16.3二次根式的加减法
(附答案解析)人教版八年级数学下册16.3二次根式的加减(1))精选同步练习

16.3 二次根式的加减(1)同步练习姓名:__________班级:__________学号:__________本节应掌握和应用的知识点1.同类二次根式(1)同类二次根式的定义几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式叫做同类二次根式.(2)同类二次根式的合并合并同类二次根式类似于合并同类项,就是将同类二次根式的“系数”合并 ,根指数与被开方数保持不变.2.二次根式的加减(1)二次根式的加减实质是合并同类二次根式,非同类二次根式不能合并.(2)二次根式加减法的一般步骤: ①先把各根式化成最简二次根式; ②找出其中的同类二次根式; ③合并同类二次根式.3. 比较二次根式大小时,可将根号外的非负数(或式子) 移到根号内.基础知识和能力拓展训练一、选择题1.下列各组二次根式中,是同类二次根式的是( )A. 6和32B. a和2aC. 12和13D. 3和92.下列二次根式中,不能与2合并的是()A. 12B. 8C. 12D. 183.已知二次根式24a 与2是同类二次根式,则a的值可以是()A. 5B. 3C. 7D. 84.下列运算正确的是()A. (﹣a2)3=a6B. (a+b)2=a2+b2C. 8﹣2=2D. 55﹣5=4 5.已知等腰三角形的两边长为23和52,则此等腰三角形的周长为()A. 43+52B. 23+102C. 43+102D. 43+52或23+102 6.计算|2﹣5|+|4﹣5|的值是()A. ﹣2B. 2C. 25﹣6D. 6﹣257.计算:32﹣8的结果是()A. 30B. 2C. 22D. 2.88.实数的值在( )A. 0和1之间B. 1和2之间C. 2和3之间 D . 3和4之间9.设a=6-2,b=3-1,c=231,则a,b,c之间的大小关系是( )A. c>b>aB. a>c>bC. b>a>cD. a>b>c10.设的小数部分为,则的值是()A. B. 是一个无理数C. D. 无法确定二、填空题11.若最简二次根式与是同类二次根式,则a =______,b =___________.12.若最简二次根式1x +与22x -能合并为一个二次根式,则x =_______。
16.3二次根式的加减课件+2023-—2024学年人教版数学八年级下册

同类项合并就是字母不变,系数相加减。
新课学习
二次根式的加减
7.5dm
现有一块长7.5dm、宽5dm的木板,
能否采用如图的方式,在这块木板
5dm
上截出两个分别是8dm2和18dm2的
dm
dm
正方形木板?
( + )dm
问题转化为比较7.5dm与( + )dm的大小。
新课学习
( + )
复习导入
2、把下列各根式化简
(1) 12
2
3
1
(5)
2
2
2
(2) 48
4
3
(6) 32
4
2
(3) 18
3
2
(4) 50
5
2
1
(7) 45 (8) 1
3
3
5
2
3
3
导入新课
计算下列各式:
(1)2x+3x
5x
(2)2x5-5x5+5x5
2x5
(3)3x+2x+3y
5x+3y
(4)3a2-2a2+a3
a2+a3
先化为最简二次根式
把同类二次根式合并。
二次根式的加减与整式的加减根据都是分配律,它们的
运算实质也基本相同。
拓展提升
1.解下列方程和不等式.
(1)
x+
−
=2x+1
+
(2) (x-1)>3(x+1)
分析:(1)先将分母有理化,再解方程即可解答本题;
(2)根据解不等式的步骤进行解答即可,注意不等号的方向。
人教版数学八年级下册16.3《二次根式的加减》教学设计

人教版数学八年级下册16.3《二次根式的加减》教学设计一. 教材分析人教版数学八年级下册16.3《二次根式的加减》是本节课的主要内容。
在此之前,学生已经学习了二次根式的性质和乘除运算,本节课将进一步引导学生学习二次根式的加减运算。
教材通过实例引入二次根式的加减运算,让学生在实际问题中体会和理解二次根式的加减法则。
二. 学情分析学生在学习本节课之前,已经掌握了二次根式的性质和乘除运算,具备了一定的数学基础。
但学生在进行二次根式的加减运算时,容易出错,对运算法则理解不深。
因此,在教学过程中,需要帮助学生巩固已学的知识,并通过实例让学生深入理解二次根式的加减法则。
三. 教学目标1.理解二次根式的加减法则,并能正确进行二次根式的加减运算。
2.培养学生运用二次根式解决实际问题的能力。
3.提高学生的数学思维能力和运算能力。
四. 教学重难点1.重点:二次根式的加减法则,二次根式的加减运算。
2.难点:理解二次根式加减法则是如何得出的,如何运用二次根式加减法则解决实际问题。
五. 教学方法1.采用问题驱动法,通过实例引入二次根式的加减运算,激发学生的学习兴趣。
2.运用合作学习法,让学生在小组内讨论二次根式的加减法则,培养学生相互学习、共同进步的能力。
3.采用归纳总结法,引导学生总结二次根式的加减法则,加深学生对知识的理解。
4.运用练习法,让学生在实践中掌握二次根式的加减运算。
六. 教学准备1.准备相关的教学PPT,展示二次根式的加减运算实例。
2.准备一些练习题,用于巩固学生的学习成果。
3.准备黑板,用于板书重要的运算过程和结论。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何进行二次根式的加减运算。
例如,问学生:“已知√3 + √5 = a,求a的值。
”让学生尝试解答,从而引出本节课的主题。
2.呈现(10分钟)展示几个二次根式的加减运算实例,让学生观察和分析。
例如:2√5 + 3√5引导学生观察这些实例,发现二次根式加减运算的规律。
人教版八年级下册数学16.3二次根式的加减教案

3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次根式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
二、核心素养目标
1.培养学生的逻辑推理能力:通过二次根式加减法则的推导与应用,让学生理解数学知识之间的内在联系,提高逻辑思维和推理能力。
2.提升数学运算能力:使学生掌握二次根式的加减运算方法,培养他们准确、迅速地进行数学计算的能力。
3.增强数学抽象素养:引导学生从实际问题中抽象出二次根式加减的数学模型,培养学生运用数学语言表达现实问题的能力。
3.重点难点解析:在讲授过程中,我会特别强调合并同类项和化简二次根式这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解,例如如何将$\sqrt{8}$化简为$2\sqrt{2}$。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二次根式相关的实际问题,如计算两个物品的长度的和或差。
-在进行二次根式加减运算时,对于含有不同根号的表达式,不知道如何将其转换为同类项;
-难以理解二次根式的乘除运算与加减运算之间的关系,例如$\sqrt{ab} \neq \sqrt{a} \cdot \sqrt{b}$;
-对于复杂的二次根式加减问题,不知道如何选择合适的策略进行求解。
-教学策略:
-通过对比不同类型的二次根式,引导学生发现合并同类项的规律;
此外,小组讨论的环节学生们表现得非常积极,他们能够提出自己的观点,并与小组成员进行交流。这说明学生们在合作学习中能够更好地理解和掌握知识。今后,我会继续增加这种形式的教学活动,让学生在互动交流中提高自己的数学素养。
16..3二次根式的加减法(教案)

3.培养学生的数学建模和数学应用能力,通过实际问题的引入,使学生能够将二次根式加减法应用于现实情境中,提高解决实际问题的能力。
在教学过程中,关注学生个体差异,引导学生主动参与、积极探究,培养学生独立思考、合作交流的良好习惯,全面提升学生的数学核心素养。
五、教学反思
在今天的教学中,我发现学生们对二次根式加减法的概念和应用有了初步的理解,但同时也暴露出一些问题。在讲解理论知识时,我注意到部分学生对于如何合并同类二次根式感到困惑,尤其是在涉及到根号内含有不同数字的情况下。为了帮助学生克服这个难点,我采用了更多的例题进行演示,并强调了化简根式时的关键步骤。
教学内容将围绕以下例题和练习展开:
(1)计算下列各式的值:
$$ \sqrt{3} + \sqrt{5} $$
$$ \sqrt{12} - \sqrt{2} $$
$$ 2\sqrt{6} + 3\sqrt{6} $$
$$ 5\sqrt{3} - 3\sqrt{2} $$
(2)化简下列各式:
$$ \frac{\sqrt{6}+\sqrt{8}}{\sqrt{2}} $$
3.重点难点解析:在讲授过程中,我会特别强调同类二次根式的合并和含有不同根号的二次根式的化简这两个重点。对于难点部分,我会通过举例和步骤讲解来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二次根式加减法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如利用纸片拼凑不同形状的图形,并计算其面积,从而演示二次根式加减法的基本原理。
16.3 二次根式的加减 课件(4课时)

练习1: (1) 18 8 2
(2) 75 27 8 3
(3)
48 6
1 3 6
3
(4)下列计算正确的是(D)
A. 5 2 3 B.8 3 2 11 2
C.4 5 5 4 D. a 3 a 1 a
2
2
练习2计算:
(1) 80 20 5 5
二次根式的除法公式:
a a a 0,b 0
b
b
a a a 0,b 0
b
b
二次根式加减法的步骤:
归纳 (1)将每个二次根式化为最简二次根式; (2)找出其中的同类二次根式; (3)合并同类二次根式。
一化 二找 三合并
二次根式计算、化简的 结果符合什么要求?
(1)被开方数不含分母;
先化简,后合并
计算: 8 18 4 2
2 23 24 2
2 3 4 2
如何合并 同类二次
9 2
根式?
与合并同类项类似,把同类二次根式的系 数相加减,做为结果的系数,根号及根号内部 都不变,
总结二次根式加减运算的步骤
二次根式加减法的步骤:
交流 归纳 (1)将每个二次根式化为最简二次根式; (2)找出其中的同类二次根式; (3)合并同类二次根式。
提高题
比较根式的大小.
6 14和 7 13
解: ∵( 6 14)2 6+2√ 84 +14=20+2√ 84
( 7 13 )2 20+2 91
又 ∵ 6 14 0
7 13 0
6 14 7 13
已知a 3 2, b 3 2, 求a2 ab b2的值.
16.3(1)二次根式的加法和减法

1、什么是最简二次根式?
1)被开方数不含分母 2)被开方数的各因式的指数为1 2、下列各组里的二次根式是不是同类二次 根式?(题中字母都为正数)
问题
怎样计算 a ?
2
a 2 8a 50a 2 a 2 a
3
二次根式加减运算的步骤:
(1)把各个二次根式化成最简二次根式
(2)把同类二次根式分别合并
(1)把各个二次根式化成最简二次根式
(2) 再把同类二次根式分别合并
(不是同类二次根式不能合并)
• 教学反思: • 此节教学的难点是正确化简二次根式尤其 是被开方数比较复杂的二次根式的化简.解 含二次根式的一元一次方程、不等式也容 易出错.
16.3(1) 二次根式的加法和减法
• 教学目标: • 掌握二次根式的加减法运算法则; • 在二次根式的加减法运算法则的学习过程 中,渗透分析、概括、类比等数学思想方 法,提高学生的思维品质和学习兴趣. • 教学重点和难点: • 掌握二次根式的加减法运算法则.
学情分析:
学生已掌握最简二次根式、同类二次根式的概念以及 合并同类项等知识,通过将合并同类二次根式与合并 同类项类比,将二次根式的加减与整式加减类比,掌握 二次根式加减法运算法则。
练习1
判断题
(1)3 2 2 3 5 3 ( (2)2 3 2 3 ( (3)3 3 3 3 ( ) )
)
(4)2 x x 3x x x (
) )
1 1 (5)a x x (a ) x ( b b
练习2
计算 : (1)6 3 0.12 48
x 2 (2) 8 x 2 2x 2 9x 3a (3)2a 3ab (b 27a 2ab ) (b 0) 4
16.3 二次根式的加减(第1课时)(课件)八年级数学下册(人教版)

知识点一 同类二次根式
活动1 观察下列二次根式的被开数有什么共同特征:
(1) 2,3 2,-
2
5
1
2,
3
2 ···
2
(2) 3,17 3,- 5 3, ·
3··
13
每组的二次根式的被开方数相同
活动2 思考下列二次根式具有的被开数以上特征吗?你怎样发现的?:
9
(3) 2, 8, 18, 32, 0.5,2
2 10
8
2
3
5
3
2
ab
2
b
(1) 75 =____;(2) 8a b =_______;(3) =_____.
5
5
问题 现有一块长 7.5 dm、宽 5 dm 的木板,能否采用如图的方式,在这
块木板上截出两个分别是 8 dm2 和 18 dm2 的正方形木板?
5 dm
5 dm
8 18
8
18
2
2
2
5
2
1 4.
课堂总结
一般地,二次根式的
法
则
加减时,可以先将二次根
式化成最简二次根式,再
将被开方数相同的二次根
二次根
式加减
式进行合并.
注
运算原理
运算律仍然适用
运算顺序
与实数的运
算顺序一样
意
(乘法分配律逆用)
5 2
(有理数的加减)
归纳知识
2.二次根式的加减法法则
将二次根式化成最简二次根式,再将同类二次根式进行合并.
简记:一化、二找、三合并
典例精析
【例3】计算:
(1) 80 45;
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温故知新:
1、满足哪些条件的二次根式,
叫做最简二次根式?
(1)被开方数中不含分母; (2)被开方数中不含能开
得尽方的因数或因式。
一、复习:化简下列二次根式
4 3 2 3 48 _____ 12 _____; 5 2 2 2 8 ______; 50 ______;
1 (3) 2 , 8 ,5 18, 32, 2
定义:几个二次根式化成最简二次根式 以后,如果被开方数相同,这几个二次 根式就叫做同类二次根式。
1.下列各组二次根式哪些是同类二次根式?
①
②
63, 28, 3
40, 20, 10
解:① 63 7 9 3 7, 28 4 7 2 7;
2
如何判断?
探究小结: 二次根式加减时,先将二次根式化 为最简二次根式,再把被开方数相同的 二次根式进行合并。
二次根式加减法的步骤:
1、将每个二次根式化为最简二次根式; 2、找出其中的同类二次根式; 3、合并同类二次根式。 (即系数相加减,被开方数和根指数不变)
简单地说:一化,二找,三合并。
3.判断:下列计算是否正确? 如有错误,说出错误原因并改正。
1 2 _____; 18 _______; 3 2 2 2 2 4 3 ________ 3 5 3 45 _____;
3
探究
如何计算
5 5 呢?
下列3组根式各有什么特征?
2 (1) 2, 3 2, 2 2, 15 2, 2 3 2 (2) 3 ,5 3 ,6 3 ,17 3 , 3 13
如何判断几个二次根式是否为同类二次根式?
小结:先化成最简二次根式,再看被开方 数是否相同,与最简二次根式前面的因式及 符号无关.
练习
1、化简
下列各组二次根式哪些能合并?
2、比较被 开方数
(1) 50与 0.5 √
5 2和 2 2
(2) 12与 18 ×
2 3和3 2
(3) a b与2 b √
a b和2 b
1
8
2
6
2 2 2 2
22
3 5 2 7 5
2 3与5 2不是同类二次根式, 所以不能合并。
例题讲解
计算: (1) 16x 9 x (2) 80 45 解: 45
4 x 3 x
4 5 3 5
(4 3) x
1 1 3 27
1 ( 4 ) 2 12 4 3 48 27
学习体会
1、本节课你的收获有哪些?
2、还有什么疑惑?
3、是否有给老师的建议?
1 2 1 2 6 2 6 解:原式= 2 6 2 3 4
2 1 1 ( 2 1) 6 ( ) 2 3 2 4
5 3 6 2 3 4
布置作业
1计算:必做题
(1) 5 2 8 7 18 2 1 ( 2 ) 3 40 2 5 10
2计算:选做题
( 3 ) 12
(4 3) 5
7 x
5
1 1 (1)2 8 18 32 2 4
3 化简 2 2 解:原式= 4 2 2 3 ( 4 1) 2 如果结果中 2 有分数,用 别漏了“1”. 9 假分数表示 2 2
1 2 1 ( 2) 24 2 6 2 3 8
63, 28是同类二次根式。
② 40 10 4 2 10 ,
20 4 5 2 5
40, 10是同类二次根式。
计算 2 3
+ 5
3
解:
2 3 + 5 3 = (2 + 5 ) 3 = 7 3
(1) 5 50 20
解:原式=
5 5 2 2 5
先化 简
3 5 5 2