≤9λ+4μ≤6.即的取值范围是[﹣4,6],故答案为:[﹣4,6].【点评】本题考查平面向量数量积的坐标运算,设=λ(0≤λ≤),=μ(﹣1≤μ≤0),并求得=9λ+4μ是关键,考查平面向量加法的三角形法与共线向量基本定理的应用,考查运算求解能力,属于中档题.13.(5分)在平面直角坐标系xOy中,已知点A(0,﹣2),点B(1,﹣1),P 为圆x2+y2=2上一动点,则的最大值是2.【分析】设出=t,化简可得圆的方程,运用两圆相减得交线,考虑圆心到直线的距离不大于半径,即可得出结论.【解答】解:设P(x,y),=t,则(1﹣t2)x2+(1﹣t2)y2﹣2x+(2﹣4t2)y+2﹣4t2=0,圆x2+y2=2两边乘以(1﹣t2),两圆方程相减可得x﹣(1﹣2t2)y+2﹣3t2=0,(0,0)到直线的距离d=,∵t>0,∴0<t≤2,∴的最大值是2,故答案为2.【点评】本题考查圆的方程,考查圆与圆位置关系的运用,考查学生分析解决问题的能力,属于中档题.14.(5分)已知函数f(x)=若函数g(x)=2f(x)﹣ax恰有2个不同的零点,则实数a的取值范围是(﹣,2).【分析】求出g(x)的解析式,计算g(x)的零点,讨论g(x)在区间[a,+∞)上的零点个数,得出g(x)在(﹣∞,a)上的零点个数,列出不等式解出a的范围.【解答】解:g(x)=,显然,当a=2时,g(x)有无穷多个零点,不符合题意;当x≥a时,令g(x)=0得x=0,当x<a时,令g(x)=0得x=0或x2=,(1)若a>0且a≠2,则g(x)在[a,+∞)上无零点,在(﹣∞,a)上存在零点x=0和x=﹣,∴≥a,解得0<a<2,(2)若a=0,则g(x)在[0,+∞)上存在零点x=0,在(﹣∞,0)上存在零点x=﹣,符合题意;(3)若a<0,则g(x)在[a,+∞)上存在零点x=0,∴g(x)在(﹣∞,a)上只有1个零点,∵0∉(﹣∞,a),∴g(x)在(﹣∞,a)上的零点为x=﹣,∴﹣<a,解得﹣<a<0.综上,a的取值范围是(﹣,2).故答案为(﹣,2).【点评】本题考查了函数零点的个数判断,分类讨论思想,属于中档题.二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.(15分)已知函数f(x)=Asin(ωx+)(A>0,ω>0)图象的相邻两条对称轴之间的距离为π,且经过点(,)(1)求函数f(x)的解析式;(2)若角α满足f(α)+f(α﹣)=1,α∈(0,π),求α值.【分析】(1)由条件可求周期,利用周期公式可求ω=1,由f(x)的图象经过点(,),可求Asin=.解得A=1,即可得解函数解析式.(2)由已知利用三角函数恒等变换的应用化简可得sin.结合范围α∈(0,π),即可得解α的值.【解答】解:(1)由条件,周期T=2π,即=2π,所以ω=1,即f(x)=Asin(x+).因为f(x)的图象经过点(,),所以Asin=.∴A=1,∴f(x)=sin(x+).(2)由f(α)+f(α﹣)=1,得sin(α+)+sin(α﹣+)=1,即sin(α+)﹣cos(α+)=1,可得:2sin[()﹣]=1,即sin.因为α∈(0,π),解得:α=或.【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,三角函数恒等变换的应用及正弦函数的图象和性质,属于基础题.16.(15分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,平面PAD⊥平面ABCD,AP=AD,M,N分别为棱PD,PC的中点.求证:(1)MN∥平面PAB(2)AM⊥平面PCD.【分析】(1)推导出MN∥DC,AB∥DC.从而MN∥AB,由此能证明MN∥平面PAB.(2)推导出AM⊥PD,CD⊥AD,从而CD⊥平面PAD,进而CD⊥AM,由此能证明AM⊥平面PCD.【解答】证明:(1)因为M、N分别为PD、PC的中点,所以MN∥DC,又因为底面ABCD是矩形,所以AB∥DC.所以MN∥AB,又AB⊂平面PAB,MN⊄平面PAB,所以MN∥平面PAB.(2)因为AP=AD,P为PD的中点,所以AM⊥PD.因为平面PAD⊥平面ABCD,又平面PAD∩平面ABCD=AD,CD⊥AD,CD⊂平面ABCD,所以CD⊥平面PAD,又AM⊂平面PAD,所以CD⊥AM.因为CD、PD⊂平面PCD,CD∩PD=D,∴AM⊥平面PCD.【点评】本题考查线面平行、线面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.17.(15分)在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的左焦点为F(﹣1,0),且经过点(1,).(1)求椭圆的标准方程;(2)已知椭圆的弦AB过点F,且与x轴不垂直.若D为x轴上的一点,DA=DB,求的值.【分析】(1)根据椭圆的定义,即可求得2a=4,由c=1,b2=a2﹣c2=3,即可求得椭圆的标准方程;(2)分类讨论,当直线的斜率存在时,代入椭圆方程,由韦达定理及中点坐标公式求得M点坐标,求得直线AB垂直平分线方程,即可求得D点坐标,由椭圆的第二定义,求得丨AF丨=(x1+4),即丨BF丨=(x2+4),利用韦达定理即可求得丨AB丨,即可求得的值.【解答】解:(1)由题意,F(﹣1,0),由焦点F2(1,0),且经过P(1,),由丨PF丨+丨PF2丨=2a,即2a=4,则a=2,b2=a2﹣c2=3,∴椭圆的标准方程;(2)设直线AB的方程为y=k(x+1).①若k=0时,丨AB丨=2a=4,丨FD丨+丨FO丨=1,∴=4.②若k≠0时,A(x1,y1),B(x2,y2),AB的中点为M(x0,y0),,整理得:(4k2+3)x2+8k2x+4k2﹣12=0,∴x1+x2=﹣,则x0=﹣,则y0=k(x0+1)=.则AB的垂直平分线方程为y﹣=﹣(x+),由丨DA丨=丨DB丨,则点D为AB的垂直平分线与x轴的交点,∴D(﹣,0),∴丨DF丨=﹣+1=,由椭圆的左准线的方程为x=﹣4,离心率为,由=,得丨AF丨=(x1+4),同理丨BF丨=(x2+4),∴丨AB丨=丨AF丨+丨BF丨=(x1+x2)+4=,∴=4则综上,得的值为4.【点评】本题考查椭圆方程、韦达定理、向量知识、直线方程等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,数形结合思想,考查创新意识、应用意识,是中档题.18.(15分)如图,半圆AOB是某爱国主义教育基地一景点的平面示意图,半径OA的长为1百米.为了保护景点,基地管理部门从道路l上选取一点C,修建参观线路C﹣D﹣E﹣F,且CD,DE,EF均与半圆相切,四边形CDEF是等腰梯形,设DE=t百米,记修建每1百米参观线路的费用为f(t)万元,经测算f(t)=(1)用t表示线段EF的长;(2)求修建参观线路的最低费用.【分析】(1)设DQ与半圆相切于点Q,则由四边形CDEF是等腰梯形知,OQ⊥DE,以CF所在直线为x轴,OQ所在直线为y轴,建立平面直角坐标系xoy.设EF与圆切于G点,连接OG,过点E作EH⊥OF,垂足为H.可得Rt△EHF≌Rt △OGF,HF=FG=EF﹣t.利用EF2=1+HF2=1+,解得EF.(2)设修建该参观线路的费用为y万元.①当,由y=5=5.利用y′,可得y在上单调递减,即可得出y的最小值.②当时,y==12t+﹣﹣.利用导数研究函数的单调性极值最值即可得出.【解答】解:(1)设DQ与半圆相切于点Q,则由四边形CDEF是等腰梯形知,OQ⊥DE,以CF所在直线为x轴,OQ所在直线为y轴,建立平面直角坐标系xoy.设EF与圆切于G点,连接OG,过点E作EH⊥OF,垂足为H.∵EH=OG,∠OFG=∠EFH,∠GOF=∠HEF,∴Rt△EHF≌Rt△OGF,∴HF=FG=EF﹣t.∴EF2=1+HF2=1+,解得EF=+(0<t<2).(2)设修建该参观线路的费用为y万元.①当,由y=5=5.y′=<0,可得y在上单调递减,∴t=时,y取得最小值为32.5.②当时,y==12t+﹣﹣.y′=12﹣+=.∵,∴3t2+3t﹣1>0.∴t∈时,y′<0,函数y此时单调递减;t∈(1,2)时,y′>0,函数y 此时单调递增.∴t=1时,函数y取得最小值24.5.由①②知,t=1时,函数y取得最小值为24.5.答:(1)EF=+(0<t<2)(百米).(2)修建该参观线路的最低费用为24.5万元.【点评】本题考查了利用导数研究函数的极值与最值、不等式的性质、直线与圆相切的性质,考查了推理能力与计算能力,属于中档题.19.(15分)已知{a n}是公差为d的等差数列,{b n}是公比为q的等比数列,q ≠±1,正整数组E=(m,p,r)(m<p<r)(1)若a1+b2=a2+b3=a3+b1,求q的值;(2)若数组E中的三个数构成公差大于1的等差数列,且a m+b p=a p+b r=a r+b m,求q的最大值.(3)若b n=(﹣)n﹣1,a m+b m=a p+b p=a r+b r=0,试写出满足条件的一个数组E和对应的通项公式a n.(注:本小问不必写出解答过程)【分析】(1)由a1+b2=a2+b3=a3+b1,利用等差数列与等比数列的通项公式可得:a1+b1q==a1+2d+b1,化简解出即可得出.(2)a m+b p=a p+b r=a r+b m,即a p﹣a m=b p﹣b r,可得(p﹣m)d=b m(q p﹣m﹣q r﹣m),同理可得:(r﹣p)d=b m(q r﹣m﹣1).由m,p,r成等差数列,可得p﹣m=r﹣p=(r﹣m),记q p﹣m=t,解得t=﹣.即q p﹣m=﹣,由﹣1<q<0,记p﹣m=α,α为奇数,由公差大于1,α≥3.可得|q|=≥,即q,即可得出.(3)满足题意的数组为E=(m,m+2,m+3),此时通项公式为:a n=,m∈N*.【解答】解:(1)∵a1+b2=a2+b3=a3+b1,∴a1+b1q==a1+2d+b1,化为:2q2﹣q﹣1=0,q≠±1.解得q=﹣.(2)a m+b p=a p+b r=a r+b m,即a p﹣a m=b p﹣b r,∴(p﹣m)d=b m(q p﹣m﹣q r﹣m),同理可得:(r﹣p)d=b m(q r﹣m﹣1).∵m,p,r成等差数列,∴p﹣m=r﹣p=(r﹣m),记q p﹣m=t,则2t2﹣t﹣1=0,∵q≠±1,t≠±1,解得t=﹣.即q p﹣m=﹣,∴﹣1<q<0,记p﹣m=α,α为奇数,由公差大于1,∴α≥3.∴|q|=≥,即q,当α=3时,q取得最大值为﹣.(3)满足题意的数组为E=(m,m+2,m+3),此时通项公式为:a n=,m∈N*.例如E=(1,3,4),a n=.【点评】本题考查了等差数列与等比数列的通项公式及其性质、不等式的性质,考查了推理能力与计算能力,属于难题.20.(15分)已知函数f(x)=ax2+cosx(a∈R)记f(x)的导函数为g(x)(1)证明:当a=时,g(x)在R上的单调函数;(2)若f(x)在x=0处取得极小值,求a的取值范围;(3)设函数h(x)的定义域为D,区间(m,+∞)⊆D.若h(x)在(m,+∞)上是单调函数,则称h(x)在D上广义单调.试证明函数y=f(x)﹣xlnx 在0,+∞)上广义单调.【分析】(1)求出函数的导数,根据导函数的符号,求出函数的单调区间即可;(2)求出函数的导数,通过讨论a的范围求出函数的单调区间,单调函数的极小值,从而确定a的具体范围即可;(3)记h(x)=ax2+cosx﹣xlnx(x>0),求出函数的导数,通过讨论a的范围结合函数的单调性证明即可.【解答】(1)证明:a=时,f(x)=x2+cosx,故f′(x)=x﹣sinx,即g(x)=x﹣sinx,g′(x)=1﹣cosx≥0,故g(x)在R递增;(2)解:∵g(x)=f′(x)=2ax﹣sinx,∴g′(x)=2a﹣cosx,①a≥时,g′(x)≥1﹣cosx≥0,函数f′(x)在R递增,若x>0,则f′(x)>f(0)=0,若x<0,则f′(x)<f′(0)=0,故函数f(x)在(0,+∞)递增,在(﹣∞,0)递减,故f(x)在x=0处取极小值,符合题意;②a≤﹣时,g′(x)≤﹣1﹣cosx≤0,f′(x)在R递减,若x>0,则f′(x)<f′(0)=0,若x<0,则f′(x)>f′(0)=0,故f(x)在(0,+∞)递减,在(﹣∞,0)递增,故f(x)在x=0处取极大值,不合题意;③﹣<a<时,存在x0∈(0,π),使得cosx0=2a,即g′(x0)=0,但当x∈(0,x0)时,cosx>2a,即g′(x)<0,f′(x)在(0,x0)递减,故f′(x)<f′(0)=0,即f(x)在(0,x0)递减,不合题意,综上,a的范围是[,+∞);(3)解:记h(x)=ax2+cosx﹣xlnx(x>0),①a>0时,lnx<x,则ln<,即lnx<2,当x>时,h′(x)=2ax﹣sinx﹣1﹣lnx>2ax﹣2﹣2=2a(﹣)(﹣)>0,故存在m=,函数h(x)在(m,+∞)递增;②a≤0时,x>1时,h′(x)=2ax﹣sinx﹣1﹣lnx<﹣sinx﹣1﹣lnx<0,故存在m=1,函数h(x)在(m,+∞)递减;综上,函数y=f(x)﹣xlnx在(0,+∞)上广义单调.【点评】本题考查了函数的单调性、极值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.[选修4-1:几何证明选讲]21.(10分)如图,已知AB为圆O的一条弦,点P为弧的中点,过点P任作两条弦PC,PD分别交AB于点E,F求证:PE•PC=PF•PD.【分析】连结PA、PB、CD、BC,推导出∠PFE=∠PBA+∠DPB=∠PCB+∠DCB=∠PCD,从而E、F、D、C四点共圆.由此能证明PE•PC=PF•PD.【解答】解:连结PA、PB、CD、BC,因为∠PAB=∠PCB,又点P为弧AB的中点,所以∠PAB=∠PBA,所以∠PCB=∠PBA,又∠DCB=∠DPB,所以∠PFE=∠PBA+∠DPB=∠PCB+∠DCB=∠PCD,所E、F、D、C四点共圆.所以PE•PC=PF•PD.【点评】本题考查两组线段乘积相等的证明,考查弦切角、切割线定理、圆等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,数形结合思想,考查创新意识、应用意识,是中档题.[选修4-2:距阵与变换]22.(10分)已知矩阵M=,点(1,﹣1)在M对应的变换作用下得到点(﹣1,5),求矩阵M的特征值.【分析】设出矩阵,利用特征向量的定义,即二阶变换矩阵的概念,建立方程组,即可得到结论.【解答】解:由题意,=,即,解得a=2,b=4,所以矩阵M=.所以矩阵M的特征多项式为f(λ)==λ2﹣5λ+6,令f(λ)=0,得矩阵M的特征值为2和3.【点评】本题考查特征值,考查二阶变换矩阵,考查学生的计算能力,属于中档题.[选修4-4:坐标系与参数方程]23.在坐标系中,圆C的圆心在极轴上,且过极点和点(3,),求圆C的极坐标方程.【分析】因为圆心C在极轴上且过极点,所以设圆C的极坐标方程为:ρ=acosθ,又因为点(3,)在圆C上,代入解得ρ即可得出圆C的极坐标方程.【解答】解:因为圆心C在极轴上且过极点,所以设圆C的极坐标方程为:ρ=acosθ,又因为点(3,)在圆C上,所以=acos,解得a=6,所以圆C的极坐标方程为:ρ=6cosθ.【点评】本题考查了圆的极坐标方程、三角函数求值,考查了推理能力与计算能力,属于基础题.[选修4-5:选修4-5:不等式选讲]24.知a,b,c,d是正实数,且abcd=1,求证:a5+b5+c5+d5≥a+b+c+d.【分析】由不等式的性质可得:a5+b+c+d≥4=4a,同理可得其他三个式子,将各式相加即可得出结论.【解答】证明:∵a,b,c,d是正实数,且abcd=1,∴a5+b+c+d≥4=4a,同理可得:a+b5+c+d≥4=4b,a+b+c5+d≥4=4c,a+b+c+d5≥4=4d,将上面四式相加得:a5+b5+c5+d5+3a+3b+3c+3d≥4a+4b+4c+4d,∴a5+b5+c5+d5≥a+b+c+d.【点评】本题考查了不等式的证明,属于中档题.解答题25.(10分)如图,在四棱锥S﹣ABCD中,SD⊥平面ABCD,四边形ABCD是直角梯形,∠ADC=∠DAB=90°,SD=AD=AB=2,DC=1(1)求二面角S﹣BC﹣A的余弦值;(2)设P是棱BC上一点,E是SA的中点,若PE与平面SAD所成角的正弦值为,求线段CP的长.【分析】以D为原点建立如图所示的空间直角坐标系D﹣xyz,则D(0,0,0),B(2,2,0),C(0,1,0),S(0,0,2),利用空间向量求解.【解答】解:(1)以D为原点建立如图所示的空间直角坐标系D﹣xyz,则D(0,0,0),B(2,2,0),C(0,1,0),S(0,0,2)∴,,设面SBC的法向量为由可取∵SD⊥面ABC,∴取面ABC的法向量为|cos|=,∵二面角S﹣BC﹣A为锐角.二面角S﹣BC﹣A的余弦值为(2)由(1)知E(1,0,1),则,,设,(0≤λ≤1).则,易知CD⊥面SAD,∴面SAD的法向量可取|cos|=,解得λ=或λ=(舍去).此时,∴||=,∴线段CP的长为【点评】本题考查了空间向量求解面面角,线面角,解题时要仔细运算,合理转化,属于中档题.26.(10分)已知函数f0(x)=(a≠0,ac﹣bd≠0),设f n(x)为f n﹣1(x)的导数,n∈N*.(1)求f1(x),f2(x)(2)猜想f n(x)的表达式,并证明你的结论.【分析】(1)利用条件,分别代入直接求解;(2)先说明当n=1时成立,再假设n=K(K∈N*)时,猜想成立,证明n=K+1时,猜想也成立.从而得证.【解答】解:(1)f1(x)=f0′(x)=,f2(x)=f1′(x)=[]′=;(2)猜想f n(x)=,n∈N*,证明:①当n=1时,由(1)知结论正确;②假设当n=k,k∈N*时,结论正确,即有f k(x)==(﹣1)k﹣1a k﹣1(bc﹣ad)•(k+1)![(ax+b)﹣(k+1)]′=所以当n=k+1时结论成立,由①②得,对一切n∈N*结论正确.【点评】本题主要考查数学归纳法证明猜想,应注意证题的完整性.。

。2017年江苏省南通市高考数学三模试卷

。2017年江苏省南通市高考数学三模试卷

2017年江苏省南通市高考数学三模试卷一、填空题(每题5分,满分70分,将答案填在答题纸上)1.(5分)设复数z=a+bi(a,b∈R,i为虚数单位),若z=(4+3i)i,则ab的值是.2.(5分)已知集合U={x|x>0},A={x|x≥2},则?U A=.3.(5分)某人随机播放甲、乙、丙、丁4首歌曲中的2首,则甲、乙2首歌曲至少有1首被播放的概率是.4.(5分)如图是一个算法流程图,则输出的k的值是.5.(5分)为调査某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本,其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生3000人,则该校学生总人数是.6.(5分)设等差数列{a n}的前n项和为S n,若公差d=2,a5=10,则S10的值是.7.(5分)在锐角△ABC中,AB=3,AC=4,若△ABC的面积为3,则BC的长是.8.(5分)在平面直角坐标系xOy中,若双曲线﹣y2=1(a>0)经过抛物线y2=8x的焦点,则该双曲线的离心率是.9.(5分)圆锥的侧面展开图是半径为3,圆心角为的扇形,则这个圆锥的高是.10.(5分)若直线y=2x+b为曲线y=e x+x的一条切线,则实数b的值是.11.(5分)若正实数x,y满足x+y=1,则的最小值是.12.(5分)如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=3,BC=DC=2,若E,F分别是线段DC和BC上的动点,则的取值范围是.13.(5分)在平面直角坐标系xOy中,已知点A(0,﹣2),点B(1,﹣1),P 为圆x2+y2=2上一动点,则的最大值是.14.(5分)已知函数f(x)=若函数g(x)=2f(x)﹣ax恰有2个不同的零点,则实数a的取值范围是.二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.(15分)已知函数f(x)=Asin(ωx+)(A>0,ω>0)图象的相邻两条对称轴之间的距离为π,且经过点(,)(1)求函数f(x)的解析式;(2)若角α满足f(α)+f(α﹣)=1,α∈(0,π),求α值.16.(15分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,平面PAD⊥平面ABCD,AP=AD,M,N分别为棱PD,PC的中点.求证:(1)MN∥平面PAB(2)AM⊥平面PCD.17.(15分)在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的左焦点为F(﹣1,0),且经过点(1,).(1)求椭圆的标准方程;(2)已知椭圆的弦AB过点F,且与x轴不垂直.若D为x轴上的一点,DA=DB,求的值.18.(15分)如图,半圆AOB是某爱国主义教育基地一景点的平面示意图,半径OA的长为1百米.为了保护景点,基地管理部门从道路l上选取一点C,修建参观线路C﹣D﹣E﹣F,且CD,DE,EF均与半圆相切,四边形CDEF是等腰梯形,设DE=t百米,记修建每1百米参观线路的费用为f(t)万元,经测算f(t)=(1)用t表示线段EF的长;(2)求修建参观线路的最低费用.19.(15分)已知{a n}是公差为d的等差数列,{b n}是公比为q的等比数列,q ≠±1,正整数组E=(m,p,r)(m<p<r)(1)若a1+b2=a2+b3=a3+b1,求q的值;(2)若数组E中的三个数构成公差大于1的等差数列,且a m+b p=a p+b r=a r+b m,求q的最大值.(3)若b n=(﹣)n﹣1,a m+b m=a p+b p=a r+b r=0,试写出满足条件的一个数组E和对应的通项公式a n.(注:本小问不必写出解答过程)20.(15分)已知函数f(x)=ax2+cosx(a∈R)记f(x)的导函数为g(x)(1)证明:当a=时,g(x)在R上的单调函数;(2)若f(x)在x=0处取得极小值,求a的取值范围;(3)设函数h(x)的定义域为D,区间(m,+∞)?D.若h(x)在(m,+∞)上是单调函数,则称h(x)在D上广义单调.试证明函数y=f(x)﹣xlnx 在0,+∞)上广义单调.[选修4-1:几何证明选讲]21.(10分)如图,已知AB为圆O的一条弦,点P为弧的中点,过点P任作两条弦PC,PD分别交AB于点E,F求证:PE?PC=PF?PD.[选修4-2:距阵与变换]22.(10分)已知矩阵M=,点(1,﹣1)在M对应的变换作用下得到点(﹣1,5),求矩阵M的特征值.[选修4-4:坐标系与参数方程]23.在坐标系中,圆C的圆心在极轴上,且过极点和点(3,),求圆C的极坐标方程.[选修4-5:选修4-5:不等式选讲]24.知a,b,c,d是正实数,且abcd=1,求证:a5+b5+c5+d5≥a+b+c+d.解答题25.(10分)如图,在四棱锥S﹣ABCD中,SD⊥平面ABCD,四边形ABCD是直角梯形,∠ADC=∠DAB=90°,SD=AD=AB=2,DC=1(1)求二面角S﹣BC﹣A的余弦值;(2)设P是棱BC上一点,E是SA的中点,若PE与平面SAD所成角的正弦值为,求线段CP的长.26.(10分)已知函数f0(x)=(a≠0,ac﹣bd≠0),设f n(x)为f n﹣1(x)的导数,n∈N*.(1)求f1(x),f2(x)(2)猜想f n(x)的表达式,并证明你的结论.2017年江苏省南通市高考数学三模试卷参考答案与试题解析一、填空题(每题5分,满分70分,将答案填在答题纸上)1.(5分)设复数z=a+bi(a,b∈R,i为虚数单位),若z=(4+3i)i,则ab的值是﹣12.【分析】利用复数的运算法则、复数相等即可得出.【解答】解:∵a+bi=(4+3i)i=﹣3+4i.∴a=﹣3,b=4.∴ab=﹣12.故答案为:﹣12.【点评】本题考查了复数的运算法则、复数相等,考查了推理能力与计算能力,属于基础题.2.(5分)已知集合U={x|x>0},A={x|x≥2},则?U A={x|0<x<2} .【分析】根据补集的定义写出运算结果即可.【解答】解:集合U={x|x>0},A={x|x≥2},则?U A={x|0<x<2}.故答案为:{x|0<x<2}.【点评】本题考查了补集的定义与运算问题,是基础题.3.(5分)某人随机播放甲、乙、丙、丁4首歌曲中的2首,则甲、乙2首歌曲至少有1首被播放的概率是.【分析】先求出基本事件总数n==6,甲、乙2首歌曲至少有1首被播放的对立事件是甲、乙2首歌曲都没有被播放,由此能求出甲、乙2首歌曲至少有1首被播放的概率.【解答】解:∵随机播放甲、乙、丙、丁4首歌曲中的2首,∴基本事件总数n==6,甲、乙2首歌曲至少有1首被播放的对立事件是甲、乙2首歌曲都没有被播放,∴甲、乙2首歌曲至少有1首被播放的概率:p=1﹣=.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.4.(5分)如图是一个算法流程图,则输出的k的值是3.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,循环可得结论.【解答】解:模拟程序的运行,可得S=1,k=1S=2,不满足条件S>10,k=2,S=6不满足条件S>10,k=3,S=15满足条件S>10,退出循环,输出k的值为3.故答案为:3.【点评】本题给出程序框图,要我们求出最后输出值,着重考查了算法语句的理解和循环结构等知识,属于基础题.5.(5分)为调査某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本,其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生3000人,则该校学生总人数是7500.【分析】由题意,其他年级抽取200人,其他年级共有学生3000人,即可求出该校学生总人数.【解答】解:由题意,其他年级抽取200人,其他年级共有学生3000人,则该校学生总人数是=7500.故答案为:7500.【点评】本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.6.(5分)设等差数列{a n}的前n项和为S n,若公差d=2,a5=10,则S10的值是110.【分析】利用等差数列通项公式求出首项a1=2,由此利用等差数列前n项和公式能求出S10.【解答】解:∵等差数列{a n}的前n项和为S n,若公差d=2,a5=10,∴a5=a1+4×2=10,解得a1=2,∴S10=10×2+=110.故答案为:110.【点评】本题考查等差数列的前10项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.7.(5分)在锐角△ABC中,AB=3,AC=4,若△ABC的面积为3,则BC的长是.【分析】利用三角形的面积公式求出A,再利用余弦定理求出BC.【解答】解:因为锐角△ABC的面积为3,且AB=3,AC=4,所以×3×4×sinA=3,所以sinA=,所以A=60°,所以cosA=,所以BC===.故答案为:.【点评】本题考查三角形的面积公式,考查余弦定理的运用,比较基础.8.(5分)在平面直角坐标系xOy中,若双曲线﹣y2=1(a>0)经过抛物线y2=8x的焦点,则该双曲线的离心率是.【分析】根据题意,由抛物线的方程可得其焦点坐标,将其代入双曲线的方程可得a2的值,即可得双曲线的方程,计算可得c的值,由双曲线离心率公式计算可得答案.【解答】解:根据题意,抛物线的方程为y2=8x,其焦点为(2,0),若双曲线﹣y2=1(a>0)经过点(2,0),则有﹣0=1,解可得a2=4,即双曲线的方程为:﹣y2=1,则a=2,c==,则双曲线的离心率e==;故答案为:.【点评】本题考查双曲线、抛物线的几何性质,注意由抛物线的几何性质求出其焦点坐标.9.(5分)圆锥的侧面展开图是半径为3,圆心角为的扇形,则这个圆锥的高是2.【分析】利用扇形的弧长等于圆锥底面周长作为相等关系,列方程求解得到圆锥的底面半径,然后利用勾股定理确定圆锥的高即可.【解答】解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=,r=1;圆锥的高为:=2.故答案为:2.【点评】主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.10.(5分)若直线y=2x+b为曲线y=e x+x的一条切线,则实数b的值是1.【分析】先设出切点坐标P(x0,e x0+x0),再利用导数的几何意义写出过P的切线方程,最后由直线是y=2x+b是曲线y=e x+x的一条切线,求出实数b的值.【解答】解:∵y=e x+x,∴y′=e x+1,设切点为P(x0,e x0+x0),则过P的切线方程为y﹣e x0﹣x0=(e x0+1)(x﹣x0),整理,得y=(e x0+1)x﹣e x0?x0+e x0,∵直线是y=2x+b是曲线y=e x+x的一条切线,∴e x0+1=2,e x0=1,x0=0,∴b=1.故答案为1.【点评】本题考查导数的几何意义,解题时要注意发现隐含条件,辨别切线的类型,分别采用不同策略解决问题.11.(5分)若正实数x,y满足x+y=1,则的最小值是8.。

江苏省普通高等学校2017年高三招生考试20套模拟测试附加题数学试题(三) Word版含解析

江苏省普通高等学校2017年高三招生考试20套模拟测试附加题数学试题(三) Word版含解析

江苏省普通高等学校招生考试高三模拟测试卷(三)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,四边形ABDC 内接于圆,BD =CD ,过C 点的圆的切线与AB 的延长线交于E 点.(1) 求证:∠EAC =2∠DCE ;(2) 若BD ⊥AB ,BC =BE ,AE =2,求AB 的长.B. (选修4-2:矩阵与变换)已知二阶矩阵M 有特征值λ=3及对应的一个特征向量e 1=⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换成(9,15),求矩阵M .C. (选修4-4:坐标系与参数方程)在直角坐标系xOy 中,已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =t ,y =3t 3(t 为参数),在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 2的极坐标方程是ρ=2,求曲线C 1与C 2的交点在直角坐标系中的直角坐标.D. (选修4-5:不等式选讲)设函数f(x)=⎪⎪⎪⎪x +1a +|x -a|(a >0). (1) 证明:f(x)≥2;(2) 若f(3)<5,求实数a 的取值范围.【必做题】 第22、23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 一位网民在网上光顾某网店,经过一番浏览后,对该店铺中的A ,B ,C 三种商品有购买意向.已知该网民购买A 种商品的概率为34,购买B 种商品的概率为23,购买C 种商品的概率为12.假设该网民是否购买这三种商品相互独立. (1) 求该网民至少购买2种商品的概率;(2) 用随机变量η表示该网民购买商品的种数,求η的概率分布和数学期望.23.如图,由若干个小正方形组成的k 层三角形图阵,第一层有1个小正方形,第二层有2个小正方形,依此类推,第k 层有k 个小正方形.除去最底下的一层,每个小正方形都放置在它下一层的两个小正方形之上.现对第k 层的每个小正方形用数字进行标注,从左到右依次记为x 1,x 2,…,x k ,其中x i ∈{0,1}(1≤i ≤k),其他小正方形标注的数字是它下面两个小正方形标注的数字之和,依此规律,记第一层的小正方形标注的数字为x 0.(1) 当k =4时,若要求x 0为2的倍数,则有多少种不同的标注方法?(2) 当k =11时,若要求x 0为3的倍数,则有多少种不同的标注方法?(三)21. A. (1) 证明:因为BD =CD ,所以∠BCD =∠CBD.因为CE 是圆的切线,所以∠ECD =∠CBD.(2分)所以∠ECD =∠BCD ,所以∠BCE =2∠ECD.因为∠EAC =∠BCE ,所以∠EAC =2∠ECD.(5分)(2) 解:因为BD ⊥AB ,所以AC ⊥CD ,AC =AB.(6分)因为BC =BE ,所以∠BEC =∠BCE =∠EAC ,所以AC =EC.(7分)由切割线定理得EC 2=AE·BE ,即AB 2=AE·(AE -AB),即AB 2+2AB -4=0,解得AB =5-1.(10分)B. 解:设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=3⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤33, 故⎩⎪⎨⎪⎧a +b =3,c +d =3.(3分) ⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤915,故⎩⎪⎨⎪⎧-a +2b =9,-c +2d =15.(6分) 联立以上两方程组解得a =-1,b =4,c =-3,d =6,故M =⎣⎢⎡⎦⎥⎤-1 4-3 6.(10分) C. 解:由⎩⎪⎨⎪⎧x =t ,y =3t 3,消去t 得曲线C 1的普通方程为y =33x(x ≥0);(3分) 由ρ=2,得ρ2=4,得曲线C 2的直角坐标方程是x 2+y 2=4.(6分)联立⎩⎪⎨⎪⎧y =33x (x ≥0),x 2+y 2=4,解得⎩⎨⎧x =3,y =1. 故曲线C 1与C 2的交点坐标为(3,1).(10分)D. (1) 证明:由a >0,有f(x)=⎪⎪⎪⎪x +1a +|x -a| ≥⎪⎪⎪⎪x +1a -(x -a )=1a+a ≥2, 所以f(x)≥2.(4分)(2) 解:f(3)=⎪⎪⎪⎪3+1a +|3-a|. 当a >3时,f(3)=a +1a ,由f(3)<5得3<a <5+212.(6分) 当0<a ≤3时,f(3)=6-a +1a, 由f(3)<5得1+52<a ≤3.(8分)综上,a 的取值范围是⎝ ⎛⎭⎪⎫1+52,5+212.(10分) 22. 解:(1) 记“该网民购买i 种商品”为事件A i ,i =2,3,则P(A 3)=34×23×12=14, P(A 2)=34×23×⎝⎛⎭⎫1-12+34×⎝⎛⎭⎫1-23×12+⎝⎛⎭⎫1-34×23×12=1124,(3分) 所以该网民至少购买2种商品的概率为P(A 3)+P(A 2)=14+1124=1724. 答:该网民至少购买2种商品的概率为1724.(5分) (2) 随机变量η的可能取值为0,1,2,3,P(η=0)=⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-12=124, 又P(η=2)=P(A 2)=1124,P(η=3)=P(A 3)=14, 所以P(η=1)=1-124-1124-14=14. 所以随机变量η的概率分布为(8分)故数学期望E(η)=0×124+1×14+2×1124+3×14=2312.(10分) 23. 解:(1) 当k =4时,第4层标注数字依次为x 1,x 2,x 3,x 4,第3层标注数字依次为x 1+x 2,x 2+x 3,x 3+x 4,第2层标注数字依次为x 1+2x 2+x 3,x 2+2x 3+x 4,所以x 0=x 1+3x 2+3x 3+x 4.(2分)因为x 0为2的倍数,所以x 1+x 2+x 3+x 4是2的倍数,则x 1,x 2,x 3,x 4四个都取0或两个取0两个取1或四个都取1,所以共有1+C 24+1=8种标注方法.(4分)(2) 当k =11时,第11层标注数字依次为x 1,x 2,…,x 11,第10层标注数字依次为x 1+x 2,x 2+x 3,…,x 10+x 11,第9层标注数字依次为x 1+2x 2+x 3,x 2+2x 3+x 4,…,x 9+2x 10+x 11,以此类推,可得x 0=x 1+C 110x 2+C 210x 3+…+C 910x 10+x 11.(6分)因为C 210=C 810=45,C 310=C 710=120,C 410=C 610=210,C 510=252均为3的倍数,所以只要x 1+C 110x 2+C 910x 10+x 11是3的倍数,即只要x 1+x 2+x 10+x 11是3的倍数.(8分)所以x 1,x 2,x 10,x 11四个都取0或三个取1一个取0,而其余七个x 3,x 4,…,x 9可以取0或1,这样共有(1+C 34)×27=640种标注方法.(10分)。

【江苏省南京市】2017届高考数学三模考试数学(理)试卷-答案

【江苏省南京市】2017届高考数学三模考试数学(理)试卷-答案


2 3s﹣2 -3t﹣2

2 9
3s

1 3t1 3

0
.∵
2 3s﹣2 -3t﹣2
是整数,∴
a1
a1 2p
1.
于是 a1 -a1-2 p ,即 a1 - p .与 - p a1 p 矛盾.
故此时数列{an}中不存在三项 ar ,as ,at (r,s,t N*,r s t) 依次成等差数列.
江苏省南京市 2017 届高考数学三模考试数学(理)试卷
答案
1.{2} 2. 3 .
8 3. 5
4. 1.
5. 34 . 5
6.2.
7.{ 3 }. 2
8. 1 . 2
9.8 .
10. 1 . 3
11. 1 5 . 2
12. 3 .
13. -1 a 3 . 5
14.[27,30] . 二、解答题:本大题共 6 小题,共 90 分.解答应写出必要的文字说明或推理、验算过程.
(iii)当
a1 p
1时,有 a1
-p

p,a1

p

0.
于是 a2 | P-a1 | 2a1 p p-a1 2a1 p a1 2 p . a3 | p-a2 | 2a2 p | a1 p | 2a1 5 p -a1-p 2a1 5 p a1 4 p 此时数列{an} 中存在三项 a1,a2,a3 依次成等差数列.
若 a b ( 2 ,0) ,则 (2cos a 2sin a,sin 2a t)=( 2 ,0) ,
5
5
1 / 17
可得 cos a sin a= 1 ,平方可得 sin 2a cos 2a 2cos asin a= 1 ,

2017年江苏省高考数学模拟应用题选编(三)

2017年江苏省高考数学模拟应用题选编(三)

2017年江苏省高考数学模拟应用题大全(三)1、(江苏省连云港、徐州、宿迁2017届高三年级第三次模拟考试)某景区修建一栋复古建筑,其窗户设计如图所示.圆O 的圆心与矩形ABCD 对角线的交点重合,且圆与矩形上下两边相切(E 为上切点),与左右两边相交(F ,G 为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m ,且12AB AD ≥.设EOF θ∠=,透光区域的面积为S .(1)求S 关于θ的函数关系式,并求出定义域;(2)根据设计要求,透光区域与矩形窗面的面积比值 越大越好.当该比值最大时,求边AB 的长度.2、(江苏省南京、淮安市2017届高三第三次模拟考试数学试题)在一水域上建一个演艺广场.演艺广场由看台Ⅰ,看台Ⅱ,三角形水域ABC ,及矩形表演台BCDE 四个部分构成(如图).看台Ⅰ,看台Ⅱ是分别以AB ,AC 为直径的两个半圆形区域,且看台Ⅰ的面积是看台Ⅱ的面积的3倍;矩形表演台BCDE 中,CD =10米;三角形水域ABC 的面积为4003平方米.设∠BAC =θ.(1)求BC 的长(用含θ的式子表示);(2)若表演台每平方米的造价为0.3万元,求表演台的最低造价.3、(江苏省南京师范大学附属中学2017届高三考前模拟考试数学试题)园林管理处拟在公园某区域规划建设一半径为r 米,圆心角为θ(弧度)的扇形观景水池,其中O 为扇形AOB 的圆心,同时紧贴水池周边建设一圈理想的无宽度步道.要求总预算费用不超过24万元,水池造价为每平米400元,步道造价为每米1000元.(1)当r 和θ分别为多少时,可使得广场面积最大,并求出最大面积;A BCDFEO(第1题)G θ(第2题图)(2)若要求步道长为105米,则可设计出的水池最大面积是多少.4、(江苏省南京市、盐城市2017届高三年级第二次模拟考试)在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD ,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为x 厘米,矩形纸板的两边AB ,BC 的长分别为a 厘米和b 厘米,其中a ≥b .(1)当a =90时,求纸盒侧面积的最大值;(2)试确定a ,b ,x 的值,使得纸盒的体积最大,并求出最大值.5、(江苏省南通、扬州、泰州2017届高三第三次调研考试数学试题)如图,半圆AOB 是某爱国主义教育基地一景点的平面示意图,半径OA 的长为1百米.为了保护景点,基地管理部门从道路l 上选取一点C ,修建参观线路C -D -E -F ,且CD ,DE ,EF 均与半圆相切,四边形CDEF 是等腰梯形.设DE =t 百米,记修建每1百米参 观线路的费用为()f t 万元,经测算150()118 2.3t f t t t ⎧<⎪=⎨⎪-<<⎩,,≤,(1)用t 表示线段EF 的长; (2)求修建该参观线路的最低费用.(第4题图)DCB AO(第5题)6、(江苏省南通、扬州、泰州、徐州、淮安、宿迁2017届高三二模数学试题)一缉私艇巡航至距领海边界线l (一条南北方向的直线)3.8海里的A 处,发现在其北偏东30°方向相距4海里的B 处有一走私船正欲逃跑,缉私艇立即追击.已知缉私艇的最 大航速是走私船最大航速的3倍.假设缉私艇和走私船均按直线方向以最大航速航行. (1)若走私船沿正东方向逃离,试确定缉私艇的追击方向,使得用最短时间在领海内拦截 成功;(参考数据:sin17°≈5.7446)(2)问:无论走私船沿何方向逃跑,缉私艇是否总能在领海内成功拦截?并说明理由.7、(江苏省如皋市2017届高三下学期语数英学科联考(二)数学试题)如图所示,在一半径等于1千米的圆弧及直线段道路AB 围成的区域内计划建一条商业街,其起点和终点均在道路AB 上,街道由两条平行于对称轴l 且关于l 对称的两线段EF 、CD ,及夹在两线段EF 、CD 间的弧组成.若商业街在两线段EF 、CD 上收益为每千米2a 元,在两线段EF 、CD 间的弧上收益为每千米a 元.已知2AOB π∠=,设2EOD θ∠=,(1) 将商业街的总收益()f θ表示为θ的函数; (2) 求商业街的总收益的最大值.北(第6题)8、(江苏省苏州大学2017届高考数学考前指导卷 1)如图,某地区有一块(百米),植物园西侧有一块荒地,现计划利用该荒地扩大植物园面积,使得新的植物园为.(1(2,若计划9、舞,试求这块圆形广场的最大面积.(10、(江苏省泰州市2017届高三考前参考题数学试题)甲、乙分别位于扇形居民区弧⌒AB合)处建造一个大型快件集散中心,经过前期的调查,发现可以分别用抗拒系数⌒AB的中点时,(1(211、(上海市崇明区2017届高三第二次(4月)模拟考试数学试卷)某校兴趣小组在如图所示的矩形区域ABCD内举行机器人拦截挑战赛,在E器人甲,同时在A处按某方向释放机器人乙,设机器人乙在Q处成功拦截机器人甲.若点Q在矩形区域ABCD内(包含边界),则挑战成功,否则挑战失败.E为A B中点,机器人乙的速度是机器人甲的速度的2倍,比(1AD足够长,则如何设置机器人乙的释放角度才能挑战成功?(结(2)如何设计矩形区域ABCD的宽AD的长度,甲?12、(江苏省学大教育2017届高考数学密2)13、(江苏省学大教育2017届高考数学密1)某单位为端正工作人员仪容,在单位设置一面仪容镜(仪容镜为平面镜),如图,仪容2米,(1(2答案1、(12分分,所以定义域为10分12分所以,所以,故有最大,此时(2)1m .………16分2、(1)因为看台Ⅰ的面积是看台Ⅱ的面积的3倍,所以AB =3AC .在△ABC 中,S △ABC =12AB •AC •sin θ=4003,所以AC 2=800sin θ . …………………… 3分由余弦定理可得BC 2=AB 2+AC 2-2AB •AC •cos θ,=4AC 2-23AC 2 cos θ.=(4-23cos θ) 800sin θ ,即BC =(4-23cos θ)•800sin θ =402-3cos θsin θ.所以 BC =402-3cos θsin θ ,θ∈(0,π). …………………… 7分(2)设表演台的总造价为W 万元.因为CD =10m ,表演台每平方米的造价为0.3万元,所以W =3BC =1202-3cos θsin θ ,θ∈(0,π). …………………… 9分记f (θ)=2-3cos θsin θ,θ∈(0,π).则f ′(θ)=3-2cos θsin 2θ. …………………… 11分由f ′(θ)=0,解得θ=π6.当θ∈(0,π6)时,f ′(θ)<0;当θ∈(π6,π)时,f ′(θ)>0.故f (θ)在(0,π6)上单调递减,在(π6,π)上单调递增,从而当θ=π6 时,f (θ)取得最小值,最小值为f (π6)=1.所以W min =120(万元).答:表演台的最低造价为120万元. …………………… 14分34、解:(1)因为矩形纸板ABCD 的面积为3600,故当a =90时,b =40,从而包装盒子的侧面积S =2×x (90-2x )+2×x (40-2x )=-8x 2+260x ,x ∈(0,20) . ………………… 3分因为S =-8x 2+260x =-8(x -654)2+42252,故当x =654 时,侧面积最大,最大值为 42252 平方厘米.答:当x =654 时,纸盒的侧面积的最大值为42252平方厘米. ………………… 6分(2)包装盒子的体积V =(a -2x )(b -2x ) x =x [ab -2(a +b )x +4x 2],x ∈(0,b 2),b ≤60.…………… 8分V =x [ab -2(a +b )x +4x 2]≤x (ab -4abx +4x 2)=x (3600-240x +4x 2)=4x 3-240x 2+3600x . ………………… 10分当且仅当a =b =60时等号成立.设f (x )=4x 3-240x 2+3600x ,x ∈(0,30).则f ′ (x )=12(x -10)(x -30).于是当0<x <10时,f ′ (x )>0,所以f (x )在(0,10)上单调递增;当10<x <30时,f ′ (x )<0,所以f (x )在(10,30)上单调递减.因此当x =10时,f (x )有最大值f (10)=16000, ……………… 12分 此时a =b =60,x =10.答:当a =b =60,x =10时纸盒的体积最大,最大值为16000立方厘米.……………… 14分5、【解】设DE 与半圆相切于点QDQ=QE,以OF所在直线为x轴,OQ所在直线为y轴,建立如图所示的平面直角坐标系xOy.(1)方法一:由题意得,点E……1分设直线EF,因为直线EF与半圆相切,所以圆心O到直线EF (3)分F……5分即.……7分方法二:切圆所以Rt△EHF≌Rt△OGF,……3分……5分所以.……7分(2①所以当时,取最小值为……11分②……13分且当时,;当时,调递增.由①②知,取最小值为……15分答:(1(2)修建该参观线路的最低费用为万元.……16分6、解:(1,……2分.……5分又B到边界线l……8分(2AB C图甲走私……12分1.55所以缉私艇能在领海内截住走私船.……14分答:(1(2)缉私艇总能在领海内成功拦截走私船.……16分18.7、1)①3分②6分由①②8分(2)①列表:11分所以在时单调递减所以…………………14分10分的面积最大值为分⌒AB(2由(119.11、解:(1分分.....................................................6分(2)以所在直线为轴,中垂线为分分6为半径的上半圆在矩形区域人乙的释放角度使机器人乙在矩形区域ABCD内成功拦截机器人甲...........................................14分12、13由正弦定理,)2,21(tan 2321sin )32sin(sin sin ∈+=-==C C C C B AB AC π即的取值范围为AB AC 的取值范围为(2,21)(2)易知AD A A 2='、又由三角形ABC 的面积A AC AB AD BC S sin 2121⋅=⋅=,可得AC AB AD ⋅=43由余弦定理,AC AB AC AB AC AB A AC AB AC AB BC ⋅=⋅-⋅≥⋅⋅-+==2cos 24222, 解得4≤⋅AC AB ,当且仅当2==AC AB 时。

【江苏省南京市】2017届高考数学三模考试数学(理)试卷-答案

【江苏省南京市】2017届高考数学三模考试数学(理)试卷-答案

.即
C
( 1
8k2 4k2
2
,1 1
4k22 4k22
)
.
y k1 (x 2)
直线
AD
的方程为:
y

k1
(
x-2)
,联立

x
2
4

y2
1
,化为: (1 4k12 )x2 16k12 x 16k12 4 0 ,
∴ 2xD

16k12 4 1 4k12
由 a 为锐角,可得 cos (0,1) ,即有 tan sin a 1 , cos a 4
1

tan
2

2 tan a 1 tan2 a

2 1 1

8
, tan(2

π)
tan
2a

1

1

8 15
15
4 1 tan 2a 1 8
23 . 7
16
15
17.解:(1)∵看台Ⅰ的面积是看台Ⅱ的面积的 3 倍,
sin
∴ BC 40 2 3 cos . sin
(2)设表演台的造价为 y 万元,则 y 120 2 3 cos ,
sin
设 f ( ) 2 3 cos (0<<π) ,则 f ( )
sin
3 2cos sin2
∴当 0 π 时, f ( ) 0 ,当 π π 时, f ( ) 0 ,
(iii)当
a1 p
1时,有 a1
-p

p,a1

p

0.
于是 a2 | P-a1 | 2a1 p p-a1 2a1 p a1 2 p . a3 | p-a2 | 2a2 p | a1 p | 2a1 5 p -a1-p 2a1 5 p a1 4 p 此时数列{an} 中存在三项 a1,a2,a3 依次成等差数列.

2017年江苏省高考数学三模试卷

2017年江苏省高考数学三模试卷

2017年江苏省高考数学三模试卷一、填空题(本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上).1.已知集合A={﹣1,0,1,2},B={1,2,3},则集合A∪B中所有元素之和是.2.已知复数z满足(1+2i)z=i,其中i为虚数单位,则复数z的虚部为.3.已知点M(﹣3,﹣1),若函数y=tan x(x∈(﹣2,2))的图象与直线y=1交于点A,则|MA|=.4.某人5次上班途中所花的时间(单位:分钟)分别为12,8,10,11,9,则这组数据的标准差为.5.执行如图所示的算法流程图,则输出的结果S的值为.6.在区间[﹣1,2]内随机取一个实数a,则关于x的方程x2﹣4ax+5a2+a=0有解的概率是.7.如图,在平面四边形ABCD中,若AC=3,BD=2,则=.8.如图,在直三棱柱ABC﹣A1B1C1中,若四边形AA1C1C是边长为4的正方形,且AB=3,BC=5,M是AA1的中点,则三棱锥A1﹣MBC1的体积为.9.已知函数f(x)=x|x﹣2|,则不等式f(2﹣ln(x+1))>f(3)的解集为.10.曲线f(x)=xlnx在点P(1,0)处的切线l与两坐标轴围成的三角形的面积是.11.设向量=(4sin x,1),=(cos x,﹣1)(ω>0),若函数f(x)=•+1在区间[﹣,]上单调递增,则实数ω的取值范围为.12.设函数f(x)=x+cosx,x∈(0,1),则满足不等式f(t2)>f(2t﹣1)的实数t的取值范围是.13.已知双曲线C:﹣=1(a>0,b>0)的右焦点为F,抛物线E:x2=4y的焦点B是双曲线虚轴上的一个顶点,若线段BF与双曲线C的右支交于点A,且=3,则双曲线C的离心率为.14.已知a,b,c,d∈R且满足==1,则(a﹣c)2+(b﹣d)2的最小值为.二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.如图,在△ABC中,已知点D在边AB上,AD=3DB,cosA=,cos∠ACB=,BC=13.(1)求cosB的值;(2)求CD的长.16.如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F.(1)求证:AB∥EF;(2)若平面PAD⊥平面ABCD,求证:AE⊥EF.17.如图,在平面直角坐标系xOy中,已知椭圆C: +=1的左、右顶点分别为A,B,过右焦点F的直线l与椭圆C交于P,Q两点(点P在x轴上方).(1)若QF=2FP,求直线l的方程;(2)设直线AP,BQ的斜率分别为k1,k2,是否存在常数λ,使得k1=λk2?若存在,求出λ的值;若不存在,请说明理由.18.某景区修建一栋复古建筑,其窗户设计如图所示.圆O的圆心与矩形ABCD 对角线的交点重合,且圆与矩形上下两边相切(E为上切点),与左右两边相交(F,G为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m且≥,设∠EOF=θ,透光区域的面积为S.(1)求S 关于θ的函数关系式,并求出定义域;(2)根据设计要求,透光区域与矩形窗面的面积比值越大越好.当该比值最大时,求边AB 的长度.19.已知两个无穷数列{a n }和{b n }的前n 项和分别为S n ,T n ,a 1=1,S 2=4,对任意的n ∈N *,都有3S n +1=2S n +S n +2+a n .(1)求数列{a n }的通项公式;(2)若{b n }为等差数列,对任意的n ∈N *,都有S n >T n .证明:a n >b n ;(3)若{b n }为等比数列,b 1=a 1,b 2=a 2,求满足=a k (k ∈N *)的n 值.20.已知函数f (x )=+xlnx (m >0),g (x )=lnx ﹣2.(1)当m=1时,求函数f (x )的单调区间;(2)设函数h (x )=f (x )﹣xg (x )﹣,x >0.若函数y=h (h (x ))的最小值是,求m 的值; (3)若函数f (x ),g (x )的定义域都是[1,e ],对于函数f (x )的图象上的任意一点A ,在函数g (x )的图象上都存在一点B ,使得OA ⊥OB ,其中e 是自然对数的底数,O 为坐标原点,求m 的取值范围.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答,若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.选修4-1:几何证明选讲21.如图,圆O 的弦AB ,MN 交于点C ,且A 为弧MN 的中点,点D 在弧BM 上,若∠ACN=3∠ADB ,求∠ADB 的度数.B.选修4-2:矩阵与变换22.已知矩阵A=,若A=,求矩阵A的特征值.C.选修4-4:坐标系与参数方程23.在极坐标系中,已知点A(2,),点B在直线l:ρcosθ+ρsinθ=0(0≤θ≤2π)上,当线段AB最短时,求点B的极坐标.D.选修4-5:不等式选讲24.已知a,b,c为正实数,且a3+b3+c3=a2b2c2,求证:a+b+c≥3.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]25.在平面直角坐标系xOy中,点F(1,0),直线x=﹣1与动直线y=n的交点为M,线段MF的中垂线与动直线y=n的交点为P.(Ⅰ)求点P的轨迹Г的方程;(Ⅱ)过动点M作曲线Г的两条切线,切点分别为A,B,求证:∠AMB的大小为定值.[选修4-5:不等式选讲]26.已知集合U={1,2,…,n}(n∈N*,n≥2),对于集合U的两个非空子集A,B,若A∩B=∅,则称(A,B)为集合U的一组“互斥子集”.记集合U的所有“互斥子集”的组数为f(n)(视(A,B)与(B,A)为同一组“互斥子集”).(1)写出f(2),f(3),f(4)的值;(2)求f(n).2017年江苏省高考数学三模试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上).1.已知集合A={﹣1,0,1,2},B={1,2,3},则集合A∪B中所有元素之和是5.【考点】1D:并集及其运算.【分析】利用并集定义先求出A∪B,由此能求出集合A∪B中所有元素之和.【解答】解:∵集合A={﹣1,0,1,2},B={1,2,3},∴A∪B={﹣1,0,1,1,2,3},∴集合A∪B中所有元素之和是:﹣1+0+1+2+3=5.故答案为:5.2.已知复数z满足(1+2i)z=i,其中i为虚数单位,则复数z的虚部为.【考点】A5:复数代数形式的乘除运算.【分析】利用复数的除法运算化为a+bi(a,b∈R)的形式,则答案可求【解答】解:∵(1+2i)z=i,∴z===+,∴复数z的虚部为.故答案为3.已知点M(﹣3,﹣1),若函数y=tan x(x∈(﹣2,2))的图象与直线y=1交于点A,则|MA|=2.【考点】HC:正切函数的图象.【分析】解方程求出函数y与直线y=1的交点A的横坐标,再求线段的长|MA|.【解答】解:令y=tan x=1,解得x=1+4k,k∈Z;又x∈(﹣2,2),∴x=1,∴函数y与直线y=1的交点为A(1,1);又M(﹣3,﹣1),∴|MA|==2.故答案为:2.4.某人5次上班途中所花的时间(单位:分钟)分别为12,8,10,11,9,则这组数据的标准差为.【考点】BC:极差、方差与标准差.【分析】利用定义求这组数据的平均数、方差和标准差即可.【解答】解:数据12,8,10,11,9的平均数为:=×(12+8+10+11+9)=10,方差为:s2=×[(12﹣10)2+(8﹣10)2+(10﹣10)2+(11﹣10)2+(9﹣10)2]=2;∴这组数据的标准差为s=.故答案为:.5.执行如图所示的算法流程图,则输出的结果S的值为﹣1.【考点】EF:程序框图.【分析】模拟执行程序,依次写出每次循环得到的S,n的值,当S=﹣1,n=2016时不满足条件n<2016,退出循环,输出S的值为﹣1,即可得解.【解答】解:输入s=0,n=1<2016,s=0,n=2<2016,s=﹣1,n=3<2016,s=﹣1,n=4<2016,s=0,n=5<2016,…,由2016=503×4+3得,输出s=﹣1,故答案为:﹣1.6.在区间[﹣1,2]内随机取一个实数a,则关于x的方程x2﹣4ax+5a2+a=0有解的概率是.【考点】CF:几何概型.【分析】根据几何概型计算公式,用符合题意的基本事件对应的区间长度除以所有基本事件对应的区间长度,即可得到所求的概率.【解答】解:∵关于x的方程x2﹣4ax+5a2+a=0有解,∴16a2﹣20a2﹣4a≥0,∴﹣1≤a≤0时方程有实根,∵在区间[﹣1,2]上任取一实数a,∴所求的概率为P==.故答案为:7.如图,在平面四边形ABCD中,若AC=3,BD=2,则= 5.【考点】9V:向量在几何中的应用.【分析】先利用向量的加法把转化为,再代入原题整理后即可求得结论.【解答】解:因为=(+)+(+)=+()=.∴()•()=()•()=﹣=32﹣22=5.故答案为58.如图,在直三棱柱ABC﹣A1B1C1中,若四边形AA1C1C是边长为4的正方形,且AB=3,BC=5,M是AA1的中点,则三棱锥A1﹣MBC1的体积为4.【考点】LF:棱柱、棱锥、棱台的体积.【分析】推导出A1C1⊥平面A1MB,从而三棱锥A1﹣MBC1的体积=,由此能求出结果.【解答】解:∵在直三棱柱ABC﹣A1B1C1中,若四边形AA1C1C是边长为4的正方形,且AB=3,BC=5,∴A1C1⊥AA1,AC2+AB2=BC2,∴A1C1⊥A1B1,∵AA 1∩A 1B 1=A 1,∴A 1C 1⊥平面A 1MB ,∵M 是AA 1的中点,∴===3,∴三棱锥A 1﹣MBC 1的体积:====4.故答案为:4.9.已知函数f (x )=x |x ﹣2|,则不等式f (2﹣ln (x +1))>f (3)的解集为 {x |﹣1<x <﹣1} .【考点】7E :其他不等式的解法.【分析】由题意,f (x )=,在(2,+∞)单调递增,x <2,f(x )max =1<f (3)=3.f (2﹣ln (x +1))>f (3)化为2﹣ln (x +1)>3,即可解不等式.【解答】解:由题意,f (x )=,在(2,+∞)单调递增,x <2,f (x )max =1<f (3)=3.∵f (2﹣ln (x +1))>f (3),∴2﹣ln (x +1)>3,∴ln (x +1)<﹣1,∴0<x +1<,∴﹣1<x <﹣1,∴不等式f (2﹣ln (x +1))>f (3)的解集为{x |﹣1<x <﹣1},故答案为{x |﹣1<x <﹣1}.10.曲线f (x )=xlnx 在点P (1,0)处的切线l 与两坐标轴围成的三角形的面积是.【考点】6H :利用导数研究曲线上某点切线方程.【分析】求出函数的导数,利用导数的几何意义求出切线的斜率,由点斜式方程可得切线方程,计算切线与坐标轴的交点坐标,即可得出三角形面积.【解答】解:f′(x)=lnx+x•=lnx+1,∴在点P(1,0)处的切线斜率为k=1,∴在点P(1,0)处的切线l为y﹣0=x﹣1,即y=x﹣1,∵y=x﹣1与坐标轴交于(0,﹣1),(1,0).∴切线y=x﹣1与坐标轴围成的三角形面积为S=×1×1=.故答案为:.11.设向量=(4sin x,1),=(cos x,﹣1)(ω>0),若函数f(x)=•+1在区间[﹣,]上单调递增,则实数ω的取值范围为(0,2] .【考点】9R:平面向量数量积的运算;GL:三角函数中的恒等变换应用.【分析】化简f(x)=sinωx,根据正弦函数的单调性得出f(x)的单调增区间,从而列出不等式解出ω的范围.【解答】解:f(x)=+1=2sin xcos x=sinωx,令﹣+2kπ≤ωx≤+2kπ,解得﹣+≤x≤+,k∈Z,∵ω>0,∴f(x)的一个单调增区间为[﹣,],∴,解得0<ω≤2.故答案为(0,2].12.设函数f(x)=x+cosx,x∈(0,1),则满足不等式f(t2)>f(2t﹣1)的实数t的取值范围是<t<1.【考点】3N:奇偶性与单调性的综合.【分析】求导,求导函数的单调性,将不等式转化为具体不等式,即可得出结论.【解答】解:∵f(x)=x+cosx,x∈(0,1),∴f′(x)=1﹣sinx>0,函数单调递增,∵f(t2)>f(2t﹣1),∴1>t2>2t﹣1>0,∴<t<1,故答案为<t<1.13.已知双曲线C:﹣=1(a>0,b>0)的右焦点为F,抛物线E:x2=4y 的焦点B是双曲线虚轴上的一个顶点,若线段BF与双曲线C的右支交于点A,且=3,则双曲线C的离心率为.【考点】KC:双曲线的简单性质.【分析】由题意可知b=1,求出A点坐标,代入双曲线方程化简即可得出a,c 的关系,从而得出离心率的值.【解答】解:F(c,0),B(0,1),∴b=1.设A(m,n),则=(m,n﹣1),=(c﹣m,﹣n),∵=3,∴,解得,即A(,),∵A在双曲线﹣y2=1的右支上,∴﹣=1,∴=.∴e==.故答案为:.14.已知a,b,c,d∈R且满足==1,则(a﹣c)2+(b﹣d)2的最小值为ln.【考点】4H:对数的运算性质.【分析】根据题意可将(a,b),(c,d)分别看成函数=x+3lnx与y=2x+3上任意一点,然后利用两点的距离公式,结合几何意义进行求解.【解答】解:因为==1,所以可将P:(a,b),Q:(c,d)分别看成函数y=x+3lnx与y=2x+3上任意一点,问题转化为曲线上的动点P与直线上的动点Q之间的最小值的平方问题,设M(t,t+3lnt)是曲线y=x+3lnx的切点,因为y′=1+,故点M处的切斜的斜率k=1+,由题意可得1+=2,解得t=3,也即当切线与已知直线y=2x+3平行时,此时切点M(3,3+3ln3)到已知直线y=2x+3的距离最近,最近距离d==,也即(a﹣c)2+(b﹣d)2==ln,故答案为:ln二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.如图,在△ABC中,已知点D在边AB上,AD=3DB,cosA=,cos∠ACB=,BC=13.(1)求cosB的值;(2)求CD的长.【考点】HT:三角形中的几何计算.【分析】(1)在△ABC中,求出sinA==.,sin∠ACB=.可得cosB=﹣cos(A+∠ACB)=sinAsin∠ACB﹣cosAcosB;(2)在△ABC中,由正弦定理得,AB=sin∠ACB.在△BCD中,由余弦定理得,CD=.【解答】解:(1)在△ABC中,cosA=,A∈(0,π),所以sinA==.同理可得,sin∠ACB=.所以cosB=cos[π﹣(A+∠ACB)]=﹣cos(A+∠ACB)=sinAsin∠ACB﹣cosAcos∠ACB=;(2)在△ABC中,由正弦定理得,AB=sin∠ACB=.又AD=3DB,所以DB=.在△BCD中,由余弦定理得,CD===9.16.如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F.(1)求证:AB∥EF;(2)若平面PAD⊥平面ABCD,求证:AE⊥EF.【考点】LZ:平面与平面垂直的性质.【分析】(1)推导出AB∥CD,从而AB∥平面PDC,由此能证明AB∥EF.(2)推导出AB⊥AD,从而AB⊥平面PAD,进而AB⊥AF,由AB∥EF,能证明AF⊥EF.【解答】证明:(1)因为ABCD是矩形,所以AB∥CD.又因为AB⊄平面PDC,CD⊂平面PDC,所以AB∥平面PDC.又因为AB⊂平面ABEF,平面ABEF∩平面PDC=EF,所以AB∥EF.(2)因为ABCD是矩形,所以AB⊥AD.又因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,AB⊂平面ABCD,所以AB⊥平面PAD.又AF⊂平面PAD,所以AB⊥AF.又由(1)知AB∥EF,所以AF⊥EF.17.如图,在平面直角坐标系xOy中,已知椭圆C: +=1的左、右顶点分别为A,B,过右焦点F的直线l与椭圆C交于P,Q两点(点P在x轴上方).(1)若QF=2FP,求直线l的方程;(2)设直线AP,BQ的斜率分别为k1,k2,是否存在常数λ,使得k1=λk2?若存在,求出λ的值;若不存在,请说明理由.【考点】KL:直线与椭圆的位置关系.【分析】(1)由椭圆方程求出a,b,c,可得F的坐标,设P(x1,y1),Q(x2,y2),直线l的方程为x=my+1,代入椭圆方程,求得P,Q的纵坐标,再由向量共线的坐标表示,可得m的方程,解方程可得m,进而得到直线l的方程;(2)运用韦达定理可得y1+y2,y1y2,my1y2,由A(﹣2,0),B(2,0),P(x1,y1),Q(x2,y2),x1=my1+1,x2=my2+1,运用直线的斜率公式,化简整理计算可得常数λ的值,即可判断存在.【解答】解:(1)因为a2=4,b2=3,所以c==1,所以F的坐标为(1,0),设P(x1,y1),Q(x2,y2),直线l的方程为x=my+1,代入椭圆方程+=1,得(4+3m2)y2+6my﹣9=0,则y1=,y2=.若QF=2FP,即=2,则+2•=0,解得m=,故直线l的方程为x﹣2y﹣=0.(2)由(1)知,y1+y2=﹣,y1y2=﹣,所以my1y2=﹣=(y1+y2),由A(﹣2,0),B(2,0),P(x1,y1),Q(x2,y2),x1=my1+1,x2=my2+1,所以=•===,故存在常数λ=,使得k1=k2.18.某景区修建一栋复古建筑,其窗户设计如图所示.圆O的圆心与矩形ABCD 对角线的交点重合,且圆与矩形上下两边相切(E为上切点),与左右两边相交(F,G为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m且≥,设∠EOF=θ,透光区域的面积为S.(1)求S关于θ的函数关系式,并求出定义域;(2)根据设计要求,透光区域与矩形窗面的面积比值越大越好.当该比值最大时,求边AB的长度.【考点】HN:在实际问题中建立三角函数模型.【分析】(1)过点O作OH⊥FG于H,写出透光面积S关于θ的解析式S,并求出θ的取值范围;(2)计算透光区域与矩形窗面的面积比值,构造函数,利用导数判断函数的单调性,求出比值最大时对应边AB的长度.【解答】解:(1)过点O作OH⊥FG于H,∴∠OFH=∠EOF=θ;又OH=OFsinθ=sinθ, FH=OFco sθ=cosθ,∴S=4S △OFH +4S 阴影OEF =2sinθcosθ+4×θ=sin2θ+2θ;∵≥,∴sinθ≥,∴θ∈[,);∴S 关于θ的函数关系式为S=sin2θ+2θ,θ∈[,);(2)由S 矩形=AD•AB=2×2sinθ=4sinθ,∴=+,设f (θ)=+,θ∈[,),则f′(θ)=﹣sinθ+===;∵≤θ<,∴sin2θ≤,∴sin2θ﹣θ<0, ∴f′(θ)<0,∴f (θ)在θ∈[,)上是单调减函数;∴当θ=时f (θ)取得最大值为+,此时AB=2sinθ=1(m );∴S 关于θ的函数为S=sin2θ+2θ,θ∈[,);所求AB 的长度为1m .19.已知两个无穷数列{a n }和{b n }的前n 项和分别为S n ,T n ,a 1=1,S 2=4,对任意的n ∈N *,都有3S n +1=2S n +S n +2+a n . (1)求数列{a n }的通项公式;(2)若{b n }为等差数列,对任意的n ∈N *,都有S n >T n .证明:a n >b n ;(3)若{b n }为等比数列,b 1=a 1,b 2=a 2,求满足=a k (k ∈N *)的n 值.【考点】8E :数列的求和;8H :数列递推式.【分析】(1)运用数列的递推式和等差数列的定义和通项公式,即可得到所求;(2)方法一、设数列{b n }的公差为d ,求出S n ,T n .由恒成立思想可得b 1<1,求出a n ﹣b n ,判断符号即可得证;方法二、运用反证法证明,设{b n }的公差为d ,假设存在自然数n 0≥2,使得a≤b,推理可得d >2,作差T n ﹣S n ,推出大于0,即可得证;(3)运用等差数列和等比数列的求和公式,求得S n ,T n ,化简,推出小于3,结合等差数列的通项公式和数列的单调性,即可得到所求值. 【解答】解:(1)由3S n +1=2S n +S n +2+a n ,得2(S n +1﹣S n )=S n +2﹣S n +1+a n , 即2a n +1=a n +2+a n ,所以a n +2﹣a n +1=a n +1﹣a n . 由a 1=1,S 2=4,可知a 2=3.所以数列{a n }是以1为首项,2为公差的等差数列. 故{a n }的通项公式为a n =1+2(n ﹣1)=2n ﹣1,n ∈N*. (2)证法一:设数列{b n }的公差为d ,则T n =nb 1+n (n ﹣1)d ,由(1)知,S n =n (1+2n ﹣1)=n 2.因为S n >T n ,所以n 2>nb 1+n (n ﹣1)d , 即(2﹣d )n +d ﹣2b 1>0恒成立,所以,即,又由S 1>T 1,得b 1<1,所以a n ﹣b n =2n ﹣1﹣b 1﹣(n ﹣1)d=(2﹣d )n +d ﹣1﹣b 1≥2﹣d +d ﹣1﹣b 1=1﹣b 1>0.所以a n >b n ,得证.证法二:设{b n }的公差为d ,假设存在自然数n 0≥2,使得a ≤b , 则a 1+2(n 0﹣1)≤b 1+(n 0﹣1)d ,即a 1﹣b 1≤(n 0﹣1)(d ﹣2),因为a 1>b 1,所以d >2.所以T n ﹣S n =nb 1+n (n ﹣1)d ﹣n 2=(d ﹣1)n 2+(b 1﹣d )n ,因为d ﹣1>0,所以存在N ∈N*,当n >N 时,T n ﹣S n >0恒成立. 这与“对任意的n ∈N *,都有S n >T n ”矛盾!所以a n >b n ,得证.(3)由(1)知,S n =n 2.因为{b n }为等比数列,且b 1=1,b 2=3,所以{b n }是以1为首项,3为公比的等比数列.所以b n =3n ﹣1,T n =(3n ﹣1).则===3﹣,因为n ∈N*,所以6n 2﹣2n +2>0,所以<3.而a k =2k ﹣1,所以=1,即3n ﹣1﹣n 2+n ﹣1=0(*).当n=1,2时,(*)式成立;当n ≥2时,设f (n )=3n ﹣1﹣n 2+n ﹣1,则f (n +1)﹣f (n )=3n ﹣(n +1)2+n ﹣(3n ﹣1﹣n 2+n ﹣1)=2(3n ﹣1﹣n )>0, 所以0=f (2)<f (3)<…<f (n )<…,故满足条件的n 的值为1和2.20.已知函数f(x)=+xlnx(m>0),g(x)=lnx﹣2.(1)当m=1时,求函数f(x)的单调区间;(2)设函数h(x)=f(x)﹣xg(x)﹣,x>0.若函数y=h(h(x))的最小值是,求m的值;(3)若函数f(x),g(x)的定义域都是[1,e],对于函数f(x)的图象上的任意一点A,在函数g(x)的图象上都存在一点B,使得OA⊥OB,其中e是自然对数的底数,O为坐标原点,求m的取值范围.【考点】6E:利用导数求闭区间上函数的最值;6B:利用导数研究函数的单调性.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)求出h(x)的导数,解关于导函数的不等式,求出函数的单调区间,求出h(x)的最小值,从而求出m的值即可;(3)根据OA和OB的关系,问题转化为﹣x2lnx≤m≤x2(e﹣lnx)在[1,e]上恒成立,设p(x)=﹣x2lnx,根据函数的单调性求出m≥p(1)=,设q (x)=x2(e﹣lnx),根据函数的单调性求出m≤q(1),从而求出m的范围即可.【解答】解:(1)当m=1时,f(x)=+xlnx,f′(x)=+lnx+1,因为f′(x)在(0,+∞)上单调增,且f′(1)=0,所以当x>1时,f′(x)>0;当0<x<1时,f′(x)<0,所以函数f(x)的单调增区间是(1,+∞).(2)h(x)=+2x﹣,则h′(x)=,令h′(x)=0,得x=,当0<x<时,h′(x)<0,函数h(x)在(0,)上单调减;当x>时,h′(x)>0,函数h(x)在(,+∞)上单调增.所以[h(x)]min=h()=2m﹣,①当(2m﹣1)≥,即m≥时,函数y=h(h(x))的最小值h(2m﹣)= [+2(2﹣1)﹣1]=,即17m﹣26+9=0,解得=1或=(舍),所以m=1;②当0<(2﹣1)<,即<m<时,函数y=h(h(x))的最小值h()=(2﹣1)=,解得=(舍),综上所述,m的值为1.(3)由题意知,K OA=+lnx,K OB=,考虑函数y=,因为y′=在[1,e]上恒成立,所以函数y=在[1,e]上单调增,故K OB∈[﹣2,﹣],所以K OA∈[,e],即≤+lnx≤e在[1,e]上恒成立,即﹣x2lnx≤m≤x2(e﹣lnx)在[1,e]上恒成立,设p(x)=﹣x2lnx,则p′(x)=﹣2lnx≤0在[1,e]上恒成立,所以p(x)在[1,e]上单调减,所以m≥p(1)=,设q(x)=x2(e﹣lnx),则q′(x)=x(2e﹣1﹣2lnx)≥x(2e﹣1﹣2lne)>0在[1,e]上恒成立,所以q(x)在[1,e]上单调增,所以m≤q(1)=e,综上所述,m的取值范围为[,e].【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答,若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.选修4-1:几何证明选讲21.如图,圆O的弦AB,MN交于点C,且A为弧MN的中点,点D在弧BM 上,若∠ACN=3∠ADB,求∠ADB的度数.【考点】NB:弦切角.【分析】连结AN,DN.利用圆周角定理,结合∠ACN=3∠ADB,求∠ADB的度数.【解答】解:连结AN,DN.因为A为弧MN的中点,所以∠ANM=∠ADN.而∠NAB=∠NDB,所以∠ANM+∠NAB=∠ADN+∠NDB,即∠BCN=∠ADB.又因为∠ACN=3∠ADB,所以∠ACN+∠BCN=3∠ADB+∠ADB=180°,故∠ADB=45°.B.选修4-2:矩阵与变换22.已知矩阵A=,若A=,求矩阵A的特征值.【考点】OV:特征值与特征向量的计算.【分析】利用矩阵的乘法,求出a,d,利用矩阵A的特征多项式为0,求出矩阵A的特征值.【解答】解:因为A==,所以,解得a=2,d=1.所以矩阵A的特征多项式为f(λ)==(λ﹣2)(λ﹣1)﹣6=(λ﹣4)(λ+1),令f(λ)=0,解得矩阵A的特征值为λ=4或﹣1.C.选修4-4:坐标系与参数方程23.在极坐标系中,已知点A(2,),点B在直线l:ρcosθ+ρsinθ=0(0≤θ≤2π)上,当线段AB最短时,求点B的极坐标.【考点】Q4:简单曲线的极坐标方程.【分析】点A(2,)的直角坐标为(0,2),直线l的直角坐标方程为x+y=0.AB 最短时,点B为直线x﹣y+2=0与直线l的交点,求出交点,进而得出.【解答】解:以极点为原点,极轴为x轴正半轴,建立平面直角坐标系,则点A(2,)的直角坐标为(0,2),直线l的直角坐标方程为x+y=0.AB最短时,点B为直线x﹣y+2=0与直线l的交点,联立,得,所以点B的直角坐标为(﹣1,1).所以点B的极坐标为.D.选修4-5:不等式选讲24.已知a,b,c为正实数,且a3+b3+c3=a2b2c2,求证:a+b+c≥3.【考点】R6:不等式的证明.【分析】利用基本不等式的性质进行证明.【解答】证明:∵a3+b3+c3=a2b2c2,a3+b3+c3≥3abc,∴a2b2c2≥3abc,∴abc≥3,∴a+b+c≥3≥3.当且仅当a=b=c=时,取“=”.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]25.在平面直角坐标系xOy中,点F(1,0),直线x=﹣1与动直线y=n的交点为M,线段MF的中垂线与动直线y=n的交点为P.(Ⅰ)求点P的轨迹Г的方程;(Ⅱ)过动点M作曲线Г的两条切线,切点分别为A,B,求证:∠AMB的大小为定值.【考点】K8:抛物线的简单性质.【分析】(Ⅰ)连接PF,运用中垂线的性质可得|MP|=|PF|,再由抛物线的定义可得点P的轨迹方程;(Ⅱ)求得M(﹣1,n),过点M的切线斜率存在,设为k,则切线方程为:y ﹣n=k(x+1),联立抛物线的方程,消去y,运用相切的条件:判别式为0,再由韦达定理,结合两直线垂直的条件:斜率之积为﹣1,即可得证.【解答】解:(Ⅰ)据题意,MP⊥直线x=﹣1,∴|MP|为点P到直线x=﹣1的距离,连接PF,∵P为线段MF的中垂线与直线y=n的交点,∴|MP|=|PF|,∴P点的轨迹是抛物线,焦点为F(1,0),准线为直线x=﹣1,∴曲线Г的方程为y2=4x;(Ⅱ)证明:据题意,M(﹣1,n),过点M的切线斜率存在,设为k,则切线方程为:y﹣n=k(x+1),联立抛物线方程可得ky2﹣4y+4k+4n=0,由直线和抛物线相切,可得△=16﹣4k(4k+4n)=0,即k2+kn﹣1=0,(*)∵△=n2+4>0,∴方程(*)存在两个不等实根,设为k1,k2,∵k1=k AM,k2=k BM,由方程(*)可知,k AM•k BM=k1•k2=﹣1,∴切线AM⊥BM,∴∠AMB=90°,结论得证.[选修4-5:不等式选讲]26.已知集合U={1,2,…,n}(n∈N*,n≥2),对于集合U的两个非空子集A,B,若A∩B=∅,则称(A,B)为集合U的一组“互斥子集”.记集合U的所有“互斥子集”的组数为f(n)(视(A,B)与(B,A)为同一组“互斥子集”).(1)写出f(2),f(3),f(4)的值;(2)求f(n).【考点】1H:交、并、补集的混合运算.【分析】(1)直接由“互斥子集”的概念求得f(2),f(3),f(4)的值;(2)由题意,任意一个元素只能在集合A,B,C=C U(A∪B)之一中,求出这n个元素在集合A,B,C中的个数,再求出A、B分别为空集的种数,则f(n)可求.【解答】解:(1)f(2)=1,f(3)=6,f(4)=25;(2)任意一个元素只能在集合A,B,C=C U(A∪B)之一中,则这n个元素在集合A,B,C中,共有3n种;其中A为空集的种数为2n,B为空集的种数为2n,∴A,B均为非空子集的种数为3n﹣2n+1+1,又(A,B)与(B,A)为一组“互斥子集”,∴f(n)=.2017年5月24日。

【真卷】2017年江苏省苏州市吴江区高考数学三模试卷

【真卷】2017年江苏省苏州市吴江区高考数学三模试卷

2017年江苏省苏州市吴江区高考数学三模试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在相应位置上.1.(5分)已知集合A={x||x|<2},B={﹣1,0,1,2,3},则A∩B=.2.(5分)设a∈R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a=.3.(5分)设a∈R,则“a>1”是“a2>l”的条件.(填“充分不必要”“必要不充分”“充分必要”或“既不充分也不必要”)4.(5分)已知平面向量,的夹角为,且||=1,||=,则与的夹角大小是.5.(5分)已知双曲线=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为.6.(5分)已知函数f(x)=(2x+1)e x(e是自然对数的底),则函数f(x)在点(0,1)处的切线方程为.7.(5分)《九章算术》是我国古代的数学名著,体现了古代劳动人民的数学智慧,其中第六章“均输”中,有一竹节容量问题,某人根据这一思想,设计了如图所示的程序框图,若输出m的值为35,则输入的a的值为.8.(5分)若tanα=,则cos2α+2sin2α=.9.(5分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是.10.(5分)已知O为坐标原点,F是椭圆C:=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为.11.(5分)已知M是面积为1的△ABC内的一点(不含边界),若△MBC,△MCA,△MAB的面积分为x,y,z,则的最小值分别为.12.(5分)若S n为等差数列{a n}的前n项和,且a1=1,S10=55.记b n=[lna n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.则数列{b n}的前2017项和为.13.(5分)如图,在平面四边形ABCD中,已知∠A=,∠B=,AB=6.在AB边上取点E使得BE=1,连结EC,ED,若∠CED=,EC=.则CD=.14.(5分)已知函数若f(x1)=f(x2)=f(x3)(x1<x2<x3),则的范围是.二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知函数,.(1)求函数f(x)的值域;(2)已知锐角△ABC的两边长a,b分别为函数f(x)的最小值与最大值,且△ABC的外接圆半径为,求△ABC的面积.16.(14分)如图,在四棱锥P﹣ABCD中,PA=PB,PA⊥PB,AB⊥BC,且平面PAB⊥平面ABCD,若AB=2,BC=1,.(1)求证:PA⊥平面PBC;(2)若点M在棱PB上,且PM:MB=3,求证CM∥平面PAD.17.(14分)有一块以点O为圆心,半径为2百米的圆形草坪,草坪内距离O 点百米的D点有一用于灌溉的水笼头,现准备过点D修一条笔直小路交草坪圆周于A,B两点,为了方便居民散步,同时修建小路OA,OB,其中小路的宽度忽略不计.(1)若要使修建的小路的费用最省,试求小路的最短长度;(2)若要在△ABO区域内(含边界)规划出一块圆形的场地用于老年人跳广场舞,试求这块圆形广场的最大面积.(结果保留根号和π)18.(16分)平面直角坐标系xOy中,椭圆C:的离心率是,抛物线E:x2=4y的焦点F是C的一个顶点.(1)求椭圆C的方程;(2)设与坐标轴不重合的动直线l与C交于不同的两点A和B,与x轴交于点M,且满足k PA+k PB=2k PM,试判断点M是否为定点?若是定点求出点M的坐标;若不是定点请说明理由.19.(16分)各项为正的数列{a n}满足,(1)当λ=a n时,求证:数列{a n}是等比数列,并求其公比;+1(2)当λ=2时,令,记数列{b n}的前n项和为S n,数列{b n}的前n项之积为T n,求证:对任意正整数n,2n+1T n+S n为定值.20.(16分)已知函数f(x)=lnx+ax2(a∈R),y=f(x)的图象连续不间断.(1)求函数y=f(x)的单调区间;(2)当a=1时,设l是曲线y=f(x)的一条切线,切点是A,且l在点A处穿过函数y=f(x)的图象(即动点在点A附近沿曲线y=f(x)运动,经过点A时,从l的一侧进入另一侧),求切线l的方程.[选修4-1:几何证明选讲22.(10分)如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BC•AE=DC•AF,B,E,F,C四点共圆.证明:CA是△ABC外接圆的直径.[选修4-2:矩阵与变换]23.(10分)二阶矩阵M对应的变换T将点(﹣2,1)与(1,0)分别变换成点(3,0)与(1,2).求矩阵M的特征值.[选修4-4:坐标系与参数方程]24.在平面直角坐标系xOy中,已知直线l的普通方程为x﹣y﹣2=0,曲线C的参数方程为(θ为参数),设直线l与曲线C交于A,B两点.若点P在曲线C上运动,当△PAB的面积最大时,求点P的坐标及△PAB的最大面积.[选修4-5:不等式选讲]25.已知a+b+c=1,证明:(a+1)2+(b+1)2+.七、解答题(共2小题,满分20分)26.(10分)如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE,设PA=1,AD=2.(1)求平面BPC的法向量;(2)求二面角B﹣PC﹣A的正切值.27.(10分)对于n维向量A=(a1,a2,…,a n),若对任意i∈{1,2,…,n}均有a i=0或a i=1,则称A为n维T向量.对于两个n维T向量A,B,定义.(1)若A=(1,0,1,0,1),B=(0,1,1,1,0),求d(A,B)的值.(2)现有一个5维T向量序列:A1,A2,A3…,若A1=(1,1,1,1,1)且满足:d(A i,A i)=2,i∈N*.求证:该序列中不存在5维T向量(0,0,0,0,+10).2017年江苏省苏州市吴江区高考数学三模试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在相应位置上.1.(5分)已知集合A={x||x|<2},B={﹣1,0,1,2,3},则A∩B={﹣1,0,1} .【解答】解:∵A={x||x|<2}={x|﹣2<x<2},B={﹣1,0,1,2,3},∴A∩B={﹣1,0,1},故答案为:{﹣1,0,1}2.(5分)设a∈R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a=﹣1.【解答】解:(1+i)(a+i)=a﹣1+(a+1)i,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a+1=0,解得:a=﹣1,故答案为:﹣13.(5分)设a∈R,则“a>1”是“a2>l”的充分不必要条件.(填“充分不必要”“必要不充分”“充分必要”或“既不充分也不必要”)【解答】解:a2>l⇔a>1或a<﹣1.∴“a>1”是“a2>l”的充分不必要条件.故答案为:充分不必要.4.(5分)已知平面向量,的夹角为,且||=1,||=,则与的夹角大小是.【解答】解:根据平行四边形法则作出,如图所示:∵||=|2|=1,∴平行四边形为菱形,∴与的夹角为.故答案为:.5.(5分)已知双曲线=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为.【解答】解:∵双曲线=1(a>0,b>0)的焦距为2,∵双曲线的一条渐近线与直线2x+y=0垂直,∴=,∴a=2b,∵c2=a2+b2,∴a=2,b=1,∴双曲线的方程为.故答案为:.6.(5分)已知函数f(x)=(2x+1)e x(e是自然对数的底),则函数f(x)在点(0,1)处的切线方程为y=3x+1.【解答】解:函数f(x)=(2x+1)e x的导数为f′(x)=2e x+(2x+1)e x,可得f(x)的图象在点(0,1)处的切线斜率为k=2e0+e0=3,即有图象在点(0,1)处的切线方程为y=3x+1.故答案为:y=3x+1.7.(5分)《九章算术》是我国古代的数学名著,体现了古代劳动人民的数学智慧,其中第六章“均输”中,有一竹节容量问题,某人根据这一思想,设计了如图所示的程序框图,若输出m的值为35,则输入的a的值为4.【解答】解:模拟程序框图的运行过程,如下;输入a,m=2a﹣3;i=1,m=2(2a﹣3)﹣3=4a﹣9;i=2,m=2(4a﹣9)﹣3=8a﹣21;i=3,m=2(8a﹣21)﹣3=16a﹣45;i=4,m=2(16a﹣45)﹣3=32a﹣93;不满足循环条件,输出m=32a﹣93;令m=32a﹣93=35,解得a=4.故答案为:4.8.(5分)若tanα=,则cos2α+2sin2α=.【解答】解:∵tanα=,则cos2α+2sin2α====,故答案为:.9.(5分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是[] .【解答】解:由约束条件作可行域如图,联立,解得C(1,).联立,解得B(2,1).在x﹣y﹣1=0中取y=0得A(1,0).要使1≤ax+y≤4恒成立,则,解得:1.∴实数a的取值范围是.解法二:令z=ax+y,当a>0时,y=﹣ax+z,在B点取得最大值,A点取得最小值,可得,即1≤a≤;当a<0时,y=﹣ax+z,在C点取得最大值,①a<﹣1时,在B点取得最小值,可得,解得0≤a≤(不符合条件,舍去)②﹣1<a<0时,在A点取得最小值,可得,解得1≤a≤(不符合条件,舍去)综上所述即:1≤a≤;故答案为:.10.(5分)已知O为坐标原点,F是椭圆C:=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为.【解答】解:由题意可设F(﹣c,0),A(﹣a,0),B(a,0),令x=﹣c,代入椭圆方程可得y=±,可得P(﹣c,±).设直线AE的方程为y=k(x+a),令x=﹣c,可得M(﹣c,k(a﹣c)),令x=0,可得E(0,ka),设OE的中点为H,可得H(0,),由B,H,M三点共线,可得k BH=k BM,即=,即为a=3c,可得e==,故答案为:.11.(5分)已知M是面积为1的△ABC内的一点(不含边界),若△MBC,△MCA,△MAB的面积分为x,y,z,则的最小值分别为3.【解答】解:由已知可得,x+y+z=1,z则则+=1++≥1+2=3,当且仅当z=x+y时,取等号,故答案为:3.12.(5分)若S n为等差数列{a n}的前n项和,且a1=1,S10=55.记b n=[lna n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.则数列{b n}的前2017项和为4944.【解答】解:设等差数列{a n}的公差为d,∵a1=1,S10=55.∴55=10+×d,解得d=1.∴a n=1+n﹣1=n.∵b n=[lna n],∴n=1,2,…9时,b n=0;n=10,11,…,99,可得b n=1.n=100,101,…,999,可得b n=2.n=1000,1001,…,2017,可得b n=3.∴数列{b n}的前2017项和=0×9+1×90+2×900+3×1018=4944.故答案为:4944.13.(5分)如图,在平面四边形ABCD中,已知∠A=,∠B=,AB=6.在AB边上取点E使得BE=1,连结EC,ED,若∠CED=,EC=.则CD=7.【解答】解:在△CBE中,由余弦定理得CE2=BE2+CB2﹣2BE•CBcos120°,即7=1+CB2+CB,解得CB=2.由余弦定理得CB2=BE2+CE2﹣2BE•CEcos∠BEC⇒cos∠BEC=,⇒sin∠BEC=.sin∠AED=sin(1200+∠BEC)=,⇒cos∠AED=.在直角△ADE中,AE=5,cos,⇒DE=2,在△CED中,由余弦定理得CD2=CE2+DE2﹣2CE•DEcos120°=49∴CD=7.故答案为:714.(5分)已知函数若f(x1)=f(x2)=f(x3)(x1<x2<x3),则的范围是(﹣1,0).【解答】解:函数,∴函数f′(x)=,故当x<0时,函数为增函数,且f(x)<,当0≤x<1时,函数为增函数,且0≤f(x)<,当x≥1时,函数为减函数,且0<f(x)≤,若f(x1)=f(x2)=f(x3)(x1<x2<x3),则f(x1)=f(x2)=f(x3)∈(0,),即﹣<x1<﹣,故==1+∈(﹣1,0),故答案为:(﹣1,0).二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知函数,.(1)求函数f(x)的值域;(2)已知锐角△ABC的两边长a,b分别为函数f(x)的最小值与最大值,且△ABC的外接圆半径为,求△ABC的面积.【解答】解:(1)===,∵,∴,∴,∴函数f(x)的值域为.(2)依题意,b=2,△ABC的外接圆半径,,,,,,∴.16.(14分)如图,在四棱锥P﹣ABCD中,PA=PB,PA⊥PB,AB⊥BC,且平面PAB⊥平面ABCD,若AB=2,BC=1,.(1)求证:PA⊥平面PBC;(2)若点M在棱PB上,且PM:MB=3,求证CM∥平面PAD.【解答】证明:(1)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,BC⊥AB,∴BC⊥平面PAB,又PA⊂平面PAB,∴BC⊥PA,又PA⊥PB,PB∩BC=B,PB⊂平面PBC,BC⊂平面PBC,∴PA⊥平面PBC.(2)在AB上取点N,使得AN:BN=3,取AB的中点O,连结MN,CN,PO,OD,∵,∴MN∥PA.由(1)知BC⊥平面PAB,∴BC⊥BN,∵BN=AB=,BC=1,∴tan∠BNC=.∵AD=BD=,AB=2,O是AB的中点,∴OD⊥AB,OA=1,OD==2,∴tan∠OAD=,∴∠BNC=∠OAD,∴CN∥AD,又MN∩CN,PA∩AD=A,∴平面MNC∥平面PAD.又∵CM⊂平面MNC,∴CM∥平面PAD.17.(14分)有一块以点O为圆心,半径为2百米的圆形草坪,草坪内距离O 点百米的D点有一用于灌溉的水笼头,现准备过点D修一条笔直小路交草坪圆周于A,B两点,为了方便居民散步,同时修建小路OA,OB,其中小路的宽度忽略不计.(1)若要使修建的小路的费用最省,试求小路的最短长度;(2)若要在△ABO区域内(含边界)规划出一块圆形的场地用于老年人跳广场舞,试求这块圆形广场的最大面积.(结果保留根号和π)【解答】解:(1)小路的长度l=OA+OB+AB=(400+AB)米,要使小路的长度最短,只需AB最短即可.当OD⊥AB时,圆心距d最长为OD,此时AB最短,(AB)min=2×2=200米,∴小路的最短长度为(4+2)(百米).(2)依题意,圆形广场内切于△ABO时,这块圆形广场的最大面积.设△ABO的内切圆半径为r,则有=,由弦长公式得AB=2,⇒⇒.令AB=x,则r2=f(x)=,;∵,∴x=AB=2.∴,∴=6﹣4.这块圆形广场的最大面积s=πr2=(6﹣4)π(百米2)18.(16分)平面直角坐标系xOy中,椭圆C:的离心率是,抛物线E:x2=4y的焦点F是C的一个顶点.(1)求椭圆C的方程;(2)设与坐标轴不重合的动直线l与C交于不同的两点A和B,与x轴交于点M,且满足k PA+k PB=2k PM,试判断点M是否为定点?若是定点求出点M的坐标;若不是定点请说明理由.【解答】解:(1)由抛物线E:x2=4y,得F(0,1),即b=1,又,a2=b2+c2=1+c2,解得:a=2,c=.∴椭圆方程为;(2)设直线l:x=my+t,A(x1,y1),B(x2,y2),则M(t,0),由得(m2+4)y2+2mty+t2﹣4=0,△=16m2﹣16t2+64>0,=,x1x2=(my1+t)(my2+t)=y1x2+y2x1=2my1y2+t(y1+y2)=由k PA+k PB=2k PM,得⇒=.⇒2t2+(4m﹣17)t﹣32m+8=0⇒2t2﹣17t+8+m(4t﹣32)=0当t=8时,2t2﹣17t+8+m(4t﹣32)=0恒成立,故M为定点(8,0).19.(16分)各项为正的数列{a n}满足,(1)当λ=a n+1时,求证:数列{a n}是等比数列,并求其公比;(2)当λ=2时,令,记数列{b n}的前n项和为S n,数列{b n}的前n项之积为T n,求证:对任意正整数n,2n+1T n+S n为定值.【解答】证明:(1)当λ=a n+1时,a n+1=+a n,a n>0,∴=+1,令=q>0,则q=+1,化为q2﹣q﹣1=0,解得q=.∴数列{a n}是等比数列,其公比q=.(2)当λ=2时,a n+1=+a n,∴2a n+1=a n(a n+2),∴=.∴T n=b1b2b3…b n=••…•==.又b n====﹣,∴S n=b1+b2+b3+…+b n=﹣++…+﹣=﹣,∴2n+1T n+S n=+﹣==2.∴对任意正整数n,2n+1T n+S n为定值2.20.(16分)已知函数f(x)=lnx+ax2(a∈R),y=f(x)的图象连续不间断.(1)求函数y=f(x)的单调区间;(2)当a=1时,设l是曲线y=f(x)的一条切线,切点是A,且l在点A处穿过函数y=f(x)的图象(即动点在点A附近沿曲线y=f(x)运动,经过点A时,从l的一侧进入另一侧),求切线l的方程.【解答】解:(1)函数的导数f′(x)=+2ax=(x>0),若a≥0,则f'(x)>0,此时函数单调递增,即增区间为(0,+∞);若a<0,由f′(x)>0,得2ax2+1>0,即,得0<x<,由f′(x)<0,得x>.∴函数的减区间为(,+∞),增区间为(0,),综上:若a≥0,函数的增区间为(0,+∞).若a<0,函数的增区间为(0,),减区间为(,+∞);(2)设切点A(x0,f(x0)),x0>0,,∴在点A处切线的斜率是.∴切线方程为,即.l在点A处穿过函数y=f(x)的图象,即在点A的两侧,曲线y=f(x)在直线的两侧,令,设h(x)=f(x)﹣g(x),∴在x=x0附近两侧h(x)的值异号.设﹣lnx0,注意到h(x0)=0.下面研究函数的单调性:==.当时:∴当x∈(0,x0)时,h(x)是增函数,则h(x)<h(x0)=0,当x∈(,+∞)时,h(x)是减函数,则h(x)<h(x0)=0.∴h(x)在x=x0处取极大值,两侧附近同负,与题设不符;同理,当x0时,h(x)在x=x0处取极小值,两侧附近同正,与题设不符;故,即时,h′(x)=,∴h(x)在(0,+∞)内单调递增.∴当x∈(0,x0)时,h(x)<h(x0)=0,当x∈(,+∞),h(x)>h(x0)=0符合题设.∴,切线方程为.[选修4-1:几何证明选讲22.(10分)如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BC•AE=DC•A F,B,E,F,C四点共圆.证明:CA是△ABC外接圆的直径.【解答】证明:∵B,E,F,C四点共圆,∴∠DBC=∠EAF.∵CD为△ABC外接圆的切线,∴∠BCD=∠FAE.在△BCD与△FAE中,∵BC•AE=DC•AF,即=,又∠BCD=∠FAE.∴△BCD∽△FAE,∴∠DBC=∠EFA.∴∠DBC=∠CBA,又∠DBC+∠CBA=180°,∴∠CBA=90°.∴CA是△ABC外接圆的直径.[选修4-2:矩阵与变换]23.(10分)二阶矩阵M对应的变换T将点(﹣2,1)与(1,0)分别变换成点(3,0)与(1,2).求矩阵M的特征值.【解答】解:设M=,这里a,b,c,d∈R,则=,=,则①,②,联立①②解得:a=1,b=5,c=2,d=4,故M=,矩阵M的特征多项式为f(λ)=(λ﹣1)(λ﹣4)﹣10=λ2﹣5λ﹣6,故矩阵M的特征值为6或﹣1.[选修4-4:坐标系与参数方程]24.在平面直角坐标系xOy中,已知直线l的普通方程为x﹣y﹣2=0,曲线C的参数方程为(θ为参数),设直线l与曲线C交于A,B两点.若点P在曲线C上运动,当△PAB的面积最大时,求点P的坐标及△PAB的最大面积.【解答】解:∵曲线C的参数方程为(θ为参数),∴曲线C的普通方程为=1,联立,解得或,∴A(0,﹣2),B(3,1),∴|AB|==3,△PAB的面积最大,即点P到直线l的距离d最大,设P(,sinθ),则d==,当cos()=﹣1,即,k∈Z时,=3,∴△PAB的最大面积S===9.此时P(﹣3,).[选修4-5:不等式选讲]25.已知a+b+c=1,证明:(a+1)2+(b+1)2+.【解答】证明:由柯西不等式可得(1+1+1)[(a+1)2+(b+1)2+(c+1)2]≥(a+1+b+1+c+1)2,∵a+b+c=1,∴(a+1)2+(b+1)2+(c+1)2≥,当且仅当a=b=c=时取等号,问题得以证明七、解答题(共2小题,满分20分)26.(10分)如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE,设PA=1,AD=2.(1)求平面BPC的法向量;(2)求二面角B﹣PC﹣A的正切值.【解答】解:(1)∵PA⊥平面ABCD,BD⊂平面ABCD,∴PA⊥BD.∵PC⊥平面BDE,BD⊂平面BDE,∴PC⊥BD.又PA∩PC=P,∴BD⊥平面PAC,AC⊂平面PAC,∴BD⊥AC.又底面ABCD为矩形,∴ABCD为正方形.建立如图所示的空间直角坐标系.A(0,0,0),B(2,0,0),C(2,2,0),P(0,0,1),D(0,2,0).=(0,2,0),=(﹣2,0,1),设平面BPC的法向量为=(x,y,z),∴,∴,取=(1,0,2.).∴平面BPC的一个法向量为=(1,0,2.).(2)平面PAC的法向量为:=(﹣2,2,0).设二面角B﹣PC﹣A=θ,由图可知:θ为锐角.则cos===﹣.∴cosθ=.∴sinθ=.∴tanθ==3.即二面角B﹣PC﹣A的正切值为3.27.(10分)对于n维向量A=(a1,a2,…,a n),若对任意i∈{1,2,…,n}均有a i=0或a i=1,则称A为n维T向量.对于两个n维T向量A,B,定义.(1)若A=(1,0,1,0,1),B=(0,1,1,1,0),求d(A,B)的值.(2)现有一个5维T向量序列:A1,A2,A3…,若A1=(1,1,1,1,1)且满足:d(A i,A i+1)=2,i∈N*.求证:该序列中不存在5维T向量(0,0,0,0,0).【解答】解:(1)d(A,B)=1+1+0+1+1=4.(2)证明:假设序列中存在一个含5维T向量序列,不妨设A m=(0,0,0,0,0),∵向量A1=(1,1,1,1,1)的每一个分量变为0,都需要奇数次变化,∴从A1到A m共发生了奇数次变化,又∵d(A i,A i+1)=2,∴从A i到A i+1共有2个分量发生改变,即从A i到A i+1共发生了偶数次变化,∴从A1到A m共发生了偶数次变化,矛盾.∴该序列中不存在5维T向量(0,0,0,0,0).赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年江苏省高考数学模拟应用题大全(三)1、(江苏省连云港、徐州、宿迁2017届高三年级第三次模拟考试)某景区修建一栋复古建筑,其窗户设计如图所示.圆O 的圆心与矩形ABCD 对角线的交点重合,且圆与矩形上下两边相切(E 为上切点),与左右两边相交(F ,G 为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m ,且12AB AD ≥.设EOF θ∠=,透光区域的面积为S .(1)求S 关于θ的函数关系式,并求出定义域;(2)根据设计要求,透光区域与矩形窗面的面积比值 越大越好.当该比值最大时,求边AB 的长度.2、(江苏省南京、淮安市2017届高三第三次模拟考试数学试题)在一水域上建一个演艺广场.演艺广场由看台Ⅰ,看台Ⅱ,三角形水域ABC ,及矩形表演台BCDE 四个部分构成(如图).看台Ⅰ,看台Ⅱ是分别以AB ,AC 为直径的两个半圆形区域,且看台Ⅰ的面积是看台Ⅱ的面积的3倍;矩形表演台BCDE 中,CD =10米;三角形水域ABC 的面积为4003平方米.设∠BAC =θ.(1)求BC 的长(用含θ的式子表示);(2)若表演台每平方米的造价为0.3万元,求表演台的最低造价.3、(江苏省南京师范大学附属中学2017届高三考前模拟考试数学试题)园林管理处拟在公园某区域规划建设一半径为r 米,圆心角为θ(弧度)的扇形观景水池,其中O 为扇形AOB 的圆心,同时紧贴水池周边建设一圈理想的无宽度步道.要求总预算费用不超过24万元,水池造价为每平米400元,步道造价为每米1000元.(1)当r 和θ分别为多少时,可使得广场面积最大,并求出最大面积;A BCDFEO(第1题)G θ(第2题图)(2)若要求步道长为105米,则可设计出的水池最大面积是多少.4、(江苏省南京市、盐城市2017届高三年级第二次模拟考试)在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD ,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为x 厘米,矩形纸板的两边AB ,BC 的长分别为a 厘米和b 厘米,其中a ≥b .(1)当a =90时,求纸盒侧面积的最大值;(2)试确定a ,b ,x 的值,使得纸盒的体积最大,并求出最大值.5、(江苏省南通、扬州、泰州2017届高三第三次调研考试数学试题)如图,半圆AOB 是某爱国主义教育基地一景点的平面示意图,半径OA 的长为1百米.为了保护景点,基地管理部门从道路l 上选取一点C ,修建参观线路C -D -E -F ,且CD ,DE ,EF 均与半圆相切,四边形CDEF 是等腰梯形.设DE =t 百米,记修建每1百米参 观线路的费用为()f t 万元,经测算150()118 2.3t f t t t ⎧<⎪=⎨⎪-<<⎩,,≤,(1)用t 表示线段EF 的长; (2)求修建该参观线路的最低费用.(第4题图)DCB AO(第5题)6、(江苏省南通、扬州、泰州、徐州、淮安、宿迁2017届高三二模数学试题)一缉私艇巡航至距领海边界线l (一条南北方向的直线)3.8海里的A 处,发现在其北偏东30°方向相距4海里的B 处有一走私船正欲逃跑,缉私艇立即追击.已知缉私艇的最 大航速是走私船最大航速的3倍.假设缉私艇和走私船均按直线方向以最大航速航行. (1)若走私船沿正东方向逃离,试确定缉私艇的追击方向,使得用最短时间在领海内拦截 成功;(参考数据:sin17°≈5.7446)(2)问:无论走私船沿何方向逃跑,缉私艇是否总能在领海内成功拦截?并说明理由.7、(江苏省如皋市2017届高三下学期语数英学科联考(二)数学试题)如图所示,在一半径等于1千米的圆弧及直线段道路AB 围成的区域内计划建一条商业街,其起点和终点均在道路AB 上,街道由两条平行于对称轴l 且关于l 对称的两线段EF 、CD ,及夹在两线段EF 、CD 间的弧组成.若商业街在两线段EF 、CD 上收益为每千米2a 元,在两线段EF 、CD 间的弧上收益为每千米a 元.已知2AOB π∠=,设2EOD θ∠=,(1) 将商业街的总收益()f θ表示为θ的函数; (2) 求商业街的总收益的最大值.北(第6题)8、(江苏省苏州大学2017届高考数学考前指导卷 1)如图,某地区有一块(百米),植物园西侧有一块荒地,现计划利用该荒地扩大植物园面积,使得新的植物园为.(1(2,若计划9、舞,试求这块圆形广场的最大面积.(10、(江苏省泰州市2017届高三考前参考题数学试题)甲、乙分别位于扇形居民区弧⌒AB合)处建造一个大型快件集散中心,经过前期的调查,发现可以分别用抗拒系数⌒AB的中点时,(1(211、(上海市崇明区2017届高三第二次(4月)模拟考试数学试卷)某校兴趣小组在如图所示的矩形区域ABCD内举行机器人拦截挑战赛,在E器人甲,同时在A处按某方向释放机器人乙,设机器人乙在Q处成功拦截机器人甲.若点Q在矩形区域ABCD内(包含边界),则挑战成功,否则挑战失败.E为A B中点,机器人乙的速度是机器人甲的速度的2倍,比(1AD足够长,则如何设置机器人乙的释放角度才能挑战成功?(结(2)如何设计矩形区域ABCD的宽AD的长度,甲?12、(江苏省学大教育2017届高考数学密2)13、(江苏省学大教育2017届高考数学密1)某单位为端正工作人员仪容,在单位设置一面仪容镜(仪容镜为平面镜),如图,仪容2米,(1(2答案1、(12分分,所以定义域为10分12分所以,所以,故有最大,此时(2)1m .………16分2、(1)因为看台Ⅰ的面积是看台Ⅱ的面积的3倍,所以AB =3AC .在△ABC 中,S △ABC =12AB •AC •sin θ=4003,所以AC 2=800sin θ . …………………… 3分由余弦定理可得BC 2=AB 2+AC 2-2AB •AC •cos θ,=4AC 2-23AC 2 cos θ.=(4-23cos θ) 800sin θ ,即BC =(4-23cos θ)•800sin θ =402-3cos θsin θ.所以 BC =402-3cos θsin θ ,θ∈(0,π). …………………… 7分(2)设表演台的总造价为W 万元.因为CD =10m ,表演台每平方米的造价为0.3万元,所以W =3BC =1202-3cos θsin θ ,θ∈(0,π). …………………… 9分记f (θ)=2-3cos θsin θ,θ∈(0,π).则f ′(θ)=3-2cos θsin 2θ. …………………… 11分由f ′(θ)=0,解得θ=π6.当θ∈(0,π6)时,f ′(θ)<0;当θ∈(π6,π)时,f ′(θ)>0.故f (θ)在(0,π6)上单调递减,在(π6,π)上单调递增,从而当θ=π6 时,f (θ)取得最小值,最小值为f (π6)=1.所以W min =120(万元).答:表演台的最低造价为120万元. …………………… 14分34、解:(1)因为矩形纸板ABCD 的面积为3600,故当a =90时,b =40,从而包装盒子的侧面积S =2×x (90-2x )+2×x (40-2x )=-8x 2+260x ,x ∈(0,20) . ………………… 3分因为S =-8x 2+260x =-8(x -654)2+42252,故当x =654 时,侧面积最大,最大值为 42252 平方厘米.答:当x =654 时,纸盒的侧面积的最大值为42252平方厘米. ………………… 6分(2)包装盒子的体积V =(a -2x )(b -2x ) x =x [ab -2(a +b )x +4x 2],x ∈(0,b 2),b ≤60.…………… 8分V =x [ab -2(a +b )x +4x 2]≤x (ab -4abx +4x 2)=x (3600-240x +4x 2)=4x 3-240x 2+3600x . ………………… 10分当且仅当a =b =60时等号成立.设f (x )=4x 3-240x 2+3600x ,x ∈(0,30).则f ′ (x )=12(x -10)(x -30).于是当0<x <10时,f ′ (x )>0,所以f (x )在(0,10)上单调递增;当10<x <30时,f ′ (x )<0,所以f (x )在(10,30)上单调递减.因此当x =10时,f (x )有最大值f (10)=16000, ……………… 12分 此时a =b =60,x =10.答:当a =b =60,x =10时纸盒的体积最大,最大值为16000立方厘米.……………… 14分5、【解】设DE 与半圆相切于点QDQ=QE,以OF所在直线为x轴,OQ所在直线为y轴,建立如图所示的平面直角坐标系xOy.(1)方法一:由题意得,点E……1分设直线EF,因为直线EF与半圆相切,所以圆心O到直线EF (3)分F……5分即.……7分方法二:切圆所以Rt△EHF≌Rt△OGF,……3分……5分所以.……7分(2①所以当时,取最小值为……11分②……13分且当时,;当时,调递增.由①②知,取最小值为……15分答:(1(2)修建该参观线路的最低费用为万元.……16分6、解:(1,……2分.……5分又B到边界线l……8分(2AB C图甲走私……12分1.55所以缉私艇能在领海内截住走私船.……14分答:(1(2)缉私艇总能在领海内成功拦截走私船.……16分18.7、1)①3分②6分由①②8分(2)①列表:11分所以在时单调递减所以…………………14分10分的面积最大值为分⌒AB(2由(119.11、解:(1分分.....................................................6分(2)以所在直线为轴,中垂线为分分6为半径的上半圆在矩形区域人乙的释放角度使机器人乙在矩形区域ABCD内成功拦截机器人甲...........................................14分12、13由正弦定理,)2,21(tan 2321sin )32sin(sin sin ∈+=-==C C C C B AB AC π即的取值范围为AB AC 的取值范围为(2,21)(2)易知AD A A 2='、又由三角形ABC 的面积A AC AB AD BC S sin 2121⋅=⋅=,可得AC AB AD ⋅=43由余弦定理,AC AB AC AB AC AB A AC AB AC AB BC ⋅=⋅-⋅≥⋅⋅-+==2cos 24222, 解得4≤⋅AC AB ,当且仅当2==AC AB 时。

相关文档
最新文档