【2020-2021自招】山东淄博实验中学初升高自主招生数学模拟试卷【4套】【含解析】
【中考冲刺】2021年山东省淄博市中考数学模拟试卷(附答案)
∴点P与⊙O的位置关系是点P在⊙O外,
故选:A.
【点睛】
本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外.
5.A
【解析】
∵二次函数 的开口向下,
∴所以在对称轴的左侧y随x的增大而增大.
∵OA=4cm,
∴AC=2cm,
∴OC= cm,
故选:C.
.
【点睛】
此题考查圆内接正六边形的性质,等边三角形的性质,勾股定理,直角三角形30度角所对的直角边等于斜边的一半的性质,熟记圆内接正六边形的性质是解题的关键.
8.D
【分析】
利用中心投影,延长PA、PB分别交x轴于A′、B′,作PE⊥x轴于E,交AB于D,如图,证明△PAB∽△PA′B′,然后利用相似比可求出A'B'的长.
A.
B.
C.
D.
7.如图,有一个半径为 的圆形纸片,若在该纸片上沿虚线剪一个最大正六边形纸片,则这个正六边形纸片的边心距是().
A. B. C. D.
8.如图,在平面直角坐标系中,点 是一个光源.木杆AB两端的坐标分别为 , .则木杆AB在x轴上的投影长为().
A.4B.5C.6D.8
9.如图,在 中, , , ,⊙O是 的内切圆,则⊙O的半径为()
A.1B. C.2D.
10.表给出了二次函数y=ax2+bx+c(a≠0)的自变量x与函数值y的部分对应值:那么方程ax2+bx+c=0的一个根的近似值可能是( )
x
…
1
1.1
1.2
1.3
2020-2021学年最新山东省淄博市中考数学模拟试卷及答案
中考数学模拟试卷(3月份)一.选择题(共12小题,满分48分,每小题4分)1.设a是9的平方根,B=()2,则a与B的关系是()A.a=±B B.a=BC.a=﹣B D.以上结论都不对2.据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积约为多少平方千米()A.36×107 B.3.6×108C.0.36×109D.3.6×1093.下列运算正确的是()A.2a﹣a=1 B.2a+b=2abC.(a4)3=a7D.(﹣a)2•(﹣a)3=﹣a54.如果y=+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±35.如图所示的几何体的俯视图是()A.B.C.D.6.已知x+y=5,xy=6,则x2+y2的值是()A.1 B.13 C.17 D.257.不等式组的解集在数轴上表示为()A.B.C.D.8.如图,AB∥CD,有图中α,β,γ三角之间的关系是()A.α+β+γ=180°B.α﹣β+γ=180°C.α+β﹣γ=180°D.α+β+γ=360°9.下列说法中不正确的是()A.选举中,人们通常最关心的数据是众数B.从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大C.数据甲、乙的方差分别为S甲2=0.4,S乙2=0.6,则数据甲的波动小D.数据3,5,4,1,﹣2的中位数是410.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,点D在BC上,以AC为对角线的所有▱ADCE中,DE的最小值是()A.4 B.6 C.8 D.1011.如图,在矩形ABCD中,AB=3,BC=4,O为矩形ABCD的中心,以D为圆心1为半径作⊙D,P为⊙D上的一个动点,连接AP、OP,则△AOP面积的最大值为()A.4 B. C. D.12.对于两个实数,规定max{a,b}表示a、b中的较大值,当a≥b时,max{a,b}=a,当a<b时,max{a,b}=b,例如:max{1,3}=3.则函数y=max{x2+2x+2,﹣x2﹣1}的最小值是()A.1 B.﹣1 C.0 D.2二.填空题(共5小题,满分20分,每小题4分)13.一元二次方程x2+4x﹣5=0的两根分别为a和b,则a2+b2的值为.14.用教材中的计算器进行计算,开机后依次按下,把显示结果输入如图的程序中,则输出的结果是.15.已知圆锥的底面半径为5cm,侧面积为65πcm2,圆锥的母线是cm.16.如图,两个反比例函数y=和y=在第一象限的图象如图所示,当P在y=的图象上,PC⊥x轴于点C,交y=的图象于点A,PD⊥y轴于点D,交y=的图象于点B,则四边形PAOB的面积为.17.如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.过点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,点P的坐标为.三.解答题(共7小题,满分52分)18.(5分)先化简,再求值:.其中x=sin60°.19.(5分)已知:等边三角形ABC中,BD平分∠ABC,点E在BC的延长线上,CE=CD,求证:DB=DE.20.(8分)抛物线y1=ax2+c与x轴交于A、B两点,与y轴交于点C,点P在抛物线上,过P(1,﹣3),B(4,0)两点作直线y2=kx+b.(1)求a、c的值;(2)根据图象直接写出y1>y2时,x的取值范围;(3)在抛物线上是否存在点M,使得S△ABP=5S△ABM,若存在,求出点M的坐标,若不存在,请说明理由.21.(8分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?22.(8分)人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.(1)求甲种牛奶、乙种牛奶的进价分别是多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)等于371元,请通过计算求出该商场购进甲、乙两种牛奶各自多少件?23.(9分)阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a= (用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a= (用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含m,n,b的式子表示).24.(9分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y 轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC 上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.【分析】由于正数的平方根有两个,且互为相反数,所以在此题中有a两种情况,要考虑全面.【解答】解:∵a是9的平方根,∴a=±3,又B=()2=3,∴a=±b.故选:A.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将360000000用科学记数法表示为:3.6×108.故选:B.3.【分析】根据合并同类项,幂的乘方与积的乘方,同底数幂的乘法的计算法则解答.【解答】解:A、2a﹣a=a,故本选项错误;B、2a与b不是同类项,不能合并,故本选项错误;C、(a4)3=a12,故本选项错误;D、(﹣a)2•(﹣a)3=﹣a5,故本选项正确.故选:D.4.【分析】根据二次根式中的被开方数必须是非负数列出不等式,求出x、y的值,根据算术平方根的概念解答即可.【解答】解:由题意得,x﹣2≥0,2﹣x≥0,解得,x=2,∴y=3,则y x=9,9的算术平方根是3.故选:B.5.【分析】找到从上面看所得到的图形即可,注意所有看到的棱都应表现在俯视图中.【解答】解:从上往下看,该几何体的俯视图与选项D所示视图一致.故选:D.6.【分析】将x+y=5两边平方,利用完全平方公式化简,把xy的值代入计算,即可求出所求式子的值.【解答】解:将x+y=5两边平方得:(x+y)2=x2+2xy+y2=25,将xy=6代入得:x2+12+y2=25,则x2+y2=13.故选:B.7.【分析】根据不等式解集的四种情况,求出其公共解集即可.【解答】解:根据大小小大中间找得出解集为﹣1<x≤1,故选:B.8.【分析】延长AE交直线CD于F,根据平行线的性质得出∠α+∠AFD=180°,根据三角形外角性质得出∠AFD=∠β﹣∠γ,代入求出即可.【解答】解:如图,延长AE交直线CD于F,∵AB∥CD,∴∠α+∠AFD=180°,∵∠AF D=∠β﹣∠γ,∴∠α+∠β﹣∠γ=180°,故选:C.9.【分析】利用众数、中位数、方差等有关知识分别判断后即可确定正确的选项.【解答】解:A、众数表示的是一组数据中出现次数最多的数,在选举中,若某人的选票最多,则此人当选的可能性就越大,故A正确;B、五个数中有3个奇数,2个偶数,故取得奇数的可能性大,故B正确;C、方差越大波动越大,故C正确;D、数据3,5,4,1,﹣2的中位数是3,故D错误,故选:D.10.【分析】平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小,根据三角形中位线定理即可求解.【解答】解:平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小.∵OD⊥BC,BC⊥AB,∴OD∥AB,又∵OC=OA,∴OD是△ABC的中位线,∴OD=AB=3,∴DE=2OD=6.故选:B.11.【分析】当P点移动到平行于OA且与⊙D相切时,△AOP面积的最大,由于P为切点,得出MP垂直与切线,进而得出PM⊥AC,根据勾股定理先求得AC的长,进而求得OA的长,根据△ADM∽△ACD,求得DM的长,从而求得PM的长,最后根据三角形的面积公式即可求得;【解答】解:当P点移动到平行于OA且与⊙D相切时,△AOP面积的最大,如图,∵P是⊙D的切线,∴DP垂直与切线,延长PD交AC于M,则DM⊥AC,∵在矩形ABCD中,AB=3,BC=4,∴AC==5,∴OA=,∵∠AMD=∠ADC=90°,∠DAM=∠CAD,∴△ADM∽△ACD,∴=,∵AD=4,CD=3,AC=5,∴DM=,∴PM=PD+DM=1+=,∴△AOP的最大面积=OA•PM=××=,故选:D.12.【分析】根据题意可以判断x2+2x+2与﹣x2﹣1的大小,并求出函数y=max{x2+2x+2,﹣x2﹣1}的最小值,从而可以解答本题.【解答】解:∵y=max{x2+2x+2,﹣x2﹣1},x2+2x+2=(x+1)2+1≥1,﹣x2﹣1≤﹣1,∴x2+2x+2>﹣x2﹣1,∴函数y=max{x2+2x+2,﹣x2﹣1}的最小值是1,故选:A.二.填空题(共5小题,满分20分,每小题4分)13.【分析】根据韦达定理得a+b=﹣4,ab=﹣5,代入a2+b2=(a+b)2﹣2ab计算可得.【解答】解:∵方程x2+4x﹣5=0的两根分别为a和b,∴a+b=﹣4,ab=﹣5,则a2+b2=(a+b)2﹣2ab=16+10=26,故答案为:26.14.【分析】先根据计算器计算出输入的值,再根据程序框图列出算式,继而根据二次根式的混合运算计算可得.【解答】解:由题意知输入的值为32=9,则输出的结果为[(9÷3)﹣]×(3+)=(3﹣)×(3+)=9﹣2=7故答案为:7.15.【分析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【解答】解:设母线长为R,则:65π=π×5R,解得R=13cm.16.【分析】此题所求的四边形PAOB的面积可由分割法,S四边形PAOB=S□PCOD﹣S△DBO ﹣S△ACO.【解答】解:由于P点在y=上,则S□PCOD=2,A、B两点在y=上,则S△DBO=S△ACO=×1=.∴S四边形PAOB=S□PCOD﹣S△DBO﹣S△ACO=2﹣﹣=1.∴四边形PAOB的面积为1.故答案为:1.17.【分析】由矩形性质可知OD=EF,据垂线段最短可得,当OD⊥AC时,OD最短,即EF最短,根据等腰三角形的性质,D是AC的中点时,OD⊥AC,则DF=OC,即可求得P的纵坐标,代入二次函数的解析式,即可求得横坐标,得到P的坐标.【解答】解:连接OD,由题意可知,四边形OFDE是矩形,则OD=EF.根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短.由(1)可知,在直角△AOC中,OC=OA=4,根据等腰三角形的性质,D是AC的中点时,OD⊥AC.又∵DF∥OC,∴DF=OC=2,∴点P的纵坐标是2.则﹣x2+3x+4=2,解得:x=,∴当EF最短时,点P的坐标是:(,2)或(,2).故答案为:(,2)或(,2).三.解答题(共7小题,满分52分)18.【分析】先根据分式的混合运算顺序和运算法则化简原式,再根据三角函数值代入计算可得.【解答】解:原式=•=,当x=sin60°=时,原式==.19.【分析】根据等边三角形的性质、外角的性质及等腰三角形的性质即可推理得出结论.【解答】证明:∵△ABC是等边三角形,BD平分∠ABC,∴∠BCA=60°,∠DBC=30°,∵CD=CE,∴∠CDE=∠E,∴∠BCA=∠CDE+∠E=2∠E=60°,∴∠E=30°,∴∠DBC=∠E=30°,∴DB=DE.20.【分析】(1)把P点和B点的坐标代入抛物线解析式,即可求出答案;(2)根据函数的图象得出即可;(3)根据面积公式求出M点到x轴的距离,得出M点的纵坐标,再求出M点的横坐标即可.【解答】解:(1)将P(1,﹣3)、B(4,0)代入y=ax2+c得:,解得:;(2)由图象得x>4或x<1;(3)在抛物线上存在点M,使得S△ABP=5S△ABM,理由是:抛物线的解析式是y=x2﹣,设M点的纵坐标为e,∵P(1,﹣3),∴由S△ABP=5S△ABM得:×AB×|﹣3|=5×AB×|e|,[来源:]解得;|e|=,当e=时,x2﹣=,解得:x=±,当e=﹣时,x2﹣=﹣,解得:x=±,即M点的坐标是(,)(﹣,)(,﹣)(﹣,﹣).21.【分析】(1)先根据B等级人数及其百分比求得总人数,总人数减去其他等级人数求得C等级人数,继而用360°乘以C等级人数所占比例即可得;(2)根据以上所求结果即可补全图形;(3)根据中位数的定义求解可得;(4)总人数乘以样本中A等级人数所占比例可得.【解答】解:(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.22.【分析】(1)设乙种牛奶的进价为x元/件,则甲种牛奶的进价为(x﹣5)元/件,根据数量=总价÷单价结合用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进乙种牛奶y件,则购进甲种牛奶(3y﹣5)件,根据总利润=单件利润×销售数量,即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设乙种牛奶的进价为x元/件,则甲种牛奶的进价为(x﹣5)元/件,根据题意得:=,解得:x=50,经检验,x=50是原分式方程的解,且符合实际意义,∴x﹣5=45.答:乙种牛奶的进价是50元/件,甲种牛奶的进价是45元/件.(2)设购进乙种牛奶y件,则购进甲种牛奶(3y﹣5)件,根据题意得:(49﹣45)(3y﹣5)+(55﹣50)y=371,解得:y=23,∴3y﹣5=64.答:该商场购进甲种牛奶64件,乙种牛奶23件.23.【分析】(1)先得出AH=AD,即可得出结论;(2)根据勾股定理求出AB,即可得出结论;(3)A、①根据矩形ABEF∽矩形FECD得出比例式即可得出结论;②同①的方法即可得出结论;B、①分FM是矩形DFMN的长或DF是矩形DFMN的长两种情况,先根据相似矩形得出AF,AG,最后用矩形GABH∽矩形ABCD建立方程即可得出结论;②同①的方法即可得出结论.【解答】解:(1)∵点H是AD的中点,∴AH=AD,∵正方形AEOH∽正方形ABCD,∴相似比为:==;故答案为:;(2)在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:=,故答案为:;(3)A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即a:b=b:a,∴a=b;故答案为: b②每个小矩形都是全等的,则其边长为b和a,则b:a=a:b,∴a=b;故答案为: bB、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:b或b;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:b或b.24.【分析】(1)先求得点C(0,3)的坐标,然后设抛物线的解析式为y=a(x+1)(x﹣),最后,将点C的坐标代入求得a的值即可;(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.先求得AC 的解析式,然后再求得BM的解析式,从而可求得点M的坐标,依据两点间的距离公式可求得MC=BM,最后,依据等腰直角三角形的性质可得到∠ACB的度数;(3)如图2所示:延长CD,交x轴与点E.依据题意可得到∠ECD>45°,然后依据相似三角形的性质可得到∠CAO=∠ECD,则CE=AE,设点E的坐标为(a,0),依据两点间的距离公式可得到(a+1)2=32+a2,从而可得到点E的坐标,然后再求得CE的解析式,最后求得CE与抛物线的交点坐标即可.【解答】解:(1)当x=0,y=3,∴C(0,3).设抛物线的解析式为y=a(x+1)(x﹣).将C(0,3)代入得:﹣a=3,解得:a=﹣2,∴抛物线的解析式为y=﹣2x2+x+3.(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.∵OC=3,AO=1,∴tan∠CAO=3.∴直线AC的解析式为y=3x+3.∵AC⊥BM,∴BM的一次项系数为﹣.设BM的解析式为y=﹣x+b,将点B的坐标代入得:﹣×+b=0,解得b=.∴BM的解析式为y=﹣x+.将y=3x+3与y=﹣x+联立解得:x=﹣,y=.∴MC=BM═=.∴△MCB为等腰直角三角形.∴∠ACB=45°.(3)如图2所示:延长CD,交x轴与点F.∵∠ACB=45°,点D是第一象限抛物线上一点,∴∠ECD>45°.又∵△DCE与△AOC相似,∠AOC=∠DEC=90°,∴∠CAO=∠ECD.∴CF=AF.设点F的坐标为(a,0),则(a+1)2=32+a2,解得a=4.∴F(4,0).设CF的解析式为y=kx+3,将F(4,0)代入得:4k+3=0,解得:k=﹣.∴CF的解析式为y=﹣x+3.将y=﹣x+3与y=﹣2x2+x+3联立:解得:x=0(舍去)或x=.将x=代入y=﹣x+3得:y=.∴D(,).。
【6套合集】山东淄博实验中学2020中考提前自主招生数学模拟试卷附解析
中学自主招生数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算20的结果是()A.0B.1C.2D.2.(3分)下列运算正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)2=a2+b2C.a2b2=(ab)4D.(a3)2=a63.(3分)下列调查方式,合适的是()A.要了解一批灯泡的使用寿命,采用普查方式B.要了解广州电视台“今日报道”栏目的收视率,采用普查方式C.要了解我国15岁少年身高情况,采用普查方式D.要选出某校短跑最快的学生参加全市比赛,采用普查方式4.(3分)若分式的值为0,则x的值为()A.﹣1B.0C.1D.±15.(3分)解方程+时,去分母后得到的方程是()A.3(x﹣5)+2(x﹣1)=1B.3(x﹣5)+2x﹣1=1C.3(x﹣5)+2(x﹣1)=6D.3(x﹣5)+2x﹣1=66.(3分)下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣2x+1B.y=C.y=﹣2x2+1D.y=2x7.(3分)如图,将矩形ABCD折叠,使点C与点E重合,折痕为线段DF,已知矩形ABCD 的面积为6,四边形CDEF的面积为4,则AC=()A.B.C.D.8.(3分)如图,在梯形ABCD中,AB∥CD,过点C作CE∥BD,交AB延长线于点E,对角线AC、BD相交于点O,下列结论中,错误的是()A.△AOB∽△CODB.∠AOB=∠ACBC.四边形BDCE是平行四边形D.S△AOD=S△BOC9.(3分)在正方体表面上画有如图中所示的粗线,那么它的展开图可以是()A.B.C.D.10.(3分)k≠0,函数y=kx﹣k与y=在同一平面直角坐标系中的大致图象可能是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)计算:6ab2÷3ab=.12.(3分)不等式组的解集是.13.(3分)如图,如果AE∥BD,CD=20,CE=36,AC=27,那么BC=.14.(3分)某样本数据分成5组,第1组和第2组的频率之和为0.3,第3组的频率是0.14,第4组和第5组的频率相等,那么第5组的频率是.15.(3分)一张试卷只有25道选择题,答对一题得4分,答错倒扣1分,某学生解答了全部试题共得70分,他答对了道题.16.(3分)如图,在四边形ABCD中,对角线AC垂直平分BD,∠BAD=120°,AB=4,点E是AB的中点,点F是AC上一动点,则EF+BF的最小值是.三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤)17.(9分)计算:2sin30°﹣(﹣)﹣1﹣.18.(9分)如图,在▱ABCD中,点E,F分别在BC,AD上,且DF=BE.求证:四边形AECF是平行四边形.19.(10分)已知a、b(a>b)是方程x2﹣5x+4=0的两个不相等的实数根,求﹣的值.20.(10分)现需了解2019年各月份中5至14日广州市每天最低气温的情况:图①是3月份的折线统计图.(数据来源于114天气网)(1)图②是3月份的频数分布直方图,根据图①提供的信息,补全图②中的频数分布直方图;(2)3月13日与10日这两天的最低气温之差是℃;(3)图③是5月份的折线统计图.用S表示5月份的方差;用S表示3月份的方差,比较大小:S S;比较3月份与5月份,月份的更稳定.21.(12分)某商场销售产品A,第一批产品A上市40天内全部售完.该商场对第一批产品A上市后的销售情况进行了跟踪调查,调查结果如图所示:图①中的折线表示日销售量w与上市时间t的关系;图②中的折线表示每件产品A的销售利润y与上市时间t的关系.(1)观察图①,试写出第一批产品A的日销售量w与上市时间t的关系;(2)第一批产品A上市后,哪一天这家商店日销售利润Q最大?日销售利润Q最大是多少元?(日销售利润=每件产品A的销售利润×日销售量)22.(12分)某校初三(1)班综合实践小组去某地测量人工湖的长,如图A、D是人工湖边的两座雕塑,AB、BC是小路,小东同学进行如下测量:D点在A点的正北方向,B点在A点的北偏东60°方向,C点在B点的北偏东45°方向,C点在D点正东方向,且测得AB=20米,BC=40米,求AD的长.(结果保留根号)23.(12分)如图,⊙O的半径为5,点A在⊙O上,过点A的直线l与⊙O相交于点B,AB=6,以直线l为图象的一次函数解析式为y=kx﹣8k(k为常数且k≠0).(1)求直线l与x轴交点的坐标;(2)求点O到直线AB的距离;(3)求直线AB与y轴交点的坐标.24.(14分)如图①,△ABC表示一块含有60°角的直角三角板,60°所对的边BC的长为6,以斜边AB所在直线为x轴,AB边上的高所在直线为y轴,建立平面直角坐标系.等腰直角△DEF的直角顶点F初始位置落在y轴的负半轴,斜边DE始终在x轴上移动,且DE=6.抛物线y=ax2+bx+c经过A、B、C三点.(1)求a、b、c;(2)△DEF经过怎样的平移后,点E与点B重合?求出点E与点B重合时,点F的坐标;(3)△DEF经过怎样的平移后,⊙E与直线AC和BC均相切?(参考数据:=,=)25.(14分)已知:如图①,四边形ABCD是正方形,在CD的延长线上任取一点E,以CE为边作正方形CEFG,使正方形ABCD与正方形CEFG分居在CD的两侧,连接AF,取AF的中点M,连接EM、DM,DM的延长线交EF于点N.(1)求证:△ADM≌△FNM;(2)判断△DEM的形状,并加以证明;(3)如图②,将正方形CEFG绕点C按逆时针方向旋转n°(30<n<45)后,其他条件不变,(2)中的结论还成立吗?如果成立,请加以证明;如果不成立,请说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算20的结果是()A.0B.1C.2D.【分析】根据:a0=1(a≠0)可得结论.【解答】解:20=1,故选:B.【点评】本题考查了零指数幂的计算,比较简单,熟练掌握公式是关键.2.(3分)下列运算正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)2=a2+b2C.a2b2=(ab)4D.(a3)2=a6【分析】直接利用完全平方公式以及积的乘方运算法则分别判断得出答案.【解答】解:A、(a﹣b)2=a2﹣2ab+b2,故此选项错误;B、(a+b)2=a2+2ab+b2,故此选项错误;C、a2b2=(ab)2,故此选项错误;D、(a3)2=a6,正确.故选:D.【点评】此题主要考查了完全平方公式以及积的乘方运算,正确掌握相关运算法则是解题关键.3.(3分)下列调查方式,合适的是()A.要了解一批灯泡的使用寿命,采用普查方式B.要了解广州电视台“今日报道”栏目的收视率,采用普查方式C.要了解我国15岁少年身高情况,采用普查方式D.要选出某校短跑最快的学生参加全市比赛,采用普查方式【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、要了解一批灯泡的使用寿命,调查过程带有破坏性,只能采取抽样调查,而不能将整批灯泡全部用于实验;B、要了解广州电视台“今日报道”栏目的收视率,进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可;C、要了解我国15岁少年身高情况,进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可;D、要选出某校短跑最快的学生参加全市比赛,必须选用普查;故选:D.【点评】本题考查的是调查方法的选择;正确选择调查方式要根据全面调查的优缺点再结合实际情况去分析.4.(3分)若分式的值为0,则x的值为()A.﹣1B.0C.1D.±1【分析】直接利用分式的值为零则分子为零,分母不等于零,进而得出答案.【解答】解:∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选:A.【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键.5.(3分)解方程+时,去分母后得到的方程是()A.3(x﹣5)+2(x﹣1)=1B.3(x﹣5)+2x﹣1=1C.3(x﹣5)+2(x﹣1)=6D.3(x﹣5)+2x﹣1=6【分析】根据一元一次方程的解法即可求出答案.【解答】解:等式两边同时乘以6可得:3(x﹣5)+2(x﹣1)=6,故选:C.【点评】本题考查一元一次方程,解题的关键是熟练运用分式的运算法则,本题属于基础题型.6.(3分)下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣2x+1B.y=C.y=﹣2x2+1D.y=2x【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断.【解答】解:A、y=﹣2x+1,一次函数,k<0,故y随着x增大而减小,故A错误;B、y=,k=2>0,在每个象限里,y随x的增大而减小,故B错误;C、y=﹣2x2+1(x>0),二次函数,a<0,故当图象在对称轴右侧,y随着x的增大而减小;而在对称轴左侧(x<0),y随着x的增大而增大,故C错误;D、y=2x,一次函数,k>0,故y随着x增大而增大,故D正确.故选:D.【点评】本题综合考查二次函数、一次函数、反比例函数的增减性(单调性),是一道难度中等的题目.7.(3分)如图,将矩形ABCD折叠,使点C与点E重合,折痕为线段DF,已知矩形ABCD 的面积为6,四边形CDEF的面积为4,则AC=()A.B.C.D.【分析】根据四边形CDEF是正方形,即可得出CD==2,根据矩形ABCD的面积为6,即可得出AD=3,再根据勾股定理即可得到AC的长.【解答】解:由折叠可得,∠DEF=∠DCF=∠CDE=90°,∴四边形CDEF是矩形,由折叠可得,CD=DE,∴四边形CDEF是正方形,∴CD==2,又∵矩形ABCD的面积为6,∴AD=3,∴Rt△ACD中,AC==,故选:C.【点评】本题主要考查了折叠问题以及矩形的性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8.(3分)如图,在梯形ABCD中,AB∥CD,过点C作CE∥BD,交AB延长线于点E,对角线AC、BD相交于点O,下列结论中,错误的是()A.△AOB∽△CODB.∠AOB=∠ACBC.四边形BDCE是平行四边形D.S△AOD=S△BOC【分析】根据梯形的性质和相似三角形的判定和性质解答即可.【解答】解:∵CD∥AB,∴△AOB∽△COD,故A正确;∵CD∥BE,DB∥CE,∴四边形BDCE是平行四边形,故C正确;∵△ABC的面积=△BOC的面积+△AOB的面积=△ADB的面积=△AOD的面积+△AOB的面积,∴△AOD的面积=△BOC的面积,故D正确;∵∠AOB=∠COD,∴∠DOC=∠OCE>∠ACB,故B错误;故选:B.【点评】此题考查相似三角形的判定,关键是根据梯形的性质和相似三角形的判定和性质解答.9.(3分)在正方体表面上画有如图中所示的粗线,那么它的展开图可以是()A.B.C.D.【分析】具体折一折,从中发挥想象力,可得正确的答案.【解答】解:由带有各种符号的面的特点及位置,可知只有选项D符合.故选:D.【点评】考查了几何体的展开图,解决此类问题,要充分考虑带有各种符号的面的特点及位置.10.(3分)k≠0,函数y=kx﹣k与y=在同一平面直角坐标系中的大致图象可能是()A.B.C.D.【分析】分两种情况讨论,当k>0时,分析出一次函数和反比例函数所过象限;再分析出k<0时,一次函数和反比例函数所过象限,符合题意者即为正确答案.【解答】解:①当k>0时,y=kx﹣k过一、三、四象限;y=过一、三象限;②当k<0时,y=kx﹣k过一、二、四象象限;y=过二、四象限.观察图形可知,只有A选项符合题意.故选:A.【点评】本题主要考查了反比例函数的图象和一次函数的图象,熟悉两函数中k和b的符号对函数图象的影响是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)计算:6ab2÷3ab=2b.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=2b,故答案为:2b【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.12.(3分)不等式组的解集是x>0.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式﹣x<0得x>0,解不等式3x+5>0得x>﹣,所以不等式组的解集为x>0,故答案为:x>0.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.(3分)如图,如果AE∥BD,CD=20,CE=36,AC=27,那么BC=15.【分析】根据平行线分线段成比例解答即可.【解答】解:∵AE∥BD,CD=20,CE=36,AC=27,∴,即,解得:BC=15,故答案为:15【点评】此题考查平行线分线段成比例,关键是根据平行线分线段成比例解答.14.(3分)某样本数据分成5组,第1组和第2组的频率之和为0.3,第3组的频率是0.14,第4组和第5组的频率相等,那么第5组的频率是0.28.【分析】直接利用5各小组的频率之和为1,进而得出答案.【解答】解:∵某样本数据分成5组,第1组和第2组的频率之和为0.3,第3组的频率是0.14,∴第4组和第5组的频率和为:1﹣0.3﹣0.14=0.56,∵第4组和第5组的频率相等,∴第5组的频率是:0.28.故答案为:0.28.【点评】此题主要考查了频率的意义,正确得出第4组和第5组的频率和是解题关键.15.(3分)一张试卷只有25道选择题,答对一题得4分,答错倒扣1分,某学生解答了全部试题共得70分,他答对了19道题.【分析】设他做对了x道题,则小英做错了(25﹣x)道题,根据总得分=4×做对的题数﹣1×做错的题数,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设他做对了x道题,则他做错了(25﹣x)道题,根据题意得:4x﹣(25﹣x)=70,解得:x=19.故答案为:19.【点评】本题考查了一元一次方程的应用,根据总得分=4×做对的题数﹣1×做错的题数列出关于x的一元一次方程是解题的关键.16.(3分)如图,在四边形ABCD中,对角线AC垂直平分BD,∠BAD=120°,AB=4,点E是AB的中点,点F是AC上一动点,则EF+BF的最小值是2.【分析】连接DF,过E作EG⊥BD于G,当E,F,D三点共线时,EF+BF的最小值等于DE的长,利用勾股定理求得DE的长,即可得出EF+BF的最小值.【解答】解:如图所示,连接DF,过E作EG⊥BD于G,∵AC垂直平分BD,∴FB=FD,AB=AD,∴EF+BF=EF+FD,当E,F,D三点共线时,EF+BF的最小值等于DE的长,∵∠BAD=120°,∴∠ABD=30°,又∵AB=4,点E是AB的中点,∴EG=BE=1,AH=AB=2,∴BG=,BH=2,GH=,∴DH=2,DG=3,∴Rt△DEG中,DE===2,故答案为:2.【点评】本题主要考查了最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤)17.(9分)计算:2sin30°﹣(﹣)﹣1﹣.【分析】直接利用二次根式的性质以及特殊角的三角函数值、负指数幂的性质分别化简得出答案.【解答】解:原式=2×﹣(﹣2)﹣6=1+2﹣6=﹣3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(9分)如图,在▱ABCD中,点E,F分别在BC,AD上,且DF=BE.求证:四边形AECF是平行四边形.【分析】在▱ABCD中,AD=BC,又BE=DF,可得AF=EC,得出AF平行且等于EC,根据平行四边形的判定,可得出四边形AECF是平行四边形.【解答】证明:∵四边形ABCD平行四边形∴AD=BC.又∵BE=DF,∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.【点评】此题主要要掌握平行四边形的判定与性质;熟练掌握平行四边形的判定与性质是解决问题的关键.19.(10分)已知a、b(a>b)是方程x2﹣5x+4=0的两个不相等的实数根,求﹣的值.【分析】利用平方差公式可将原式化简成a+b,再根据方程的系数结合根的判别式可得出a+b=5,此题得解.【解答】解:﹣=,=,=a+b.∵a、b(a>b)是方程x2﹣5x+4=0的两个不相等的实数根,∴a+b=5,∴原式=a+b=5.【点评】本题考查了根与系数的关系以及平方差公式,利用平方差公式将原式化简成a+b是解题的关键.20.(10分)现需了解2019年各月份中5至14日广州市每天最低气温的情况:图①是3月份的折线统计图.(数据来源于114天气网)(1)图②是3月份的频数分布直方图,根据图①提供的信息,补全图②中的频数分布直方图;(2)3月13日与10日这两天的最低气温之差是3℃;(3)图③是5月份的折线统计图.用S表示5月份的方差;用S表示3月份的方差,比较大小:S<S;比较3月份与5月份,3月份的更稳定.【分析】(1)最低气温14℃的有3天,据此补充频数分布直方图;(2)3月13日与10日这两天的最低气温之差是15﹣12=3(℃);(3)根据折线统计图分布,可知3月份最低气温波动比3月份最低气温波动小,所以所以S32<S,3月份更稳定.【解答】解:(1)最低气温14℃的有3天,所以补充频数分布直方图如下:(2)3月13日与10日这两天的最低气温之差是15﹣12=3(℃),故答案为3;(3)根据折线统计图分布,可知3月份最低气温波动比3月份最低气温波动小,所以所以S32<S,3月份更稳定,故但为<,3.【点评】本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.(12分)某商场销售产品A,第一批产品A上市40天内全部售完.该商场对第一批产品A上市后的销售情况进行了跟踪调查,调查结果如图所示:图①中的折线表示日销售量w与上市时间t的关系;图②中的折线表示每件产品A的销售利润y与上市时间t的关系.(1)观察图①,试写出第一批产品A的日销售量w与上市时间t的关系;(2)第一批产品A上市后,哪一天这家商店日销售利润Q最大?日销售利润Q最大是多少元?(日销售利润=每件产品A的销售利润×日销售量)【分析】(1)根据题意和函数图象中的数据可以求得第一批产品A的日销售量w与上市时间t的关系;(2)根据函数图象中的数据可以求得第一批产品A上市后,哪一天这家商店日销售利润Q最大,并求出Q的最大值.【解答】解:(1)由图①可得,当0≤t≤30时,可设日销售量w=kt,∵点(30,60)在图象上,∴60=30k.∴k=2,即w=2t;当30<t≤40时,可设日销售量w=k1t+b.∵点(30,60)和(40,0)在图象上,∴,解得,k1=﹣6,b=240,∴w=﹣6t+240.综上所述,日销售量w=;即当0≤t≤30时,日销售量w=2t;当30<t≤40时,日销售量w=﹣6t+240;(2)由图①知,当t=30(天)时,日销售量w达到最大,最大值w=60,又由图②知,当t=30(天)时,产品A的日销售利润y达到最大,最大值y=60(元/件),∴当t=30(天)时,日销售量利润Q最大,最大日销售利润Q=60×60=3600(元),答:第一批产品A上市后30天,这家商店日销售利润Q最大,日销售利润Q最大是3600元.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22.(12分)某校初三(1)班综合实践小组去某地测量人工湖的长,如图A、D是人工湖边的两座雕塑,AB、BC是小路,小东同学进行如下测量:D点在A点的正北方向,B 点在A点的北偏东60°方向,C点在B点的北偏东45°方向,C点在D点正东方向,且测得AB=20米,BC=40米,求AD的长.(结果保留根号)【分析】过点B作BF⊥AD、BE⊥CD,垂足分别为E、F,已知AD=AF+FD,则分别求得AF、DF的长即可求得AD的长.【解答】解:过点B作BF⊥AD、BE⊥CD,垂足分别为E、F.在Rt△ABF中,∵∠F AB=60°,AB=20,∴AF=AB cos∠F AB=20×=10.在Rt△BCE中,∵∠EBC=45°,BC=40,∴BE=BC cos∠EBC=40×=20.在矩形BEDF中,FD=BE=20,∴AD=AF+FD=10+20.答:AD的长为(10+20)米.【点评】本题考查了解直角三角形的应用﹣方向角问题,解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.23.(12分)如图,⊙O的半径为5,点A在⊙O上,过点A的直线l与⊙O相交于点B,AB=6,以直线l为图象的一次函数解析式为y=kx﹣8k(k为常数且k≠0).(1)求直线l与x轴交点的坐标;(2)求点O到直线AB的距离;(3)求直线AB与y轴交点的坐标.【分析】(1)令y=0,得kx﹣8k=0,解出即可;(2)作OD⊥AB,垂足为D.可知点O到直线AB的距离为线段OD的长度,利用勾股定理可得OD的长;(3)介绍两种方法:方法一,先根据勾股定理计算DN的长,证明Rt△OMD∽Rt△NOD,列比例式求OM的长,可得结论;方法二:先得∠OND=30°.根据30度的正切列式可得OM的长,可得结论.【解答】解:(1)令y=0,得kx﹣8k=0,∵k≠0,解得x=8,∴直线l与x轴的交点N的坐标为(8,0).(2)连接OB,过点O作OD⊥AB,垂足为D.∴点O到直线AB的距离为线段OD的长度,∵⊙O的半径为5,∴OB=5.又∵AB=6,∴BD=AB==3.在Rt△OBD中,∵∠ODB=90°,∴OD===4.答:点O到直线AB的距离为4.(3)由(1)得N的坐标为(8,0),∴ON=8.由(2)得OD=4.方法一:∴在Rt△ODN中,DN===4.又∵∠OMD+∠MOD=90°,∠NOD+∠MOD=90°,∴∠OMD=∠NOD.∵∠ODM=∠ODN,∴Rt△OMD∽Rt△NOD,∴.∴OM=•NO=×8=.∴直线AB与y轴的交点为(0,).方法二:∴在Rt△OND中,sin∠OND==.∴∠OND=30°.∵在Rt△OMN中,tan30°=∴OM=ON•tan∠OND,∴OM=8tan30°=.∴直线AB与y轴的交点为(0,).【点评】此题考查了一次函数的综合题,考查了待定系数法和解直角三角形,三角形相似的性质和判定,同时也利用了垂径定理和勾股定理解决问题,难度适中.24.(14分)如图①,△ABC表示一块含有60°角的直角三角板,60°所对的边BC的长为6,以斜边AB所在直线为x轴,AB边上的高所在直线为y轴,建立平面直角坐标系.等腰直角△DEF的直角顶点F初始位置落在y轴的负半轴,斜边DE始终在x轴上移动,且DE=6.抛物线y=ax2+bx+c经过A、B、C三点.(1)求a、b、c;(2)△DEF经过怎样的平移后,点E与点B重合?求出点E与点B重合时,点F的坐标;(3)△DEF经过怎样的平移后,⊙E与直线AC和BC均相切?(参考数据:=,=)【分析】(1)通过解直角三角形可求出点A,B,C的坐标,根据点A,B,C的坐标,利用待定系数法可求出a,b,c的值;(2)求出当等腰直角△DEF的直角顶点F在y轴负半轴时点E,F的坐标,结合点B的坐标可得出将△DEF沿x轴正方向(向右)平移(3﹣3)个单位长度可使点E与点B 重合,再结合点F的坐标即可得出平移后点F的坐标;(3)设⊙P的半径为r,⊙P与直线AC和BC都相切,分两种情况考虑:①圆心P1在直线AC的右侧时,过点P1作P1Q1⊥AC,垂足为Q1,作P1R1⊥BC,垂足为R1,则四边形Q1CR1P1是正方形,设Q1C=CR1=R1P1=P1Q1=r1,在Rt△P1R1B中通过解直角三角形BR1=r1,进而可得出BC=(+1)r1,结合BC=6可求出r1的值,由BR1=r1,结合OP1=OB﹣BP1可求出点P1的坐标,再结合点E的坐标即可得出把△DEF 沿x轴负方向(向左)平移(3﹣3)个单位长度可使⊙E与直线AC和BC均相切;②当圆心P2在直线AC的左侧时,过点P2作P2Q2⊥AC,垂足为Q2,作P2R2⊥BC,垂足为R2,则四边形Q2CR2P2是正方形,同理,可求出点P2的坐标,再结合点E的坐标即可得出把△DEF沿x轴负方向(向左)平移(9+3)个单位长度可使⊙E与直线AC 和BC均相切.综上,此题得解.【解答】解:(1)在Rt△ABC中,∠CAB=60°,∠ACB=90°,BC=6,∴∠ABC=30°,OC=BC•sin∠ABC=6×sin30°=3,∴点C的坐标为(0,3);在Rt△COB中,OC=3,∠OBC=30°,∴OB=OC•cot∠OBC=3×cot30°=3,∴点B的坐标为(3,0);在Rt△AOC中,OC=3,∠CAO=60°,∴AO=OC•cot∠CAO=3×cot60°=,∴点A的坐标为(﹣,0).将A(﹣,0),B(3,0),C(0,3)代入y=ax2+bx+c,得:,解得:,∴a=﹣,b=,c=3.(2)当等腰直角△DEF的直角顶点F在y轴负半轴时,∵DE=6,∴OE=OF=DE=×6=3,∴点F起始位置的坐标为(0,﹣3),点E起始位置的坐标为(3,0).∵点B的坐标为(3,0),∴BE=OB﹣OE=3﹣3,∴△DEF沿x轴正方向(向右)平移(3﹣3)个单位长度,可使点E与点B重合,∴当点E与点B重合时,点F的坐标为(3﹣3,﹣3).(3)设⊙P的半径为r,⊙P与直线AC和BC都相切,有两种情况:①圆心P1在直线AC的右侧时,过点P1作P1Q1⊥AC,垂足为Q1,作P1R1⊥BC,垂足为R1,如图③所示.∵∠ACB=90°,∴四边形Q1CR1P1是矩形.∵⊙P1与AC、BC相切于点Q1、R1,∴R1P1=P1Q1,∴矩形Q1CR1P1是正方形.设Q1C=CR1=R1P1=P1Q1=r1,∴在Rt△P1R1B中,BR1=R1P1cot∠CBA=r1cot30°=r1,∴BC=CR1+BR1=r1+r1=(+1)r1,又∵BC=6,∴(+1)r1=6,∴r1===3(﹣1)=3﹣3.∴P1B=2R1P1=2r1=2(3﹣3)=6﹣6,∴OP1=OB﹣BP1=3﹣(6﹣6)=6﹣3,∴P1的坐标为(6﹣3,0).∵OE=3,∴EP1=OE﹣OP1=3﹣(6﹣3)=3﹣3,∴把△DEF沿x轴负方向(向左)平移(3﹣3)个单位长度,可使⊙E与直线AC和BC均相切;②当圆心P2在直线AC的左侧时,过点P2作P2Q2⊥AC,垂足为Q2,作P2R2⊥BC,垂足为R2,如图④所示.∵∠ACB=90°,∴∠R2CQ2=90°,∵⊙P2与AC、BC相切于点Q2、R2,∴矩形Q2CR2P2是正方形.设Q2C=CR2=R2P2=P2Q2=r2,∴在Rt△P2R2B中,BR2=R2P2cot∠CBA=r2cot30°=r2,∴BC=BR2﹣CR2 =r2 ﹣r2=(﹣1)r2,又∵BC=6,∴(﹣1)r2=6,∴r2===3(+1)=3+3,∴P2B=2R2P2=2r2=2(3+3)=6+6,∴OP2=BP2﹣OB=6+6﹣3=6+3,∴P2的坐标为(﹣6﹣3,0).∵OE=3,OP2=6+3,∴EP2=OE+OP2=3+(6+3)=9+3,∴把△DEF沿x轴负方向(向左)平移(9+3)个单位长度,可使⊙E与直线AC和BC均相切.综上所述,把△DEF沿x轴负方向(向左)平移(3﹣3)或(9+3)个单位长度,可使⊙E与直线AC和BC均相切.【点评】本题考查了解直角三角形、待定系数法求二次函数解析式、等腰直角三角形、正方形的判定与性质以及平移的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出a,b,c的值;(2)利用等腰直角三角形的性质求出点E,F的坐标;(3)分两种情况求出点P的坐标(即点E移动到的位置).25.(14分)已知:如图①,四边形ABCD是正方形,在CD的延长线上任取一点E,以CE为边作正方形CEFG,使正方形ABCD与正方形CEFG分居在CD的两侧,连接AF,取AF的中点M,连接EM、DM,DM的延长线交EF于点N.(1)求证:△ADM≌△FNM;(2)判断△DEM的形状,并加以证明;(3)如图②,将正方形CEFG绕点C按逆时针方向旋转n°(30<n<45)后,其他条件不变,(2)中的结论还成立吗?如果成立,请加以证明;如果不成立,请说明理由.【分析】(1)根据正方形的性质和全等三角形的判定解答即可;(2)①根据全等三角形的性质和等腰直角三角形的判定和性质解答即可;②在MN上截取MP=MD,连结EP、FP,延长FP与DC延长线交于点H,根据全等三角形的判定和性质以及等腰直角三角形的判定解答即可.【解答】(1)证明:∵四边形ABCD和四边形CGFE是正方形,∴CE=FE,AD=DC,∠CEF=90°,AD∥EF.∴∠1=∠2.在△AMD和△FMN中,∵∴△AMD≌△FMN(ASA)(2)答:△DEM是等腰直角三角形.由(1)得△AMD≌△FMN,∴MD=MN,AD=FN.在正方形ABCD中,∵AD=DC,∴DC=NF,又∵EC=EF,∴EC﹣DC=EF﹣NF,即ED=EN.又∵∠DEN=90°,∴△DEN是等腰直角三角形.∴EM⊥MD,ME=MD.∴△DEM是等腰直角三角形;(3)答:仍然成立.如图,在MN上截取MP=MD,连结EP、FP,延长FP与DC延长线交于点H.在△AMD和△FMP中,∵∴△AMD≌△FMP(SAS).∴∠3=∠4,AD=PF,又∵四边形ABCD、四边形CGFE均为正方形,∴CE=FE,AD=DC,∠ADC=90°,∠CEF=∠ADC=∠EFG=∠ECG=90°.∴DC=PF.∵∠3=∠4,∴AD∥FH.∴∠H=∠ADC=90°.∵∠G=90°,∠5=∠6,∠GCH=180°﹣∠H﹣∠5,∠GFH=180°﹣∠G﹣∠6,∴∠GCH=∠GFH.∵∠GCH+∠DCE=∠GFH+∠PFE=90°,∴∠DCE=∠PFE,在△DCE和△PFE中,∵∴△DCE≌△PFE(SAS).∴ED=EP,∠DEC=∠PEF,∵∠CEF=90°,∴∠DEP=90°.∴△DEP是等腰直角三角形.∴EM⊥MD,ME=MD,∴△DEM是等腰直角三角形.【点评】本题考查的是四边形的综合题,关键是根据正方形的性质、全等三角形的判定定理和性质定理以及等腰直角三角形的判定进行解答.中学自主招生数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算20的结果是()A.0B.1C.2D.2.(3分)下列运算正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)2=a2+b2C.a2b2=(ab)4D.(a3)2=a63.(3分)下列调查方式,合适的是()A.要了解一批灯泡的使用寿命,采用普查方式B.要了解广州电视台“今日报道”栏目的收视率,采用普查方式C.要了解我国15岁少年身高情况,采用普查方式D.要选出某校短跑最快的学生参加全市比赛,采用普查方式4.(3分)若分式的值为0,则x的值为()A.﹣1B.0C.1D.±15.(3分)解方程+时,去分母后得到的方程是()A.3(x﹣5)+2(x﹣1)=1B.3(x﹣5)+2x﹣1=1C.3(x﹣5)+2(x﹣1)=6D.3(x﹣5)+2x﹣1=66.(3分)下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣2x+1B.y=C.y=﹣2x2+1D.y=2x7.(3分)如图,将矩形ABCD折叠,使点C与点E重合,折痕为线段DF,已知矩形ABCD 的面积为6,四边形CDEF的面积为4,则AC=()A.B.C.D.。
初中数学山东省淄博市中考模拟数学考试题考试卷及答案Word .docx
xx 学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx 题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:计算(﹣3)2等于()A.﹣9 B.﹣6 C. 6 D. 9 试题2:方程﹣=0解是()A. x= B. x= C. x= D. x=﹣1试题3:如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是()A. 8,6 B. 8,5 C. 52,53 D. 52,52评卷人得分试题4:如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S1,S2,S3,则S1,S2,S3的大小关系是()A. S1>S2>S3 B. S3>S2>S1 C. S2>S3>S1D. S1>S3>S2试题5:一元二次方程x2+2x﹣6=0的根是()A.x1=x2= B. x1=0,x2=﹣2 C. x1=,x2=﹣3 D. x1=﹣,x2=3试题6:当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A. 7 B. 3 C. 1 D .﹣7试题7:如图,等腰梯形ABCD中,对角线AC、DB相交于点P,∠BAC=∠CDB=90°,AB=AD=DC.则cos∠DPC的值是()A. B.C.D.试题8:如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A. y=x2﹣x﹣2 B. y=x2﹣x+2 C. y=x2+x﹣2 D. y=x2+x+2试题9:如图,ABCD是正方形场地,点E在DC的延长线上,AE与BC相交于点F.有甲、乙、丙三名同学同时从点A出发,甲沿着A﹣B﹣F﹣C的路径行走至C,乙沿着A﹣F﹣E﹣C﹣D的路径行走至D,丙沿着A﹣F﹣C﹣D的路径行走至D.若三名同学行走的速度都相同,则他们到达各自的目的地的先后顺序(由先至后)是()A.甲乙丙 B.甲丙乙 C.乙丙甲 D.丙甲乙试题10:如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C.则矩形的一边AB的长度为()A. 1 B.C.D. 2 试题11:如图,直线AB与⊙O相切于点A,弦CD∥AB,E,F为圆上的两点,且∠CDE=∠ADF.若⊙O的半径为,CD=4,则弦EF的长为()A. 4 B. 2C. 5 D. 6试题12:已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()A. 6 B. 5 C. 4 D . 3试题13:分解因式:8(a2+1)﹣16a=试题14:某实验中学九年级(1)班全体同学的综合素质评价“运动与健康”方面的等级统计如图所示,其中评价为“A”所在扇形的圆心角是度.试题15:已知▱ABCD,对角线AC,BD相交于点O,请你添加一个适当的条件,使▱ABCD成为一个菱形,你添加的条件是试题16:关于x的反比例函数y=的图象如图,A、P为该图象上的点,且关于原点成中心对称.△PAB中,PB∥y轴,AB∥x轴,PB与AB相交于点B.若△PAB的面积大于12,则关于x的方程(a﹣1)x2﹣x+=0的根的情况是.试题17:如图,在正方形网格中有一边长为4的平行四边形ABCD,请将其剪拼成一个有一边长为6的矩形.(要求:在答题卡的图中画出裁剪线即可)试题18:计算:•.试题19:如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,求∠2的度数.试题20:节能灯根据使用寿命分成优等品、正品和次品三个等级,其中使用寿命大于或等于8000小时的节能灯是优等品,使用寿命小于6000小时的节能灯是次品,其余的节能灯是正品.质检部门对某批次的一种节能灯(共200个)的使用寿命进行追踪调查,并将结果整理成此表.(1)根据分布表中的数据,在答题卡上写出a,b,c的值;(2)某人从这200个节能灯中随机购买1个,求这种节能灯恰好不是次品的概率.寿命(小时)频数频率4000≤t≤5000 10 0.055000≤t<6000 20 a6000≤t<7000 80 0.407000≤t<8000 b 0.158000≤t<9000 60 c合计 200 1试题21:为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:档次每户每月用电数(度)执行电价(元/度)第一档小于等于200 0.55第二档大于200小于400 0.6第三档大于等于400 0.85例如:一户居民七月份用电420度,则需缴电费420×0.85=357(元).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各月电多少度?试题22:如图,在直角坐标系中,点A的坐标是(0.3),点C是x轴上的一个动点,点C在x轴上移动时,始终保持△ACP是等边三角形.当点C移动到点O时,得到等边三角形AOB(此时点P与点B重合).(1)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图),求证:△AOC≌△ABP;由此你发现什么结论?(2)求点C在x轴上移动时,点P所在函数图象的解析式.试题23:如图,四边形ABCD中,AC⊥BD交BD于点E,点F,M分别是AB,BC的中点,BN平分∠ABE交AM于点N,AB=AC=BD.连接MF,NF.(1)判断△BMN的形状,并证明你的结论;(2)判断△MFN与△BDC之间的关系,并说明理由.试题24:如图,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.(1)使∠APB=30°的点P有个;(2)若点P在y轴上,且∠APB=30°,求满足条件的点P的坐标;(3)当点P在y轴上移动时,∠APB是否有最大值?若有,求点P的坐标,并说明此时∠APB最大的理由;若没有,也请说明理由.试题1答案:D.试题2答案:B试题3答案:D试题4答案:D.试题5答案:C.试题6答案:C.试题7答案:A解答:解:∵梯形ABCD是等腰梯形,∴∠DAB+∠BAC=180°,AD∥BC,∴∠DAP=∠ACB,∠ADB=∠ABD,∵AB=AD=DC,∴∠ABD=∠ADB,∠DAP=∠ACD,∴∠DAP=∠ABD=∠DBC,∵∠BAC=∠CDB=90°,∴3∠ABD=90°,∴∠ABD=30°,在△ABP中,∵∠ABD=30°,∠BAC=90°,∴∠APB=60°,∴∠DPC=60°,∴cos∠DPC=cos60°=.试题8答案:A解:将A(m,4)代入反比例解析式得:4=﹣,即m=﹣2,∴A(﹣2,4),将A(﹣2,4),B(0,﹣2)代入二次函数解析式得:,解得:b=﹣1,c=﹣2,则二次函数解析式为y=x2﹣x﹣2.试题9答案:B解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=90°,甲行走的距离是AB+BF+CF=AB+BC=2AB;乙行走的距离是AF+EF+EC+CD;丙行走的距离是AF+FC+CD,∵∠B=∠ECF=90°,∴AF>AB,EF>CF,∴AF+FC+CD>2AB,AF+FC+CD<AF+EF+EC+CD,∴甲比丙先到,丙比乙先到,即顺序是甲丙乙,试题10答案:C解:如图,连接EC.∵FC垂直平分BE,∴BC=EC(线段垂直平分线的性质)又∵点E是AD的中点,AE=1,AD=BC,故EC=2利用勾股定理可得AB=CD==试题11答案:B解:连接OA,并反向延长交CD于点H,连接OC,∵直线AB与⊙O相切于点A,∴OA⊥AB,∵弦CD∥AB,∴AH⊥CD,∴CH=CD=×4=2,∵⊙O的半径为,∴OA=OC=,∴OH==,∴AH=OA+OH=+=4,∴AC==2.∵∠CDE=∠ADF,∴=,∴=,∴EF=AC=2.故选B.试题12答案:D试题13答案:8(a﹣1)2.试题14答案:108试题15答案:AD=DC .试题16答案:没有实数根解:∵反比例函数y=的图象位于一、三象限,∴a+4>0,a>﹣4,∵A、P关于原点成中心对称,PB∥y轴,AB∥x轴,△PAB的面积大于12,∴2xy>12,即a+4>6,a>2∴a>2.∴△=(﹣1)2﹣4(a﹣1)×=2﹣a<0,∴关于x的方程(a﹣1)x2﹣x+=0没有实数根.试题17答案:解:如图:试题18答案:解:原式=•=.试题19答案:解:∵AB⊥BC,∴∠ABC=90°,∴∠1+∠3=90°,∵∠1=55°,∴∠3=35°,∵a∥b,∴∠2=∠3=35°.试题20答案:解:(1)根据频率分布表中的数据,得a==0.1,b=200×0.15=30,c==0.3;(Ⅱ)设“此人购买的节能灯恰好不是次品”为事件A.由表可知:这批灯泡中优等品有60个,正品有110个,次品有30个,所以此人购买的节能灯恰好不是次品的概率为P(A)==0.85.点评:本题考查了读频数(率)分布表的能力和利用统计图获取信息的能力及古典概型的概率,用到的知识点:频率=频数÷数据总数,概率=所有出现的情况数与总数之比.试题21答案:解:当5月份用电量为x度≤200度,6月份用电(500﹣x)度,由题意,得0.55x+0.6(500﹣x)=290.5,解得:x=190,∴6月份用电500﹣x=310度.当5月份用电量为x度>200度,六月份用电量为(500﹣x)度,由题意,得0.6x+0.6(500﹣x)=290.5,300=290.5,原方程无解.∴5月份用电量为190度,6月份用电310度.试题22答案:(1)证明:∵△AOB与△ACP都是等边三角形,∴AO=AB,AC=AP,∠CAP=∠OAB=60°,∴∠CAP+∠PAO=∠OAB+∠PAO,∴∠CAO=∠PAB,在△AOC与△ABP中,∴△AOC≌△ABP(SAS).∴∠COA=∠PBA=90°,∴点P在过点B且与AB垂直的直线上或PB⊥AB或∠ABP=90°.故结论是:点P在过点B且与AB垂直的直线上或PB⊥AB或∠ABP=90°;(2)解:点P在过点B且与AB垂直的直线上.∵△AOB是等边三角形,A(0,3),∴B(,).当点C移动到点P在y轴上时,得P(0,﹣3).设点P所在的直线方程为:y=kx+b(k≠0).把点B、P的坐标分别代入,得,解得,所以点P所在的函数图象的解析式为:y=x﹣3.试题23答案:(1)答:△BMN是等腰直角三角形.证明:∵AB=AC,点M是BC的中点,∴AM⊥BC,AM平分∠BAC.∵BN平分∠ABE,AC⊥BD,∴∠AEB=90°,∴∠EAB+∠EBA=90°,∴∠MNB=∠NAB+∠ABN=(∠BAE+∠ABE)=45°.∴△BMN是等腰直角三角形;(2)答:△MFN∽△BDC.证明:∵点F,M分别是AB,BC的中点,∴FM∥AC,FM=AC.∵AC=BD,∴FM=BD,即.∵△BMN是等腰直角三角形,∴NM=BM=BC,即,∴.∵AM⊥BC,∴∠NMF+∠FMB=90°.∵FM∥AC,∴∠ACB=∠FMB.∵∠CEB=90°,∴∠ACB+∠CBD=90°.∴∠CBD+∠FMB=90°,∴∠NMF=∠CBD.∴△MFN∽△BDC.试题24答案:解:(1)以AB为边,在第一象限内作等边三角形ABC,以点C为圆心,AC为半径作⊙C,交y轴于点P1、P2.在优弧AP1B上任取一点P,如图1,则∠APB=∠ACB=×60°=30°.∴使∠APB=30°的点P有无数个.故答案为:无数.(2)①当点P在y轴的正半轴上时,过点C作CG⊥AB,垂足为G,如图1.∵点A(1,0),点B(5,0),∴OA=1,OB=5.∴AB=4.∵点C为圆心,CG⊥AB,∴AG=BG=AB=2.∴OG=OA+AG=3.∵△ABC是等边三角形,∴AC=BC=AB=4.∴CG===2.∴点C的坐标为(3,2).过点C作CD⊥y轴,垂足为D,连接CP2,如图1,∵点C的坐标为(3,2),∴CD=3,OD=2.∵P1、P2是⊙C与y轴的交点,∴∠AP1B=∠AP2B=30°.∵CP2=CA=4,CD=3,∴DP2==.∵点C为圆心,CD⊥P1P2,∴P1D=P2D=.∴P2(0,2﹣).P1(0,2+).②当点P在y轴的负半轴上时,同理可得:P3(0,﹣2﹣).P4(0,﹣2+).综上所述:满足条件的点P的坐标有:(0,2﹣)、(0,2+)、(0,﹣2﹣)、(0,﹣2+).(3)当过点A、B的⊙E与y轴相切于点P时,∠APB最大.①当点P在y轴的正半轴上时,连接EA,作EH⊥x轴,垂足为H,如图2.∵⊙E与y轴相切于点P,∴PE⊥OP.∵EH⊥AB,OP⊥OH,∴∠EPO=∠POH=∠EHO=90°.∴四边形OPEH是矩形.∴OP=EH,PE=OH=3.∴EA=3.∵∠EHA=90°,AH=2,EA=3,∴EH===∴OP=∴P(0,).②当点P在y轴的负半轴上时,同理可得:P(0,﹣).理由:①若点P在y轴的正半轴上,在y轴的正半轴上任取一点M(不与点P重合),连接MA,MB,交⊙E于点N,连接NA,如图2所示.∵∠ANB是△AMN的外角,∴∠ANB>∠AMB.∵∠APB=∠ANB,∴∠APB>∠AMB.②若点P在y轴的负半轴上,同理可证得:∠APB>∠AMB.综上所述:当点P在y轴上移动时,∠APB有最大值,此时点P的坐标为(0,)和(0,﹣).。
★试卷4套汇总★山东省淄博市2021年中考数学考试试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知一次函数y=ax﹣x﹣a+1(a为常数),则其函数图象一定过象限()A.一、二B.二、三C.三、四D.一、四2.关于x的一元二次方程x2+2x+k+1=0的两个实根x1,x2,满足x1+x2﹣x1x2<﹣1,则k的取值范围在数轴上表示为()A.B.C.D.3.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A.12B.14C.16D.1164.下列条件中不能判定三角形全等的是( )A.两角和其中一角的对边对应相等B.三条边对应相等C.两边和它们的夹角对应相等D.三个角对应相等5.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24 B.18 C.12 D.96.“射击运动员射击一次,命中靶心”这个事件是()A.确定事件B.必然事件C.不可能事件D.不确定事件7.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°8.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.1129.已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为()A.1 B.2 C.3 D.410.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A.B.C.D.二、填空题(本题包括8个小题)11.如图,CE是▱ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:①四边形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:1;④S四边形AFOE:S△COD=2:1.其中正确的结论有_____.(填写所有正确结论的序号)12.不等式组20262xx->⎧⎨->⎩①②的解是________.13.若关于x的不等式组3122x ax x->⎧⎨->-⎩无解,则a的取值范围是________.14.不等式组2012xxx-≤⎧⎪⎨-<⎪⎩的最大整数解是__________.15.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快50千米,提速后从北京到上海运行时间缩短了30分钟.已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为__.16.如图,MN 是⊙O 的直径,MN=4,∠AMN=40°,点B 为弧AN 的中点,点P 是直径MN 上的一个动点,则PA+PB 的最小值为_____.17.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是_____.18.如图,在平面直角坐标系中,已知点A (1,1),以点O 为旋转中心,将点A 逆时针旋转到点B 的位置,则AB 的长为_____.三、解答题(本题包括8个小题) 19.(6分)先化简,再求值:()2111x x ⎛⎫-÷-⎪+⎝⎭,其中x 为方程2320x x ++=的根. 20.(6分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n 名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:求n 的值;若该校学生共有1200人,试估计该校喜爱看电视的学生人数;若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.21.(6分)我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A 、B 两种奖品以鼓励抢答者.如果购买A 种20件,B 种15件,共需380元;如果购买A 种15件,B 种10件,共需280元.A 、B两种奖品每件各多少元?现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?22.(8分)进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数.23.(8分)某公司为了扩大经营,决定购进6台机器用于生产某活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台) 7 5每台日产量(个) 100 60(1)按该公司要求可以有几种购买方案?如果该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择什么样的购买方案?24.(10分)先化简22442x xx x-+-÷(x-4x),然后从-5<x<5的范围内选取一个合适的正整数作为x的值代入求值.25.(10分)如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,点A表示﹣,设点B所表示的数为m.求m的值;求|m﹣1|+(m+6)0的值.26.(12分)如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=kx交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.求双曲线的解析式;求点C的坐标,并直接写出y1<y2时x的取值范围.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】分析:根据一次函数的图形与性质,由一次函数y=kx+b的系数k和b的符号,判断所过的象限即可.详解:∵y=ax﹣x﹣a+1(a为常数),∴y=(a-1)x-(a-1)当a-1>0时,即a>1,此时函数的图像过一三四象限;当a-1<0时,即a<1,此时函数的图像过一二四象限.故其函数的图像一定过一四象限.故选D.点睛:此题主要考查了一次函数的图像与性质,利用一次函数的图像与性质的关系判断即可.一次函数y=kx+b(k≠0,k、b为常数)的图像与性质:当k>0,b>0时,图像过一二三象限,y 随x增大而增大;当k>0,b<0时,图像过一三四象限,y随x增大而增大;当k<0,b>0时,图像过一二四象限,y随x增大而减小;当k<0,b<0,图像过二三四象限,y随x增大而减小. 2.D【解析】试题分析:根据根的判别式和根与系数的关系列出不等式,求出解集.解:∵关于x的一元二次方程x2+2x+k+1=0有两个实根,∴△≥0,∴4﹣4(k+1)≥0,解得k≤0,∵x1+x2=﹣2,x1•x2=k+1,∴﹣2﹣(k+1)<﹣1,解得k>﹣2,不等式组的解集为﹣2<k≤0,在数轴上表示为:,故选D.点评:本题考查了根的判别式、根与系数的关系,在数轴上找到公共部分是解题的关键.3.B【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为41= 164,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.4.D【解析】【详解】解:A、符合AAS,能判定三角形全等;B、符合SSS,能判定三角形全等;;C、符合SAS,能判定三角形全等;D、满足AAA,没有相对应的判定方法,不能由此判定三角形全等;故选D.5.A【解析】【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.【详解】∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长是4×6=24,故选A.【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键. 6.D【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选D.考点:随机事件.7.B【解析】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.详解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选B.点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.8.C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21.126故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键. 9.B 【解析】 【分析】先由平均数是3可得x 的值,再结合方差公式计算. 【详解】∵数据1、2、3、x 、5的平均数是3, ∴12355x ++++=3,解得:x=4,则数据为1、2、3、4、5, ∴方差为15×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2, 故选B . 【点睛】本题主要考查算术平均数和方差,解题的关键是熟练掌握平均数和方差的定义. 10.A 【解析】 【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案. 【详解】该几何体的俯视图是:.故选A . 【点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键. 二、填空题(本题包括8个小题) 11.①②④. 【解析】 【分析】根据菱形的判定方法、平行线分线段成比例定理、直角三角形斜边中线的性质一一判断即可. 【详解】∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB=CD , ∵EC 垂直平分AB ,∴OA=OB=12AB=12DC ,CD ⊥CE , ∵OA ∥DC , ∴EA EO OA ED EC CD ===12, ∴AE=AD ,OE=OC , ∵OA=OB ,OE=OC ,∴四边形ACBE 是平行四边形, ∵AB ⊥EC ,∴四边形ACBE 是菱形,故①正确, ∵∠DCE=90°,DA=AE , ∴AC=AD=AE ,∴∠ACD=∠ADC=∠BAE ,故②正确, ∵OA ∥CD ,∴AF OA 1CF CD 2==, ∴AF AF 1AC BE 3==,故③错误, 设△AOF 的面积为a ,则△OFC 的面积为2a ,△CDF 的面积为4a ,△AOC 的面积=△AOE 的面积=1a , ∴四边形AFOE 的面积为4a ,△ODC 的面积为6a ∴S 四边形AFOE :S △COD =2:1.故④正确.故答案是:①②④. 【点睛】此题考查平行四边形的性质、菱形的判定和性质、平行线分线段成比例定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题. 12.x >4 【解析】 【分析】分别解出不等式组中的每一个不等式,然后根据同大取大得出不等式组的解集. 【详解】 由①得:x >2; 由②得 :x >4;∴此不等式组的解集为x >4; 故答案为x >4. 【点睛】考查了解一元一次不等式组,一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到. 13.2a ≥- 【解析】 【分析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得. 【详解】3122x a x x ->⎧⎨->-⎩①②, 解①得:x >a+3, 解②得:x <1. 根据题意得:a+3≥1, 解得:a≥-2. 故答案是:a≥-2. 【点睛】本题考查了一元一次不等式组的解,解题的关键是熟练掌握解一元一次不等式组的步骤.. 14.2 【解析】 【分析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解. 【详解】解:2012x x x -≤⎧⎪⎨-<⎪⎩①②,由不等式①得x≤1, 由不等式②得x >-1, 其解集是-1<x≤1, 所以整数解为0,1,1,则该不等式组的最大整数解是x=1. 故答案为:1.考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15.132013201 502 x x-= -【解析】【分析】设“复兴号”的速度为x千米/时,则原来列车的速度为(x-50)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x千米/时,则原来列车的速度为(x-50)千米/时,根据题意得132013201502x x-=-.故答案为132013201502x x-=-.【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.16.【解析】【分析】过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,【详解】解:连接OB,OA′,AA′,∵AA′关于直线MN对称,∴''AN A N=∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,过O作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,∴A′B=2A′Q=即PA+PB的最小值【点睛】本题考查轴对称求最小值问题及解直角三角形,根据轴对称的性质准确作图是本题的解题关键.【解析】【分析】根据外角的概念求出∠ADC 的度数,再根据垂直的定义、四边形的内角和等于360°进行求解即可得.【详解】∵∠ADE=60°,∴∠ADC=120°,∵AD ⊥AB ,∴∠DAB=90°,∴∠B=360°﹣∠C ﹣∠ADC ﹣∠A=40°,故答案为40°.【点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.18.4. 【解析】【分析】由点A(1,1),可得OA 的长,点A 在第一象限的角平分线上,可得∠AOB=45°,,再根据弧长公式计算即可.【详解】∵A(1,1),∴=A 在第一象限的角平分线上,∵以点O 为旋转中心,将点A 逆时针旋转到点B 的位置,∴∠AOB=45°,∴AB 的长为45180π=4,故答案为:4. 【点睛】本题考查坐标与图形变化——旋转,弧长公式,熟练掌握旋转的性质以及弧长公式是解题的关键.本题中求出∠AOB=45°也是解题的关键.三、解答题(本题包括8个小题)19.1【解析】先将除式括号里面的通分后,将除法转换成乘法,约分化简.然后解一元二次方程,根据分式有意义的条件选择合适的x 值,代入求值.【详解】解:原式=()()()21111111x x x x x x x --+-÷=-⋅=--+--. 解2320x x ++=得,122,?1x x =-=-,∵1x =-时,21x +无意义, ∴取2x =-.当2x =-时,原式=()211---=.20.(1)50;(2)240;(3)12. 【解析】【分析】用喜爱社会实践的人数除以它所占的百分比得到n 的值;先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比,即可估计该校喜爱看电视的学生人数;画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.【详解】解:(1)510%50n =÷=;(2)样本中喜爱看电视的人数为501520510---=(人), 10120024050⨯=, 所以估计该校喜爱看电视的学生人数为240人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率61122==. 【点睛】本题考查了列表法与树状图法;利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率,也考查了统计图.21.(1)A 种奖品每件16元,B 种奖品每件4元.(2)A 种奖品最多购买41件.【解析】【分析】(1)设A 种奖品每件x 元,B 种奖品每件y 元,根据“如果购买A 种20件,B 种15件,共需380元;如果购买A 种15件,B 种10件,共需280元”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设A 种奖品购买a 件,则B 种奖品购买(100﹣a )件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a 的一元一次不等式,解之取其中最大的整数即可得出结论.【详解】(1)设A 种奖品每件x 元,B 种奖品每件y 元,根据题意得:20153801510280x y x y +=⎧⎨+=⎩, 解得:164x y =⎧⎨=⎩, 答:A 种奖品每件16元,B 种奖品每件4元;(2)设A 种奖品购买a 件,则B 种奖品购买(100﹣a )件,根据题意得:16a+4(100﹣a )≤900,解得:a≤1253, ∵a 为整数,∴a≤41,答:A 种奖品最多购买41件.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据不等关系,正确列出不等式.22.300米【解析】【详解】解:设原来每天加固x 米,根据题意,得.去分母,得 1200+4200=18x (或18x=5400)解得300x =.检验:当300x =时,20x ≠(或分母不等于0).∴300x =是原方程的解.答:该地驻军原来每天加固300米.23.(1)有3种购买方案①购乙6台,②购甲1台,购乙5台,③购甲2台,购乙4台(2)购买甲种机器1台,购买乙种机器5台,【解析】【分析】(1)设购买甲种机器x台(x≥0),则购买乙种机器(6-x)台,根据买机器所耗资金不能超过34万元,即购买甲种机器的钱数+购买乙种机器的钱数≤34万元.就可以得到关于x的不等式,就可以求出x的范围.(2)该公司购进的6台机器的日生产能力不能低于380个,就是已知不等关系:甲种机器生产的零件数+乙种机器生产的零件数≤380件.根据(1)中的三种方案,可以计算出每种方案的需要资金,从而选择出合适的方案.【详解】解:(1)设购买甲种机器x台(x≥0),则购买乙种机器(6-x)台依题意,得7x+5(6-x)≤34解这个不等式,得x≤2,即x可取0,1,2三个值.∴该公司按要求可以有以下三种购买方案:方案一:不购买甲种机器,购买乙种机器6台.方案二:购买甲种机器l1台,购买乙种机器5台.方案三:购买甲种机器2台,购买乙种机器4台(2)根据题意,100x+60(6-x)≥380解之得x>1 2由(1)得x≤2,即12≤x≤2.∴x可取1,2俩值.即有以下两种购买方案:购买甲种机器1台,购买乙种机器5台,所耗资金为1×7+5×5=32万元;购买甲种机器2台,购买乙种机器4台,所耗资金为2×7+4×5=34万元.∴为了节约资金应选择购买甲种机器1台,购买乙种机器5台,.【点睛】解决本题的关键是读懂题意,找到符合题意的不等关系式,正确确定各种情况,确定各种方案.24.当x=-1时,原式=1=11+2;当x=1时,原式=11=1+23【解析】【分析】先将括号外的分式进行因式分解,再把括号内的分式通分,然后按照分式的除法法则,将除法转化为乘法进行计算.【详解】原式=22(2)4(2)x x x x x--÷- =()2(2)•(2)2(2)x x x x x x --+- =12x + ∵x x 为整数,∴若使分式有意义,x 只能取-1和1当x=1时,原式=13.或:当x=-1时,原式=125.(1) ;(2【解析】试题分析:()1 点A 表示 向右直爬2个单位到达点B ,点B 表示的数为2m =,()2把m 的值代入,对式子进行化简即可.试题解析:()1 由题意A 点和B 点的距离为2,其A 点的坐标为 因此B 点坐标 2.m =()2把m 的值代入得:()()00162126m m -++=-+,(018=-+,11=+,=26.(1)24y x =;(1)C (﹣1,﹣4),x 的取值范围是x <﹣1或0<x <1. 【解析】【分析】(1)作高线AC ,根据等腰直角三角形的性质和点A 的坐标的特点得:x=1x ﹣1,可得A 的坐标,从而得双曲线的解析式;(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C 的坐标,根据图象可得结论.【详解】(1)∵点A 在直线y 1=1x ﹣1上,∴设A (x ,1x ﹣1),过A 作AC ⊥OB 于C ,∵AB ⊥OA ,且OA=AB ,∴OC=BC ,∴AC=12OB=OC ,∴x=1x﹣1,x=1,∴A(1,1),∴k=1×1=4,∴24yx =;(1)∵224y xyx=-⎧⎪⎨=⎪⎩,解得:1122xy=⎧⎨=⎩,2214xy=-⎧⎨=-⎩,∴C(﹣1,﹣4),由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)2.如果解关于x的分式方程2122m xx x-=--时出现增根,那么m的值为A.-2 B.2 C.4 D.-43.将1、2、3、6按如图方式排列,若规定(m、n)表示第m排从左向右第n个数,则(6,5)与(13,6)表示的两数之积是()A6B.6 C2D34.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块5.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC6.若数a使关于x的不等式组()3x a2x11x2x2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y的分式方程y51y--+3=ay1-有整数解,则满足条件的所有整数a的个数是()A.5 B.4 C.3 D.27.如图,一束平行太阳光线FA、GB照射到正五边形ABCDE上,∠ABG=46°,则∠FAE的度数是()A.26°.B.44°.C.46°.D.72°8.关于x的不等式21x a--的解集如图所示,则a的取值是()A.0 B.3-C.2-D.1-9.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市10.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.二、填空题(本题包括8个小题)11.已知(x+y)2=25,(x﹣y)2=9,则x2+y2=_____.12.中国的陆地面积约为9 600 000km2,把9 600 000用科学记数法表示为.13.如图,一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为_____.14.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100 400 800 1 000 2 000 5 000发芽种子粒数85 318 652 793 1 604 4 005发芽频率0.850 0.795 0.815 0.793 0.802 0.801根据以上数据可以估计,该玉米种子发芽的概率为___________(精确到0.1).15.某厂家以A、B两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A原料、1.5千克B原料;乙产品每袋含2千克A原料、1千克B原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A原料和B原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为_____元.16.如图,已知⊙P的半径为2,圆心P在抛物线y=12x2﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为_____.17.如图,在矩形ABCD 中,AB=4,AD=2,以点A 为圆心,AB 长为半径画圆弧交边DC 于点E ,则BE 的长度为______.18.为迎接文明城市的验收工作,某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是_____. 三、解答题(本题包括8个小题) 19.(6分)如图,AB 是O 的直径,AF 是O 切线,CD 是垂直于AB 的弦,垂足为点E ,过点C 作DA的平行线与AF 相交于点F ,已知CD 23=,BE 1=.()1求AD 的长; ()2求证:FC 是O 的切线.20.(6分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:本次接受随机抽样调查的中学生人数为_______,图①中m 的值是_____ ;求本次调查获取的样本数据的平均数、众数和中位数;根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h 的人数.21.(6分)程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?22.(8分)已知关于x 的一元二次方程 2(1)(4)30m x m x -+--=(m 为实数且1m ≠).求证:此方程总有两个实数根;如果此方程的两个实数根都是整数,求正整数...m 的值.23.(8分)一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.甲,乙两公司单独完成此项工程,各需多少天?若让一个公司单独完成这项工程,哪个公司的施工费较少?24.(10分)如图,在平面直角坐标系中,△AOB 的三个顶点坐标分别为A (1,0),O (0,0),B (2,2).以点O 为旋转中心,将△AOB 逆时针旋转90°,得到△A 1OB 1.画出△A 1OB 1;直接写出点A 1和点B 1的坐标;求线段OB 1的长度.25.(10分)如图,在平面直角坐标系中,一次函数()0y kx b k =+≠的图象分别交x 轴、y 轴于A 、B 两点,与反比例函数()0my m x=≠的图象交于C 、D 两点.已知点C 的坐标是(6,-1),D (n ,3).求m 的值和点D 的坐标.求tan BAO ∠的值.根据图象直接写出:当x 为何值时,一次函数的值大于反比例函数的值?26.(12分)雾霾天气严重影响市民的生活质量。
淄博市2020年(春秋版)中考数学模拟试卷(I)卷
淄博市2020年(春秋版)中考数学模拟试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(π﹣3.14)0的相反数是()A . 3.14﹣πB . 0C . 1D . ﹣12. (2分) (2019七下·瑞安期末) 下列选项中,运算正确的是()A . a2·a4=a8B . (a2)3=a5C . a6÷a3=a2D . (ab)3=a3b33. (2分)人体血液中每个成熟红细胞的平均直径为0.0000077米,用科学记数法表示为()A . 7.7×10﹣5米B . 77×10﹣6米C . 77×10﹣5米D . 7.7×10﹣6米4. (2分)坐标平面上,某个一次函数的图形通过(5,0)、(10,﹣10)两点,判断此函数的图形会通过下列哪一点?()A . (, 9)B . (, 9)C . (, 9)D . (, 9)5. (2分)某校10名学生参加“心理健康”知识测试,他们得分情况如下表:人数2341分数80859095那么这10名学生所得分数的众数和中位数分别是()A . 95和85B . 90和85C . 90和87.5D . 85和87.56. (2分)(2017·锡山模拟) 下列命题中,假命题是()A . 经过两点有且只有一条直线B . 平行四边形的对角线相等C . 两腰相等的梯形叫做等腰梯形D . 圆的切线垂直于经过切点的半径7. (2分)如图的七边形ABCDEFG中,AB,ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为何?()A . 40°B . 45°C . 50°D . 60°8. (2分)(2019·定安模拟) 如图由6个等大的小立方体搭成的,有关三视图的说法正确的是()A . 正视图(主视图)面积最大B . 左视图面积最大C . 俯视图面积最大D . 三种视图面积一样大9. (2分)下列说法中正确的个数有()①三点确定一个圆;②平分弦的直径垂直于弦;③三角形的外心到三角形三边的距离相等;④等弧所对的圆周角相等;⑤以3、4、5为边的三角形,其内切圆的半径是1.A . 1个B . 2个C . 3个D . 4个10. (2分)王芳同学从A地沿北偏西60°方向走100m到B地,再从B地向正南方向走200m到C地,此时王芳同学离A地()A . 50mB . 100mC . 150mD . 100m二、填空题 (共8题;共8分)11. (1分)若分式=0,则x的值为________12. (1分)(2018·温州模拟) 因式分解: ________.13. (1分)(2019·鞍山) 为了美化校园环境,某中学今年春季购买了A,B两种树苗在校园四周栽种,已知A种树苗的单价比B种树苗的单价多10元,用600元购买A种树苗的棵数恰好与用450元购买B种树苗的棵数相同.若设A种树苗的单价为x元,则可列出关于x的方程为________.14. (1分) (2017八下·南京期中) 如图,□ABCD与□DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE 的度数为________°.15. (1分)(2020·铁岭模拟) 如图,正方形OABC的边长为8,A、C两点分别位于x轴、y轴上,点P在AB 上,CP交OB于点Q,函数y=的图象经过点Q,若S△BPQ=S△OQC ,则k的值为________.16. (1分) (2020七下·天台月考) 线段AB=4,AB∥x轴,若A点坐标为(﹣1,3),则B点坐标为________.17. (1分) (2016八上·上城期末) 沿河岸有A,B,C三个港口,甲、乙两船同时分别从A,B港口出发,匀速驶向C港,最终到达C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2(km),y1、y2与x的函数关系如图所示.考察下列结论:①甲船的速度是25km/h;②从A港到C港全程为120km;③甲船比乙船早1.5小时到达终点;④图中P点为两者相遇的交点,P点的坐标为();⑤如果两船相距小于10km能够相互望见,那么,甲、乙两船可以相互望见时,x的取值范围是<x<2.其中正确的结论有________.18. (1分)如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG的边长为________.三、解答题 (共10题;共114分)19. (15分)(2011·宜宾)(1)计算:3(﹣π)0﹣ +(﹣1)2011(2)先化简,再求值:,其中x= -3.(3)如图,平行四边形ABCD的对角线AC、BD交于点O,E、F在AC上,G、H在BD上,且AF=CE,BH=DG.求证:GF∥HE.20. (7分)(2019·北京) 小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有首,i =1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第()天背诵第二遍,第()天背诵第三遍,三遍后完成背诵,其它天无需背诵, 1,2,3,4;第1天第2天第3天第4天第5天第6天第7天第1组第2组第3组第4组③每天最多背诵14首,最少背诵4首.解答下列问题:(1)填入补全上表;(2)若,,,则的所有可能取值为________;(3) 7天后,小云背诵的诗词最多为________首.21. (10分)如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.(1)证明:不论E、F在BC、CD上如何滑动,总有BE=CF;(2)当点E、F在BC、CD上滑动时,探讨四边形AECF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.22. (15分)(2020·台州) 新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种. 为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如下表(数据分组包含左端值不包含右端值)(1)你认为哪种教学方式学生的参与度更高?简要说明理由.(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0. 8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在0. 4以下的共有多少人?23. (7分)为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如图统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为________ 度(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为________24. (10分)(2017·盐都模拟) 如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.(1)求∠D的度数;(2)若CD=2,求BD的长.25. (10分)一般情况下,中学生完成数学家庭作业时,注意力指数随时间x(分钟)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).(1)分别求出线段AB和双曲线CD的函数关系式;(2)若学生的注意力指数不低于40为高效时间,根据图中信息,求出一般情况下,完成一份数学家庭作业的高效时间是多少分钟?26. (10分)(2019·连云港) 某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨.受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.27. (15分)如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于C,过点C的直线y=2x+b交x轴于D,且⊙P的半径为,AB=4.(1)求点B,P,C的坐标;(2)求证:CD是⊙P的切线;(3)若二次函数y=﹣x2+(a+1)x+6的图象经过点B,求这个二次函数的解析式,并写出使二次函数值小于一次函数y=2x+b值的x的取值范围.28. (15分)(2019·石家庄模拟) 已知点M(3,2),抛物线L:y=x2﹣3x+c与x轴从左到右的交点为A ,B .(1)若抛物线L经过点M(3,2),求抛物线L的解析式和顶点坐标;(2)当2OA=OB时,求c的值;(3)直线y=x+b经过点M ,与y轴交于点N ,①求点N的坐标;②若线段MN与抛物线L:y=x2﹣3x+c有唯一公共点,直接写出正整数c的值.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共114分)19-1、19-2、19-3、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、27-1、27-2、27-3、28-1、28-2、28-3、。
2020-2021学年山东淄博中考数学仿真模拟及答案解析
山东省淄博市中考数学试卷(满分120分,考试时间120分钟)第1卷(选择题共48分)一、选择题:本大题共12小题,在每小题所给出的四个选项中,只有一个是正确的.每小题4分.错选、不选或选出的答案超过一个,均记零分.1. (2016山东淄博,1,4分)人类的遗传物质是DNA,DNA是—个很长的链,最短的22号染色体也长达30 000 000个核苷酸. 30 000 000用科学记数法表示为()A. 3×107B. 30×106C. 0.3×107D. 0.3×108【答案】A【逐步提示】本题考查了科学记数法,解题的关键是确定系数a和指数n.①科学记数法的形式是a×10n,先确定a值为3;②再确定n值为7.【详细解答】解:30 000 000= 3×107,故选择A【解后反思】用科学记数法表示一个数,就是把一个数写成a×10n的形式(其中1≤a<10,n 为整数),其方法是:(1)确定a,a是只有一位整数的数;(2)确定n,当原数的绝对值≥10时,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).【关键词】科学记数法;)0的值是()2. (2016山东淄博,2,4分)计算|-8|-(-12D. 9A. -7B. 7C. 712【答案】B【逐步提示】本题考查有理数的绝对值、零指数幂,有理数的运算. 解题关键是能准确化简各项,掌握有理数的运算法则. ①先化简各项,②再进行减法运算.【详细解答】解:|-8|-(-1)0=8-1=7. 故选择B2【解后反思】此类题目较为简单,一般需先化简各项,再进行加减运算.【关键词】实数的运算;3.(2016山东淄博,3,4分)如图,AB ⊥AC ,AD ⊥BC ,垂足分别为A ,D .则图中能表示点到直线距离的线段共有( )A. 2条B. 3条C.4条D.5条【答案】D【逐步提示】本题考查点到直线的距离,解题关键是掌握点到直线的距离的定义. 这里需逐条线段进行判断.【详细解答】解:能表示点到直线距离的线段共有BA ,CA ,AD ,BD ,CD 共5条,故选择D【解后反思】点到直线的距离为点到直线的垂线段的长度.【关键词】点到直线的距离;4.(2016山东淄博,4,4分)关于x 的不等式组1,20x x -<⎧⎨-≤⎩,其解集在数轴上表示正确的是( )【答案】D 【逐步提示】本题考查了一元一次不等式组的的求解问题和在数轴上表示一元一次不等式组的解集,解题的关键是熟练掌握解一元一次不等式组和数轴上表示一元一次不等式解集的方法.首先解两个不等式,得到各自的解集,再在数轴上表示出两个不等式解集.【详细解答】解:解不等式组1,20,x x -<⎧⎨-≤⎩得1,2.x x >-⎧⎨≤⎩故选择D 【解后反思】解此类题一般先解不等式(组),再判断其解集在数轴上的表示.注意实点与虚点 ABCD的区别.【关键词】解不等式组;在数轴上表示不等式(组)的解集;5.(2016山东淄博,5,4分)下列特征量不能反映一组数据集中趋势的是()A. 众数B. 中位数C. 方差D. 平均数【答案】C【逐步提示】本题考查统计量的意义,解题关键是掌握各统计量的意义. 此题根据中位数、众数、平均数和方差的意义直接判断即可.【详细解答】解:方差是反映一组数据波动大小的量,故选择C.【解后反思】此题需明确各统计量的意义. 众数,中位数,平均数是表示数据集中趋势的量,方差是反映一组数据离散程度的量.【关键词】数据的代表;数据的波动;6.(2016山东淄博,6,4分)张老师买了一辆启辰R50X汽车,为了掌握车的油耗情况,在连续两次加油时做了如下工作:(1)把油箱加满油;(2)记录了两次加油时的累计里程(注:“累计里程”指汽车从出厂开始累计行驶的路程).以下是张老师连续两次加油时的记录:A. 3升B. 5升C. 7.5升D. 9升【答案】C【逐步提示】本题考查有理数运算的应用,解题关键是理解题意,具有生活经验. ①根据图表得出总的耗油量以及行驶的总路程,②进而求出平均油耗.【详细解答】解:由题意,行驶6600-6200=400(千米),耗油30升,所以该车每100千米平均耗油量为30=7.5(升). 故选择C.4【解后反思】此题为生活实际应用题,试题新颖,考查同学们用数学解决问题的能力,及分析推理能力.【关键词】有理数运算的应用;7.(2016山东淄博,7,4分)如图,△ABC的面积为16,点D是BC边上一点,且BD=14BC,点G是AB上一点,点H在△ABC内部,且四边形BDHG是平行四边形.则图中阴影的面积是()BA. 3B. 4C. 5D. 6【答案】B【逐步提示】本题考查三角形的面积的计算,平行四边形的性质,及整体思想,解题关键是能整体求解. 这里两阴影部分以公共边GH为底,则高的和=△ABC的BC边的高.【详细解答】解:设△ABC底边BC上的高为h,△AGH底边GH上的高为h1,△CGH底边GH上的高为h2,则有h=h1+h2.S△ABC=12BC•h=16,S阴影=S△AGH+S△CGH=12GH•h1+ 12GH•h2=12GH•(h1+h2)=12GH•h.∵四边形BDHG是平行四边形,且BD=14BC,∴GH=BD=14BC.∴S阴影= 14×(12BC•h)= 14S△ABC=4.故选择B【解后反思】具有整体思想,发现两阴影面积的高的和与△ABC的高的关系是解题关键.【关键词】三角形的面积;平行四边形的性质;整体思想;8. (2016山东淄博,8,4分)如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH. 则线段GH的长为()A. 83B. 22D. 10-52C. 145【答案】B【逐步提示】本题考查正方形,勾股定理及逆定理的知识,解题关键是能灵活添加辅助线,将问题转化为已知问题解决. ①延长BG交CH于点E,根据正方形的性质证明ABG≌△CDH≌△BCE,可得GE=BE﹣BG=2、HE=CH﹣CE=2、∠HEG=90°,②由勾股定理可得GH的长.【详细解答】解:法一:如图,延长BG交CH于点E,∵AG=CH=8,BG=DH=6,AB=CD=10,∴△ABG≌△CDH(SSS).∵22+=210=2+=2286AG BGAB,∴△ABG是直角三角形,∠AGB=90°.同理△DHC是直角三角形,∠DHC=90°.∵∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,∵AB=BC,∴△ABG≌△BCE(ASA).∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°.∴GE=BE-BG=8-6=2. 同理可得HE=2GE.在RT△GHE中,2222+2.故选择B.+22GE HE法二:过点G作EF⊥AB于点EF,过点H作HF∥AB.∵22+=210=2+=2286AG BGAB,∴△ABG是直角三角形,∠AGB=90°.同理△DHC是直角三角形,∠DHC=90°.∴EG=6810⨯=4.8. ∴GF=10-2×4.8=0.4.∵BE=6610⨯=3.6,∴HF=10-2×3.6=2.8.∴HG=222.80.4+=22. 故选择B.【解后反思】添加辅助线,构造直角三角形求解是解题关键.【关键词】正方形;勾股定理及逆定理;9. (2016山东淄博,9,4分)如图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上.线段AB,PQ相交于点M.则图中∠QMB的正切值是()A. 12B. 1C. 3D.2【答案】D【逐步提示】本题考查网格内求锐角三角函数值,解题关键是添加辅助线,构造格点直角三角形. 如借助网格,平移AB,将问题转化.【详细解答】解:过点P作PC∥AB,连接QC. 则∠QMB=∠P.借助网格可判断∠C=90°,∴tan∠P=∠QMB=QCPC=2. 故选择D.【解后反思】通过将线段平移,将相关角转化为格点直角三角形的锐角是解此类题的技巧. 【关键词】网格内求锐角三角函数值;转化思想;E F10. (2016山东淄博,10,4分)小明用计算器计算(a+b)c 的值,其按键顺序和计算器显示结果如下表:这时他才明白计算器是先做乘法再做加法,于是他依次按键:从而得到了正确结果,已知a 是b 的3倍.则正确的结果是( )A. 24B. 39C. 48D. 96【答案】C【逐步提示】本题考查计算器,解方程组,及整体思想,解题关键是理解题意,能列出方程组,将问题转化为解方程组问题. ①根据题意得出关于a ,b ,c 的方程组,②整体求解.【详细解答】解:由题意21,39,3.a bc b ac a b +=⎧⎪+=⎨⎪=⎩解得4bc=48.所以(a+b)c=4bc=48. 故选择C.【解后反思】理解题意,列方程组,并整体求解是解题方法.【关键词】计算器;解方程组;整体思想;11. (2016山东淄博,11,4分)如图,直线l 1∥l 2∥l 3,一等腰直角三角形ABC 的三个顶点A ,B ,C 分别在l 1,l 2,l 3上,∠ACB=90°,AC 交l 2于点D .已知l 1与l 2的距离为1.L 2与l 3的距离为3.则AB BD 的值为( ) A. 42 B. 34 C. 52 D. 202【答案】A【逐步提示】本题考查勾股定理,全等三角形,相似的有关知识,解题关键是添加辅助线,将问题转化为常规几何图形问题解决. 如图添加辅助线,证得△BEC ≌△CFA ,即可找到解题思路.【详细解答】解:如图,作BF ⊥l 3,AE ⊥l 3,垂足分别为F 、E.∵∠ACB=90°,∴∠BCF+∠ACE=90°.∵∠BCF+∠CFB=90°,∴∠ACE=∠CBF.∵∠BFC=∠CEA=90°,BC=CA ,∴△ACE ≌△CBF.∴CE=BF=3,CF=AE=4.∵l 1与l 2的距离为1,l 2与l 3的距离为3,∴AG=1,BG=EF=CF+CE=7.∴22BG AG +52∵l 2∥l 3,∴DG AG CE AE ==14. ∴DG=34. ∴BD=BG ﹣DG=7-34=254.∴ABBD=52254=42. 故选择A.【解后反思】将等腰直角三角形置于平行线中,添加辅助线构造全等三角形是解题突破口. 【关键词】勾股定理;全等三角形;相似;12.(2016山东淄博,12,4分)反比例函数y=ax (a>0.a为常数)和y=2x在第一象限内的图象如图所示,点M在y=ax 的图象上.MC⊥x于点C.交y=2x的图象于点A;MD⊥y轴于点D.交y=2x 的图象于点B. 当点M在y=ax的图象上运动时,以下结论:①S△ODB=S△OCA;②四边形OAMB的面积不变;③当点A是MC的中点时,则点B是MD的中点.其中正确结论的个数是()A. 0B.1C. 2D. 3【答案】D【逐步提示】本题考查反比例函数比例系数的几何意义,解题关键是掌握反比例函数比例系数的几何意义. ①由反比例系数的几何意义可得答案;②由四边形OAMB的面积=矩形OCMD面积﹣(三角形ODB面积+三角形OCA的面积),解答可知;③连接OM,点A是MC的中点可得△OAM 和△OAC的面积相等,根据△ODM的面积=△OCM的面积、△ODB与△OCA的面积相等即可判断.【详细解答】解:①根据反比例函数比例系数的几何意义可知:S△ODB=S△OCA=1,该结论正确.②,四边形OAMB的面积=a-1-1=a-2,该结论正确.③法一:连接OM,点A是MC的中点,则△OAM和△OAC的面积相等,∵△ODM的面积=△OCM的面积=2a,△ODB与△OCA的面积相等,∴△OBM与△OAM的面积相等.∴△OBD和△OBM面积相等.∴点B一定是MD的中点.该结论正确.法二:当点A是MC的中点时,则a=4,所以点B是MD的中点,该结论正确.综上,选择D.【解后反思】理解并能灵活应用反比例函数比例系数的几何意义是解题关键.【关键词】反比例函数比例系数的几何意义;第II卷(非选择题共72分)二、填空题:本大题共5小题,满分20分.只要求填写最后结果.每小题填对得4分.13.(2016山东淄博,13,4分)计算21421aa-+的结果是.【答案】1-2a.【逐步提示】本题考查分式的约分化简,解题关键是掌握分式的基本性质,能进行分式的约分. ①先将分子分解因式,②再约分.【详细解答】解:21421aa-+=(12)(12)21a aa+-+=1-2a. 故填1-2a.【解后反思】进行分式的化简,需先将分子、分母分解因式,再约分.【关键词】分式的化简;14. (2016山东淄博,14,4分)由—些相同的小正方体搭成的几何体的左视图和俯视图如图所示,请在网格中涂出一种该几何体的主视图,且使该主视图是轴对称图形.【答案】如图所示:【逐步提示】本题考查三视图,轴对称图形的知识,解题关键是能由视图判断原几何体,并进一步判断视图. 由左、俯视图可判断,该几何体共两层,底层有9个正方体,上层中间一行有正方体,若使主视图为轴对称图形可使中间一行、中间一列有一个小正方体即可.【详细解答】解:由左、俯视图可判断,该几何体共两层,底层有3×3=9个正方体,上层中间一行有正方体,若使主视图为轴对称图形可使中间一行、中间一列有一个小正方体即可.其主视图如图所示.【解后反思】解此类题需具有将二维图形与三维图形相互转换的能力. 这里需先判断原几何体的可能形状,再判断主视图.【关键词】三视图;轴对称图形;15. (2016山东淄博,15,4分)若x=32,则代数式x2-6x+9的值为. 【答案】2【逐步提示】本题考查代数式求值,解题关键是能会进行代数式的代值求值计算. ①利用因式分解将代数式变形,②再代值计算.【详细解答】解:x2-6x+9= 2(323)=2. 故填2.(3)x-= 2【解后反思】在代数式求值题中,常利用因式分解进行恒等变形,以简化运算.【关键词】代数式求值;16. (2016山东淄博,16,4分)某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x 个物件,根据题意列出的方程是 . 【答案】60458x x=+ 【逐步提示】本题考查据题意列分式方程,解题关键是寻找等量关系. 据小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同列方程.【详细解答】解:小李每小时分拣x 个物件,则小王每小时分拣(x+8)个物件,据题意,得60458x x=+. 【解后反思】根据实际问题列方程(组),重在寻找等量关系.找到等量关系后,再合理设未知数,将相关的量置于等量关系中,自然就列出方程了. 【关键词】列分式方程;17. (2016山东淄博,17,4分)如图,⊙O 的半径为2,圆心O 到直线l 的距离为4.有一内角为60°的菱形,当菱形的一边在直线l 上,另有两边所在的直线恰好与⊙O 相切,此时菱形的边长为 .【答案】343【逐步提示】本题考查切线的性质,菱形,解直角三角形,解题关键是掌握相关图形的性质,并能灵活添加辅助线. ①先画出符合题意的图形,②再添加辅助线,过点O 作直线l 的垂线,交AD 于E ,交BC 于F ,过点A 作AG ⊥l 于G. ③根据题意求出EF 的长,得到AG 的长,④最后利用三角函数计算即可. 【详细解答】解:情况一:过点O 作直线l 的垂线,交AD 于E ,交BC 于F ,过点A 作AG ⊥l 于G , 由题意得,EF=2+4=6.∵四边形AGFE 为矩形,∴AG=EF=6. 在Rt △ABG 中,AB=sin AG B∠=3=43.故填43.情况二:过点O 作直线l 的垂线,交AD 于E ,交BC 于F ,过点A 作AG ⊥l 于G , 由题意得,EF=4-2=2.∵四边形AGFE 为矩形,∴AG=EF=2. 在Rt △ABG 中,AB=sin AG B ∠=3=43综上,填343【解后反思】本题考查切线的性质和菱形的性质,根据题意正确画出图形、灵活运用解直角三角形的知识是解题的关键.【关键词】切线的性质;菱形;解直角三角形;三、解答题:本大题共7小题,共52分,解答要写出必要的文字说明、证明过程或演算步骤.18. (2016山东淄博,18,5分)如图,—个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3 =130°,找出图中的平行线,并说明理由.【逐步提示】本题考查平行线的判,解题关键是掌握平行线的判定. ①根据同位角相等,两直线平行证明OB ∥AC ,②根据同旁内角互补,两直线平行证明OA ∥BC . 【详细解答】解:OA ∥BC ,OB ∥AC .理由:∵∠1=50°,∠2=50°,∴∠1=∠2. ∴OB ∥AC. ∵∠2=50°,∠3=130°,∴∠2+∠3=180°. ∴OA ∥BC .【解后反思】本题考查平行线的判定,掌握平行线的判定,认识三线八角是解题的关键. 【关键词】平行线的判定;19. (2016山东淄博,19,5分)解方程:x 2+4x -l=0.【逐步提示】本题考查了一元二次方程的解法,解题的关键是掌握解一元二次方程的方法思路.根据方程的特征可以发现,此方程适合用公式法或配方法来进行计算. 【详细解答】解:法一:x 2+4x -l=0. ∵Δ=24420+=, ∴42025x -±=-±. ∴125x =-+225x =-法二:x 2+4x -1=0. x 2+4x=1 ∴x 2+4x+4=1+4 ∴(x+2)2=5 ∴25x =-∴125x =-+225x =-【解后反思】解一元二次方程的常用方法有:直接开平方法、因式分解法、公式法、配方法.根据平方根的意义求解适用于缺少一次项的情况;因式分解法适用于缺少常数项或者可以直接套用平方差和完全平方公式的情况;公式法适用于所有的情况,是解一元二次方程的通用方法. 【关键词】解一元二次方程;20. (2016山东淄博,20,8分)下面是淄博市4月份的天气情况统计表:(3)在该月中任取一天,计算该天多云的概率.【逐步提示】本题考查统计图、表,简单的概率计算,解题关键是能从统计表中获取信息,会绘制统计图,并能进行概率的简单计算.(1)由天气情况统计表可得晴、多云、阴、雨的天数;(2)以天气为横轴、天数为纵轴,各种天气的天数为长方形的高,绘制四个长方形即可;(3)根据概率公式计算可得.【详细解答】解:(1)天数11 15 2 2(2)条形图如图:(3)在该月中任取一天,共有30种等可能结果,其中多云的结果由15种,∴该天多云的概率为1530=1 2.【解后反思】本题主要考查条形图的绘制与概率的计算,条形统计图能清楚地表示出每个项目的数据,确定每个项目的具体数目并绘制相应长方形是关键;简单概率的计算掌握计算公式即可. 【关键词】统计图;统计表;简单的概率计算;21. (2016山东淄博,21,8分)如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A 的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.【逐步提示】本题考查求一次函数的解析式,求二次函数的解析式,二次函数与一元二次方程的关系,数形结合思想,解题关键是能用待定系数法求函数解析式,掌握二次函数与一元二次方程的关系.(1)利用△=b2-4ac=0时,抛物线与x轴有1个交点得到4a2-4a=0,然后解关于a的方程求出a,即可得到抛物线解析式.(2)利用点C是线段AB的中点可判断点A与点B的横坐标互为相反数,则可以利用抛物线解析式确定B点坐标,然后利用待定系数法求直线AB的解析式.【详细解答】解:(1)∵抛物线y=ax2+2ax+1与x轴仅有一个公共点A,∴△=4a2-4a=0.解得a1=0(舍去),a2=1.∴抛物线解析式为y=x2+2x+1.(2)∵y= x2+2x+1=(x+1)2,∴顶点A的坐标为(-1,0).∵点C是线段AB的中点,即点A与点B关于C点对称,∴B点的横坐标为1.当x=1时,y=x2+2x+1=1+2+1=4,则B的坐标为(1,4).设直线AB的解析式为y=kx+b,把A(-1,0),B(1,4)的坐标代入,得0,4.k bk b-+=⎧⎨+=⎩解得2,2.kb=⎧⎨=⎩∴直线AB的解析式为y=2x+2.【解后反思】对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2-4ac决定抛物线与x轴的交点个数:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.【关键词】求一次函数的解析式;求二次函数的解析式;二次函数与一元二次方程的关系;数形结合思想;22. (2016山东淄博,22,8分)如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME∥AD,交BA的延长线于点E,交AC于点F.(1)求证:AE=AF;(2)求证:BE=12(AB+AC).【逐步提示】本题考查等腰三角形,平行线分线段成比例,平行线的性质,解题关键是掌握相关性质、判定,并能灵活添加辅助线.(1)欲证明AE=AF,只要证明∠AEF=∠AFE即可.(2)作CG∥EM,交BA的延长线于G,先证明AC=AG,再证明BE=EG即可解决问题.【详细解答】解:(1)证明:∵DA平分∠BAC,∴∠BAD=∠CAD.∵AD∥EM,∴∠BAD=∠AEF,∠CAD=∠AFE.∴∠AEF=∠AFE. ∴AE=AF.(2)证明:过点C作CG∥EM,交BA的延长线于G.∵EF∥CG,∴∠G=∠AEF,∠ACG=∠AFE.∵∠AEF=∠AFE,∴∠G=∠ACG. ∴AG=AC.∵BM=CM.EM∥CG,∴BE=EG.∴BE=12BG=12(BA+AG)=12(AB+AC).【解后反思】注意到中点的存在,灵活添加辅助线是解题关键. 此题也可以以点M为中点,倍长EM,通过构造全等三角形解决问题.【关键词】等腰三角形;平行线分线段成比例;平行线的性质;23. (2016山东淄博,23,9分)已知,点M是二次函数y=ax2(a>0)图象上的一点,点F的坐标为(0,14a ),直角坐标系中的坐标原点O与点M,F在同一个圆上,圆心Q的纵坐标为18.(1)求a 的值;(2)当O ,Q ,M 三点在同一条直线上时,求点M 和点Q 的坐标;(3)当点M 在第一象限时,过点M 作MN ⊥x 轴,垂足为点N. 求证:MF=MN+OF.【逐步提示】本题考查二次函数,圆,勾股定理,垂径定理,数形结合思想,解题关键是掌握相关知识,并能据题意画出有关图形,能数形结合地解决问题. (1)由垂径定理的逆定理,知圆心Q 在弦OF 的垂直平分线上. (2)点Q 为OM 的中点,由此可先得点M 的坐标,进而求点Q 的坐标.(3)设M (n ,n 2)(n >0),则N (n ,0),利用勾股定理求出MF 即可解决问题.【详细解答】解:(1)圆心Q 的纵坐标为18,则点F 的纵坐标为14,∴14a=1. 解得a=1. (2)由(1)知二次函数的解析式为y= x 2.当O ,Q ,M 三点在同一条直线上时,点M 的纵坐标为14. 将y=14代入y= x 2,得x=12±. ∴点M 的坐标为(12,14)或(-12,14). 点Q 的坐标为(14,18)或(-14,18). (3)设M(n ,n 2)(n >0),∴N(n ,0). ∵F(0,14),∴MN+OF= n 2+14. 2221()4n n +-2+14.∴MF=MN+OF.【解后反思】知道圆心在任意弦的垂直平分线上是解决(1)题的关键;知道圆心是直径的中点是解(2)的关键;设点的坐标,利用勾股定理求两点间的距离是解决(3)题的关键.【关键词】二次函数;圆;勾股定理;垂径定理;数形结合思想;24. (2016山东淄博,24,9分)如图,正方形ABCD的对角线相交于点O,点M,N分别是边BC,CD上的动点(不与点B,C,D重合),AM,AN分别交BD于点E,F,且∠MAN始终保持45°不变.(1)求证:AF=2;AM(2)求证:AF⊥FM;(3)请探索:在∠MAN的旋转过程中,当∠BAM等于多少度时,∠FMN=∠BAM?写出你的探索结论,并加以说明.【逐步提示】本题考查正方形,相似,锐角三角函数,解题关键是掌握并能灵活利用相似三角形的性质、判定,能灵活地进行推理证明.(1)先证明△AEF∽△BEM,再证明△AEB∽△FEM. 从而证明△AFM是等腰直角三角形,进而得证.(2)由(1)可证.(3)逆推得到∠BAM=22.5°,再正证.【详细解答】解:(1)∵正方形ABCD的对角线相交于点O,∴∠DBC=∠MAN=45°. 又∠AEF=∠BEM,∴△AEF∽△BEM.∴AE EF,又∠AEB=∠FEM,∴△AEB∽△FEM.BE EM∴∠EMF=∠EBA=45°.∴∠AFM=90°.=tan45°.∴AFAM(2)∵∠AFM=90°,∴AF⊥FM.(3)当∠BAM=22.5°时,∠FMN=∠BAM.理由:∵∠MAN=45°,∠BAM=22.5°,∠BAD=45°,∴∠DAN=∠BAM=22.5°.∵AB=AD,∠ABM=∠AND=90°,∴△ABM≌△ADN.∴BM=DN.∵CB=CD,∴CM=CN.∵∠MCN=90°,∠NMC=∠DBC=45°.∴MN∥BD. ∴∠BFM=∠FMN.又∠BAM=∠BFM,∴∠FMN=∠BAM.【解后反思】充分利用相似是解此题的关键所在,特别是两对相似三角形共用一对比例式时,要注意灵活应用.【关键词】正方形;相似;锐角三角函数;。
山东淄博实验中学2020中考提前自主招生数学模拟试卷(9套)附解析
山东淄博实验中学2020中考提前自主招生数学模拟试卷(9套)附解析中学自主招生数学试卷一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.(3分)﹣3的相反数是()A.3B.﹣3C.±3D.2.(3分)下列计算正确的是()A.2a+3b=5ab B.=±6C.a2b÷2ab=a2D.(2ab2)3=8a3b63.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.4.(3分)一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差5.(3分)如图,AB是⊙O的直径,直线P A与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20°B.25°C.40°D.50°6.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2C.D.7.(3分)已知实数x、y满足:x﹣y﹣3=0和2y3+y﹣6=0.则﹣y2的值为()A.0B.C.1D.8.(3分)如图,直线y=kx+b与y=mx+n分别交x轴于点A (﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,当y<0时x的取值范围是()A.x>2B.0<x<4C.﹣1<x<4D.x<﹣1 或x>4二、填空题(本大题共10小题,每小题3分,共30分.)9.(3分)“五一”小长假期间,扬州市区8家主要封闭式景区共接待游客528600人次,同比增长20.56%.用科学记数法表示528600为.10.(3分)若有意义,则x的取值范围是.11.(3分)分解因式:mx2﹣4m=.12.(3分)若方程x2+kx+9=0有两个相等的实数根,则k=.13.(3分)一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.14.(3分)如图,点A是反比例函数y =的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是.15.(3分)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为.16.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.17.(3分)如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线y=的一部分,由点C 开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn=.18.(3分)如图,⊙O的直径AB=8,C为弧AB的中点,P为弧BC上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,连接BD,则BD的最小值是.三、解答题(本大题有10小题,共96分.)19.(8分)(1)计算:|﹣3|﹣tan30°+20180﹣()﹣1;(2)化简:(1+a)(1﹣a)+a(a﹣2).20.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.21.(8分)若关于x的分式方程=1的解是正数,求m的取值范围.22.(8分)小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n个路口,则小明在每个路口都没有遇到红灯的概率是.23.(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)24.(10分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且ED⊥DB,FB ⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.25.(10分)观察下表:我们把某一格中所有字母相加得到的多项式称为特征多项式,例如:第1格的“特征多项式”为x+4y.回答下列问题:(1)第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第1格的“特征多项式”的值为2,第2格的“特征多项式”的值为﹣6.①求x,y的值;②在①的条件下,第n格的“特征多项式的值”随着n的变化而变化,求“特征多项式的值”的最大值及此时n值.26.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,E为BC的中点,连接DE.(1)求证:DE为⊙O的切线;(2)如果⊙O的半径为3,ED=4,延长EO交⊙O于F,连接DF,与OA交于点G,求OG的长.27.(12分)在平面直角坐标系中,点O为原点,点A的坐标为(﹣8,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=45°,OE=OA,求直线EF的函数表达式;(2)如图3,若α为锐角,且tanα=,当EA⊥x轴时,正方形对角线EG与OF相交于点M,求线段AM的长;(3)当正方形OEFG的顶点F落在y轴正半轴上时,直线AE与直线FG相交于点P,是否存在△OEP的两边之比为:1?若存在,求出点P的坐标;若不存在,试说明理由.28.如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C 三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△P AD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.参考答案与试题解析一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:A.2.【分析】直接利用合并同类项法则以及算术平方根、整式的除法运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、2a+3b无法计算,故此选项错误;B、=6,故此选项错误;C、a2b÷2ab=a,故此选项错误;D、(2ab2)3=8a3b6,正确.故选:D.3.【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【解答】解:从上面看,图2的俯视图是正方形,有一条对角线.故选:C.4.【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是3,添加数字3后平均数仍为3,故A与要求不符;B、原来数据的众数是3,添加数字3后众数仍为3,故B与要求不符;C、原来数据的中位数是3,添加数字3后中位数仍为3,故C与要求不符;D、原来数据的方差==,添加数字3后的方差==,故方差发生了变化.故选:D.5.【分析】利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠P AO的度数,然后利用圆周角定理来求∠ABC的度数.【解答】解:如图,∵AB是⊙O的直径,直线P A与⊙O相切于点A,∴∠P AO=90°.又∵∠P=40°,∴∠POA=50°,∴∠ABC=∠POA=25°.故选:B.6.【分析】求出AB=3,由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴==.故选:A.7.【分析】根据x﹣y﹣3=0和2y3+y﹣6=0,可以得到x与y 的关系和y2﹣的值,从而可以求得所求式子的值.【解答】解:∵x﹣y﹣3=0和2y3+y﹣6=0,∴x=y+3,y2+﹣=0,∴y2﹣=﹣∴﹣y2==1+=1﹣(﹣)=1+=,故选:D.8.【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【解答】解:∵y3=(kx+b)(mx+n),y<0,∴(kx+b)(mx+n)<0,∵y1=kx+b,y2=mx+n,即y1?y2<0,有以下两种情况:(1)当y1>0,y2<0时,此时,x<﹣1;(2)当y1<0,y2>0时,此时,x>4,故选:D.二、填空题(本大题共10小题,每小题3分,共30分.)9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:528600=5.286×105,故答案为:5.286×10510.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.11.【分析】首先提取公因式m,进而利用平方差公式分解因式即可.【解答】解:mx2﹣4m=m(x2﹣4)=m(x+2)(x﹣2).故答案为:m(x+2)(x﹣2).12.【分析】根据根判别式△=b2﹣4ac的意义得到△=0,即k2﹣4×1×9=0,然后解方程即可.【解答】解:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4?1?9=0,解得k=±6.故答案为±6.13.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π?5=10π,。
【考试必备】山东省实验中学中考提前自主招生数学模拟试卷(6套)附解析
中学自主招生数学试卷一、选择题1. 某车间2019年4月上旬生产零件的次品数如下(单位:个):0,2,0,2,3,0,2,3,1,2,则在这10天中该车间生产零件的次品数的 【 】A.众数是4B.中位数是1.5C.平均数是2D.方差是1.252. 如图所示,A ,B ,C 均在⊙O 上,若∠OAB =40O ,ACB 是优弧,则∠C 的度数为 【 】A. 40OB.45OC. 50OD. 55O3. 若二次函数y=ax 2+bx +c ,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则x 取x 1+x 2时,函数值为 【 】A. a +cB. a - cC. - cD. c4. 已知在锐角△ABC 中,∠A =550 ,AB ﹥BC 。
则∠B 的取值范围是 【 】A.35o ﹤∠B ﹤55oB. 40o ﹤∠B ﹤55oC. 35o ﹤∠B ﹤70oD. 70o ﹤∠B ﹤90o5. 正比例函数y 1=k 1x (k 1>0)与反比例函数22k y x(k 2>0)部分图象如图所示,则不等式k 1x >2k x的解集在数轴上表示正确的是 【 】A. B.C.D.6. 定义运算符号“*”的意义为(a 、b 均不为0).下面有两个结论: ①运算“*”满足交换律; ②运算“*”满足结合律 其中 【 】A.只有①正确B. 只有②正确C.①和②都正确 D. ①和②都不正确7. 已知00x y >>,且22231x xy y xy ⎧-=⎪⎨⎪+=⎩,那么()2x y +的值为 【 】 A. 2 B. 3 C. 4 D.58. 如图,点A 的坐标为(0,1),点 B 是 x 轴正半轴上的一动点,以 AB 为边作等腰直角 △ABC ,使∠BAC=90O ,设点 B 的横坐标为 x ,点 C 的纵坐标为 y ,能表示 y 与x 的函数关系的图象大致是( )A BC D9.已知△ABC 是⊙O 的内接正三角形,△ABC 的面积为a ,DEFG 是半圆O 的内接正方形,面积等于b ,那么ab 的值为 【 】A. 2B.2 C. 5 D. 1610. 横坐标、纵坐标都是整数的点叫做整点,函数1236-+=x x y 的图象上整点的个数是【 】A .2个B .3个C .4个D .5个二、填空题11.如图,五边形ABCDE 是正五边形,若12//l l , 则12∠-∠= .12.实数a 、b 、c 满足a 2-6b = -17,b 2+8c = - 23,c 2+2a =14,则a +b +c =_______ 13.把抛物线2y x bx c =++的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是221y x x =-+,则b=_______,c=________ 14.对于正数x ,规定21()21x f x x +=-,则122018()()()______201920192019f f f +++=15.如图,在△ABC 内的三个小三角形的面积分别 是10、16、20,若△ABC 的面积S ,则S=_____16.工人师傅在一个长为25cm 、宽为18cm 的矩形铁皮上剪去一个和三边都相切的⊙A 后,在剩余部分的废料上再剪出一个最大的⊙B ,则圆B 的半径是___cm 三、解答题17. (本题满分10分)甲、乙两船从河中A 地同时出发,匀速顺水下行至某一时刻,两船分别到达B 地和C 地.已知河中各处水流速度相同,且A 地到B 地的航程大于A 地到C 地的航程.两船在各自动力不变情况下,分别从B 地和C 地驶回A 地所需的时间为t 1和t 2.试比较t 1和t 2的大小关系.18. (本题满分10分) 关于三角函数有如下的公式:()sin sin cos cos sin αβαβαβ+=+① ()cos cos cos sin sin αβαβαβ+=-②()()tan tan tan 1tan tan 01tan tan αβαβαβαβ++=-≠-其中③利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:()(2tan 45tan 60tan105tan 45601tan 45tan 601422o o oooo o +=+==-++===-+-根据上面的知识,你可以选择适当的公式解决下面实际问题:如图所示,直升机在一建筑物CD 上方A 点处测得建筑物顶端D 点的俯角α为60o,底端C点的俯角 为75 o,此时直升机与建筑物CD的水平距离BC为42米,求建筑物CD的高。
2020年山东省淄博市实验学校中考模拟数学试题一
试卷第1页,总7页 2020年山东省淄博市实验学校中考模拟数学试题一1.2--的倒数是( )A .2B .12C .12-D .2-2.某几何体的三视图如图所示,则此几何体是( )A .圆锥B .圆柱C .长方体D .四棱柱 3.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总 人口为4400000000人,这个数用科学记数法表示为( ) A .4.4×108 B .4.40×108 C .4.4×109 D .4.4×1010 4.下面是某同学在一次作业中的计算摘录:①325a b ab +=;②33345-=-m n mn m n ;③()32426x x x ⋅-=-;④()32422a b a b a ÷-=-;⑤()235a a =;⑥32()()a a a -÷-=-,其中正确的个数有( )A .1个B .2个C .3个D .4个 5.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,10,这组数据的中位数和众数分别是( )A .10,12 B .12,11 C .11,12 D .12,12 6.一副三角板按如图所示的方式摆放,且∠1比∠2大50°,则∠2的度数为( )A .20°B .50°C .70°D .30°试卷第2页,总7页 7.如图,△ABC 的面积等于6,边AC=3,现将△ABC 沿AB 所在直线翻折,使点C 落在直线AD 上的C′处,点P 在直线AD 上,则线段BP 的长不可能是( )A .3B .4C .5D .68.如图,在四边形ABCD 中,E 是AB 边的中点,连接DE 并延长交CB 的延长线于点F ,且CB BF =添加一个条件使四边形ABCD 是平行四边形,下面四个条件中可选择的是( )A .AB DC =B .AD BF =C .A C ∠=∠D .F ADF ∠=∠9.小明和小亮同时从学校出发到新华书店去买书,学校和书店相距7500米,小明骑自行车的速度是小亮步行速度的1.2倍,小明比小亮早15分钟到书店,设小亮速度是x 千米/小时,根椐题意可列方程是( )A .75007500151.2x x -= B.7500750011.24x x -= C .7.57.5151.2x x -= D .7.57.511.24x x -= 10.一次函数11y k x b =+和反比例函数()22120k y k k x=⋅≠的图象如图所示,若12y y >,则x 的取值范围是( )A .20x -<<或1x >B .21x -<<。
【6套合集】山东淄博实验中学2020中考提前自主招生数学模拟试卷附解析
【6套合集】山东淄博实验中学2020中考提前自主招生数学模拟试卷附解析中学自主招生数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图案中,不是中心对称图形的是()A.B.C.D.2.(3分)初步核算并经国家统计局核定,2017年广东全省实现地区生产总值约90000亿元,比上年增长7.5%.将90000亿元用科学记数法表示应为()元.A.9×1011B.9×104C.9×1012D.9×10103.(3分)下列说法正确的是()A.2的相反数是2B.2的绝对值是2C.2的倒数是2D.2的平方根是24.(3分)下列运算正确的是()A.a2+a3=a5B.(a2)3=a5C.a3÷a2=a D.(a﹣b)2=a2﹣b25.(3分)下列不等式组的解集中,能用如图所示的数轴表示的是()A.B.C.D.6.(3分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°7.(3分)如图,在⊙O中,OC∥AB,∠A=20°,则∠1等于()A.40°B.45°C.50°D.60°8.(3分)有三张正面分别写有数字﹣1,﹣2,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A.B.C.D.9.(3分)点A(t,2)在第二象限,OA与x轴所夹的锐角为α,tanα=,则t的值为()A.﹣B.﹣2C.2D.310.(3分)如图,矩形纸片ABCD中,AB=5,BC=3,点E在AD上,且AE=1,点P是线段AB上一动点,折叠纸片,使点P与点E重合,展开纸片得折痕MN,过点P作PQ ⊥AB,交MN所在的直线于点Q.设x=AP,y=PQ,则y关于x的函数图象大致为()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)方程x2=x的解是.12.(4分)因式分解:3x2+6x+3=.13.(4分)把抛物线y=2x2﹣1向上平移一个单位长度后,所得的函数解析式为.14.(4分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AC=14cm,BD =8cm,AD=6cm,则△OBC的周长是.15.(4分)在△ABC中BC=2,AB=2,AC=b,且关于x的方程x2﹣4x+b=0有两个相等的实数根,则AC边上的中线长为.16.(4分)如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4,…则依此规律,的值为.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.(6分)计算:﹣|﹣3|+﹣4cos30°18.(6分)先化简,后求值:(x﹣)÷,其中x=2.19.(6分)已知等腰△ABC的顶角∠A=36°(如图).(1)请用尺规作图法作底角∠ABC的平分线BD,交AC于点D (保留作图痕迹,不要求写作法);(2)证明:△ABC∽△BDC.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.(7分)在国务院办公厅发布《中国足球发展改革总体方案》之后,某校为了调查本校学生对足球知识的了解程度,随机抽取了部分学生进行一次问卷调查,并根据调查结果绘制了如图的统计图,请根据图中所给的信息,解答下列问题:(1)本次接受问卷调查的学生总人数是;(2)补全折线统计图.(3)扇形统计图中,“了解”所对应扇形的圆心角的度数为,m 的值为;(4)若该校共有学生3000名,请根据上述调查结果估算该校学生对足球的了解程度为“不了解”的人数.21.(7分)某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程.在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)22.(7分)如图,在正方形ABCD中,边长AB=3,点E(与B,C不重合)是BC边上任意一点,把EA绕点E顺时针方向旋转90°到EF,连接CF.(1)求证:CF是正方形ABCD的外角平分线;(2)当∠BAE=30°时,求CF的长.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.(9分)如图,在平面直角坐标系中,直线AB:y=kx+b (b为常数)与反比例函数y=(x>0)交于点B,与x轴交于点A,与y轴交于点C,且OB=AB.(1)如图①,若点A的坐标为(6,0)时,求点B的坐标及直线AB的解析式;(2)如图①,若∠OBA=90°,求点A的坐标;(3)在(2)的条件下中,如图②,△P A1A是等腰直角三角形,点P在反比例函数y=(x>0)的图象上,斜边A1A都在x轴上,求点A1的坐标.24.(9分)如图,在菱形ABCD中,∠A=60°,以点D为圆心的⊙D与边AB相切于点E.(1)求证:BC是⊙D的切线;(2)设⊙D与BD相交于点H,与边CD相交于点F,连接HF,若AB=2,求图中阴影部分的面积;(3)假设圆的半径为r,⊙D上一动点M从点F出发,按逆时针方向运动,且∠F DM <90°,连接DM,MF,当S四边形DFHM:S 四边形ABCD=3:4时,求动点M经过的弧长.25.(9分)如图①,已知抛物线y=ax2+x+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A坐标为(﹣1,0),点C坐标为(0,),点D 是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.(1)求a,c的值;(2)求线段DE的长度;(3)如图②,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少?参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图案中,不是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义和各图特点即可解答.【解答】解:只有选项C连接相应各点后是正三角形,绕中心旋转180度后所得的图形与原图形不会重合.故选:C.【点评】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合,和正奇边形有关的一定不是中心对称图形.2.(3分)初步核算并经国家统计局核定,2017年广东全省实现地区生产总值约90000亿元,比上年增长7.5%.将90000亿元用科学记数法表示应为()元.A.9×1011B.9×104C.9×1012D.9×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:90000亿=9×1012,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列说法正确的是()A.2的相反数是2B.2的绝对值是2C.2的倒数是2D.2的平方根是2【分析】根据有理数的绝对值、平方根、倒数和相反数解答即可.【解答】解:A、2的相反数是﹣2,错误;B、2的绝对值是2,正确;C、2的倒数是,错误;D、2的平方根是±,错误;故选:B.【点评】此题考查了实数的性质,关键是根据有理数的绝对值、平方根、倒数和相反数解答.4.(3分)下列运算正确的是()A.a2+a3=a5B.(a2)3=a5C.a3÷a2=a D.(a﹣b)2=a2﹣b2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式不能合并,不符合题意;B、原式=a6,不符合题意;C、原式=a,符合题意;D、原式=a2﹣2ab+b2,不符合题意,故选:C.【点评】此题考查了同底数幂的除法,合并同类项,幂的乘方与积的乘方,以及完全平方公式,熟练掌握公式及法则是解本题的关键.5.(3分)下列不等式组的解集中,能用如图所示的数轴表示的是()A.B.C.D.【分析】先求出每个不等式的解集,再求出不等式组的解集,再根据数轴判断即可.【解答】解:由数轴可得:﹣2<x≤1,故选:D.【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.6.(3分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°【分析】先根据平行线的性质,得出∠3的度数,再根据三角形外角性质进行计算即可.【解答】解:如图所示,∵DE∥BC,∴∠2=∠3=115°,又∵∠3是△ABC的外角,∴∠1=∠3﹣∠A=115°﹣30°=85°,故选:B.【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.7.(3分)如图,在⊙O中,OC∥AB,∠A=20°,则∠1等于()A.40°B.45°C.50°D.60°【分析】利用平行线的性质即可求得∠C的度数,根据圆周角定理:同弧所对的圆周角等于圆心角的一半求得∠O的度数,再利用三角形的外角的性质即可求解.【解答】解:∵OC∥AB,∴∠C=∠A=20°,又∵∠O=2∠A=40°,∴∠1=∠O+∠C=20°+40°=60°.故选:D.【点评】本题考查了圆周角定理与平行线的性质定理,正确利用圆周角定理求得∠O的度数是关键.8.(3分)有三张正面分别写有数字﹣1,﹣2,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A.B.C.D.【分析】画树状图得出所有等可能结果,再从中找到符合条件的结果数,继而利用概率公式可得答案.【解答】解:画树状图如下:由树状图知,共有6种等可能结果,其中点(a,b)在第二象限的有2种结果,所以点(a,b)在第二象限的概率为=,故选:B.【点评】本题主要考查列表法与树状图法,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.9.(3分)点A(t,2)在第二象限,OA与x轴所夹的锐角为α,tanα=,则t的值为()A.﹣B.﹣2C.2D.3【分析】如图,作AE⊥x轴于E.根据tan∠AOE==,构建方程即可解决问题.【解答】解:如图,作AE⊥x轴于E.。
2020年山东省淄博市中考数学模拟试卷 (含答案解析)
2020年山东省淄博市中考数学模拟试卷一、选择题(本大题共12小题,共48.0分)1.实数4的相反数是()A. −14B. −4 C. 14D. 42.下列四个“QQ表情”图片中,不是轴对称图形的是()A. B. C. D.3.一组数据23、20、20、21、26,这组数据的中位数和众数分别是()A. 21,20B. 22,20C. 21,26D. 22,264.如图,在四边形ABCD中,∠A=120°,∠C=80°.将△BMN沿着MN翻折,得到△FMN.若MF//AD,FN//DC,则∠F的度数为()A. 70°B. 80°C. 90°D. 100°5.下列运算中,正确的是()A. 2a2−a2=2B. (a3)2=a5C. a2⋅a4=a6D. a−3÷a−2=a6.为了方便行人推车过某天桥,市政府在10m高的天桥一侧修建了40米长的斜道(如图所示).我们可以借助科学计算器求这条坡道倾斜角的度数,具体按键顺序是()A.B.C.D.7.如图,已知,△ABD≌△CBE,下列结论不正确的是()A. ∠CBE=∠ABDB. BE=BDC. ∠CEB=∠BDED. AE=ED8.化简x2x−2+42−x结果是()A. 1x+2B. x+2 C. xx−2D. x−29.点M(a,2a)在反比例函数y=8x的图象上,那么a的值是()A. 4B. −4C. 2D. ±210.如图,水平地面上有一面积为30πcm2的灰色扇形OAB,其中OA=6cm,且OA垂直于地面,将这个扇形向右滚动(无滑动)至点B刚好接触地面为止,则在这个滚动过程中,点O移动的距离是()A. 10πcmB. 20πcmC. 24πcmD. 30πcm11.如图,已知平行四边形ABCD中,AB=BC,点M从点D出发,沿D→C→A以1cm/s的速度匀速运动到点A,图2是点M运动时,△MAB的面积y(cm2)随时间x(s)变化的关系图象,则边AB的长为()A. 136B. √13 C. 52D. 2√1312.如图,在△ABC中,AB⊥AC,AB=5cm,BC=13cm,BD是AC边上的中线,则△BCD的面积是()A. 15cm2B. 30cm2C. 60cm2D. 65cm2二、填空题(本大题共5小题,共20.0分)3=______.13.√9=______;√−6414.如图,△ABC中,BC=5cm,将△ABC沿BC方向平移至△A′B′C′的对应位置时,A′B′恰好经过AC的中点O,则△ABC平移的距离为________cm.15.关于x的方程2x2+3x−m=0有实数根,那么实数m的取值范围是______.16.如图(1),矩形纸片ABCD中,AB=19,BC=12,先按图(2)操作,将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为______.17.如图,甲、乙两动点分别从正方形ABCD的顶点A、C出发,同时沿正方形的边开始运动,甲点按顺时针方向环行,乙点按逆时针方向环行,若乙点速度是甲点速度的5倍,则它们第2019次相遇在边________上.三、计算题(本大题共1小题,共8.0分)18. 如图所示,直线l 1的方程为y =−x +1,直线l 2的方程为y =x +5,且两直线相交于点P ,过点P 的双曲线y =k x与直线l 1的另一交点为Q(3,a). (1)求双曲线的解析式;(2)根据图象直接写出不等式k x >−x +1的解集; (3)若l 2与x 轴的交点为M ,求△PQM 的面积.四、解答题(本大题共6小题,共44.0分)19. 解方程组:(1){2a −b =32 ①a −3b =1 ②;(2){3(x −1)=y +5x+22=y−13+1.20. 如图,已知平行四边形ABCD 中,延长CB 到E ,使得BE =BC ,连结DE 交BC 于点F.求证:△ADF≌△BEF .21. 某学校开展课外体育活动,决定开设A :篮球,B :羽毛球,C :跑步,D :乒乓球这四种活动项目,为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图(如图),请你结合图中信息解答下列问题.(1)样本中最喜欢A项目的人数所占的百分比为________,其所在扇形统计图中对应的圆心角度数是________度;(2)请把条形统计图补充完整;(3)若该校有学生2500人,请根据样本估计全校最喜欢跑步的学生人数约是多少?22.为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山.汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.(参考数据:√2≈1.41,√3≈1.73)(1)开通隧道前,汽车从A地到B地大约要走多少千米?(结果精确到0.1千米)(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)23.如图,△ABC中,以AB为直径作⊙O,交BC于点D,E为弧BD上一点,连接AD、DE、AE,交BD于点F.(1)若∠CAD=∠AED,求证:AC为⊙O的切线;(2)若DE2=EF⋅EA,求证:AE平分∠BAD;(3)在(2)的条件下,若AD=4,DF=2,求⊙O的半径.24.如图,抛物线y=ax2+bx+6经过点A(−2,0),B(4,0),与y轴交于点C.点D是抛物线上的一个动点,点D的横坐标为m(1<m<4),连接AC,BC,DB,DC.(1)求抛物线的解析式;(2)当△BCD的面积等于△AOC的面积的3时,求m的值;4(3)在抛物线的对称轴上是否存在一点Q,使得△QAC的周长最小,若存在,求出点Q的坐标.-------- 答案与解析 --------1.答案:B解析:【分析】此题主要考查相反数的定义:只有符号相反的两个数互为相反数.根据互为相反数的定义即可判定选择项.【解答】解:∵符号相反,绝对值相等的两个数互为相反数,∴4的相反数是−4;故选:B.2.答案:B解析:【分析】本题考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A.是轴对称图形,故本选项不符合题意;B.不是轴对称图形,故本选项符合题意;C.是轴对称图形,故本选项不符合题意;D.是轴对称图形,故本选项不符合题意.故选B.3.答案:A解析:【分析】根据众数和中位数的定义分别找出出现次数最多的数和从小到大排列最中间的数即可.此题考查了众数和中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.【解答】解:把这组数据从小到大排列为:20,20,21,23,26,最中间的数是21,则这组数据的中位数是21,20出现了2次,出现的次数最多,则众数是20.故选:A.4.答案:B解析:解:∵MF//AD,FN//DC,∠A=120°,∠C=80°,∴∠BMF=120°,∠FNB=80°,∵将△BMN沿MN翻折得△FMN,∴∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,∴∠F=∠B=180°−60°−40°=80°,故选:B.首先利用平行线的性质得出∠BMF=100°,∠FNB=80°,再利用翻折变换的性质得出∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,进而求出∠B的度数以及得出∠F的度数.此题主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN=∠BMN,∠FNM=∠MNB是解题关键.5.答案:C解析:【分析】本题主要考查整式的运算,解题的关键是掌握合并同类项法则、同底数幂的乘法、同底数幂的除法、积的乘方与幂的乘方.分别根据合并同类项法则、幂的乘方、同底数幂的乘法、同底数幂的除法分别计算可得.【解答】解:A.2a2−a2=a2,此选项错误;B.(a3)2=a6,此选项错误;C.a2⋅a4=a6,此选项正确;D.a−3÷a−2=a−3−(−2)=a−1,此选项错误.故选C.6.答案:A解析:【分析】本题考查了计算器−三角函数:正确使用计算器,一般情况下,三角函数值直接可以求出,已知三角函数值求角需要用第二功能键.先利用正弦的定义得到sinA=0.25,然后利用计算器求锐角∠A.【解答】解:sinA=14=0.25,求A的值的按键顺序为.故选A.7.答案:D解析:解:∵△ABD≌△CBE,∴BE=BD,∠CBE=∠ABD,∠CEB=∠BDE,D选项AE=DE不正确,故选D.根据全等三角形的对应边相等,对应角相等选择正确的选项即可.本题考查了全等三角形的性质,熟记性质并准确识图是解题的关键.8.答案:B解析:【分析】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】x2 x−2+42−x=x2x−2−4x−2=x2−4 x−2=(x+2)(x−2)x−2=x+2.故选B.9.答案:D解析:【分析】此题考查了反比例函数图象上点的坐标特征,图象上点的坐标适合解析式.将点M坐标代入反比例函数解析式得出关于a的方程,解之可得.解析:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一套:满分150分2020-2021年山东淄博实验中学初升高自主招生数学模拟卷一.选择题(共8小题,满分48分)1.(6分)如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM=()A.3:2:1 B.5:3:1C.25:12:5 D.51:24:102.(6分)若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1≠x2,有下列结论:①x1=2,x2=3;②1> ;m4③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是【】A.0B.1C.2D.33.(6分)已知长方形的面积为20cm2,设该长方形一边长为ycm,另一边的长为xcm,则y与x之间的函数图象大致是()A. B. C. D.4.(6分)如图,在平面直角坐标系中,⊙O 的半径为1,则直线y x 2=-与⊙O 的位置关系是( )A .相离B .相切C .相交D .以上三种情况都有可能 5.(6分)若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A .B .C .D .6.(6分)如图,Rt △ABC 中,BC=,∠ACB=90°,∠A=30°,D 1是斜边AB 的中点,过D 1作D 1E 1⊥AC 于E 1,连结BE 1交CD 1于D 2;过D 2作D 2E 2⊥AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3⊥AC 于E 3,…,如此继续,可以依次得到点E 4、E 5、…、E 2013,分别记△BCE 1、△BCE 2、△BCE 3、…、△BCE 2013的面积为S 1、S 2、S 3、…、S 2013.则S 2013的大小为( ) A.31003 B.320136 C.310073 D.67147.(6分)抛物线y=ax 2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a 的取值范围是( )A .≤a ≤1B .≤a ≤2C .≤a ≤1D .≤a ≤28.(6分)如图,矩形ABCD 的面积为5,它的两条对角线交于点O 1,以AB ,AO 1为两邻边作平行四边形ABC 1O 1,平行四边形ABC 1O 1的对角线交BD 于点02,同样以AB ,AO 2为两邻边作平行四边形ABC 2O 2.…,依此类推,则平行四边形ABC 2009O 2009的面积为( )A.n 25 B.n 22 C.n 31 D.n 23二.填空题:(每题7分,满分42分)9.(7分)方程组的解是 .10.(7分)若对任意实数x 不等式ax >b 都成立,那么a ,b 的取值范围为 .11.(7分)如图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是 .12.(7分)有一张矩形纸片ABCD ,AD=9,AB=12,将纸片折叠使A 、C 两点重合,那么折痕长是 .13.(7分)设﹣1≤x ≤2,则|x ﹣2|﹣|x|+|x+2|的最大值与最小值之差为 .14.(7分)两个反比例函数y=,y=在第一象限内的图象如图所示.点P 1,P 2,P 3、…、P 2007在反比例函数y=上,它们的横坐标分别为x 1、x 2、x 3、…、x 2007,纵坐标分别是1,3,5…共2007个连续奇数,过P 1,P 2,P 3、…、P 2007分别作y 轴的平行线,与y=的图象交点依次为Q 1(x 1′,y 1′)、Q 1(x 2′,y 2′)、…、Q 2(x 2007′,y 2007′),则|P 2007Q 2007|= .三.解答题:(每天12分,满分60分)15.(12分).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= .(1) 求111xy yz zx++的值. (2) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.16.(12分)如图,ABC △是等腰直角三角形,CA CB =,点N 在线段AB 上(与A 、B 不重合),点M 在射线BA 上,且45NCM ∠=︒。
求证:222MN AM BN =+。
17.(12分)在0与21之间插入n 个正整数1a ,2a ,…,n a ,使其满足12021n a a a <<<<<。
若1,2,3,…,21这21个正整数都可以表示为0,1a ,2a ,…,n a ,21这2n +个数中某两个数的差。
求n 的最小值。
18.(12分)如图,已知BC 是半圆O 的直径,BC=8,过线段BO 上一动点D ,作AD ⊥BC 交半圆O 于点A ,联结AO ,过点B 作BH ⊥AO ,垂足为点H ,BH 的延长线交半圆O 于点F . (1)求证:AH=BD ;(2)设BD=x ,BE •BF=y ,求y 关于x 的函数关系式;(3)如图2,若联结FA 并延长交CB 的延长线于点G ,当△FAE 与△FBG 相似时,求BD 的长度.19.(12分)如图,在平面直角坐标系xOy中,直线AB过点A(3,0)、B(0,m)(m>0),tan∠BAO=2.(1)求直线AB的表达式;(2)反比例函数y=的图象与直线AB交于第一象限内的C、D两点(BD<BC),当AD=2DB时,求k1的值;(3)设线段AB的中点为E,过点E作x轴的垂线,垂足为点M,交反比例函数y=的图象于点F,分别联结OE、OF,当△OEF∽△OBE 时,请直接写出满足条件的所有k2的值.第一套:满分150分2020-2021年山东淄博实验中学初升高自主招生数学模拟卷参考答案一.选择题:1.【解答】解:连接EM,CE:CD=CM:CA=1:3∴EM平行于AD∴△BHD∽△BME,△CEM∽△CDA∴HD:ME=BD:BE=3:5,ME:AD=CM:AC=1:3∴AH=(3﹣)ME,∴AH:ME=12:5∴HG:GM=AH:EM=12:5设GM=5k,GH=12k,∵BH:HM=3:2=BH:17k∴BH=K,∴BH:HG:GM=k:12k:5k=51:24:10故选D.2.【答案】C 。
解答:①∵一元二次方程实数根分别为x 1、x 2,∴x 1=2,x 2=3,只有在m=0时才能成立,故结论①错误。
②一元二次方程(x -2)(x -3)=m 化为一般形式得:x 2-5x +6-m=0,∵方程有两个不相等的实数根x 1、x 2,∴△=b 2-4ac=(-5)2-4(6-m )=4m +1>0,解得:1m 4>-。
故结论②正确。
③∵一元二次方程x 2-5x +6-m=0实数根分别为x 1、x 2,∴x 1+x 2=5,x 1x 2=6-m ∴二次函数y=(x -x 1)(x -x 2)+m=x 2-(x 1+x 2)x +x 1x 2+m=x 2-5x +(6-m )+m=x 2-5x +6=(x -2)(x -3)。
令y=0,即(x -2)(x -3)=0,解得:x=2或3。
∴抛物线与x 轴的交点为(2,0)或(3,0),故结论③正确。
综上所述,正确的结论有2个:②③。
故选C 。
3.【答案】B 。
【分析】∵根据题意,得xy=20,∴()20y=x>0,y>0x。
故选B 。
4.【答案】B 。
【分析】如图,在y x 2=-中,令x=0,则y=-2 ;令y=0,则x=2 ,∴A (0,-2),B (2,0)。
∴OA=OB= 2 。
∴△AOB是等腰直角三角形。
∴AB=2,过点O作OD⊥AB,则OD=BD=12AB=12×2=1。
又∵⊙O的半径为1,∴圆心到直线的距离等于半径。
∴直线y=x- 2 与⊙O相切。
故选B。
5.【分析】连接内心和直角三角形的各个顶点,设直角三角形的两条直角边是a,b.则直角三角形的面积是;又直角三角形内切圆的半径r=,则a+b=2r+c,所以直角三角形的面积是r(r+c);因为内切圆的面积是πr2,则它们的比是.【解答】解:设直角三角形的两条直角边是a,b,则有:S=,又∵r=,∴a+b=2r+c,将a+b=2r+c代入S=得:S=r=r(r+c).又∵内切圆的面积是πr2,∴它们的比是.故选B.【点评】此题要熟悉直角三角形的内切圆半径等于两条直角边的和与斜边的差的一半,能够把直角三角形的面积分割成三部分,用内切圆的半径进行表示,是解题的关键.6.解答:解:∵Rt△ABC中,BC=,∠ACB=90°,∠A=30°,∴AC==BC=6,∴S△ABC=AC•BC=6,∵D1E1⊥AC,∴D1E1∥BC,∴△BD1E1与△CD1E1同底同高,面积相等,∵D1是斜边AB的中点,∴D1E1=BC,CE1=AC,∴S1=BC•CE1=BC×AC=×AC•BC=S△ABC;∴在△ACB中,D2为其重心,∴D2E1=BE1,∴D2E2=BC,CE2=AC,S2=××AC•BC=S△ABC,∴D3E3=BC,CE2=AC,S3=S△ABC…;∴S n=S△ABC;∴S2013=×6=.故选C.7.【分析】此题主要考数形结合,画出图形找出范围,问题就好解决【解答】解:由右图知:A(1,2),B(2,1),再根据抛物线的性质,|a|越大开口越小,把A点代入y=ax2得a=2,把B点代入y=ax2得a=,则a的范围介于这两点之间,故≤a≤2.故选D.【点评】此题考查学生的观察能力,把函数性质与正方形连接起来,要学会数形结合.8.解答:解:∵矩形ABCD的对角线互相平分,面积为5,∴平行四边形ABC1O1的面积为,∵平行四边形ABC1O1的对角线互相平分,∴平行四边形ABC2O2的面积为×=,…,依此类推,平行四边形ABC2009O2009的面积为.故选B.二、填空题9.【分析】根据式子特点,设x+1=a,y﹣1=b,然后利用换元法将原方程组转化为关于a、b的方程组,再换元为关于x、y的方程组解答.【解答】解:设x+1=a,y﹣1=b,则原方程可变为,由②式又可变化为=26,把①式代入得=13,这又可以变形为(+)2﹣3 =13,再代入又得﹣3=9,解得ab=﹣27,又因为a+b=26,所以解这个方程组得或,于是(1),解得;(2),解得.故答案为和.【点评】本题主要考查解无理方程的知识点,去掉根号把无理式化成有理方程是解题的关键,需要同学们仔细掌握.10.【分析】分a=0,a≠0两种情况分析.【解答】解:∵如果a≠0,不论a大于还是小于0,对任意实数x不等式ax>b都成立是不可能的,∴a=0,则左边式子ax=0,∴b<0一定成立,∴a,b的取值范围为a=0,b<0.【点评】本题是利用了反证法的思想11.【分析】先根据﹣1≤x≤2,确定x﹣2与x+2的符号,在对x的符号进行讨论即可.【解答】解:∵﹣1≤x≤2,∴x﹣2≤0,x+2>0,∴当2≥x≥0时,|x﹣2|﹣|x|+|x+2|=2﹣x﹣x+x+2=4﹣x;当﹣1≤x<0时,|x﹣2|﹣|x|+|x+2|=2﹣x+x+x+2=4+x,当x=0时,取得最大值为4,x=2时取得最小值,最小值为3,则最大值与最小值之差为1.故答案为:1【点评】本题重点考查有理数的绝对值和求代数式值.解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简,即可求解.12.【分析】要求出|P2007Q2007|的值,就要先求|Qy2007﹣Py2007|的值,因为纵坐标分别是1,3,5 …,共2007个连续奇数,其中第2007个奇数是2×2007﹣1=4013,所以P2007的坐标是(Px2007,4013),那么可根据P点都在反比例函数y=上,可求出此时Px2007的值,那么就能得出P2007的坐标,然后将P2007的横坐标代入y=中即可求出Qy2007的值.那么|P2007Q2007|=|Qy2007﹣Py2007|,由此可得出结果.【解答】解:由题意可知:P2007的坐标是(Px2007,4013),又∵P2007在y=上,∴Px2007=.而Qx2007(即Px2007)在y=上,所以Qy2007===,∴|P2007Q2007|=|Py2007﹣Qy2007|=|4013﹣|=.故答案为:.【点评】本题的关键是找出P点纵坐标的规律,以这个规律为基础求出P2007的横坐标,进而求出Q2007的值,从而可得出所求的结果.13.【分析】圆锥的侧面展开图是扇形,从A点出发绕侧面一周,再回到A点的最短的路线即展开得到的扇形的弧所对弦,转化为求弦的长的问题.【解答】解:∵图中扇形的弧长是2π,根据弧长公式得到2π=∴n=120°即扇形的圆心角是120°∴弧所对的弦长是2×3sin60°=3【点评】正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.14.【分析】首先由勾股定理求出AC的长,设AC的中点为E,折线与AB交于F.然后求证△AEF∽△ABC求出EF的长.【解答】解:如图,由勾股定理易得AC=15,设AC的中点为E,折线FG与AB交于F,(折线垂直平分对角线AC),AE=7.5.∵∠AEF=∠B=90°,∠EAF是公共角,∴△AEF∽△ABC,∴==.∴EF=.∴折线长=2EF=.故答案为.【点评】本题综合考查了矩形的性质,勾股定理,相似,全等等知识点.三、解答题15.【解析】(1)解:由等式222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++=, 去分母得222222(1)(1)(1((1)(1)(1)4z x y x y z y z x xyz --+--+--=,222222222222()()()3()0,x y z xy z x yz x y z y z x z x y xyz x y z xyz ⎡⎤++-+++++++++-=⎣⎦()()()()0xyz xy yz zx x y z xy yz zx x y z xyz ++-+++++++-=, ∴[()](1)0xyz x y z xy yz zx -++++-=,1,10xy yz zx xy yz zx ++≠∴++-≠,()0,xyz x y z ∴-++=xyz x y z ∴=++,∴原式=1.x y zxyz++= (2)证明:由(1)得计算过程知xyz x y z ∴=++,又,,x y z 为正实数,9()()()8()x y y z z x xyz xy yz zx ∴+++-++ 9()()()8()()x y y z z x x y z xy yz zx =+++-++++ 222222()()()6x y z y z x z x y xyz =+++++- 222()()()0.x y z y z x z x y =-+-+-≥∴9()()()8()x y y z z x xyz xy yz zx +++≥++.【注:222222()()()2x y y z z x x y xy y z yz z x zx xyz +++=++++++222222()()()2x y z y z x z x y xyz =++++++222222()()3x y z xy yz zx x y xy y z yz z x zx xyz ++++=++++++222222()()()3x y z y z x z x y xyz =++++++】16.【答案】如图,作点A 关于直线MC 的对称点D ,连结DA 、DM 、DC ,DN ,则MDC MAC △≌△。