第2讲 轴向拉压杆的内力和应力
轴向拉、压杆的内力及应力计算

AB段:用1-1截面在AB段内将杆截开,取左段为研究对象,以N1表示截面上的轴力,并假设为拉力。写出平
衡方程: ∑X=0,N1+P1=0
得 N1=-P1=-20KN 负号表示AB段轴力N1实际为压力。
BC段:同理写出平衡方程: ∑X=0,N2+P1-P2=0
得 N2=-P1+P2=-20+30=10KN 正号表示BC段轴力N2实际为拉力。
面垂直的应力为正应力,与截面相切的应力为剪应力。轴向拉伸、压缩时,杆件
截面上各点处产生正应力,且大小相等。若应力用σ表示,横截面积为A,轴力
为N,则
N
A
正应力的正负号规定:拉应力为正,压应力为负。
课题七 轴向拉、压杆的内力及应力计算
例:如图7-2a悬臂梁,已知P1=20KN,P2=30KN,P3=10KN,试画出杆的轴力图。
课题七 轴向拉、压杆的内力及应力计算
三、轴力图
表明沿杆长各横截面轴力变化规律的图形称为轴力图。用平行于杆轴线的坐 标表示横截面的位置,用垂直于杆轴线的坐标表示横截面上的轴力,按选定的比 例尺把正轴力画在轴的上方,负轴力画在轴的下方,并连成直线,就得到轴力 图。
四、轴向拉、压杆横截面上的应力
单位面积课题七 轴向拉、压杆的内力及应力计算
一、轴向拉伸和压缩
受力特点:直杆的两端沿杆轴线方向作用一对大小相等,方向相反的力。 变形特点:在外力作用下产生轴线方向的伸长或缩短。 当作用力背离杆端时,作用力是拉力,杆件产生伸长变形,叫做轴向拉伸。 见图7-1a 当作用力指向杆端时,作用力是压力,杆件产生压缩变形,叫做轴向压缩。 见图7-1b
图 7-1
课题七 轴向拉、压杆的内力及应力计算
材料力学 轴向拉压内力、应力讲解

ac
F
a
c
F
b
d
② 实验现象
bd
变形前,我们在横向所作的两条平行线ab、cd,
在变形后,仍然保持为直线,且仍然垂直于轴线,只
是分别移至a’b’、c’d’位置。
19
Mechanic of Materials
§2-2 轴向拉压杆横截面的内力和应力
③ 实验结论
变形前为平面的横
截面,变形后仍保持为
FN3 55 40 10 5kN 压
FN4 20kN =10 + 40-55+ 25拉
20kN
15
Mechanic of Materials
§2-2 轴向拉压杆的内力和应力
二.轴力图: 表征轴力沿轴变化规律的图象。
1、作法:
A、用截面法求出各段轴力的大小;
B、选一个坐标系,用其横坐标表示横截面的位置,纵
轴线的纵向截面上无任何应力。
31
Mechanic of Materials
轴力和轴力图 讨论题
1、以下关于轴力的说法中,哪一个是错误的 。
A.拉压杆的横截面上内力只有轴力。 B.轴力的作用线与杆轴重合。 C.轴力是沿杆轴作用的外力。 D.轴力与杆的横截面形状、尺寸大小,以及材料是否相同无关。
32
目录
x
x
xx
x
x
Alx Ax xl
Al
Axlxl
x l
l
A NF(Nx()xN) (xN)(x) (+)
(+)
ll xx
l xl x
GG(x()x)G(xG)N(xF)N FN N
((aa)) (a()b(()ba)) (bc())c)(c)((cd))(d()d) (d)
《材料力学》第二章

F
F
F
F
横截面上 正应力分
横截面间 的纤维变
斜截面间 的纤维变
斜截面上 应力均匀
布均匀
形相同
形相同
m
分布
F
m
p
Page24
第二章 轴向拉压应力与材料的力学性能 s t
n
F p
n p
FN FN p s 0 cos A A / cos
s p cos s 0 cos 2 s t p sin 0 sin 2
二、材料拉伸力学性能 低碳钢Q235
s
D E A
o
线弹性 屈服
硬化
缩颈
e
四个阶段:Linear, yielding, hardening, necking
Page32
第二章 轴向拉压应力与材料的力学性能
低碳钢Q235拉伸试验 线性阶段
s
B A
规律:
s Ee (OA段)
变形:变形很小,弹性 特征点:s p 200MPa (比例极限)
应力——应变曲线(低碳钢)
思考:颈缩阶段后,图中应力为什么会下降?
Page37
第二章 轴向拉压应力与材料的力学性能
名义应力与真实应力
真实应力曲线 名义应力曲线 名义应力
FN s A
变形前截面积
颈缩阶段载荷减小,截面积也减小,真实应力继续增加
Page38
第二章 轴向拉压应力与材料的力学性能
低碳钢试件在拉伸过程中的力学现象
材料力学应力分析的基本方法:
•试验观察
•几何方程
e const 变形关系
•提出假设
•物理方程
s Ee
02.3.应力·拉(压)杆内的应力解析

武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
F
a b
a
b
c
d
c d
F
3. 推论:拉(压)杆受力后任意两个横截面之间纵向线段 的伸长(缩短)变形是均匀的。由于假设材料是均匀的,而杆 的分布内力集度又与杆件纵向线段的变形相对应,因而杆件 横截面上的正应力s呈均匀分布,亦即横截面上各点处的正 应力s 都相等。由合力概念知:
第12页
武生院建筑工程学院:材料力学
• 讨论题
第13页
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
例题2-2 试求此正方 形砖柱由于荷载引起的横 截面上的最大工作应力。 已知F = 50 kN。
第14页
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
解:Ⅰ段柱横截面上的正应力
FN1 50 103 N s1 A1 (0.24 m) (0.24 m) 0.87 106 P a 0.87 MP a (压应力)
Ⅱ.轴向拉(压)杆横截面上的应力
(1) 与轴力相应的只可能是正应力s,与切应力无关; (2) s在横截面上的变化规律:横截面上各点处s 相等 时,可组成通过横截面形心的法向分布内力的合力——轴 力FN;横截面上各点处s 不相等时,特定条件下也可组成 轴力FN。
第7页
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
Ⅱ段柱横截面上的正应力
FN 2 150103 N s2 0.37 m 0.37 m A2 1.1106 Pa 1.1 MPa (压应力)
s 2 s1
所以,最大工作应力为 smax= s2= -1.1 MPa (压应力)
02.3.应力·拉(压)杆内的应力解析

4
FF
90106 Pa 90MPa
x
s2
FN 2 A2
20103 152 106
FN1 28.38k9N106 PaFN289M20PkaN
第19页
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
Ⅲ. 拉(压)杆斜截面上的应力
k
F
F
k
k
F
F
斜截面上的内力: F F
k
变形假设:两平行的斜截面在杆受拉(压)而变形后仍相 互平行。
第二章 轴向拉伸和压缩
平均应力的定义
受力杆件(物体)某一截面的M点附近微面积ΔA上分布 内力的平均集度即平均应力, p F ,其方向和大小一般
m A
随所取ΔA的大小而不同。
F
M
A
第3页
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
总应力定义:
该截面上M点处分布内力的集度为
p
lim F
A0 A
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
ac
F
a
c
F
b
d
bd
3. 推论:拉(压)杆受力后任意两个横截面之间纵向线段 的伸长(缩短)变形是均匀的。由于假设材料是均匀的,而杆 的分布内力集度又与杆件纵向线段的变形相对应,因而杆件
横截面上的正应力s呈均匀分布,亦即横截面上各点处的正 应力s 都相等。由合力概念知:
第15页
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
例题2-3 已知薄壁圆环 d = 200 mm,δ= 5 mm,p = 2 MPa。试求薄壁圆环在内压力作用下径向截面上的拉应力。
第二章 轴向拉压应力与材料的力学性能

拉压杆斜截面上的应力P
A为横截面的面积 A为斜截面的面积 横截面上的正应力 斜截面上的应力
N p A P P cos cos A A cos
P A
斜截面上的正应力和剪应力
p cos cos2 p sin cos sin
P
1 1 P A N1 3P C 2 N2
A
∴N2=P-3P= -2P
2
3、内力图
P A l P
3P
B
注意:
1 、一次只能取一个截面, 将原构件分成两部分。
C
l
N
O
2、内力方向设为正向后建立平 衡方程求解。(说明+-)
3 、分离体图与原图上下对 齐,截面位置一目了然。 4 、轴力图大小近似按比例, 也要与上图对齐。 练习:
1、变形规律试验及平面假设:
a c
P
b d
变形前
a´ c´
b´ d´
受力后 P
2、变形规律: 横向线——仍为平行的直线,且间距增大。 纵向线——仍为平行的直线,且间距减小。 平面假设:原为平面的横截面在变形后仍为平面. N 3、横截面上的应力:均匀分布 A
例2-4:计算下图中指定截面上的应力。AB段与CD段的横截面积均 为20mm2,AB段横截面积为 10 mm2 ,
C
已知:三角架 ABC 的〔σ 〕=120 MPa,AB 杆为 2 根 80*80*7 的等边角钢,AC 为 2 根 10 号槽钢,AB、AC 两杆的夹角为300 。 求:此结构所能承担的最大外荷载 Fmax
解: 1、F 与 FN 的关系
Y
0
X 0 F Y 0 F
NAC
FNAB cos30 0
工程力学第2章轴向拉伸压缩与剪切

F
N (+) N
F
F
N (-) N
F
轴力一般按正方向假设。
3、轴力图: 轴力沿轴线变化的图形
F
F
N
4、轴力图的意义
+ x
① 直观反映轴力与截面位置变化关系;
② 确定出最大轴力的数值及其所在位置,即确定危险截面位置,为 强度计算提供依据。
1、低碳钢轴向拉伸时的力学性质 (四个阶段)
⑴、弹性阶段:OA
OA’为直线段; E
AA’为微弯曲线段。
p —比例极限; e —弹性极限。
一般这两个极限相差不大, 在工程上难以区分,统称为弹 性极限
低碳钢拉伸时的四个阶段
⑴、弹性阶段:OA, ⑵、屈服阶段:B’C。
s —屈服极限
屈服段内最低的应力值。
例 图示杆的A、B、C、D点分别作用着大小为FA = 5 F、 FB = 8 F、 FC = 4 F FD= F 的力,方向如图,试求各段内力并画出杆的轴力图。
OA
BC
D
FA
FB
FC
FD
N1
A
BC
D
FA
FB
FC
FD
解: 求OA段内力N1:设截面如图
X 0 FD FC FB FA N1 0
N4= F
FD
N1 2F , N2= –3F, N3= 5F, N4= F
N1 2F , N2= –3F, N3= 5F, N4= F
轴力图如下图示
OA
BC
D
FA
FB
FC
FD
N 2F
5F
轴向拉压

FN 3 A3 5000 8.33MPa 600
FN 1
○ -
s max s1 10MPa s 12MPa
∴ 此杆满足强度条件。 29
5kN
[例]图示结构中,拉杆AB由等边角钢制成,容许应力 [s]=160MPa,试选择等边角钢的型号。。
B
解:取杆AC。
m
40 kN
FN AB
3
19
三、斜截面的应力
m
P
m m
P
P
m
m
k
p
N
A——斜截面面积
P p A A
FN
P
m
sห้องสมุดไป่ตู้
p
2
FN A
FN A / cos
s p cos s cos s p sin s sin cos sin 2
A=80mm2,容许应力[s]=160MPa,试校核杆CD的强度并 计算容许荷载。 D A
30
N C B A 30 C
a
解:
a
XA
B P
P
YA
1 m A 0; 2 FN a P 2a 0 ∴ CD 杆满足 FN 4 P 8kN 强度条件。 FN 8000 s 100MPa s A 80
4)圣维南(Saint-Venant)原理:
厚度为1mm 100N 1mm 100N
厚度为1mm 50N 50N 1mm
50N
50N
厚度为1mm 1mm 100MPa 100MPa
二、横截面的正应力 拉压杆横截面上只有正应力而无剪应力,忽略应力集中
材料力学 第二章 轴向拉压应力PPT课件

§2–1 拉压杆的内力 ·轴力与轴力图 §2–2 拉压杆的应力及强度条件 §2-3 材料在拉伸和压缩时的力学性质 §2-4 剪切与挤压的强度计算
§2–1 拉压杆的内力 · 轴力与轴力图
杆件在轴向荷载作用下,将发生轴向拉伸或压缩。
拉伸 F
F
压缩 F
F
×
一、拉压杆的内力——轴力
×
§2–3 应力集中的概念
拉压杆横截面的应力并不完全是均匀分布的,当横截面 上有孔或槽时,在截面曲率突变处的应力要比其它处的应力 大得多,这种现象称为应力集中。
P
P
P
P
P
×
五、拉压杆的强度条件
拉压杆在正常情况下不发生破坏的条件是:拉压杆的最
大工作应力(横截面的最大正应力)不超过材料的容许应
力。
max
FN3
Ⅲ 30k N
Ⅲ
×
FN3 300 FN3 30kN
例2 长为l ,重为W 的均质杆,上端固定,下端受一轴向拉
力P 作用,画该杆的轴力图。
轴力图
FN
P+W F x 0 ;F N P x 0
⊕
x
P
FN
PxPWx
l
x0 ;F NF N mi nP
P
P
x l;F NF N ma x P W
×
例3 画图示杆的轴力图。
3k N 2k N N 4k N 8kN
3k N ⊕ 1⊕kN
○-
1kN
轴力图
6k N ⊕
○-
4k N 8k N
轴力图
×
§2–2 拉压杆的应力及强度条件
一、横截面的正应力
拉压杆横截面上只有正应力而无剪应力,忽略应力集中 的影响,横截面上的正应力可视作均匀分布的,于是有
轴向拉伸与压缩—轴向拉(压)杆的内力与轴力图(工程力学课件)

例题2 设一直杆AB 沿轴向受力如图示。 已知P1=2kN,P2=3kN,P3=1kN,试做轴力图。
P1
1
P2 2
P3
N
1
2kN
+
2
-
x
1kN
➢ 2.内力:由外力引起杆件内部之间的相互作用力。
➢ 3.截面法:截面法是显示和确定内力的基本方法。
截面法求内力的步骤
截取
用一个假想的截面,将 杆件沿需求内力的截面 处截为两部分;取其中 任一部分为研究对象。
代替
用内力来代替弃去部分 对选取部分的作用。
平衡
用静力平衡条件,根 据已知外力求出内力。
轴力N——轴向拉压时横截面上的内力。规定拉力为正,压力为负。
用截面法求1-1截面上的轴力:
P
N
X 0
NP0
x
N P(拉力)
例题1
设一直杆 AB 沿轴向受力如图示。
已知P1=2kN,P2=3kN,P3=1kN, 试求杆各段的轴力。
P1
1
P2 2
P3
P1
1NБайду номын сангаас
1
2
x
x
N2
P3
1-1截面: X 0, N1 P1 0,
2-2截面: X 0, N2 P3 0,
第一节 轴向拉(压)杆的内力与轴力图 第二节 轴向拉(压)杆横截面上的正应力 第三节 轴向拉(压)杆的强度计算 第四节 轴向拉(压)杆的变形计算 第五节 材料在拉伸和压缩时的力学性能
➢ 1.轴向拉(压)杆件
• 受力特点:作用在杆件上的外力(或外力的合力)作用线与杆轴线重合。 • 变形特点:杆件沿轴向发生伸长或缩短。 • 外力:外力作用在杆件上的荷载和约束反力。
材料力学02(第二章 轴向拉压应力与材料的力学性能)

FN 2
A
F
1.校核强度
已知F, ,A1,A2, t , c
校核结构是否安全? 解:
F 1= t ? A1 sin F 2 = c ? A2 tan
2
L
FN ,max max [ ] (1)强度校核 A FN ,max A (2)截面选择 [ ] (3)计算许可荷载 FN,max A[ ]
强度条件的应用举例
1 2
L
(1) 求内力(节点A平衡) FN1= F sin
A
FN2= - F tan
FN1
F
(2) 求应力(A1,A2横截面积)
C 1m
B
A F
C y 1m
FN1
B A F
A F
x
FN2
解: (1)节点 A 的受力如图,其平衡方程为:
F F
x y
0 0
FN2 FN1 cos 30 0 FN1 sin 30 F 0
得 FN1 2F (拉) FN 2 1.732F (压)
(2)查型钢表得两杆的面积 杆AC 杆AB
例题2 . 钢板冲孔,已知t=5mm,d=18mm,剪切极限应力 τ0=400MPa,求冲力P的大小。
• 解:(1)内力分析: • 剪力: Fs=P • 剪切面面积:A=πd t
• (2)应力分析与强度计算: • τ= Fs/ A ≥τ0 • 由上解得: P ≥ τ0 πd t =113kN
例3 、一铆钉接头如图所示,铆钉和板用同一种材料制成, 铆钉的直径d=18mm,板厚t=10mm,其[τ]=80MPa, [σbs]=200MPa,[σ]=120MPa,试校核此接头部分的强度。
03轴向拉压的内力与应力

材料力学Mechanics of Materials轴向拉压的内力与应力一、轴向拉压的受力和变形特征1 受力特征杆件受到的外力或其合力的作用线沿杆件轴线2 变形特征杆件沿轴线方向发生伸长或缩短3 工程实例二、轴向拉压横截面上的内力建立分离体的静力平衡方程求出内力。
将杆件假想地沿某一横截面开取分离体,用内力表示去掉部分对保留部分的作用0N F F -=N F F∴=0xF=∑1 轴力FFmmFF NxmmF NF2 轴力的符号F N >0F N <拉力为正(方向背离杆件截面)压力为负(方向指向杆件截面)3 轴力图轴力沿杆件横截面的分布图称为轴力图2) 确定出最大轴力的数值及其所在位置,即确定危险截面位置,为强度计算提供依据。
1) 直观反映轴力与截面位置变化关系FF【例题1】一等直杆受力情况如图所示,试作杆的轴力图。
解:1)求约束力0:xF=∑RA 405525200F +-+-=RA 10kNF =2)截面法计算各段轴力AB 段:BC 段:0:xF =∑0:xF=∑N1RA 0F F -=N2RA 400F F --=N110kN F =N250kNF =F F F F N1CD 段:DE 段:0:xF=∑0:xF=∑N325200F +-=N4200F -=N35kNF =-N420kNF =3)绘制轴力图F 10kN5kN50kN+++20kN二、轴向拉压横截面上的应力1 实验现象横向线——仍为平行的直线,且间距增大。
纵向线——仍为平行的直线,且间距减小。
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)变形前原为平面的横截面,变形后仍保持为平面且仍垂直于轴线3 推论轴向拉压时,横截面上只有正应力,且均匀分布N d AF A A σσ==⎰N F A σ=4 符号规定拉为正,压为负5 公式的使用条件1) 轴向拉压杆2) 除外力作用点附近以外其它各点处。
(范围:不超过杆的横向尺寸)F σ=αααA p F N =σαααp cos =ταααp sin=αA F /cos =σαcos 0=σαcos 02=ασ2sin 20二、轴向拉压斜截面上的应力有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)α斜截面正应力α斜截面切应力2cosασσα=022sinαστα=1) α:横截面外法线转到斜截面外法线所转的角度,逆时针转为正,反之为负。
2第2章 拉伸、压缩与剪切(应力,变形,性能)

因为 156 MPa 所以满足强度校核。
湖南大学力 学系:肖万伸
例:结构中 BC 和 AC 都是圆截面直杆,直径均为d=20mm. BC为 Q235钢杆,其许用应力[]1=160MPa; AC为木杆,其许用应力 []2=7MPa。求:该结构的许可载荷。
l1:杆件变形后长度; l:伸长量;
b:杆件原宽;
b :形后杆件宽度。 1
湖南大学力 学系:肖万伸
拉压杆件在轴向变形的同时,横向也会发生变化。
试验结果表明,当拉压杆件的应力不超过材料比例极 限时,与的比值的绝对值为一常数,即
结论:每条纵向纤维的力学性能相同,其受力也应 相同,因此横截面上的正应力是均匀分布的 .
3.等截面拉(压)杆横截面上正应力的计算公式
式中, FN 为轴力,A 为杆的横截面面积,
湖南大学力 学系:肖万伸
的符号与轴力FN 的符号相同。
当轴力为正号时(拉伸),正应力也为正号,称为拉应 力 ;当轴力为负号时(压缩),正应力也为负号,称为压 应力 。 该公式的适应范围:
F qA
q
杆端作用集中力,横截面应力均匀分布吗? 圣维南原理:如将作用于构
q
件上某一小区域内的外力系
q
(外力大小不超过一定值)
q
用一静力等效力系来代替,
则这种代替对构件内应力与
F
max 应变的影响只限于离原受力
小区域很近的范围内。对于
F
杆件,此范围相当于横向尺
F
F 寸的1~1.5倍。
湖南大学力 学系:肖万伸
湖南大学力 学系:肖万伸
切应变
构件产生变形时,不仅线段的长度会发生改变,正
第2讲 拉压杆的内力和应力

第2讲教学方案——拉压杆的内力和应力第二章轴向拉伸与压缩§2-1轴向拉伸与压缩的概念与实例轴向拉伸和压缩的杆件在生产实际中经常遇到,虽然杆件的外形各有差异,加载方式也不同,但一般对受轴向拉伸与压缩的杆件的形状和受力情况进行简化,计算简图如图2-1。
轴向拉伸是在轴向力作用下,杆件产生伸长变形,也简称拉伸;轴向压缩是在轴向力作用下,杆件产生缩短变形,也简称压缩。
实例如图2-2所示用于连接的螺栓;如图2-3所示桁架中的拉杆;如图2-4所示汽车式起重机的支腿;如图2-5所示巷道支护的立柱。
通过上述实例得知轴向拉伸和压缩具有如下特点:1. 受力特点:作用于杆件两端的外力大小相等,方向相反,作用线与杆件轴线重合,即称轴向力。
2. 变形特点:杆件变形是沿轴线方向的伸长或缩短。
§2-2横截面上的内力和应力1.内力在图2-6所示受轴向拉力P 的杆件上作任一横截面m —m ,取左段部分,并以内力的合力N代替右段对左段的作用力。
由平衡条件0=∑X ,得0=-P N由于0>P (拉力),则0>=P N合力N 的方向正确。
因而当外力沿着杆件的轴线作用时,杆件截面上只有一个与轴线重合的内力分量,该内力(分量)称为轴力,一般用N 表示。
若取右段部分,同理0=∑X ,知0=N -P得0>=P N图中N 的方向也是正确的。
材料力学中轴力的符号是由杆件的变形决定,而不是由平衡坐标方程决定。
习惯上将轴力N 的正负号规定为:拉伸时,轴力N 为正;压缩时,轴力N 为负。
2.轴力图轴力图可用图线表示轴力沿轴线变化的情况。
该图一般以杆轴线为横坐标表示截面位置,纵轴表示轴力大小。
例2-1 求如图2-7所示杆件的内力,并作轴力图。
解:(1)计算各段内力AC 段:作截面1—1,取左段部分(图b )。
由0=∑X 得51=N kN (拉力)CB 段:作截面2-2,取左缎部分(图),并假设2N 方向如图所示。
由∑=0X 得KN N 102-=(2)绘轴力图选截面位置为横坐标;相应截面上的轴力为纵坐标,根据适当比例,绘出图线。
2材料力学轴向拉压.ppt课件

pcos co2s22co2s psincossin2sin2
U
W
n i1
12Fii
利用外力功计算应变能并不方便,在更多情况下主 要是通过内力功来计算。
单向应力状态单元体微面上的力在变形过程中做的功为
y
x
dy dx
x
dz x
dW 1 2xdydzxdx1 2xxdV
不考虑能量损耗,则力做的功全部转化为单元体的应变能
dUdW12xxdV
单位体积内储存的应变能,称为应变能密度,单向应力状态有
2.3
F
F
b b1
拉压杆的变形
F 二、拉压杆的横向变形
l l1
bb1b
b
b
横向变形
横向线应变
实验表明,在胡克定律适用的范围时,有:
or
F/ A 即 横向线应变与轴向线应变恒异号,两者之 比的绝对值为一常数,称为泊松比。
00.5
弹性模量 E 和泊松比μ都是材料的弹性常数, 由实验测得。
l
l /l
第二章 轴向拉伸和压缩
A
F
连杆
A
钢拉杆
B
B
F
F
F
F
F
F
F
F
F
F
受力(简)图
受力变形特点: 外力或其合力的作用线沿杆件的轴线(轴载), 主要变形为轴向伸缩。这样的杆件称拉压杆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:当载荷W移到A点时,斜杆AB
受到拉力最大,设其值为Fmax。
讨论横梁平衡 Mc 0
W
Fmax Fmax sin AC W AC 0
FmaxA
Fmax
W
sin
W
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
0.8m
B C
Fmax
FRCx C FRCy
d
A
1.9m
拉伸
F
F
压缩
F
F
目录
§2.1 轴向拉伸与压缩的概念和实例 举例说明:
A
计算简图
P1
拉杆
P1
B P2
压杆
P2
C
F
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
FN F 0 FN F
1、截面法求内力
F (1)假想沿m-m横截面将
杆切开
(2)留下左半段或右半段
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
A
FN1 28.3kN FN 2 20kN
1
2、计算各杆件的应力。
45° B
C
2
FN1
yF
FN 2 45° B x
F
Байду номын сангаас1
FN1 A1
28.3103 202 106
4
90106 Pa 90MPa
2
FN 2 A2
(3)内力均匀分布,各点正应力相等,为常量
ac
F
a
c
b
d
F FN dA
bd
A
dA A
A
FN
A
(2-1)
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
圣维南原理
(1)问题的提出
公式(2-1)的适用范围表明:公式不适用于集中力作用点 附近的区域。因为作用点附近横截面上的应力分布是非均匀 的。随着加载方式的不同。这点附近的应力分布方式就会发 生变化。
p
——(2-3) ③切应力:
p
s in
0
2
sin 2
——(2-4)
§2.2 轴向拉伸或压缩时横截面上的内力和应力 二、讨论上述公式
从上可知 、 均是 的函数,所以斜截面
的方位不同,截面上的应力也不同。
① 当 0 时,斜截面k-k成为横截面。
20103 152 106
89106 Pa 89MPa
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
0.8m
B C
Fmax
FRCx C FRCy
d
1.9m
例题2.2 悬臂吊车的斜杆AB为直径 d=20mm的钢杆,载荷W=15kN。
A 当W移到A点时,求斜杆AB横截面 上的应力。
力。 F 3、轴力正负号:
拉为正、压为负
4、轴力图:轴力沿杆 件轴线的变化
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
4.轴力图作法
A、用截面法求出各段轴力的大小; B、选一个坐标系,用其横坐标表示横截面的位置,纵
坐标表示相应截面上的轴力;
C、拉力绘在 x 轴的上侧,压力绘在 x 轴的下侧。
45° B
C
2
FN1
yF
FN 2 45° B x
解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆) 用截面法取节点B为研究对象
Fx 0 FN1 cos 45 FN 2 0 Fy 0 FN1 sin 45 F 0
F
FN1 28.3kN
FN 2 20kN
观察变形:
ac
F
a
c
b
d
bd
横向线ab、cd 仍为直线,且 仍垂直于杆轴 线,只是分别
F 平行移至
a’b’、 c’d’。
平面假设—变形前原为平面的横截面,
变形后仍保持为平面且仍垂直于轴线。
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
从平面假设可以判断:
(1)所有纵向纤维伸长相等
(2)因材料均匀,故各纤维受力相等
理论和实践研究表明:加力方式不同,只对力作用点附近区 域的应力分布有显著影响,而在距力作用点稍远处,应力都 趋于均匀分布,从而得出如下结论,即圣维南原理。
§2.2 轴向拉伸或压缩时横截面上的内力和应力
(2)圣维南原理
作用于弹性体上某一局部区域内的外力系,可以用与 它静力等效的力系来代替。经过代替,只对原力系作用区 域附近有显著影响,但对较远处,其影响即可不计。
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.1 A 1 B 2 C 3D
已知F1=10kN;F2=20kN; F3=35kN;F4=25kN;试 画出图示杆件的轴力图。
F1 F1 F1
FN kN
1 F2 2 F3 3 FN1
FN2 F2
FN3
10
10
F4 解:1、计算各段的轴力。
达最大值, max 同时 达最小值 m in 0
② 当 450 时, 达到最大值, max / 2 ——(2-6) ③ 当 900 时, 0 0 表明在平行于杆件
轴线的纵向截面上无任何应力。
一、斜截面上应力公式推导:
1. 基本概念
横截面——是指垂直杆轴线方向的截面; 斜截面——与杆轴线不相垂直的截面。
§2.2 轴向拉伸或压缩时横截面上的内力和应力
2. 公式推导(采用截面法)
K
F
F ①全应力:
K
p
F cos
A
0
cos
p
②正应力:
F
N
p cos cos2
)
目录
§2.1 轴向拉伸与压缩的概念和实例
内燃机燃气爆发冲程中的连杆、进排气顶杆
目录
§2.1 轴向拉伸与压缩的概念和实例
目录
§2.1 轴向拉伸与压缩的概念和实例
目录
§2.1 轴向拉伸与压缩的概念和实例
目录
§2.1 轴向拉伸与压缩的概念和实例
杆的受力特点:外力(或外力的合力)的作用线与 杆件的轴线重合。 变形特点:杆件产生沿轴线方向的伸长或缩短。
F (3)将弃去部分对留下部分
的作用用内力代替
(4)对留下部分写平衡方程 求出内力即轴力的值
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
FN F 0 FN F
2、轴力:截面上的内力
F
由于外力的作用线
与杆件的轴线重合,内
力的作用线也与杆件的
轴线重合。所以称为轴
W
Fmax
FmaxA
W
由三角形ABC求出
sin BC 0.8 0.388
AB 0.82 1.92
Fmax
W
sin
15 0.388
38.7kN
斜杆AB的轴力为
FN Fmax 38.7kN
斜杆AB横截面上的应力为
FN A
38.7 103
(20103)2
AB段 Fx 0
FN1 F1 10kN
BC段 Fx 0 FN 2 F2 F1
FN 2 F1 F2
F4
10 20 10kN
25 CD段 Fx 0
FN 3 F4 25kN
x
2、绘制轴力图。
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
(3)圣维南原理运用
由圣维南原理可知:下图中的(b)、(c)、(d)都可以用 同一计算简图(a)来代替,从而图形得到很大程度的简化。
F
F
F/2
F/2
F/2
F/2
F{
}F F
}F
§2.2 轴向拉伸或压缩时横截面上的内力和应力
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
A 1
例题2.2
图示结构,试求杆件AB、CB的 应力。已知 F=20kN;斜杆AB为直 径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
第二讲 轴向拉压杆的内力和应力
目录
上节内容回顾
1 外力及其分类 2 内力及应力 3 截面法(截—代--平衡) 4 变形及应变 5 杆件的基本形式(拉伸压缩、剪切、扭转、弯曲)
第二讲 轴向拉压杆的内力和应力
1 轴向拉压的概念和实例
2 轴向拉压时杆横截面上的内力和应力(
)
3 轴向拉压时杆斜截面上的内力和应力(
4
123106 Pa 123MPa
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
上节中我们分析了拉(压)杆横截面上的正应力,这 是特殊截面上的应力,现在我们来研究更一般的情况,即 任一截面上的应力,对不同材料的实验表明,拉(压)杆 的破坏并不都沿横截面发生,有时却是沿某一斜截面发生 的。
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
杆件的强度不仅与轴力有关,还与横截面面 积有关。必须用应力来比较和判断杆件的强度。
在拉(压)杆的横截面上,与轴
力FN对应的应力是正应力 。根据连