盾构顶板吊装计算书

盾构顶板吊装计算书
盾构顶板吊装计算书

1.1吊装作业环境

左线盾构吊装场地为位于潜山路车站顶板恢复沥青路面上部,顶板覆土厚度约3.7米,顶板结构厚度800mm,履带吊站位处已铺设4块2500×6000×30mmQ345b钢板,履带吊自重约245吨,盾构吊装最大构件重约96吨。

1.1.2左线盾构机主要吊重参数

本区间左线使用盾构机为中铁装备Φ6250盾构机、盾构机主要由刀盘、前体、中体、后体、连接桥、台车组成,主盾吊装时需要翻转,拟采用三一重工的SCC3000A型300吨履带吊进行吊装。主要吊出构配件及参数详见下表:

表1-1 左线中铁装备盾构机主要部件尺寸及重量参数表

二、吊装计算

吊车站位平面布置图

顶板荷载分散示意图

考虑到吊装过程中吊车两块履带吊受力不均匀,现选单边履带板进行验算,取吊装最大构件前盾最不利情况进行验算,设计盾构井施工阶段地面超载为30kPa。

吊车自重G1=2450KN 最大构件前盾重G2=960KN

吊装荷载F=G1+G2=3410KN

由上图得顶板扩散面积A=(3.7×2+2.5)×12=118.8m2

吊装过程中顶板单位面积荷载N=F/A=3410÷118.8=28.7kPa<30kPa

经计算负荷,吊装过程中中施加在顶板上的最大荷载为28.7kPa,小于设计要求30kPa,现场吊装施工不会对结构顶板产生影响。

吊车吊装计算

8.1、主冷箱内大件设备的吊装计算 (一)下塔的吊装计算 (1)下塔的吊装参数 设备直径:φ4.2m 设备高度:21.71m 设备总重量:52.83T 附:上塔(上段)吊车臂杆长度和倾角计算简图 (2)主吊车吊装计算 ①设备吊装总荷重: P=P Q +P F =52.83+3.6 =56.43t 式中:P Q—设备吊装自重P Q =52.83t P F—设备吊装吊索及平衡梁的附加重量,取P F =3.6t ②主吊车性能预选用为:选用260T履带吊(型号中联重科QUY260) 回转半径:16m 臂杆长度:53m 起吊能力:67t 履带跨距:7.6 m 臂杆形式:主臂形式吊装采用特制平衡梁

钩头选用160t/100t吊钩,钩头重量为2.8吨吊车站位:冷箱的西面③臂杆倾角计算: α=arc cos(S-F)/L = arc cos(16-1.5)/53 =74.12°

式中:S —吊车回转半径:选S=16m F —臂杆底铰至回转中心的距离,F=1.5m L —吊车臂杆长度,选L=53m ④净空距离A的计算: A=Lcosα-(H-E)ctgα-D/2 =53cos74.12°-(36.5-2) ctg74.12°-5/2 =2.1m 式中:H —设备吊装时距臂杆最近的最高点b至地面的高度,选H=36.5m E —臂杆底铰至地面的高度,E=2m D —设备直径:D=4.2m,取D=5 m 以上计算说明所选的吊车性能能满足吊装需求 ⑤主吊车吊装能力选用校核: 吊装总荷重/起吊能力=P/Q=56.43/67=84.22% 经过校核,选用的主吊车能够满足吊装要求。 (3)溜尾吊车的吊装计算

钢箱梁(33+41+33)

厦门疏港路立交工程 钢箱梁计算书 1.结构特点 A匝道桥第二联为钢箱梁结构,桥跨布置为(33+41+33)=107m,桥面宽度为8m,单箱多室截面,道路中心线处梁高1960mm,箱宽7.74m。横隔梁的布置间距为2.0m。钢材材质为Q345C。钢箱梁顶面为平坡。 桥面铺装采用4cm细粒式沥青混凝土面层和4cm中粒式沥青混凝土底层,桥面铺装层总厚度为8cm。另设8cm钢筋砼层。采用混凝土防撞护栏。 2.设计荷载 汽车荷载:城-A级。 3.箱梁顶板板厚的确定 钢箱梁的顶板板厚对全桥的经济指标影响较大,根据目前钢箱梁的设计经验和实际汽车荷载超重的影响,箱梁顶板板厚宜取14mm。 4.箱梁标准段截面 5.纵肋设计 横肋布置间距 a=2000mm 顶板纵肋布置间距 b=300mm 城-A车辆前轮着地宽度 2g=0.25m,分布宽度:+*2=0.41 m 城-A车辆后轮着地宽度 2g=0.6m,分布宽度:+*2=0.76 m 5.1纵肋截面几何特性 1)桥面板有效宽度的确定

关于桥面板的有效计算宽度,参考日本道路桥示方书的规定进行计算。 纵肋等效跨度L=0.6a=1200mm, b/2L= λ=2L2L219.1mm 取有效宽度为210mm。 2)截面几何特性计算 纵肋板件组成:1-240x14(桥面板),1-90x10(下翼缘),1-156x8(腹板)A=55.08 cm2 I= 2499.4 cm4 Yc=12.6 cm (距下翼缘) Wt=462.9 cm3 Wb=198.4 cm3 5.2纵肋内力计算 1)作用于纵肋上的恒载 a)纵肋自重 q1=*1e-4**= kg/m b)钢桥面板自重 q2=*b*=38.5 kg/m c)桥面铺装(厚8cm) q3=*b*=67.2 kg/m d)砼桥面板(厚8cm) Q4=*b*=72.8 kg/m e)恒载合计 ∑q=197.0 kg/m 2)汽车冲击系数 (1+μ)=1+= 3)作用于纵肋上的活载

汽车吊计算

地下室顶板200t汽车吊施工计算书一、吊车施工概况 根据现场施工需要,考虑在开行200t汽车吊且进行吊装作业,故对结构进行验算。 二、依据规范 《建筑结构荷载规范》 GB50009-2001 《混凝土结构设计规范》 GB50010-2002 三、汽车吊施工荷载 利勃海尔200吨汽车吊总重60,配置69t,吊装作业半径38m,额定吊重量8t。 汽车吊施工荷载分为行走荷载和吊装荷载: 行走载荷:汽车吊总质量约60t,共10个行走轮,如图所示,每个轮子6t。 吊装载荷:吊装作业时单支腿垂直载荷为: N=(60+69+8)÷4+38×8×sin43.2o÷2÷8.8/2+38×8×sin43.2o÷2÷8.3/2=34.25+23.7+26.7=84.6t 四.混凝土梁验算 根据结构的受力特点,吊装时停机位置应尽量支腿靠近立柱或混凝土梁。立柱间的混凝土梁最长的为8.7m。按照汽车吊布置图,支腿离开立柱最远为0.4m。 汽车吊停机位置混凝土梁的配筋为21根直径为25的钢筋,梁的尺寸为600x1000,混凝土梁弯矩设计值为:

M=(1000-100)×21×360×3.14×12.5×12.5=334.8t.m>84.6t*0.4m=33.84t.m 五.首层楼板验算 汽车吊行走在楼桥板上,则车轮压力做为集中力作用。 楼板配筋为双层双向直径为12的钢筋,间距为100mm布置,楼板厚度为250mm,取1m 宽度楼板进行验算,配筋量为1130.42 mm。 设计承载弯矩值为:M u =f y A s (h -x/2)=250x2010x200=10.1t.m 则楼板弯矩为5.6 t.m<10.1t.m 五.结论 200吨汽车吊可以在该区域内开行及行吊装工作。

40+72+43m曲线钢箱梁计算书

40.625+72+72+43.625m连续钢 箱梁 上 部 结 构 计 算 书 2017.07

目录 一、概述 (1) 1.1桥梁简介 (1) 1.2 模型概况 (1) 1设计规范 (1) 2参考规范 (1) 3主要材料及性能指标 (2) 4 整体模型概述 (2) 二模型主要计算结果 (5) 2.1 结构刚度 (5) 1 车道荷载挠度值 (5) 2 预拱度设置 (6) 3 正交异形板桥面顶板挠跨比 (7) 2.2 反力计算 (8) 三钢箱梁验算 (9) 3.1顶底板强度验算 (9) 1计算第一体系 (9) 2计算第二体系 (13) 3.2 腹板验算 (23) 1 厚度验算 (23) 2 强度验算 (23) 3 腹板纵向加劲肋构造验算 (25) 4 腹板横向加劲肋构造验算 (25) 5 腹板屈曲验算...................................................................................................... 错误!未定义书签。 3.3 正交异性桥面板匹配性验算 (26) 1 构造验算 (26) 2 受压顶板纵肋刚度验算 (26) 3 受压顶板横肋刚度验算...................................................................................... 错误!未定义书签。 4 桥面板匹配性验算 (27) 3.4支承加劲肋验算 (28) 3.5 屈曲计算 (29) 1 整体稳定计算...................................................................................................... 错误!未定义书签。 2 局部稳定计算...................................................................................................... 错误!未定义书签。 四、结论 (29) 建议:...................................................................................................................................... 错误!未定义书签。

吊车吊装计算

吊车吊装计算 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

、主冷箱内大件设备的吊装计算 (一)下塔的吊装计算 (1)下塔的吊装参数 设备直径:φ 设备高度: 设备总重量: (2)主吊车吊装计算 ① 设备吊装总荷重: P=P Q +P F =+ = 式中:P Q — 设备吊装自重 P Q = P F — 设备吊装吊索及平衡梁的附加重量,取P F = ② 主吊车性能预选用为:选用260T 履带吊(型号中联重科 QUY260) 回转半径:16m 臂杆长度:53m 起吊能力:67t 附:上塔(上段)吊车臂杆长度

履带跨距: m 臂杆形式:主臂形式吊装采用特制平衡梁钩头选用160t/100t吊钩,钩头重量为吨吊车站位:冷箱的西面③臂杆倾角计算: α=arc cos(S-F)/L = arc cos()/53 =° 式中:S —吊车回转半径:选S=16m F —臂杆底铰至回转中心的距离,F= L —吊车臂杆长度,选L=53m ④净空距离A的计算: A=Lcosα-(H-E)ctgα-D/2 =°-°-5/2 = 式中:H —设备吊装时距臂杆最近的最高点b至地面的高度,选H= E —臂杆底铰至地面的高度,E=2m D —设备直径:D=,取D=5 m 以上计算说明所选的吊车性能能满足吊装需求 ⑤主吊车吊装能力选用校核: 吊装总荷重/起吊能力=P/Q=67=% 经过校核,选用的主吊车能够满足吊装要求。 (3)溜尾吊车的吊装计算

①受力计算 F= (9-1)×= ②溜尾吊车的选择 辅助吊车选用为:75T汽车吊 臂杆长度:12m; 回转半径:7m; 起吊能力:36t; 吊装安全校核:因为〈36t,所以75T汽车吊能够满足吊装要求。(二)、上塔(上段)的吊装计算 (1)上塔上段的吊装参数 设备直径:φ设备高度:设备重:安装高度:45米

35+50+35米钢箱梁计算书

目录

1.工程概况 本项目跨径组合为35+50+35 米。上部结构箱梁梁高米(箱梁内轮廓线高度)。顶面全宽米,两侧各设米宽挑臂,箱梁顶底板设%横坡,腹板间距布置为++ 米。箱梁顶板厚16 毫米,下设“U”形和板式加劲肋,“U”形加劲肋板厚8 毫米,板式加劲肋160×14 毫米;箱梁底板厚14 毫米,设“T”形加劲肋,加劲肋腹板120×8 毫米,翼缘100×10 毫米,间距300 或350 毫米;腹板厚12 毫米,设三道140×14 毫米板式加劲肋,各加劲肋除支承隔板处断开与支承隔板焊连外,其余加劲肋均穿过横隔板或挑臂并与之焊连。普通横隔板间距约3 米,厚10 毫米,中部挖空设100×10 毫米翼缘。桥台简支处支撑隔板板厚20 毫米,桥墩连续处支撑隔板板厚30 毫米,支撑隔板为围焊。简支处隔板四角不设焊缝通过的切口,保证整个钢箱梁安装完成后的气密性;其他横隔板四角均设置焊缝通过的切口。挑臂为“T”形截面,腹板厚10 毫米,下翼缘300×14 毫米。 2.结构计算分析模型 2.1.主要规范标准. (1)《城市桥梁设计规范》(CJJ 11-2011) (2)《公路桥涵设计通用规范》(JTG D60-2004) (3)《公路圬工桥涵设计规范》(JTG D61-2005) (4)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004) (5)《公路桥涵地基与基础设计规范》(JTG D63-2007) (6)《公路桥梁抗震设计细则》(JTG/T B02-01-2008) (7)《混凝土结构设计规范》(GB50010-2010) (8)《公路桥涵施工技术规范》(JTG/T F50-2011) (9)《城市桥梁工程施工与质量验收规范》(CJJ 2—2008) (10)《公路桥涵钢结构及木结构设计规范》(JTJ025—86) (11)《钢结构工程施工质量及验收规范》(GB50205-2001) (12)《铁路桥梁钢结构设计规范》(TB )

25吨汽车吊吊装方案

白银城区地下综合管廊工程 25吨汽车吊吊装方案 建设单位:白银市城市综合管廊管理有限公司 设计单位:北京市市政工程设计研究总院技术有限公司 监理单位:甘肃工程建设监理公司 施工单位:中国一冶集团有限公司 编制时间:年月日 编制人:

目录 一、工程概况...................................................................................... - 2 - 二、施工准备...................................................................................... - 2 - 三、起重机施工.................................................................................. - 3 - 四、安全生产措施.............................................................................. - 4 - 五、安全保证措施.............................................................................. - 5 - 六、汽车吊使用注意事项 .................................................................. - 6 - 七、汽车吊参数................................................................................ - 10 -

钢箱梁吊装方案

武汉军山长江公路大桥 钢 箱 梁 吊 装 及 挂 索 施 工 方 案 交通部第二公路工程局 二OOO年六月

施工负责人:杨应科技术负责人:任回兴编制:潘中明复核:杨应科审核:任回兴

钢箱梁吊装方案 一、工程概况: 武汉军山长江公路大桥主桥为(48+204+460+204+48)m五跨连续半漂浮体系钢箱梁斜拉桥。桥面双向横坡2%,纵坡为3%,位于半径R=20000m、切线长T=600m、外矢距E=9m的圆弧竖曲线上。主梁为全焊流线形扁平钢箱梁,梁高3.0m顶板宽33.8m,底板宽30.28m,总宽度38.8m,横隔板间距3m,纵隔板间距18m。钢箱梁分节段在工厂制造,驳船运输到位,现场吊装、焊接成桥。全桥共分87个梁段,总共分为十三类。其中A标段由二公局架设安装的梁段43块(不计中跨合拢段)。其中A梁段22块,梁长12m,重195.8t;B梁段8块,梁长12m,重199.9t;C梁段2块,梁长10.2m,重176.1t;D梁段1块,梁长6.8m,重127.1t;E梁段2块,梁长9m,重158.1t; G 梁段1块,梁长8.46m,重155.1t;H梁段2块,梁长8m,重125.8t;I梁段1块,梁长6.2m,重154.3t;J梁段1块,梁长9.3m,重189.6t;K梁段1块,梁长10.3m,重207.6t;L梁段1块,梁长10.2m,重207.1t;M梁段1块,梁长12m,重211.8t;F梁段为中跨合拢段,梁长7.1m,重105.4t。其中最重梁段为M梁段,重211.8t。每块钢箱梁临时吊点横向间距为18m,纵向间距为6m、4m、5.3m、5.6m四种。 二、施工方案: (1)、主5#墩0#块钢箱梁安装及悬拼:

钢箱梁吊装简易计算书

钢箱梁吊装简易计算书 (标准节段钢箱梁) 1、吊装重量计算 (1)钢箱梁自重:132.4T (2)滑轮组自量:18T (3)吊钩自重:10T (4)缆载吊机下钢绳重量(靠近索塔处取值):8T 缆载吊机吊装重量(1)+(2)+(3)+(4):168.4T 缆载吊机设计重量(取1.2倍冲击系数):Q=168.4×1.2=202T 每段钢箱梁采用2组吊点吊装,每组吊点传递给缆载吊机荷载:P=202/2=101T 2、缆载吊机杆件内力计算(按单片桁架进行计算,计算简图见附图1) 缆载吊机中梁部分由型钢组拼,按桁架结构进行计算,节点按铰 支进行简化。端梁由整体型钢组焊,计算时简化为桁架和刚体两部分 进行计算(假定9’和8’杆件、3’和0’杆件组成不可变体系,1’、4’、5’、6’、7’与其铰接连接),缆载吊机自重简化为集中荷载均匀 分布在各个节点上。 (1)缆载吊机支点反力计算 Ra=1.8+0.6+0.6+0.3+0.5+0.5+0.5+0.5/2+50.5=55.55T (2)中梁与端梁连接铰点A、B水平向受力计算(忽略竖向受力)

N A= -[1.8×(1.24+0.74/2)+0.6×(2.48+0.74/2)+0.6× 3.84+50.5×3.35]/1.75=-100.6T 由力的平衡条件知:N B =-N A=100.6T (3)各杆件受力计算(单位:T) 中梁: N1=0 N2=4.5(拉) N3=-107.5(压)N4=104.3(拉) N5=-3.2(压) N6=-2.1(压)N7=-109(压) N8=107.5(拉) N9=-1.5(压)N10=1.1(拉) N11=-109.8(压) N12=109(拉)N13=-0.7(压) N14=-110(压) N15=109.8(拉)N16=0.7(拉) N17=-0.5(压) 端梁: N1’=55.55×1.61/1.60=55.9(拉) N4’=55.2√2=78.1(拉) N5’=-(55.55 ×0.365)/1.68=-12.1(压) N6’=-(55.65×3.35+1.8 ×1.24)/1.73=-109(压) N7’=sin6.6×12.1-55.55=-54.2(压) 3、强度校核 (1)中梁上弦杆件受压,按压杆进行校核,对弱轴进行验算。 I Y1=268.4×2=536.8cm4 取μ=1.0 A=32.83×2=65.66 cm2 iz=√Iy1/A=√536.8/65.66=2.859cm

人行天桥钢箱梁计算书

目录 1.1工程概况 (3) 1.2技术标准 (3) 1.3主要规范 (3) 1.4结构概述 (3) 1.5主要材料及材料性能 (3) 1.6计算原则、内容及控制标准 (3) 一、模型建立及分析 (4) 2.1计算模型 (4) 2.2荷载工况及荷载组合 (4) 二、承载能力极限状态验算 (6) 3.1拉/压弯构件腹板应力验算 (6) 3.2拉/压弯构件腹板最小厚度验算 (7) 3.3拉/压弯构件翼缘板弯曲正应力验算 (7) 3.4拉/压弯构件整体稳定验算 (8) 三、其他验算 (8) 4.1抗倾覆验算 (8) 4.2挠度验算及预拱度 (9)

基本信息 1.1工程概况 1.2技术标准 设计程序:Civil Designer 设计安全等级:一级 桥梁重要性系数: 1.1 1.3主要规范 《公路工程技术标准》(JTG B01-2013) 《公路桥涵设计通用规范》(JTG D60-2015),以下简称《通规》 《公路钢结构设计规范》(JTG D64-2015),以下简称《钢规》 《公路钢混组合桥梁设计与施工规范》(JTG/T D64-01-2015),以下简称《钢混组合规范》1.4结构概述 1.5主要材料及材料性能 表 1钢材材料物理性能指标 表 2钢材材料的强度设计值 1.6计算原则、内容及控制标准 计算书中将采用Civil Designer对桥梁进行设计,并以《公路桥涵设计通用规范》(JTG

D60-2015)和《公路钢结构桥梁设计规范》(JTG D64-2015)为标准进行验算。 一、模型建立及分析 2.1计算模型 图 1模型视图 1)节点数量:37个; 2)单元数量:36个; 3)边界条件数量:4个; 4)施工阶段数量:1个,施工步骤如下: 施工阶段1:一次成桥;30.0天; 2.2荷载工况及荷载组合 1)自重 自重系数:-1.00 2)整体升降温 1:整体升温,20.0℃; 2:整体降温,-20.0℃; 3)荷载组合 表 3荷载工况

吊车吊装方案计算样本

8.1、主冷箱内大件设备的吊装计算 ( 一) 下塔的吊装计算 ( 1) 下塔的吊装参数 设备直径: φ4.2m 设备高度: 21.71m 设备总重量: 52.83T 附: 上塔( 上段) 吊车臂杆长度 ( 2) 主吊车吊装计算 ①设备吊装总荷重: P=P Q +P F =52.83+3.6 =56.43t 式中: P Q—设备吊装自重P Q =52.83t P F—设备吊装吊索及平衡梁的附加重量, 取P F =3.6t ②主吊车性能预选用为: 选用260T履带吊( 型号中联重科QUY260)

回转半径: 16m 臂杆长度: 53m 起吊能力: 67t 履带跨距: 7.6 m 臂杆形式: 主臂形式吊装采用特制平衡梁 钩头选用160t/100t吊钩, 钩头重量为2.8吨吊车站位: 冷箱的西面 ③臂杆倾角计算: α=arc cos( S-F) /L = arc cos( 16-1.5) /53 =74.12° 式中: S —吊车回转半径: 选S=16m F —臂杆底铰至回转中心的距离, F=1.5m L —吊车臂杆长度, 选L=53m ④净空距离A的计算: A=Lcosα-( H-E) ctgα-D/2 =53cos74.12°-(36.5-2) ctg74.12°-5/2 =2.1m 式中: H —设备吊装时距臂杆最近的最高点b至地面的高度, 选H=36.5m E —臂杆底铰至地面的高度, E=2m D —设备直径: D=4.2m, 取D=5 m 以上计算说明所选的吊车性能能满足吊装需求 ⑤主吊车吊装能力选用校核: 吊装总荷重/起吊能力=P/Q=56.43/67=84.22% 经过校核, 选用的主吊车能够满足吊装要求。

汽车吊吊装计算

汽车吊吊装计算 一、机具选择 1、作业吊车 考虑18座桥工程量较大,共144榀空心板梁,而且安装地点较为分散,故拟选用汽车吊吊装施工。其中大部分桥跨间为既有村道,跨间为旱地,地质条件均较好,经处理后能满足汽车吊施工要求。由于18座桥作业环境差别不大,吊装方法基本一致,综合考虑采用“双机抬吊”作业。 2、作业吊车的选择 以20m梁为验算对象,20米梁若能满足受力要求,那么13米梁也能满足双机抬吊受力要求。 (1)本工程20m梁采用双机抬吊机作业。 (Q主+ Q副)K≥Q1+Q2 取最重板自重37吨,即Q1=37吨,考虑索具重量Q2=2.0吨,K为起重机降低系数,取0.8。即:Q主+ Q副≥47.5吨。 (2)起重高度计算 H≥H1+H2+H3+H4 式中H——起重机的起重高度(m),停机面至吊钩的距离; H1——安装支座表面高度(m),停机面至安装支座表面的距离; H2——安装间隙,视具体情况而定,一般取0.2~0.3m; H3——绑扎点至构件起吊后底面的距离(m); H4——索具高度(m),绑扎点至吊钩的距离,视具体情况而定。 取H1=2米,H2=0.2米,H3=0.95米,H4取3米。选用起重机的起重高度H≥6.15米,起重高度取7m。 (3)起重臂长度计算: l≥(H+h0-h)/sinα 式中l——起重臂长度(m); H——起重高度(m); h0——起重臂顶至吊钩底面的距离(m); h——起重臂底铰至停机面距离(m),本工程取1m; α——起重臂仰角,一般取70°~77°,本工程取70°。 l≥(7-1)/sin(70°)=6.4米。 (4)吊车工作半径取6m,综合考虑(1)、(2)、(3)及起重机的工作幅度,参考吊车性能参数表,选用两台重型汽车起重机QY50K汽车吊满足施工要求。 50T吊车性能参数表 工作半径(m) 主臂长度(m) 10.70 18.00 25.40 32.75 40.10 3.0 50.00 3.5 43.00 4.0 38.00 4.5 34.00 5.0 30.00 24.70 5.5 28.00 23.50 6.0 24.00 22.20 16.30 6.5 21.00 20.00 15.00

钢箱梁吊装方案

机场互通主线桥第十二联钢箱梁吊装方案1.工程概况 机场互通主线桥第十二联第二跨上跨三围航道通航孔,起点桩号:K74+559,终点桩号:K74+619,主梁采用全焊钢箱梁,钢材采用Q345qC(桥梁专用钢),桥梁全宽40.5m,由相互独立的左、右两幅组成,两幅之间为0.8米的分隔带,每幅标准桥宽19.85m,钢箱梁宽19.65m,其中钢箱部分宽16.85m,两侧悬臂各1.40m。 本跨桥梁位于缓和曲线上,钢箱梁采用单箱四室断面,顶板设置2%的横坡,桥梁中心线处梁高 2.6m,底板水平设置,横坡由腹板高度调节;共设置四个箱室,每个箱室的宽度为4212.5mm,每个箱室顶底板各设置7个U形加劲肋,顶底板的U形加劲肋分别采用8mm,腹板统一采用14mm,顶板采用22mm,底板采用20mm。共设置两个端横隔板,19个中间横隔板,端横隔板采用22mm厚钢板,中间横隔板12mm厚钢板。 钢箱梁两侧悬臂宽1.40m,根部高70cm,端部高25cm,纵向每1.0m(或1. 5m)设一道悬臂梁,其位置与箱内横隔板、竖直加劲肋位置相对应。 钢箱梁沿路线中心线全长为59.92m,本桥采用全跨整体吊装。为保证成桥后主梁线型,桥跨设置预拱度。 2.总体施工方案及施工流程 2.1总体施工方案 钢箱梁委托专业厂家进行加工,加工完成后在加工方码头滑移至运输驳船上,通过海路运输至吊装施工现场。运输驳船与浮吊在现场泊好位置之后,利用“海升号”3200t浮吊配合吊具将钢箱梁吊至安装位置上方,通过预先安装的导向装置,将钢箱梁安装到位。

2.2总体施工流程图

3.具体施工工艺 3.1钢箱梁加工 钢箱以专业分包的形式委托武船重型工程股份有限公司加工,具体加工工艺及流程另见钢箱梁加工施工方案。 3.2浮吊拖航及钢箱梁的运输 长大“海升号”由“长大21”、“妈湾1#”及“妈湾2#”三条拖轮经由海路,拖航至施工现场。钢箱梁在加工厂装船之后,经海路或内河运输至本合同段施工现场。 3.2.1长大海升号拖航、就位方案 目前,长大海升号浮吊在港珠澳项目部,因该船在我项目部为第一次使用,在使用前,要测试船舶各系统的配合情况以及钢箱梁吊具的合适性。基于以上两个目的,海升号拖到深圳海域后,不能马上进入吊装区域,而是在锚地抛好工作锚,进行相应的准备工作。 (1)海升号从港珠澳到锚地的拖航计划 船舶航行计划书 拖 轮 船名 船长 (m) 型宽 (m) 型深 (m) 吃水(m) 随船出 海人数 主机功率 (kw) 系柱拖力(t) 备注 前后 长大21 49.8 12.5 5.2 4.0 4.2 12 2×1471 47.1 妈湾一号35.0 9.8 4.4 3.2 3.4 2×1324 妈湾二号36.0 9.8 4.5 2×2648 被 拖 船 舶 船名船长型宽型深 吃水——抗风级装运物件及数量 前后——————长大海升110 48 8.4 4.0 4.2 ——2×900 拖航区域自珠海港珠澳大桥CB04标工地经——至深圳大铲湾广深沿江三标工地拖航里程24.8海里拖带航速4—5节全程航行小时数5—6小时出发港 起航时间 珠海11月28日5点 到达目的 港时间 深圳11月28日12点中途停靠港口——拖航方法:(附拖航编组及时用的活动拖曳设备示意图) 拖缆长度100m左右,钢丝缆直径40mm

MIDAS钢箱梁计算书

1.1B07~F03 D07~H03 50.5+65+50.5m(桥宽10m)钢箱梁 1.1.1计算参数及参考规范 (1)标准 设计荷载:城-A级; 桥梁安全等级为一级,结构重要性系数1.1; (2)主要材料 钢箱梁采用Q345D 钢材, 桥面板采用C40混凝土。 (3)参考规范 《公路钢结构桥梁设计规范》报批稿, 《公路钢筋混凝土及预应力混凝土桥涵设计规范》。 1.1.2主要计算内容 结构纵向整体应力,即主梁体系,采用三维有限元建模分析,采用梁格模型,计算主梁顶、底板最不利应力。 1.1.3纵向整体计算 1.1.3.1.1计算模型 纵向整体计算采用三维有限元建模分析,采用梁格法模型进行模拟。参照《公路钢结构桥梁设计规范》报批稿进行钢梁有效分布宽度的计算。

根据桥面布置,汽车按最不利情况进行影响线加载。温度考虑整体升降温20度和梯度温度。永久支承按简支支承条件进行约束。 全桥共划分为241个单元,162个节点。结构计算几何模型如下图:

计算几何模型 1.1.3.1.2计算荷载 (1)一期恒载 主梁顶、底和腹板采用实际板厚,钢材重力密度78.5kN/m 3 ,单元重力密度考虑各种加劲肋和焊缝实际重量提高 1.24倍;混凝土桥面板重力密度25kN/m 3。沥青混凝土重力密度24kN/m 3。 (2)二期恒载 1.1.3.1.3计算参数 (1)钢材材料特性如下表: 结构钢材性能表 应用结构 钢箱加劲梁 材质 Q345D 力 学 性 能 弹性模量E(MPa) 210000 剪切模量G(MPa) 81000 泊松比γ 0.3 轴向容许应力[σ] (MPa)200 弯曲容许应力[σw] (MPa)210 容许剪应力[τ] (MPa) 120 屈服应力[σs] (MPa) 345 热膨胀系数(℃) 0.000012 (2)梯度温差:参照混凝土规范规定:升温取T1=14°C,T2=5.5°C,负

汽车吊支腿负荷计算

三一220t汽车吊支腿压力计算书 一、工程概况 大新大厦改扩建项目1#6015拆卸时需三一220t全路面汽车吊在地面上进行作业,220吨汽车吊吊装50m吊臂时作业半径12m,吊臂重量。 二.吊装计算参数 1).220t汽车吊整机自重72t; … 2).220t汽车吊平衡重75t; 3).6015塔吊吊臂自重; 三、作业工况 分析现场情况,最不利吊装工况:

1.工况a — 220t 汽车吊在作业半径12m 处吊装吊臂; 四、支腿压力计算 1.支腿反力计算公式:N ∑∑+++= Xi Xi Xi My Yi Yi Yi Mx n Q G ****)( … G ——汽车吊整车自重(含配重); Q ——汽车吊起重载荷(吊重); N ——汽车吊支腿反力; n ——汽车吊支腿数; Mx 、My ——作用于汽车吊上的外力对通过回转中心的X\Y 轴的力矩值; Xi 、Yi ——支腿至通过回转中心的X 、Y 轴的距离; 汽车吊整机自重:G=72+75=147t; 3.工况a —吊装6015吊臂时的支腿最大压力: - 1)50m 吊臂自重 考虑动载荷时汽车吊起吊重量:Q=*=(动载系数取为 2).吊装对X,Y 轴的力矩 Mx=*10=t N 58.534 *3.8*3.8 3.8*76.824*3.8*3.8 3.8*4.1254.5421147)3(=+++=、220t 汽车吊支腿压力分散处理 1).600*600支腿对地下室顶板的压应力:

工况中取吊装吊臂时支腿最大压力N= P= 2/49.1600*60010000*58.53600*600mm N N == 2).在4个支腿下垫2m*2m 钢板进行分散处理时支腿压应力: P= 2/14.02000*200010000*58.532000*2000mm N N == @ @ 吊车支腿压力示意图

钢箱梁吊装

钢箱梁安装 钢箱梁高3m、宽27.8m,钢箱梁吊装段共分4种,跨中吊装段1个,标准梁段20个,11号合拢梁段2个,端部吊装段2个,共计25个吊装段,梁段最大重量约为270t。 2.8.6.1 总体吊装方案 ⑴吊装顺序 钢箱梁总体吊装顺序为:从跨中向两侧逐段对称安装,首先吊装0#梁段,然后依次吊装S1-S10#(N1-N10#)梁段,接着吊装S12#(N12#)梁段,最后吊装S11#(N11#)合拢梁段,箱梁布置见图2.8-38。 图2.8-38 钢箱梁布置图 ⑵吊装方案 钢箱梁采用360t跨缆吊机“四点”法安装。根据施工现场自然条件及跨缆吊机性能,钢箱梁拟采用以下四种方法吊装: ①跨中梁段、S1~S9、N1~N10梁段采用跨缆吊机从驳船上直接将钢箱梁垂直吊装到位。 ② S10梁段采用400t浮吊起吊钢箱梁于临时支架上,滑移至安装位置后,跨缆吊机垂直起吊。 ③端梁段(S12、N12)采用400t浮吊起吊钢箱梁于临时支架上,滑移至S11、N11位置后,跨缆吊机采用荡移法提升置于端梁支架并向边跨侧预偏40cm,待合拢梁段吊装到位后朝中跨侧顶推40cm完成全桥合拢。 ④合拢梁段(S11、N11)采用同S10相同的方法施工。 钢箱梁总体吊装流程见图2.8-39。

第一步:端梁支架、浅水区临时存梁支架搭设,在索塔中跨侧拼装缆载吊机。 第二步:按照从跨中至两侧顺序对称垂直吊装跨中梁段、S1-S9、N1-N9梁段。 第三步:S10梁段采用400t浮吊提升至存梁支架滑移至安装位置后,利用跨缆吊机垂直起吊,同时垂直起吊N10梁段。

第四步:S12、N12梁段采用400t浮吊吊装至临时存梁支架,并滑移至安装位置,跨缆吊机提升一定高度后采用荡移法荡移至端梁支架并向边跨侧预偏40cm。 第五步:S11、N11合拢梁段采用400t浮吊吊装至临时存梁支架并滑移至吊装位置后,利用跨缆吊机垂直起吊。 第六步:将S12、N12梁段朝中跨侧顶推40cm完成全桥合拢。 图2.8-39 钢箱梁吊装工艺流程 2.8.6.2 跨缆吊机设计 (1)跨缆吊机结构 为保证钢箱梁吊装平稳,采用两台卷扬机提升组合成一套跨缆吊机进行钢箱

钢箱梁顶推计算书

计算书 一、设计依据 1.《苏州广济北延GY-A1项目“钢箱梁顶推专项施工方案”(论证稿)》 2.《公路桥涵设计通用规范》(JTG D60-2004) 3.《公路桥涵地基与基础设计规范》(JTJ024-85) 4.《公路桥涵钢结构及木结构设计规范》(JTJ025-86) 5.《公路桥涵施工技术规范》(JTJ041--2000) 二、设计参数 1.箱梁自重:钢箱梁自重按80.7kN/m进行计算。 2、导梁自重:导梁总重为316kN,建模时对其结构进行简化,按14.1kN/m 进行计算。 3、其它结构自重:由程序自动记入。 4、墩顶水平力:顶推施工中拼装平台处的支架墩顶受摩檫力F1作用,取摩檫系数μ为0.1;在11#墩处的支架由于是千斤顶牵引施工,受到千斤顶的作用力T,同时受到墩顶摩檫力F2的作用,取摩檫系数μ为0.1。 三、设计工况及荷载组合 根据施工工艺及现场的结构形式,确定荷载工况如下: 工况一:钢箱梁拼装阶段。荷载组合为:钢箱梁自重+导梁自重+其它结构自重。 工况二:钢箱梁顶推阶段。 在钢箱梁顶推阶段按每顶推2.5m为一个工况,以箱梁端头顶推至12#墩为最后一个工况,共30个工况,以此进行各墩顶的受力和导梁的受力分析,其荷载组合为:钢箱梁自重+导梁自重。 根据以上工况的计算结果,统计出各临时墩的最大受力,对其结构进行分析。对于11#墩的荷载组合为:墩顶作用力+顶推力+摩阻力+结构自重;对于其它各临时墩的荷载组合为:墩顶作用力+摩阻力+结构自重。 四、钢箱梁拼装阶段的受力分析 4.1 贝雷支架的计算分析 钢箱梁在贝雷支架上进行拼装,支撑箱梁的贝雷片的最大跨径为14m。每个

吊车吊装计算资料

8.1、主冷箱内大件设备的吊装计算 (一)下塔的吊装计算 (1)下塔的吊装参数 设备直径:φ4.2m 设备高度:21.71m 设备总重量:52.83T (2)主吊车吊装计算 ① 设备吊装总荷重: P=P Q +P F =52.83+3.6 =56.43t 式中:P Q — 设备吊装自重 P Q =52.83t P F — 设备吊装吊索及平衡梁的附加重量,取P F =3.6t ② 主吊车性能预选用为:选用260T 履带吊(型号中联重科QUY260) 回转半径:16m 臂杆长度:53m 起吊能力:67t 履带跨距:7.6 m 臂杆形式:主臂形式 吊装采用特制平衡梁 钩头选用160t/100t 吊钩,钩头重量为2.8吨 吊车站位:冷箱的西面 ③ 臂杆倾角计算: α=arc cos (S -F )/L = arc cos (16-1.5)/53 =74.12° H A D1 h b c F O E α 回 转 中 心 臂杆中心 L d S 附:上塔(上段)吊车臂杆长度和倾角计算简图 H1 下塔

式中:S — 吊车回转半径:选S=16m F — 臂杆底铰至回转中心的距离,F=1.5m L — 吊车臂杆长度,选L=53m ④ 净空距离A 的计算: A=Lcos α-(H -E )ctg α-D/2 =53cos74.12°-(36.5-2) ctg74.12°-5/2 =2.1m 式中:H — 设备吊装时距臂杆最近的最高点b 至地面的高度,选H=36.5m E — 臂杆底铰至地面的高度,E=2m D — 设备直径:D=4.2m ,取D=5 m 以上计算说明所选的吊车性能能满足吊装需求 ⑤ 主吊车吊装能力选用校核: 吊装总荷重/起吊能力=P/Q=56.43/67=84.22% 经过校核,选用的主吊车能够满足吊装要求。 (3)溜尾吊车的吊装计算 ① 受力计算 F= ② 溜尾吊车的选择 (9-1)×52.83 21.71-1-1 =21.44t Q 26M 1.0m 1m 9m Q G 21.71m F 附:下塔溜尾吊车受力计算简图

钢箱梁吊装方案

钢箱梁吊装专项施工方案 一、工程概况 1.1工程范围 本工程位于**地区,桥梁所在道路一侧与**中路连接,另一侧与规划道路连接,桥梁全长34.2米,桥宽6米,主梁采用工厂加工制作,分两节加工,每段长16.46m,工地现场拼装。 1.2工程特点 本工程施工工期短,任务重。施工现场环境复杂,区域狭小;夜间施工作业多(夜间进行大件吊装及运输);施工过程中需协调多个部门进行交通疏导。 1.3主要工程概况 本桥长34.2米,桥宽6米,主梁为单跨简支钢箱梁结构,梁高1.0m;顶板宽6m,厚14mm;底板宽3.94m,厚16mm;腹板厚10mm,桥面铺装自上而下:60mm厚防腐木板、1m钢箱梁。 桥台基础采用直径800mm钻孔灌注桩接承台,承台高1.5m。 二、编制依据 1、业主提供的相关技术文件。 2、由业主提供的有关图纸和与之相关的技术要注。 3、**市地方有关基本建设的方针、政策、法令、法规及有关的行业规章制度。 4、国家及行业部门颁发的现行工程施工验收规范、规程、标准

以及有关安全、防火环境及卫生的有关规定。 5、《起重机械安全规程》GB6067-1985。 6、《起重机械用钢丝绳检验和报废实用规范》GB50303-2002。 三、施工管理部署 3.1施工管理机构 根据施工要求工期较短,为确保该项目在进度、工期、施工质量、安全、文明施工等诸多方面都充分实现,充分利用我公司的优点,挑选技术素质高、思想好、有丰富实践经验的管理人员组成该工程的项目管理班子。成立项目经理部,组成以公司副总经理为首的项目管理班子,在公司范围内抽调具有较丰富的工程施工经验的管理人员组成项目管理机构,严格按照项目法组织施工。 3.2吊装前准备 吊装前应先参照相关图纸对各立柱顶面标高、中线及各主梁跨径(支座中心距离)进行复核,各数据不能超过允许偏差。完成项目部资源调谴、并于吊装前确保实施就绪。组织施工人员对施工现场的周边环境、大型构件运行线路进行再勘察。对桥梁及弯道的通过能力进行调查,以保证运输作业能顺利进行。 做好运输拖板、临时托架的加工制作,拟定吊装点,必要时应加工相应的吊具。 3.3吊装顺序 整个钢箱梁吊装总的顺序为:先吊装靠近规划路一侧的钢箱梁,再吊装靠近旅顺中路一侧钢箱梁。

吊车吊装计算

、主冷箱内大件设备的吊装计算 (一)下塔的吊装计算 (1)下塔的吊装参数 设备直径:φ 设备高度: 设备总重量: (2)主吊车吊装计算 ① 设备吊装总荷重: P=P Q +P F =+ = 式中:P Q — 设备吊装自重 P Q = P F — 设备吊装吊索及平衡梁的附加重量,取P F = ② 主吊车性能预选用为:选用260T 履带吊(型号中联重科QUY260) 回转半径:16m 臂杆长度:53m 起吊能力:67t 履带跨距: m 臂杆形式:主臂形式 吊装采用特制平衡梁 钩头选用160t/100t 吊钩,钩头重量为吨 吊车站位:冷箱的西面 ③ 臂杆倾角计算: α=arc cos (S -F )/L = arc cos ()/53 =° 附:上塔(上段)吊车臂杆长度和倾角计算简

式中:S — 吊车回转半径:选S=16m F — 臂杆底铰至回转中心的距离,F= L — 吊车臂杆长度,选L=53m ④ 净空距离A 的计算: A=Lcos α-(H -E )ctg α-D/2 =°- °-5/2 = 式中:H — 设备吊装时距臂杆最近的最高点b 至地面的高度,选H= E — 臂杆底铰至地面的高度,E=2m D — 设备直径:D=,取D=5 m 以上计算说明所选的吊车性能能满足吊装需求 ⑤ 主吊车吊装能力选用校核: 吊装总荷重/起吊能力=P/Q=67=% 经过校核,选用的主吊车能够满足吊装要求。 (3)溜尾吊车的吊装计算 ① 受力计算 F= ② 溜尾吊车的选择 (9-1)× =

辅助吊车选用为:75T汽车吊 臂杆长度:12m; 回转半径:7m; 起吊能力:36t; 吊装安全校核:因为〈36t,所以75T汽车吊能够满足吊装要求。(二)、上塔(上段)的吊装计算 (1)上塔上段的吊装参数 设备直径:φ设备高度:设备重:安装高度:45米 附:吊装臂杆长度和倾角计算简图 (2)主吊车吊装计算 ①设备吊装总荷重: P=P Q +P F =+= 式中:P Q —设备吊装自重 P Q = P F —设备吊装吊索及平衡梁的附加重量,取P F = ②主吊车性能预选用为:选用260T履带吊(型号中联重科QUY260) 回转半径:16m 主臂杆长度:59m 副臂杆长度:27m 起吊能力:55t 履带跨距: m 臂杆形式:主臂+塔式副臂,主臂角度不变85度, 钩头选用160t/100t吊钩,钩头重量为吨

钢箱梁吊装计算书

钢箱梁安装计算书 1、设计依据 (1)、《公路桥涵设计通用规范》(JTG D60-2004) (2)、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)(3)、《公路桥涵钢结构及木结构设计规范》(JTJ 025-86) (4)、《钢结构设计规范》(GB 50017-2003) (5)、《公路桥涵施工技术规范》(JTGJ F50-2011) 2、支架设计 2.1、结构分析内容与结论 (1)、结构分析内容 依据钢桁支架的结构设计构造大样图,根据《公路桥涵钢结构及木结构设计规范》(JTJ 025-86)和《钢结构设计规范》(GB 50017-2003)的要求,施工阶段考虑了钢桁临时支架结构自重、施工机具和人群临时荷载,以及钢箱梁节段吊装安置施工全过程作用于支架上的最不利荷载,分析计算施工阶段最不利荷载作用下钢桁支架构件的应力和内力值、支架水平位移、基础支撑反力值和钢桁支架屈曲稳定系数。 (2)、结构分析结论 在短暂状况下,钢桁支架结构自重、施工机具和人群荷载,以及公路钢结构箱梁节段最不利值作用下,钢桁支架的φ400x8mm钢管立柱、16#槽钢水平连杆和斜杆应力均满足规范要求;32#工字钢弯曲应力满足规范要求;钢桁支架的屈曲稳定系数满足规范要求。 2.2、支架结构及材料 依据钢箱梁安装工程的特点,设计了钢桁支架,支架的尺寸位置根据匝道钢箱梁的分段和钢箱梁的断面尺寸确定。本工程根据钢箱梁梁底宽尺寸确定2种支架,根据梁段的重量,最大分段重量在A匝道22~23#墩跨和C匝道2~3#墩跨,支架计算按照最不利状态取此部位支架计算。

2.2.1、支架结构 钢桁支架的立柱采用10根φ400x8mm圆钢管,纵桥向设置2根,间距为3.0m;横桥向设置5根,间距分别为3.5m和2.25m,其平面尺寸11.5x3.0m。相邻钢管间设置16#槽钢的一道斜撑;钢管的水平加劲杆采用16#槽钢,竖向间距为3.0m。圆钢管支架顶横桥向设置两道长9.0m的2x32#工字钢,钢桁支架构造尺寸如图2.1所示。 ①、短暂状况的应力 依据《公路桥涵钢结构及木结构设计规范》(JTJ 025-86)第1.2.5条,施工阶段在钢桁支架结构自重、施工机具和人群荷载,以及节段钢拱和钢系梁吊装安置施工全过程的最不利荷载作用下,钢结构容许应力如表2.3.2所示。 表2.3.2 Q235钢材的容许应力(MPa)

相关文档
最新文档