2016高三复习优质课件(第二辑):含双重量词的不等式恒成立与存在性问题
专题4 双变量存在恒成立与存在性问题-(人教A版2019选择性必修第二、三册) (教师版)
双变量存在---恒成立问题恒成立问题、存在性问题归根到底是最值问题.1 恒成立问题(1)∀x∈D,f(x)≥0恒成立⟺在D上的f(x)min≥0;(2)∀x∈D,f(x)≤0恒成立⟺在D上的f(x)max≤0;2 存在性问题(1)∃x∈D,f(x)≥0恒成立⟺在D上的f(x)max≥0;(2)∃x∈D,f(x)≤0恒成立⟺在D上的f(x)min≤0;3双变量存在—恒成立问题(1)∀x1∈D,∀x2∈E,f(x1)≥g(x2)恒成立⟺ f(x)min≥g(x)max;(2)∀x1∈D,∃x2∈E,f(x1)≥g(x2)恒成立⟺ f(x)min≥g(x)min;(3)∃x1∈D,∀x2∈E,f(x1)≥g(x2)恒成立⟺ f(x)max≥g(x)max;(4)∃x1∈D,∃x2∈E,f(x1)≥g(x2)恒成立⟺ f(x)max≥g(x)min;4 常见处理方法方法1 直接构造函数法:求f(x)≥g(x)恒成立⇔ℎ(x)=f(x)−g(x)≥0恒成立.恒成立.方法2 分离参数法:求f(x)≥a∙g(x)(其中g(x)>0)恒成立⇔a≤f(x)g(x)方法3 变更主元:题型特征(已知谁的范围把谁作为主元);方法4 数形结合法:求f(x)−g(x)≥0恒成立⇔证明y=f(x)在y=g(x)的上方;方法5 同构法:对不等式进行变形,使得不等式左右两边式子的结构一致,再通过构造的函数单调性进行求解;方法6 放缩法:利用常见的不等式或切线放缩或三角函数有界性等手段对所求不等式逐步放缩达到证明所求不等式恒成立的目的;学习各种方法时,要注意理解它们各自之间的优劣性,有了比较才能快速判断某种题境中采取哪种方法较简洁,建议学习时一题多解,多发散思考.【典题1】已知两个函数f(x)=8x2+16x−k,g(x)=2x3+5x2+4x,其中k为实数.(1)对任意x∈[−3,3],都有f(x)≤g(x)成立,求k的取值范围;(2)存在x∈[−3,3],使f(x)≤g(x)成立,求k的取值范围;(3)对任意x1,x2∈[−3,3],都有f(x1)≤g(x2),求k的取值范围.【解析】(1)设ℎ(x)=g(x)−f(x)=2x3−3x2−12x+k问题转化为x∈[−3,3]时,ℎ(x)≥0恒成立,故ℎ(x)min≥0;易得ℎ(x)min≥−45+k,由k−45≥0⇒k≥45.(2)据题意:存在x∈[−3,3],使f(x)≤g(x)成立⇔ℎ(x)=g(x)−f(x)≥0在x∈[−3,3]有解,易得ℎ(x)max=k+7,于是k≥−7.(3) 问题转化为f(x)max≤g(x)min ,x∈[−3,3],易得g(x)min=g(−3)=−21,f(x)max=f(3)=120−k,则120−k≤−21⇒k≥141.【点拨】①第一问是恒成立问题,第二问是存在性问题,第三问是双变量成立问题;②第三问怎么确定f(x)max≤g(x)min,即到底是函数最大值还是最小值呢?可把问题转化为第一、二问的问题,具体如下,先把g(x2)看成定值m,那∀x1∈[−3,3],都有f(x1)≤m,当然是要f(x)max≤m;再把f(x1)看成定值n,那∀x2∈[−3,3],都有n≤g(x2),当然是g(x)min≥n;故问题转化为f(x)max≤g(x)min.其他形式的双变量成立问题同理.x3+2x2−3x+c.若对∀x1∈(0 ,+∞),∃x2∈[1 ,3],使f(x1)=【典题2】已知函数f(x)=x2e−x,g(x)=−13g(x2)成立,则c的取值范围是.【解析】(若要满足f(x1)=g(x2)成立,则y=g(x)的值域包含y=f(x)的值域)因为f(x)=x2e−x,x∈(0 ,+∞),,令f′(x)=0,解得x=2,所以f′(x)=x(2−x)e x故f(x)在(0 ,2)递增,在(2 ,+∞)递减,故f(x)max=f(2)=4,e2而x →0时,f(x)→0,x →+∞时,f(x)→+∞, 故f(x)∈(0 ,4e 2],因为g (x )=−13x 3+2x 2−3x +c ,g ′(x )=−(x −3)(x −1), 所以当x ∈[1 ,3]时,g′(x)>0,故g(x)在[1 ,3]递增, 则g (x )min =g(1)=−43+c ,g (x )max =g(3)=c , 故g(x)∈[−43+c ,c],若对∀x 1∈(0 ,+∞),∃x 2∈[1 ,3],使f(x 1)=g(x 2)成立, 则(0 ,4e2]⊆[−43+c ,c],故{−43+c ≤04e2≤c,解得:4e 2≤c ≤43.【典题3】 已知函数f (x )=lnx −x +1,x ∈(0 ,+∞),g (x )=sinx −ax(a ∈R). (1)求f(x)的最大值;(2)若对∀x 1∈(0 ,+∞),总存在x 2∈(0 ,π2),使得f (x 1)<g(x 2)成立,求实数a 的取值范围;(3)证明不等式sin(1n)n +sin(2n)n +⋅⋅⋅+sin(n n)n <e e−1(其中e 是自然对数的底数).【解析】(1)过程略,当x =1时f(x)取得最大值为f(1)=0;(2)解:对∀x 1∈(0 ,+∞),总存在x 2∈(0 ,π2),使得f(x 1)<g(x 2)成立,等价于f (x )max <g (x )max 成立,由(1)知,f (x )max =0, 则问题等价于g (x )max >0, 因为g (x )=sinx −ax ,所以g ′(x )=cosx −a , 当x ∈(0 ,π2)时,cosx ∈(0 ,1),(利用三角函数的有界性)①当a ≥1时,若x ∈(0 ,π2),g′(x)<0,g(x)单调递减,g(x)<g(0)=0,不合题意; ②当0<a <1时,∃x 0∈(0 ,π2),使得g′(x 0)=0, 若x ∈(0 ,x 0),g′(x)>0,若x ∈(x 0 ,π2)时,g′(x)<0, 即当g (x )max =g(x 0)>g(0)=0,则∃x2∈(0 ,π2),使得g(x2)>0,符合题意;③当a≤0时,若x∈(0 ,π2),g′(x)>0,g(x)单调递增,g(x)>g(0)=0,则∃x2∈(0 ,π2),使得g(x2)>0,符合题意,综上可知,所求实数a的范围是(−∞ ,1);(3)证明:由(2)可知,当a=1时,若x∈(0 ,1],sinx<x,令x=kn (k≤n ,k ,n∈N∗),(kn)n∈(0 ,1],有sin(kn )n<(kn)n,再由(1)可得lnx<x﹣1,则ln kn ≤kn−1=k−nn,即n⋅ln kn≤k﹣n⇒ln(kn)n≤k﹣n,∴(kn)n≤e k−n,∴(1n )n+(2n)n+...+(nn)n≤e1−n+e2−n+...+e n−n=e1−n(1−e n)1−e=e−e1−ne−1<ee−1则sin(1n )n+sin(2n)n+...+sin(nn)n<(1n)n+(2n)n+...+(nn)n<ee−1.(放缩法证明,利用不等式sinx<x和lnx<x﹣1,要熟悉常见恒等式)1(★★) 已知1<a<4,函数f(x)=x+9x,∃x1∈[1 ,a] ,x2∈[a ,4],使得f(x1)f(x2)≥80,则a的取值范围.【答案】(1,4−√7]【解析】f′(x)=1−9x2=x2−9x,令f′(x)=0,得x=±3,所以在(1,3)上,f′(x)>0,f(x)单调递增,在(3,4)上,f′(x)<0,f(x)单调递减,f(1)=10,f(4)=6.25,f(3)=6,若∃x1∈[1,a],x2∈[a,4],使得f(x1)f(x2)≥80,只需x1∈[1,a],x2∈[a,4],使得[f(x1)f(x2)]max≥80,而f(x1)max=f(1)=10,所以f(x2)max≥8,过点B作BC⊥y轴,与函数f(x)的图象交于点C,令x+9x=6.25,解得x=4或2.25,所以当x∈[2.25,4]时,f(x)∈[6,6.25],所以x2∈(1,2.25),所以a∈(1,2.25),才能使得x2∈[a,4]时,f(x2)max≥8,即f(a)≥8,所以a+9a≥8,解得a≥4+√7(舍去)或a≤4−√7,所以1<a≤4−√7,所以实数a的取值范围为(1,4−√7],故答案为:(1,4−√7].2(★★)已知函数f(x)=x+4x ,g(x)=2x+a,若任意x1∈[12,1],都存在x2∈[2 ,3],使得f(x1)≥g(x2),则实数a的取值范围是.【答案】(-∞,1]【解析】任意x1∈[12,1],都存在x2∈[2,3],使得f(x1)≥g(x2),⇔f(x1)min≥[g(x2)]min,x1∈[12,1],x2∈[2,3],对于函数f(x)=x+4x ,x∈[12,1],f′(x)=1−4x2=x2−4x2<0,因此函数f(x)在x∈[12,1]上单调递减,∴f(x)min=f(1)=5.对于函数g(x)=2x+a,在x∈[2,3]单调递增,∴g(x)min=4+a.∴5≥4+a,解得a≤1.∴实数a的取值范围是(-∞,1].故答案为:(-∞,1].3(★★★)已知函数f(x)=−x|x−a|,若对任意的x1∈(2 ,+∞),都存在x2∈(−1 ,0),使得f(x1)f(x2)=−4,则实数a的最大值为.【答案】1【解析】①a≥2时,当x≥a时,f(x)=-x(x-a),当x<a时,f(x)=-x(a-x),画出y=f(x)的图象(如右图):x1∈(2,+∞)时,f(x1)∈(-∞,0],而对任意的x1∈(2,+∞),都存在x2∈(-1,0),使得f(x1)•f(x2)=-4,要求f(x2)∈(0,+∞).而x2∈(-1,0)时,令f(-1)=a,则有f(x2)∈(0,a),不符题意;②a<2时,当x≥a时,f(x)=-x(x-a),当x<a时,f(x)=-x(a-x),画出y=f(x)的图象(如下图):当x1∈(2,+∞)时,f(x1)∈(-∞,f(2)),即f(x1)∈(-∞,2a-4),则f(x2)∈(0,22−a)时,f(x1)f(x2)=-4成立才有可能;x2∈(-1,0),则f(x2)∈(0,f(-1)),f(-1)=a+1,需满足f(-1)≥22−a ,即1+a≥22−a,即(a+1)(2-a)≥2,a(a-1)≤0,解得0≤a≤1,所以a的最大值为1.故答案为:1.4(★★★) 已知函数f(x)=lnx,若对任意的x1 ,x2∈(0 ,+∞),都有[f(x1)−f(x2)](x12−x22)>k(x1x2+x22)恒成立,则实数k的最大值是.【答案】0【解析】∵f(x)=lnx,∴f(x1)-f(x2)=lnx1−lnx2=ln x1x2,∵[f(x1)-f(x2)](x12-x22)>k(x1x2+x22)恒成立,且x1,x2∈(0,+∞),∴x 1x 2+x 22>0,x 1+x 2>0, 得k <lnx 1x 2(x 12−x 22)x 1x 2+x 22=x 1x 2lnx 1x 2−ln x1x 2,令t =x 1x 2,g (t )=tlnt -lnt ,(t >0且t ≠1),则g ′(t )=lnt +1−1t,令g ′(t )=0,得t =1. ∴当t ∈(0,1)时,g ′(t )<0,g (t )单调递减, 当t ∈(1,+∞)时,g ′(t )>0,g (t )单调递增, ∴g (t )min >g (1)=0. ∴k ≤0.则实数k 的最大值是0. 5(★★★) 设f(x)=2x 2x+1,g (x )=ax +5−2a(a >0). (1)求f(x)在x ∈[0,1]上的值域;(2)若对于任意x 1∈[0,1],总存在x 0∈[0,1],使得g(x 0)=f(x 1)成立,求a 的取值范围. 【答案】(1) [0 ,1] (2) 52≤a ≤4 【解析】(1)法一:(导数法)f′(x)=4x(x+1)−2x 2(x+1)2=2x 2+4x (x+1)2≥0在x ∈[0,1]上恒成立.∴f(x)在[0,1]上增, ∴f(x)值域[0,1].法二:f(x)={0 x =021x +1x 2x ∈(0,1],用复合函数求值域.法三:f(x)=2x 2x+1=2(x +1)+2x+1−4用双勾函数求值域.(2)f(x)值域[0,1],g(x)=ax +5-2a(a >0)在x ∈[0,1]上的值域[5-2a ,5-a]. 由条件,只须[0,1]⊆[5-2a ,5-a]. ∴{5−2a ≤05−a ≥1⇒52≤a ≤4. 6(★★★) 设函数f(x)=lnx −2ax−1−a 在开区间(0 ,12)内有极值. (1)求实数a 的取值范围;(2)若x 1∈(0 ,1) ,x 2=(1 ,+∞).求证:f (x 1)−f(x 2)>2ln2+32.【答案】(1)(−∞ ,−14)(2)略【解析】(1)解:函数f(x)的定义域是(0,1)∪(1,+∞),f′(x)=x2−(2−2a)x+1x(x−1)2,由f′(x)=0在(0,12)内有解,令g(x)=x2-(2-2a)x+1,由g(0)=1>0,所以g(12)=122−2−2a2+1<0,解得:a<−14,即a的取值范围是(-∞,−14);(2)证明:由(1)f′(x)<0,令g(x)=x2-(2-2a)x+1=(x-α)(x-β),不妨设0<α<12,则β>2,则αβ=1,α+β=2-2a,故f′(x)<0⇔α<x<1,1<x<β,由f′(x)>0⇔x<α或x>β,得f(x)在(0,α)内递增,在(α,1)内递减,在(1,β)内递减,在(β,+∞)递增,由x1∈(0,1),得f(x1)≤f(α)=lnα−2aα−1−a,由x2∈(1,+∞),得f(x2)≥f(β)=lnβ−2aβ−1−a,所以f(x2)-f(x1)≥f(β)-f(α),因为αβ=1,α+β=2-2a,a<−14,所以f(β)-f(α)=lnβ−2aβ−1−a-lnα+2aα−1+a=lnβ-ln1β+2a•(11β−1−1β−1)≥2lnβ+β−1β,令h(β)=2lnβ+β−1β(β>2),则h′(β)=2β+1+1β2>0,(β>2),所以h(β)在(2,+∞)上单调递增故h(β)>h(2)=2ln2+3,2.所以f(x2)-f(x1)>2ln2+32。
恒成立存在性问题课件
详细描述
不等式证明问题是数学中常见的问题类型,这类问题 通常涉及到比较两个数或两个函数的大小。通过证明 不等式,我们可以找到满足某些条件的参数或函数的 取值范围,从而解决恒成立存在性问题。
导数综合问题变式
总结词
利用导数性质和函数单调性,解决恒成立存在性问题。
详细描述
导数综合问题涉及到导数的计算、单调性判断以及极值 和最值的求解等知识点。通过利用导数的性质和函数的 单调性,我们可以找到满足某些条件的参数或函数的取 值范围,从而解决恒成立存在性问题。
转化与化归法
总结词
将问题转化为已知的问题或简单的问题,从而解决问题。
详细描述
转化与化归法是一种常用的解题策略,通过将复杂的问题转化为已知的问题或简单的问题,可以降低问题的难度 。在处理恒成立问题时,可以将问题转化为求最值问题、不等式问题等已知的问题类型,从而利用已知的解题方 法来解决该问题。
03
THANKS
感谢观看
常见错误反思
忽视定义域
在解决恒成立存在性问题时,容易忽 视函数的定义域,导致解题错误。
混淆最值与恒成立
在处理最值问题时,容易将最值与恒 成立混淆,导致解题思路出现偏差。
忽视参数的取值范围
在确定参数的取值范围时,容易忽视 参数的实际取值范围,导致答案不准 确。
缺乏对题目的深入理解
在解题过程中,容易缺乏对题目的深 入理解,导致解题思路不清晰,答案 不完整。
06
总结与反思
解题思路总结
转化思想
将恒成立存在性问题转化为最 值问题,通过求最值来确定参
数的取值范围。
数形结合
利用数形结合的方法,将问题 转化为几何图形,通过观察图 形的性质和变化规律来解决问 题。
高考数学一轮总复习课件:专题研究 利用导数研究恒成立或存在性问题
∴g′(x)=
[(x+1)(1+lnx)]′x-(x+1)(1+lnx) x2
=x-x2lnx.
令h(x)=x-lnx(分子的符号无法直接判断,故考虑再构造函 数进行分析),
∴h′(x)=1-1x=x-x 1. ∵x≥1,∴h′(x)≥0, ∴h(x)在[1,+∞)上单调递增,∴h(x)≥h(1)=1>0, ∴g′(x)>0,∴g(x)在[1,+∞)上单调递增, ∴g(x)min=g(1)=2,∴k≤2. 【答案】 (-∞,2]
【解析】 ∵f(x1)≤g(x2)恒成立,∴只需f(x1)≤g(x)min. 由g(x)=ex-x-1,得g′(x)=ex-1,令g′(x)>0,解得
x>0,令g′(x)<0,解得x<0.
∴g(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,
∴g(x)min=g(0)=0. ∴∀x1∈(0,+∞),ax12-(2a+1)x1+lnx1≤0恒成立,即只
故 h(x)在1a,1上单调递增,在(1,a)上单调递减. ∴h(x)max=h(1)=lna-1+1a(a>1). 令 φ(a)=lna-1+1a,a>1, 则 φ′(a)=1a-a12=a-a21>0,则 φ(a)在(1,+∞)上单调递增, ∴φ(a)>φ(1)=0,即 h(x)max>0,与 ln(ax)-x+1a<0 恒成立矛盾. ∴不存在 a 使 f(x)>g(x)对∀x∈1a,a恒成立. 【答案】 ①2-1ex-y-e=0 ②不存在 a,理由略
题型二 等价转化法求参数范围
例2 (1)(2021·河北保定模拟)已知函数f(x)=(x-a)·ln(ax), g(x)=x2-a+1ax+1,a≥1.
高三数学专题——恒成立与存在性问题
高三数学专题——恒成立与存在性问题高三复专题——恒成立与存在性问题知识点总结:1.___成立问题:1) 若对于D中的任意x,都有f(x)>A,则f(x)的最小值>A;2) 若对于D中的任意x,都有f(x)<A,则f(x)的最大值<A;3) 若对于D中的任意x,都有f(x)>g(x),则F(x)=f(x)-g(x)>0,因此F(x)的最小值>0;4) 若对于D中的任意x,都有f(x)<g(x),则F(x)=f(x)-g(x)<0,因此F(x)的最大值<0;5) 若对于D中的任意x1和E中的任意x2,都有f(x1)>g(x2),则f(x)的最小值>g(x)的最大值;6) 若对于D中的任意x1和E中的任意x2,都有f(x1)<g(x2),则f(x)的最大值<g(x)的最小值。
2.存在性问题:1) 若存在D中的x,使得f(x)>A,则f(x)的最大值>A;2) 若存在D中的x,使得f(x)<A,则f(x)的最小值<A;3) 若存在D中的x,使得f(x)>g(x),则F(x)=f(x)-g(x),因此F(x)的最大值>0;4) 若存在D中的x,使得f(x)<g(x),则F(x)=f(x)-g(x),因此F(x)的最小值<0;5) 若存在D中的x1和E中的x2,使得f(x1)>g(x2),则f(x)的最大值>g(x)的最小值;6) 若存在D中的x1和E中的x2,使得f(x1)<g(x2),则f(x)的最小值<g(x)的最大值。
3.相等问题:1) 若对于D中的任意x1,存在E中的某个x2,使得f(x1)=g(x2),则{f(x)}={g(x)};4.___成立与存在性的综合性问题:1) 若对于D中的任意x1,存在E中的某个x2,使得f(x1)>g(x2),则f(x)的最小值>g(x)的最小值;2) 若对于D中的任意x1,存在E中的某个x2,使得f(x1)<g(x2),则f(x)的最大值<g(x)的最大值。
恒成立或存在性问题课件-2024届高三数学二轮复习
要点 解决恒成立或有解问题的常见结论 下列是恒成立问题的一些常见结论: (1)不等式f(x)≥0在定义域内恒成立,等价于f(x)min≥0; (2)不等式f(x)≤0在定义域内恒成立,等价于f(x)max≤0; (3)不等式f(x)>g(x),x∈(a,b)恒成立,等价于F(x)=f(x)-g(x)>0,x∈(a,b) 恒成立.
例1 已知a≠0,函数f(x)=ax(x-2)2(x∈R).若对任意x∈[-2,1],不等式 f(x)<32恒成立,求a的取值范围.
【解析】 方法一:因为f(x)=ax(x2-4x+4)=ax3-4ax2+4ax. 所以f′(x)=3ax2-8ax+4a=a(3x2-8x+4)=a(3x-2)(x-2). 当a>0时,f(x)在-2,23上单调递增, 在23,1上单调递减. 故f(x)的最大值为f23=3227a<32,即a<27.
即22aa+ +b4+ b+1= 2=0, 0,解得ab= =- -1313, . 经验证,符合题意. (2)在 14,1 上存在x0,使得不等式f(x0)-c≤0成立,只需c≥f(x)min,x∈ 14,1, 因为f′(x)=-23-31x2+1x=-2x2-3x32x+1=-(2x-1)3x(2 x-1), 所以当x∈14,12时,f′(x)<0,f(x)单调递减;
题型二 存在性问题
例2 已知函数f(x)=-ax2+ln x(a∈R).
(1)讨论f(x)的单调性;
(2)若存在x∈(1,+∞),f(x)>-a,求实数a的取值范围. 【解析】 (1)函数f(x)的定义域为(0,+∞),f′(x)=-2ax+1x=1-x2ax2.
当a≤0时,f′(x)>0,则f(x)在(0,+∞)上单调递增.
专题一:恒成立与存在性问题(精简型)
专题一:恒成立与存在性(精简型)一、 恒成立之常用模型及方法一:分离参数法-----在指定的区间下对不等式作等价变形,将参数“a ”与变量“x ”左右分离开------模型------αα>⇔∈>min )()(x f I x x f 恒成立对一切αα>⇔∈<max )()(x f I x x f 恒成立对一切。
口诀:大就大其最大,小就小其最小,即最终转换求函数最值例1已知322)(2+-=ax x x f ,若(],2,1∈x ()0f <x 恒成立,求a 的取值范围.例2 已知0l <-ax nx ,在定义上恒成立,求a 的取值范围.二、恒成立之常用模型及方法二:(构造)函数利用函数图象(性质)分析法------此法关键在函数的构造上,常见于两种----一分为二或和而为一,另一点充分利用函数的图象来分析,即体现数形结合思想 例3 已知a ax x x f -++=3)(2,若0)(],2,2[≤-∈x f x 恒成立,求a 的取值范围.例4若不等式2log 0m x x -<在10,2⎛⎫ ⎪⎝⎭内恒成立,则实数m 的取值范围三、存在性之常用模型及方法:常见方法两种,一直接法同上恒成立,二间接法,先求其否定(恒成立),再求其否定补集即可例5已知322)(2+-=ax x x f ,若存在(],2,1∈x 使得()0f <x 成立,求a 的取值范围.四、其它常用模型及方法:1.设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥2.设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤3.设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥4.设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤5.若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;6.若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;7.设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()12=f x g x ,则()f x 在[]b a x ,1∈上的值域M 是()x g 在[]d c x ,2∈上的值域N 的子集。
第二节充分条件与必要条件全称量词与存在量词课件共44张PPT
答案:B
2.设 a,b 是实数,则“a+b>0”是“ab>0”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 答案:D
3.已知直线 m、n 和平面 α,在下列给定的四个结 论中,m∥n 的一个必要但不充分条件是( )
A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 (3)(2019·北京卷)设点 A,B,C 不共线,则“A→B与A→C 的夹角为锐角”是“|A→B+A→C|>|B→C|”的( ) A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件 解析:(1)由“x2-5x<0”可得“0<x<5”;由“|x-1|<1” 可得“0<x<2”.由“0<x<5”不能推出“0<x<2”,但由“0<x<2” 可以推出“0<x<5”,所以“x2-5x<0”是“|x-1|<1”的必 要不充分条件,故选 B. (2)由 a>0,b>0,得 4≥a+b≥2 ab,即 ab≤4,充 分性成立;当 a=4,b=1 时,满足 ab≤4,但 a+b=5>4, 不满足 a+b≤4,必要性不成立,故“a+b≤4”是 “ab≤4”的充分不必要条件,故选 A.
的应用
核心 素养
逻辑推理
1.充分条件、必要条件与充要条件 (1)如果 p⇒q,则 p 是 q 的充分条件. ①A 是 B 的充分不必要条件是指:A⇒B 且 B A; ②A 的充分不必要条件是 B,是指:B⇒A 且 A B, 在解题中要弄清它们的区别,以免出现错误. (2)如果 q⇒p,则 p 是 q 的必要条件. (3)如果既有 p⇒q,又有 q⇒p,记作 p⇔q,则 p 是 q 的充要条件.
高考二轮复习专题_不等式中的恒成立问题教学PPT课件
小结
【名校课堂】获奖PPT-江苏省高考二 轮复习 专题: 不等式 中的恒 成立问 题(共PP T)(最 新版本 )推荐
【名校课堂】获奖PPT-江苏省高考二 轮复习 专题: 不等式 中的恒 成立问 题(共PP T)(最 新版本 )推荐
课后练习
【名校课堂】获奖PPT-江苏省高考二 轮复习 专题: 不等式 中的恒 成立问 题(共PP T)(最 新版本 )推荐
【名校课堂】获奖PPT-江苏省高考二 轮复习 专题: 不等式 中的恒 成立问 题(共PP T)(最 新版本 )推荐
策略与方法
【名校课堂】获奖PPT-江苏省高考二 轮复习 专题: 不等式 中的恒 成立问 题(共PP T)(最 新版本 )推荐
【名校课堂】获奖PPT-江苏省高考二 轮复习 专题: 不等式 中的恒 成立问 题(共PP T)(最 新版本 )推荐
【名校课堂】获奖PPT-江苏省高考二 轮复习 专题: 不等式 中的恒 成立问 题(共PP T)(最 新版本 )推荐
例题精讲
【名校课堂】获奖PPT-江苏省高考二 轮复习 专题: 不等式 中的恒 成立问 题(共PP T)(最 新版本 )推荐
【名校课堂】获奖PPT-江苏省高考二 轮复习 专题: 不等式 中的恒 成立问 题(共PP T)(最 新版本 )推荐
不等式中的恒成立问题
策略与方法
策略与方法
策略与方法
策略与方法
【名校课堂】获奖PPT-江苏省高考二 轮复习 专题: 不等式 中的恒 成立问 题(共PP T)(最 新版本 )推荐
策略与方法
【名校课堂】获奖PPT-江苏省高考二 轮复习 专题: 不等式 中的恒 成立问 题(共PP T)(最 新版本 )推荐
例题精讲
【名校课堂】获奖PPT-江苏省高考二 轮复习 专题: 不等式 中的恒 成立问 题(共PP T)(最 新版本 )推荐
【步步高】(全国通用)2016版高考数学 考前三个月复习冲刺 专题3 第15练 存在与恒成立问题课件 理
高考题型精练
1
2
3
4
5
6
7
8
9
10 11 12
6.若x∈[0,+∞),则下列不等式恒成立的是(
A.e ≤1+x+x
x 2
)
1 1 1 2 B. ≤1-2x+4x 1+x
1 2 1 2 C.cos x≥1-2x D.ln(1+x)≥x-8x 1 2 解析 设 f(x)=cos x+ x -1, 2
π 因此当 x∈(2,π)时,1+sin x>0,
故g(x)=(1+sin x)h(x)与h(x)有相同的零点,
π 所以存在唯一的 x1∈(2,π),使 g(x1)=0.
因为x1=π-t1,t1>x0,所以x0+x1<π.
点评
“ 存在 ” 是特称量词,即 “ 有的 ” 意思,证明这类
问题的思路是想法找到一个“x0”使问题成立即可,必要时 外其余不能使命题成立,或利用函数单调性证明此类问题.
2 2 ax +ax-a+1 1 f′(x)= +a(2x-1)= . x+1 x+1
令g(x)=2ax2+ax-a+1,x∈(-1,+∞). ①当a=0时,g(x)=1,此时f′(x)>0,
函数f(x)在(-1,+∞)上单调递增,无极值点;
②当a>0时,Δ=a2-8a(1-a)=a(9a-8).
当x∈(-1,x2)时,
g(x)>0,f′(x)>0,函数f(x)单调递增;
当x∈(x2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减;
所以函数有一个极值点.
综上所述,当a<0时,函数f(x)有一个极值点;
8 当 0≤a≤9时,函数 f(x)无极值点; 8 当 a> 时,函数 f(x)有两个极值点. 9
“恒成立”问题的解法ppt完美课件 通用
图像(直线)可得上述结论等价于
ⅰ)
a f
0 (m)
0
或ⅱ)
a f
0 (n)
0
亦可合并成
f f
(m) 0 (n) 0
.
“恒成立”问题的解法ppt完美课件 通用
“恒成立”问题的解法ppt完美课件 通用
“恒成立”问题的解法ppt完美课件 通用
“恒成立”问题的解法ppt完美课件 通用
(2)恒成立问题与二次函数联系:
类型2:设 f(x)a2x b xc(a0),f (x) 0
在区间 [ , ] 上恒成立问题:
(1)当 a0 时,f(x)0在 x [,]上恒成立
2ba或 2ba或 2ba,
的范围.
解:
f fБайду номын сангаас
(1) 0 (2) 0
∴ m4 3
“恒成立”问题的解法ppt完美课件 通用
“恒成立”问题的解法ppt完美课件 通用
(2)恒成立问题与二次函数联系:
类型1:设 f(x)a2x b xc(a0),f (x) 0 在全集 R 上恒成立问题:
(1)f(x)0在 xR上恒成立 a0且 0 (2)f(x)0在 xR上恒成立 a0且 0
1.函函数数性性质质法法
如图所示.同理,若在 [ m , n ] 内恒有 f (x) 0
则有
f f
(m) 0 (n) 0
“恒成立”问题的解法ppt完美课件 通用
“恒成立”问题的解法ppt完美课件 通用
(1)恒成立问题与一次函数联系
【例1】 如果当自变量满足 1x2时,函数
恒成立存在性问题专题讲义
2016-2017学年度高三《恒成立存在性问题》专题讲义知识点梳理1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤。
6、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()12=f x g x ,则()f x 在[]b a x ,1∈上的值域M 是()x g 在[]d c x ,2∈上的值域N 的子集。
即:M ⊆N 。
7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥ 8、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤9、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;10、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;题型一、常见方法1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . (1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;(2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;【分析:】(1)思路:等价转化为函数0)()(>-x g x f 恒成立,在通过分离变量,创设新函数求最值解决. (2)思路:对在不同区间内的两个函数)(x f 和)(x g 分别求最值,即只需满足)()(max min x g x f >即可.解:(1)由12012232++<⇒>-+-x xx a x a ax x 成立,只需满足12)(23++=x x x x ϕ的最小值大于a 即可.对12)(23++=x xx x ϕ求导,0)12(12)(2224>+++='x x x x ϕ,故)(x ϕ在]2,1[∈x 是增函数,32)1()(min ==ϕϕx ,所以a 的取值范围是320<<a .(2)注意:含参的动轴定区间上的最值求法。
高考数学导数专题专讲 专题35 双变量恒成立与能成立问题概述(含答案)
专题35双变量恒成立与能成立问题概述【方法总结】1.最值定位法解双变量不等式恒成立问题的思路策略(1)用最值定位法解双变量不等式恒成立问题是指通过不等式两端的最值进行定位,转化为不等式两端函数的最值之间的不等式,列出参数所满足的不等式,从而求解参数的取值范围.(2)有关两个函数在各自指定范围内的不等式恒成立问题,这里两个函数在指定范围内的自变量是没有关联的,这类不等式的恒成立问题就应该通过最值进行定位.2.常见的双变量恒成立能成立问题的类型(1)对于任意的x1∈[a,b],x2∈[m,n],使得f(x1)≥g(x2)⇔f(x1)min≥g(x2)max.(如图1)(2)若存在x1∈[a,b],总存在x2∈[m,n],使得f(x1)≥g(x2)⇔f(x1)max≥g(x2)min.(如图2)(3)对于任意的x1∈[a,b],总存在x2∈[m,n],使得f(x1)≥g(x2)⇔f(x1)min≥g(x2)min.(如图3)(4)若存在x1∈[a,b],对任意的x2∈[m,n],使得f(x1)≥g(x2)⇔f(x1)max≥g(x2)max.(如图4)(5)若存在x1∈[a,b],对任意的x2∈[m,n],使得f(x1)=g(x2)⇔f(x1)max≥g(x2)max.(如图4)(6)若存在x1∈[a,b],总存在x2∈[m,n],使得f(x1)=g(x2)⇔f(x)的值域与g(x)的值域的交集非空.(如图5)考点一双任意与双存在不等问题(1)f(x),g(x)是在闭区间D上的连续函数且∀x1,x2∈D,使得f(x1)>g(x2),等价于f(x)min>g(x)max.其等价转化的目标是函数y=f(x)的任意一个函数值均大于函数y=g(x)的任意一个函数值.如图⑤.(2)存在x1,x2∈D,使得f(x1)>g(x2),等价于f(x)max>g(x)min.其等价转化的目标是函数y=f(x)的某一个函数值大于函数y=g(x)的某些函数值.如图⑥.【例题选讲】[例1]已知函数f (x )=a +1x+a ln x ,其中参数a <0.(1)求函数f (x )的单调区间;(2)设函数g (x )=2x 2f ′(x )-xf (x )-3a (a <0),存在实数x 1,x 2∈[1,e 2],使得不等式2g (x 1)<g (x 2)成立,求a 的取值范围.解析(1)∵f (x )=a +1x +a ln x ,定义域为(0,+∞).∴f ′(x )=-a +1x 2+a x =ax -(a +1)x 2.①当-1<a <0时,a +1a<0,恒有f ′(x )<0.∴函数f (x )的单调减区间是(0,+∞).②当a =-1时,f ′(x )=-1x <0,∴f (x )的减区间是(0,+∞).③当a <-1时,x 0,a +1a f ′(x )>0,∴f (x )的增区间是0,a +1a x a +1a,+∞f ′(x )<0,∴f (x )a +1a ,+∞(2)g (x )=2ax -ax ln x -(6a +3)(a <0),因为存在实数x 1,x 2∈[1,e 2],使得不等式2g (x 1)<g (x 2)成立,∴2g (x )min <g (x )max .又g ′(x )=a (1-ln x ),且a <0,∴当x ∈[1,e)时,g ′(x )<0,g (x )是减函数;当x ∈(e ,e 2]时,g ′(x )>0,g (x )是增函数.∴g (x )min =g (e)=a e -6a -3,g (x )max =max{g (1),g (e 2)}=-6a -3.∴2a e -12a -6<-6a -3,则a >32e -6.又a <0,从而32e -6<a <0,即a 32e -6,0[例2]已知函数f (x )=12ln x -mx ,g (x )=x -a x(a >0).(1)求函数f (x )的单调区间;(2)若m =12e 2,对∀x 1,x 2∈[2,2e 2]都有g (x 1)≥f (x 2)成立,求实数a 的取值范围.解析(1)因为f (x )=12ln x -mx ,x >0,所以f ′(x )=12x-m ,当m ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增.当m >0时,由f ′(x )=0得x =12m ;f ′(x )>0,x >0得0<x <12m ;由f ′(x )<0,x >0得x >12m.所以f (x )0,12m 上单调递增,在12m,+∞上单调递减.综上所述,当m ≤0时,f (x )的单调递增区间为(0,+∞),无单调递减区间;当m >0时,f (x )0,12m ,单调递减区间为12m ,+∞.(2)若m =12e 2,则f (x )=12ln x -12e2x .对∀x 1,x 2∈[2,2e 2]都有g (x 1)≥f (x 2)成立,等价于对∀x ∈[2,2e 2]都有g (x )min ≥f (x )max ,由(1)知在[2,2e 2]上f (x )的最大值为f (e 2)=12,又g ′(x )=1+ax 2>0(a >0),x ∈[2,2e 2],所以函数g (x )在[2,2e 2]上是增函数,所以g (x )min =g (2)=2-a 2.由2-a 2≥12,得a ≤3,又a >0,所以a ∈(0,3],所以实数a 的取值范围为(0,3].[例3]已知f (x )=x +a 2x(a >0),g (x )=x +ln x .(1)若对任意的x 1,x 2∈[1,e],都有f (x 1)≥g (x 2)成立,求实数a 的取值范围;(2)若存在x 1,x 2∈[1,e],使得f (x 1)<g (x 2),求实数a 的取值范围.解析(1)对任意的x 1,x 2∈[1,e],都有f (x 1)≥g (x 2)成立,等价于x ∈[1,e]时,f (x )min ≥g (x )max .当x ∈[1,e]时,g ′(x )=1+1x >0,所以g (x )在[1,e]上单调递增,所以g (x )max =g (e)=e +1.只需证f (x )≥e +1,即x +a 2x ≥e +1⇔a 2≥(e +1)x -x 2在[1,e]上恒成立即可.令h (x )=(e +1)x -x 2,当x ∈[1,e]时,h (x )=(e +1)x -x 2=-x -e +12+e +12的最大值为e +12=e +122.所以a 2e +122,即a ≥e +12(舍去负值).故实数a 的取值范围是e +12,+∞(2)存在x 1,x 2∈[1,e],使得f (x 1)<g (x 2),等价于x ∈[1,e]时,f (x )min <g (x )max .当x ∈[1,e]时,g ′(x )=1+1x >0,所以g (x )在[1,e]上单调递增,所以g (x )max =g (e)=e +1.又f ′(x )=1-a 2x2,令f ′(x )=0,得x =a ,故f (x )=x +a 2x(a >0)在(0,a )上单调递减,在(a ,+∞)上单调递增.当0<a <1时,f (x )在[1,e]上单调递增,f (x )min =f (1)=1+a 2<e +1,符合题意;当1≤a ≤e 时,f (x )在[1,a ]上单调递减,在[a ,e]上单调递增,f (x )min =f (a )=2a ,此时,2a <e +1,解得1≤a <e +12;当a >e 时,f (x )在[1,e]上单调递减,f (x )min =f (e)=e +a 2e ,此时,e +a 2e<e +1,即a <e ,与a >e 矛盾,不符合题意.综上可知,实数a 的取值范围是0,e +12.点拨(1)本题第(1)问从数的角度看,问题的本质就是f (x )min ≥g (x )max .从形的角度看,问题的本质就是函数f (x )图象的最低点不低于g (x )图象的最高点.(2)本题第(2)问从数的角度看,问题的本质就是f (x )min <g (x )max .从形的角度看,问题的本质就是函数f (x )图象的最低点低于g (x )图象的最高点.[例4]设f (x )=ax+x ln x ,g (x )=x 3-x 2-3.(1)如果存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ;(2)如果对于任意的s ,t ∈12,2,都有f (s )≥g (t )成立,求实数a 的取值范围.解析(1)存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,等价于[g (x 1)-g (x 2)]max ≥M .由g (x )=x 3-x 2-3,得g ′(x )=3x 2-2x =3x -23g ′(x )<0,解得0<x <23;由g ′(x )>0,解得x <0或x >23.又x ∈[0,2],所以g (x )在区间0,23上单调递减,在区间23,2上单调递增,又g (0)=-3,g (2)=1,故g (x )max =g (2)=1,g (x )min =g 23=-8527.所以[g (x 1)-g (x 2)]max =g (x )max -g (x )min =1+8527=11227≥M ,则满足条件的最大整数M =4.(2)对于任意的s ,t ∈12,2,都有f (s )≥g (t )成立,等价于在区间12,2上,函数f (x )min ≥g (x )max .由(1)可知在区间12,2上,g (x )的最大值为g (2)=1.在区间12,2上,f (x )=ax+x ln x ≥1恒成立等价于a ≥x -x 2ln x 恒成立.设h (x )=x -x 2ln x ,x ∈12,2,则h ′(x )=1-2x ln x -x ,易知h ′(x )在区间12,2上是减函数,又h ′(1)=0,所以当1<x <2时,h ′(x )<0;当12<x <1时,h ′(x )>0.所以函数h (x )=x -x 2lnx 在区间12,1上单调递增,在区间[1,2]上单调递减,所以h (x )max =h (1)=1,所以实数a 的取值范围是[1,+∞).考点二存在与任意嵌套不等问题(1)∀x 1∈D 1,∃x 2∈D 2,使f (x 1)>g (x 2),等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值,即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的目标是函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值.如图⑦.(2)∀x 1∈D 1,∃x 2∈D 2,使f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于g (x )在D 2上的最大值,即f (x )max <g (x )max .其等价转化的目标是函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值.如图⑧.【例题选讲】[例5]设函数f (x )=e(x 2-ax +a )e x(a ∈R ).(1)若曲线y =f (x )在x =1处的切线过点M (2,3),求a 的值;(2)设g (x )=x +1x +1-13,若对任意的n ∈[0,2],存在m ∈[0,2],使得f (m )≥g (n )成立,求a 的取值范围.解析(1)因为f (x )=e(x 2-ax +a )e x ,所以f ′(x )=e·(2x -a )e x -(x 2-ax +a )e xe 2x =-(x -2)(x -a )ex -1.又f (1)=1,即切点为(1,1),所以k =f ′(1)=1-a =3-12-1,解得a =-1.(2)“对任意的n ∈[0,2],存在m ∈[0,2],使得f (m )≥g (n )成立”,等价于“在[0,2]上,f (x )的最大值大于或等于g (x )的最大值”.因为g (x )=x +1x +1-13,g ′(x )=x 2+2x (x +1)2≥0,所以g (x )在[0,2]上单调递增,所以g (x )max =g (2)=2.令f ′(x )=0,得x =2或x =a .①当a ≤0时,f ′(x )≥0在[0,2]上恒成立,f (x )单调递增,f (x )max =f (2)=(4-a )e -1≥2,解得a ≤4-2e ;②当0<a <2时,f ′(x )≤0在[0,a ]上恒成立,f (x )单调递减,f ′(x )≥0在[a ,2]上恒成立,f (x )单调递增,f (x )的最大值为f (2)=(4-a )e -1或f (0)=a e ,所以(4-a )e -1≥2或a e≥2.解得:a ≤4-2e 或a ≥2e ,所以2e≤a <2;③当a ≥2时,f ′(x )≤0在[0,2]上恒成立,f (x )单调递减,f (x )max =f (0)=a e≥2,解得a ≥2e ,所以a ≥2.综上所述:a ≤4-2e 或a ≥2e .[例6]已知函数f (x )=x -(a +1)ln x -a x (a ∈R 且a <e),g (x )=12x 2+e x -x e x .(1)当x ∈[1,e]时,求f (x )的最小值;(2)当a <1时,若存在x 1∈[e ,e 2],使得对任意的x 2∈[-2,0],f (x 1)<g (x 2)恒成立,求a 的取值范围.解析(1)f (x )的定义域为(0,+∞),f ′(x )=(x -1)(x -a )x 2.①若a ≤1,当x ∈[1,e]时,f ′(x )≥0,则f (x )在[1,e]上为增函数,f (x )min =f (1)=1-a .②若1<a <e ,当x ∈[1,a ]时,f ′(x )≤0,f (x )为减函数;当x ∈[a ,e]时,f ′(x )≥0,f (x )为增函数.所以f (x )min =f (a )=a -(a +1)ln a -1,综上,当a ≤1时,f (x )min =1-a ;当1<a <e 时,f (x )min =a -(a +1)ln a -1;(2)由题意知:f (x )(x ∈[e ,e 2])的最小值小于g (x )(x ∈[-2,0])的最小值.由(1)知f (x )在[e ,e 2]上单调递增,f (x )min =f (e)=e -(a +1)-ae ,又g ′(x )=(1-e x )x .当x ∈[-2,0]时,g ′(x )≤0,g (x )为减函数,则g (x )min =g (0)=1,所以e -(a +1)-ae <1,解得a >e 2-2e e +1,所以a 的取值范围为e 2-2ee +1,1考点三双任意与存在相等问题(1)∃x 1∈D 1,∃x 2∈D 2,使得f (x 1)=g (x 2)等价于函数f (x )在D 1上的值域A 与g (x )在D 2上的值域B 的交集不是空集,即A ∩B ≠∅,如图⑨.其等价转化的目标是两个函数有相等的函数值.图⑨图⑩(2)∀x 1∈D 1,∃x 2∈D 2,使得f (x 1)=g (x 2)等价于函数f (x )在D 1上的值域A 是g (x )在D 2上的值域B 的子集,即A ⊆B ,如图⑩.其等价转化的目标是函数y =f (x )的值域都在函数y =g (x )的值域之中.说明:图⑨,图⑩中的条形图表示函数在相应定义域上的值域在y 轴上的投影.【例题选讲】[例7]已知函数f (x )=ax -ln x +x 2.(1)若a =-1,求函数f (x )的极值;(2)若a =1,∀x 1∈(1,2),∃x 2∈(1,2),使得f (x 1)-x 21=mx 2-13mx 32(m ≠0),求实数m 的取值范围.解析(1)依题意知,当a =-1时,f (x )=-x -ln x +x 2,f ′(x )=-1-1x +2x =2x 2-x -1x =(2x +1)(x -1)x,因为x ∈(0,+∞),故当x ∈(0,1)时,f ′(x )<0,当x ∈(1,+∞)时,f ′(x )>0,故当x =1时,f (x )有极小值,极小值为f (1)=0,无极大值.(2)当a =1时,f (x )=x -ln x +x 2.因为∀x 1∈(1,2),∃x 2∈(1,2),使得f (x 1)-x 21=mx 2-13mx 32(m ≠0),故ln x 1-x 1=13mx 32-mx 2.设h (x )=ln x -x ,g (x )=13mx 3-mx ,当x ∈(1,2)时,h ′(x )=1x -1<0,即函数h (x )在(1,2)上单调递减,故h (x )的值域为A =(ln 2-2,-1).又g ′(x )=mx 2-m =m (x +1)(x -1).①当m <0时,g (x )在(1,2)上单调递减,此时g (x )的值域为B =2m 3,-2m 3,因为A ⊆B ,又-2m 3>0>-1,故2m 3≤ln 2-2,即m ≤32ln 2-3;②当m >0时,g (x )在(1,2)上单调递增,此时g (x )的值域为B =-2m 3,2m3,因为A ⊆B ,又2m 3>0>-1,故-2m 3≤ln 2-2,故m ≥-32(ln 2-2)=3-32ln 2.综上所述,实数m -∞,32ln 2-3∪3-32ln 2,+∞[例8]已知函数f (x )=a ln x -x +2,a ∈R .(1)求函数f (x )的单调区间;(2)若对任意的x 1∈[1,e],总存在x 2∈[1,e],使得f (x 1)+f (x 2)=4,求实数a 的值.解析(1)因为f (x )=a ln x -x +2,所以f ′(x )=ax -1=a -x x,x >0,当a ≤0时,对任意的x ∈(0,+∞),f ′(x )<0,所以f (x )的单调递减区间为(0,+∞),无单调递增区间;当a >0时,令f ′(x )=0,得x =a ,因为x ∈(0,a )时,f ′(x )>0,x ∈(a ,+∞)时,f ′(x )<0,所以f (x )的单调递增区间为(0,a ),单调递减区间为(a ,+∞).(2)①当a ≤1时,由(1)知,f (x )在[1,e]上是减函数,所以f (x )max =f (1)=1.因为对任意的x 1∈[1,e],x 2∈[1,e],f (x 1)+f (x 2)≤2f (1)=2<4,所以对任意的x 1∈[1,e],不存在x 2∈[1,e],使得f (x 1)+f (x 2)=4.②当1<a <e 时,由(1)知,f (x )在[1,a ]上是增函数,在(a ,e]上是减函数,所以f (x )max =f (a )=a ln a -a +2.因为对任意的x 1∈[1,e],x 2∈[1,e],f (x 1)+f (x 2)≤2f (a )=2a (ln a -1)+4,又1<a <e ,所以ln a -1<0,2a (ln a -1)+4<4,所以对任意的x 1∈[1,e],不存在x 2∈[1,e],使得f (x 1)+f (x 2)=4.③当a ≥e 时,由(1)知,f (x )在[1,e]上是增函数,f (x )min =f (1)=1,f (x )max =f (e)=a -e +2,由题意,对任意的x 1∈[1,e],总存在x 2∈[1,e],使得f (x 1)+f (x 2)=4,则当x 1=1时,要使存在x 2∈[1,e],使得f (x 1)+f (x 2)=4,则f (1)+f (e)≥4,同理当x 1=e 时,要使存在x 2∈[1,e],使得f (x 1)+f (x 2)=4,则f (e)+f (1)≤4,所以f (1)+f (e)=4.(对任意的x 1∈(1,e),令g (x )=4-f (x )-f (x 1),x ∈[1,e],g (x )=0有解.g (1)=4-f (1)-f (x 1)=f (e)-f (x 1)>0,g (e)=4-f (e)-f (x 1)=f (1)-f (x 1)<0,所以存在x 2∈(1,e),g (x 2)=4-f (x 2)-f (x 1)=0,即f (x 1)+f (x 2)=4.)所以由f (1)+f (e)=a -e +3=4,得a =e +1.综上可知,实数a 的值为e +1.[例9]已知函数f (x )=ln x -x ,g (x )=13mx 3-mx (m ≠0).(1)求曲线y =f (x )在点(1,f (1))处的切线方程;(2)若对任意的x 1∈(1,2),总存在x 2∈(1,2),使得f (x 1)=g (x 2),求实数m 的取值范围.解析(1)易知切点为(1,-1),f ′(x )=1x-1,切线的斜率k =f ′(1)=0,故切线方程为y =-1.(2)设f (x )在区间(1,2)上的值域为A ,g (x )在区间(1,2)上的值域为B ,则由题意可得A ⊆B .∵f (x )=ln x -x ,∴f ′(x )=1x -1=1-x x <0在(1,2)上恒成立,∴函数f (x )在区间(1,2)上单调递减,∴值域A 为(ln 2-2,-1).又g ′(x )=mx 2-m =m (x +1)(x -1),当m >0时,g ′(x )>0在x ∈(1,2)上恒成立,则g (x )在(1,2)上是增函数,此时g (x )在区间(1,2)上的值域B 为-23m ,23m,则m ,23m ≥-1,-23m ≤ln 2-2,解得m ≥-32(ln 2-2)=3-32ln 2.当m <0时,g ′(x )<0在x ∈(1,2)上恒成立,则g (x )在(1,2)上是减函数,此时g (x )在区间(1,2)上的值域B 为23m ,-23m,m ,-23m ≥-1,23m ≤ln 2-2,解得m ≤32(ln 2-2)=32ln 2-3.∴实数m -∞,32ln 2-3∪3-32ln 2,+∞[例10]已知函数f (x )=(1-x )e x -1.(1)求f (x )的极值;(2)设g (x )=(x -t )2+ln x -mt ,存在x 1∈(-∞,+∞),x 2∈(0,+∞),使方程f (x 1)=g (x 2)成立,求实数m 的最小值.解析(1)f ′(x )=-x e x ,当x ∈(0,+∞)时,f ′(x )<0,当x ∈(-∞,0)时,f ′(x )>0,∴当x =0时,f (x )有极大值f (0)=e 0-1=0,f (x )没有极小值.(2)由(1)知f (x )≤0,又因为g (x )=(x -t )2ln x -mt ≥0,所以要使方程f (x 1)=g (x 2)有解,必然存在x 2∈(0,+∞),使g (x 2)=0,所以x =t ,ln x =m t,等价于方程ln x =mx 有解,即方程m =x ln x 在(0,+∞)上有解,记h (x )=x ln x ,x ∈(0,+∞),则h ′(x )=ln x +1,令h ′(x )=0,得x =1e,所以当x ∈0,1e 时,h ′(x )<0,h (x )单调递减,当x ∈1e ,+∞h ′(x )>0,h (x )单调递增,所以当x =1e 时,h (x )min =-1e ,所以实数m 的最小值为-1e .[例11]已知函数f (x )=x 2-23ax 3,a >0,x ∈R ,g (x )=1x 2(1-x ).(1)若∃x 1∈(-∞,-1],∃x 2∈-∞,-12f (x 1)=g (x 2),求实数a 的取值范围;(2)当a =32时,求证:对任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)=g (x 2).解析(1)∵f (x )=x 2-23ax 3,∴f ′(x )=2x -2ax 2=2x (1-ax ).令f ′(x )=0,得x =0或x =1a.∵a >0,∴1a >0,∴当x ∈(-∞,0)时,f ′(x )<0,∴f (x )在(-∞,-1]上单调递减,f (x )≥f (-1)=1+2a3,故f (x )在(-∞,-1]上的值域为1+2a3,+∞∵g (x )=1x 2(1-x ),∴g ′(x )=3x 2-2x x 4(1-x )2=3x -2x 3(1-x )2.当x <-12时,g ′(x )>0,∴g (x )在-∞,-12上单调递增,g (x )<-12=83,故g (x )在-∞,-12上的值域为-∞,83若∃x 1∈(-∞,-1],∃x 2∈-∞,-12f (x 1)=g (x 2),则1+2a 3<83,解得0<a <52,故实数a 的取值范围是0,52(2)当a =32时,f (x )=x 2-x 3,∴f ′(x )=2x -3x 2=323-x 当x >2时,f ′(x )<0,∴f (x )在(2,+∞)上单调递减,且f (2)=-4,∴f (x )在(2,+∞)上的值域为(-∞,-4).则g (x )=1x 2(1-x )=1f (x )在(1,+∞)上单调递增,∴g (x )=1x 2(1-x )在(1,+∞)上的值域为(-∞,0).∵(-∞,-4)(-∞,0),∴对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)=g (x 2).点拨本题第(1)问等价转化的基本思想是:两个函数有相等的函数值,即它们的值域有公共部分;第(2)问等价转化的基本思想是:函数f(x)的任意一个函数值都与函数g(x)的某一函数值相等,即f(x)的值域都在g(x)的值域中.。
高三数学复习 常见题型 含双重量词的不等式恒成立与存在性问题课件
最大值 g(-3)=102,最小值 g(2)=-48
解:设������ ������ = ������ ������ − ������ ������ = ������������������ − ������������������ − ������������������ + ������,������ ∈ [−������, ������] 即 ∃∀������������ ∈∈ −−������������,,������������ ,,������������������������ ==������������������������������������−−���������������������������������−��� −���������������������������+��� +������ ���≥��� ≥������成������恒立成立
令令������������ ������������ == −−������������������������������������ ++������������������������������������ ++������������������������������������,,������������ ∈∈ [[−−������������,,������������]] ∴∴ ������������ ≥≥ ������������((������������))������������������������������������
含双重量词的不等式 恒成立与存在性问题
高三专题复习不等式恒成立问题
高三数学 第一讲 不等式恒成立问题在近些年的数学高考题及高考模拟题中经常出现不等式恒成立问题,此类问题一般综合性强,既含参数又含变量,往往与函数、数列、方程、几何等有机结合起来,具有形式灵活、思维性强、不同知识交汇等特点.高考往往通过此类问题考查学生分析问题、解决问题、综合驾驭知识的能力。
此类问题常见解法:一、构造函数法在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,然后利用相关函数的图象和性质解决问题,同时注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题面目更加清晰明了,一般来说,已知存在范围的量视为变量,而待求范围的量视为参数.例1 已知不等式对任意的都成立,求的取值范围.例2:在R 上定义运算⊗:x ⊗y =x(1-y) 若不等式(x -a)⊗(x +a)<1对任意实数x 成立,则 ( )(A)-1<a<1 (B)0<a<2 (C) 2321<<-a (D) 3122a -<< 例3:若不等式x 2-2mx+2m+1>0对满足0≤x ≤1的所有实数x 都成立,求m 的取值范围。
二、分离参数法在题目中分离出参数,化成a>f(x) (a<f(x))型恒成立问题,再利用a>f max (x) (a<f min (x))求出参数范围。
例4.(2012•杭州一模)不等式x 2﹣3>ax ﹣a 对一切3≤x ≤4恒成立,则实数a 的取值范围是 .例5:设a 0为常数,数列{a n }的通项公式为a n =51[3n +(-1)n-1·2n ]+(-1)n ·2n ·a 0(n ∈N * )若对任意n ≥1,n ∈N *,不等式a n >a n-1恒成立,求a 0的取值范围。
例6.(2012•安徽模拟)若不等式x 2+ax+4≥0对一切x ∈(0,1]恒成立,则a 的取值范围是 . 例7.(2011•深圳二模)如果对于任意的正实数x ,不等式恒成立,则a 的取值范围是 .例8.(2013•闵行区一模)已知不等式|x ﹣a|>x ﹣1对任意x ∈[0,2]恒成立,则实数a 的取值范围是 .三、数型结合法例9:如果对任意实数x ,不等式kx 1x ≥+恒成立,则实数k 的取值范围是例10:已知a>0且a ≠1,当x ∈(-1,1)时,不等式x 2-a x <21恒成立,则a 的取值范围 例11、 已知函数若不等式恒成立,则实数的取值范围是 .例12、(2009•上海)当时,不等式sin πx ≥kx 恒成立.则实数k 的取值范围是 .例13、若不等式log a x >sin2x (a >0,a ≠1)对任意都成立,则a 的取值范围是( )A .B .C .D . (0,1)四、利用函数的最值(或值域)求解(1)m x f ≥)(对任意x 都成立m x f ≥⇔min )(;(2)m x f ≤)(对任意x 都成立max )(x f m ≥⇔。
高三数学一轮复习精品课件:第2课时 不等式的证明
(2)ab2+bc2+ca2≥1. 证明
因为ab2+b≥2a,bc2+c≥2b,ca2+a≥2c, 故ab2+bc2+ca2+(a+b+c)≥2(a+b+c), 即ab2+bc2+ca2≥a+b+c. 所以ab2+bc2+ca2≥1.
解答
( a+ b+ c)2=(1× a+1× b+1× c)2
≤(12+12+12)(a+b+c)=3. 当且仅当 a=b=c=31时,等号成立. ∴( a+ b+ c)2≤3. 故 a+ b+ c的最大值为 3.
3.设 x>0,y>0,若不等式1x+1y+x+λ y≥0 恒成立,求实数 λ 的最小值.
路漫漫其修远兮,吾将上下而求索!
基础知识 自主学习
知识梳理
1.不等式证明的方法 (1)比较法: ①作差比较法: 知道a>b⇔a-b>0,a<b⇔a-b<0,因此要证明a>b只要证明a-b>0 即 可,这种方法称为作差比较法. ②作商比较法: 由a>ab>0⇔ab>1且a>0,b>0,因此当a>0,b>0时,要证明a>b,只要证 明 b>1 即可,这种方法称为作商比较法.
跟踪训练1 设a、b、c均为正数,且a+b+c=1,证明: (1)ab+bc+ac≤13; 证明 由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac得 a2+b2+c2≥ab+bc+ca. 由题设得(a+b+c)2=1, 即a2+b2+c2+2ab+2bc+2ca=1. 所以 3(ab+bc+ca)≤1,即 ab+bc+ca≤13.
思维升华
用综合法证明不等式是“由因导果”,用分析法证明不等式是“执果 索因”,它们是两种思路截然相反的证明方法. 综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应 用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与 综合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,可 以增加解题思路,开阔视野.
高三数学复习(理):第2讲 第4课时 利用导数研究不等式的恒成立或存在性问题
第4课时 利用导数研究不等式的恒成立或存在性问题[学生用书P58]不等式恒成立求参数(多维探究)方法一 分离参数法(2020·湖北武汉质检)已知f (x )=x ln x ,g (x )=x 3+ax 2-x +2.(1)求函数f (x )的单调区间;(2)若对任意x ∈(0,+∞),2f (x )≤g ′(x )+2恒成立,求实数a 的取值范围.【解】 (1)因为函数f (x )=x ln x 的定义域为(0,+∞),所以f ′(x )=ln x +1.令f ′(x )<0,得ln x +1<0,解得0<x <1e ,所以f (x )的单调递减区间是⎝ ⎛⎭⎪⎫0,1e .令f ′(x )>0,得ln x +1>0,解得x >1e ,所以f (x )的单调递增区间是⎝ ⎛⎭⎪⎫1e ,+∞.综上,f (x )的单调递减区间是⎝ ⎛⎭⎪⎫0,1e ,单调递增区间是⎝ ⎛⎭⎪⎫1e ,+∞. (2)因为g ′(x )=3x 2+2ax -1,由题意得2x ln x ≤3x 2+2ax +1恒成立.因为x >0,所以a ≥ln x -32x -12x 在x ∈(0,+∞)上恒成立.设h (x )=ln x -32x -12x (x >0),则h ′(x )=1x -32+12x 2=-(x -1)(3x +1)2x 2.令h ′(x )=0,得x 1=1,x 2=-13(舍去).当x 变化时,h ′(x ),h (x )的变化情况如下表:x(0,1) 1 (1,+∞) h ′(x )+ 0 -h (x ) 极大值所以当x =1时,h (x )取得极大值,也是最大值,且h (x )max =h (1)=-2,所以若a ≥h (x )在x ∈(0,+∞)上恒成立,则a ≥h (x )max =-2,即a ≥-2,故实数a 的取值范围是[-2,+∞).(1)分离参数法解含参不等式恒成立问题的思路用分离参数法解含参不等式恒成立问题是指在能够判断出参数的系数正负的情况下,可以根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量表达式的不等式,只要研究变量表达式的最值就可以解决问题. (2)求解含参不等式恒成立问题的关键是过好“双关”转化关 通过分离参数法,先转化为f (a )≥g (x )(或f (a )≤g (x ))对∀x ∈D 恒成立,再转化为f (a )≥g (x )max (或f (a )≤g (x )min )求最值关求函数g (x )在区间D 上的最大值(或最小值)问题已知函数f (x )=ax e x -(a +1)(2x -1).(1)若a =1,求函数f (x )的图象在点(0,f (0))处的切线方程;(2)当x >0时,函数f (x )≥0恒成立,求实数a 的取值范围. 解:(1)若a =1,则f (x )=x e x -2(2x -1).即f ′(x )=x e x +e x -4,则f ′(0)=-3,f (0)=2,所以所求切线方程为3x +y -2=0.(2)由f (1)≥0,得a ≥1e -1>0, 则f (x )≥0对任意的x >0恒成立可转化为a a +1≥2x -1x e x 对任意的x >0恒成立. 设函数F (x )=2x -1x e x (x >0),则F ′(x )=-(2x +1)(x -1)x 2e x. 当0<x <1时,F ′(x )>0;当x >1时,F ′(x )<0,所以函数F (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以F (x )max =F (1)=1e .于是aa +1≥1e ,解得a ≥1e -1. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫1e -1,+∞. 方法二 等价转化法(2020·高考全国卷Ⅰ)已知函数f (x )=e x +ax 2-x .(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.【解】 (1)当a =1时,f (x )=e x +x 2-x ,f ′(x )=e x +2x -1.故当x ∈(-∞,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.所以f (x )在(-∞,0)单调递减,在(0,+∞)单调递增.(2)f (x )≥12x 3+1等价于⎝ ⎛⎭⎪⎫12x 3-ax 2+x +1e -x ≤1. 设函数g (x )=⎝ ⎛⎭⎪⎫12x 3-ax 2+x +1e -x (x ≥0),则 g ′(x )=-⎝ ⎛⎭⎪⎫12x 3-ax 2+x +1-32x 2+2ax -1e -x =-12x [x 2-(2a +3)x +4a +2]e -x=-12x (x -2a -1)(x -2)e -x .(i)若2a +1≤0,即a ≤-12,则当x ∈(0,2)时,g ′(x )>0.所以g (x )在(0,2)单调递增,而g (0)=1,故当x ∈(0,2)时,g (x )>1,不符合题意.(ii)若0<2a +1<2,即-12<a <12,则当x ∈(0,2a +1)∪(2,+∞)时,g ′(x )<0;当x ∈(2a +1,2)时,g ′(x )>0.所以g (x )在(0,2a +1),(2,+∞)单调递减,在(2a +1,2)单调递增.由于g (0)=1,所以g (x )≤1当且仅当g (2)=(7-4a )e -2≤1,即a ≥7-e 24.所以当7-e 24≤a <12时,g (x )≤1.(iii)若2a +1≥2,即a ≥12,则g (x )≤⎝ ⎛⎭⎪⎫12x 3+x +1e -x . 由于0∈⎣⎢⎡⎭⎪⎫7-e 24,12,故由(ii)可得⎝ ⎛⎭⎪⎫12x 3+x +1e -x ≤1. 故当a ≥12时,g (x )≤1.综上,a 的取值范围是⎣⎢⎡⎭⎪⎫7-e 24,+∞.根据不等式恒成立求参数范围的关键是把不等式转化为函数,利用函数值与最值之间的数量关系确定参数满足的不等式,解不等式即得参数范围.函数f (x )=x 2-2ax +ln x (a ∈R ).(1)若函数y =f (x )在点(1,f (1))处的切线与直线x -2y +1=0垂直,求a 的值;(2)若不等式2x ln x ≥-x 2+ax -3在区间(0,e]上恒成立,求实数a 的取值范围.解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=2x -2a +1x ,f ′(1)=3-2a ,由题意f ′(1)·12=(3-2a )·12=-1,解得a =52.(2)不等式2x ln x ≥-x 2+ax -3在区间(0,e]上恒成立等价于2ln x ≥-x +a-3x ,令g (x )=2ln x +x -a +3x ,则g ′(x )=2x +1-3x 2=x 2+2x -3x 2=(x +3)(x -1)x 2,则在区间(0,1)上,g ′(x )<0,函数g (x )为减函数;在区间(1,e]上,g ′(x )>0,函数g (x )为增函数.由题意知g (x )min =g (1)=1-a +3≥0,得a ≤4,所以实数a 的取值范围是(-∞,4].不等式能成立或有解求参数的取值(范围)(师生共研)已知函数f (x )=ax -e x (a ∈R ),g (x )=ln x x .(1)求函数f (x )的单调区间;(2)∃x ∈(0,+∞),使不等式f (x )≤g (x )-e x 成立,求a 的取值范围.【解】 (1)因为f ′(x )=a -e x ,x ∈R .当a ≤0时,f ′(x )<0,f (x )在R 上单调递减;当a >0时,令f ′(x )=0,得x =ln a .由f ′(x )>0,得f (x )的单调递增区间为(-∞,ln a );由f ′(x )<0,得f (x )的单调递减区间为(ln a ,+∞).综上所述,当a ≤0时,f (x )的单调递减区间为(-∞,+∞),无单调递增区间;当a >0时,f (x )的单调递增区间为(-∞,ln a ),单调递减区间为(ln a ,+∞).(2)因为∃x ∈(0,+∞),使不等式f (x )≤g (x )-e x ,则ax ≤ln x x ,即a ≤ln x x 2.则问题转化为a ≤⎝ ⎛⎭⎪⎫ln x x 2max. 设h (x )=ln x x 2,由h ′(x )=1-2ln x x 3,令h ′(x )=0,得x = e.当x 在区间(0,+∞)内变化时,h ′(x ),h (x )随x 变化的变化情况如下表:x(0,e) e (e ,+∞) h ′(x )+ 0 - h (x ) 极大值12e由上表可知,当x =e 时,函数h (x )有极大值,即最大值为12e ,所以a ≤12e .故a 的取值范围是⎝ ⎛⎦⎥⎤-∞,12e .(1)含参数的能成立(存在型)问题的解题方法①a ≥f (x )在x ∈D 上能成立,则a ≥f (x )min ;②a ≤f (x )在x ∈D 上能成立,则a ≤f (x )max .(2)含全称、存在量词不等式能成立问题①存在x 1∈A ,任意x 2∈B 使f (x 1)≥g (x 2)成立,则f (x )max ≥g (x )max ;②任意x 1∈A ,存在x 2∈B ,使f (x 1)≥g (x 2)成立,则f (x )min ≥g (x )min .已知函数f (x )=x ln x (x >0).(1)求函数f (x )的极值;(2)若存在x ∈(0,+∞),使得f (x )≤-x 2+mx -32成立,求实数m 的最小值. 解:(1)由f (x )=x ln x ,得f ′(x )=1+ln x ,令f ′(x )>0,得x >1e ;令f ′(x )<0,得0<x <1e .所以f (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增. 所以f (x )在x =1e 处取得极小值,且为f ⎝ ⎛⎭⎪⎫1e =-1e ,无极大值. (2)由f (x )≤-x 2+mx -32,得m ≥2x ln x +x 2+3x. 问题转化为m ≥⎝ ⎛⎭⎪⎫2x ln x +x 2+3x min . 令g (x )=2x ln x +x 2+3x =2ln x +x +3x (x >0).则g ′(x )=2x +1-3x 2=x 2+2x -3x 2=(x +3)(x -1)x 2. 由g ′(x )>0,得x >1,由g ′(x )<0,得0<x <1.所以g (x )在(0,1)上单调递减,在(1,+∞)上单调递增.所以g (x )min =g (1)=4,则m ≥4.故m 的最小值为4.[学生用书P59]核心素养系列4 逻辑推理——两个经典不等式的活用逻辑推理是得到数学结论,构建数学体系的重要方式,是数学严谨性的基本保证.利用两个经典不等式解决其他问题,降低了思考问题的难度,优化了推理和运算过程.(1)对数形式:x ≥1+ln x (x >0),当且仅当x =1时,等号成立.(2)指数形式:e x ≥x +1(x ∈R ),当且仅当x =0时,等号成立.进一步可得到一组不等式链:e x >x +1>x >1+ln x (x >0,且x ≠1).(1)已知函数f (x )=1ln (x +1)-x,则y =f (x )的图象大致为( )(2)已知函数f (x )=e x ,x ∈R .证明:曲线y =f (x )与曲线y =12x 2+x +1有唯一公共点.【解】 (1)选B.因为f (x )的定义域为{x +1>0,ln (x +1)-x ≠0, 即{x |x >-1,且x ≠0},所以排除选项D.当x >0时,由经典不等式x >1+ln x (x >0),以x +1代替x ,得x >ln(x +1)(x >-1,且x ≠0),所以ln(x +1)-x <0(x >-1,且x ≠0),即x >0或-1<x <0时均有f (x )<0,排除A ,C ,易知B 正确.(2)证明:令g (x )=f (x )-⎝ ⎛⎭⎪⎫12x 2+x +1=e x -12x 2-x -1,x ∈R , 则g ′(x )=e x -x -1,由经典不等式e x ≥x +1恒成立可知,g ′(x )≥0恒成立,所以g (x )在R 上为单调递增函数,且g (0)=0.所以函数g (x )有唯一零点,即两曲线有唯一公共点.已知函数f (x )=x -1-a ln x .(1)若f (x )≥0,求a 的值;(2)证明:对于任意正整数n ,⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122·…·⎝ ⎛⎭⎪⎫1+12n <e. 【解】 (1)f (x )的定义域为(0,+∞),①若a ≤0,因为f ⎝ ⎛⎭⎪⎫12=-12+a ln 2<0,所以不满足题意; ②若a >0,由f ′(x )=1-a x =x -a x 知,当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0.所以f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增,故x =a 是f (x )在(0,+∞)的唯一最小值点.因为f (1)=0,所以当且仅当a =1时,f (x )≥0,故a =1.(2)证明:由(1)知当x ∈(1,+∞)时,x -1-ln x >0.令x =1+12n ,得ln ⎝ ⎛⎭⎪⎫1+12n <12n . 从而ln ⎝ ⎛⎭⎪⎫1+12+ln ⎝ ⎛⎭⎪⎫1+122+…+ln ⎝ ⎛⎭⎪⎫1+12n <12+122+…+12n =1-12n <1. 故⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122…⎝ ⎛⎭⎪⎫1+12n <e. 设函数f (x )=ln x -x +1.(1)讨论f (x )的单调性;(2)求证:当x ∈(1,+∞)时,1<x -1ln x <x .【解】 (1)由题设知,f (x )的定义域为(0,+∞),f ′(x )=1x -1,令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )>0,f (x )在(0,1)上单调递增;当x >1时,f ′(x )<0,f (x )在(1,+∞)上单调递减.(2)证明:由(1)知f (x )在x =1处取得最大值,最大值为f (1)=0.所以当x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,x -1ln x >1.①因此ln 1x <1x -1,即ln x >x -1x ,x -1ln x <x .②故当x ∈(1,+∞)时恒有1<x -1ln x <x .[学生用书P291(单独成册)]1.(2021·贵阳市第一学期监测考试)已知函数f (x )=a sin x -x +b (a ,b 均为正常数),h (x )=sin x +cos x .设函数f (x )在x =π3处有极值,对于一切x ∈⎣⎢⎡⎦⎥⎤0,π2,不等式f (x )>h (x )恒成立,求b 的取值范围.解:f ′(x )=a cos x -1.由已知得:f ′⎝ ⎛⎭⎪⎫π3=0,所以a =2, 所以f (x )=2sin x -x +b ,不等式f (x )>h (x )恒成立可化为sin x -cos x -x >-b ,记函数g (x )=sin x -cos x -x ,x ∈⎣⎢⎡⎦⎥⎤0,π2,则g ′(x )=cos x +sin x -1=2sin ⎝ ⎛⎭⎪⎫x +π4-1,x ∈⎣⎢⎡⎦⎥⎤0,π2, 当x ∈⎣⎢⎡⎦⎥⎤0,π2时,1≤2sin ⎝ ⎛⎭⎪⎫x +π4≤2,所以g ′(x )>0在⎣⎢⎡⎦⎥⎤0,π2上恒成立,所以函数g (x )在⎣⎢⎡⎦⎥⎤0,π2上是增函数,最小值为g (0)=-1, 所以b >1,所以b 的取值范围是(1,+∞).2.(2020·江西五校联考)已知函数f (x )=e x +bx .(1)讨论f (x )的单调性;(2)若b =1,当x 2>x 1>0时,f (x 1)-f (x 2)<(x 1-x 2)·mx 1+mx 2+1)恒成立,求实数m 的取值范围.解:(1)由f (x )=e x +bx 得f ′(x )=e x +b ,若b ≥0,则f ′(x )>0,即f (x )=e x +bx 在(-∞,+∞)上是增函数; 若b <0,令f ′(x )>0得x >ln(-b ),令f ′(x )<0得x <ln(-b ),即f (x )=e x +bx 在(-∞,ln(-b ))上单调递减,在(ln(-b ),+∞)上单调递增.(2)由题意知f (x )=e x +x ,f (x 1)-f (x 2)<(x 1-x 2)(mx 1+mx 2+1),即f (x 1)-mx 21-x 1<f (x 2)-mx 22-x 2,由x 2>x 1>0知,上式等价于函数φ(x )=f (x )-mx 2-x =e x -mx 2在(0,+∞)上为增函数,所以φ′(x )=e x-2mx ≥0(x >0),即2m ≤e x x (x >0). 令h (x )=e x x (x >0),则h ′(x )=e x (x -1)x 2, 当h ′(x )<0时,0<x <1;当h ′(x )>0时,x >1;当h ′(x )=0时,x =1. 所以h (x )在(0,1)上单调递减,在(1,+∞)上单调递增,所以h (x )min =h (1)=e ,则2m ≤e ,即m ≤e 2,所以实数m 的取值范围为⎝ ⎛⎦⎥⎤-∞,e 2. 3.(2021·福州市适应性考试)已知f (x )=2x ln x +x 2+ax +3.(1)当a =1时,求曲线y =f (x )在x =1处的切线方程;(2)若存在x 0∈⎝ ⎛⎭⎪⎫1e ,e ,使得f (x 0)≥0成立,求a 的取值范围. 解:f ′(x )=2(ln x +1)+2x +a .(1)当a =1时,f (x )=2x ln x +x 2+x +3,f ′(x )=2(ln x +1)+2x +1,所以f (1)=5,f ′(1)=5,所以曲线y =f (x )在x =1处的切线方程为y -5=5(x -1),即y =5x .(2)存在x 0∈⎝ ⎛⎭⎪⎫1e ,e ,使得f (x 0)≥0成立,等价于不等式a ≥-2x ln x +x 2+3x 在⎝ ⎛⎭⎪⎫1e ,e 上有解. 设h (x )=-2x ln x +x 2+3x,则h ′(x )=-x 2+2x -3x 2=-(x +3)(x -1)x 2, 当1e <x <1时,h ′(x )>0,h (x )为增函数;当1<x <e 时,h ′(x )<0,h (x )为减函数.又h ⎝ ⎛⎭⎪⎫1e =-3e 2-2e +1e ,h (e)=-e 2+2e +3e , 故h ⎝ ⎛⎭⎪⎫1e -h (e)<0, 所以当x ∈⎝ ⎛⎭⎪⎫1e ,e 时,h (x )>h ⎝ ⎛⎭⎪⎫1e =-3e 2-2e +1e , 所以a >-3e 2-2e +1e, 即a 的取值范围为⎝ ⎛⎭⎪⎫-3e 2-2e +1e ,+∞. 4.(2021·合肥第一次教学检测)已知函数f (x )=(x +1)ln x ,g (x )=a (x -1),a ∈R .(1)求直线y =g (x )与曲线y =f (x )相切时,切点T 的坐标;(2)当x ∈(0,1)时,g (x )>f (x )恒成立,求a 的取值范围.解:(1)设切点坐标为(x 0,y 0),由f (x )=(x +1)·ln x ,得f ′(x )=ln x +1x +1,则⎩⎨⎧ln x 0+1x 0+1=a ,(x 0+1)ln x 0=a (x 0-1), 所以2ln x 0-x 0+1x 0=0. 令h (x )=2ln x -x +1x ,则h ′(x )=-x 2-2x +1x 2≤0,所以h (x )在(0,+∞)上单调递减,所以h (x )=0最多有一个实数根.又h (1)=0,所以x 0=1,此时y 0=0,即切点T 的坐标为(1,0).(2)当x∈(0,1)时,g(x)>f(x)恒成立,等价于ln x-a(x-1)x+1<0对x∈(0,1)恒成立.令H(x)=ln x-a(x-1)x+1,则H′(x)=1x-2a(x+1)2=x2+2(1-a)x+1x(x+1)2,H(1)=0.①当a≤2,x∈(0,1)时,x2+2(1-a)x+1≥x2-2x+1>0,所以H′(x)>0,H(x)在x∈(0,1)上单调递增,因此当x∈(0,1)时H(x)<0.②当a>2时,令H′(x)=0得x1=a-1-(a-1)2-1,x2=a-1+(a-1)2-1.由x2>1与x1x2=1得,0<x1<1.所以当x∈(x1,1)时,H′(x)<0,H(x)单调递减,所以当x∈(x1,1)时,H(x)>H(1)=0,不符合题意.综上所述,a的取值范围是(-∞,2].。
含双重量词的不等式恒成立与存在性问题公开课件
_f_(_x_)m_in___g_(__x_)_m_ax_( _f_(_x_)m_a_x __g_(__x_)_m_in_);
_f _( x_)_m_ax___g_(__x_)_m_in_( _f _( _x_)m_in___g_(__x_)_m_ax_);
6、 设 函 数f ( x)、g( x), 任 意x1 A, 存 在x2 B, 使 得 f ( x1 ) g( x2 )( f ( x1 ) g( x2 )),
_f_(_x_)m_i_n __g_(_x_)_m_in_( _f_( _x_)m_a_x __g_(_x_)_m_ax_);
7、 设 函 数f ( x)、g( x), 任 意x1 A, 存 在x2 B, 使 得 f ( x1 ) g( x2 )
_f_(_x_)_的__值__域__是__g(_x_)_值__域__的__子__集_____;
例1: 已 知 两 个 函 数f ( x) 7 x2 28x c, g( x) 2x3 4x2 40x,
(2) 任 意x1, x2 [3,3],使f ( x1 ) g( x2 )成 立,求 实 数c的 取 值 范 围. f ( x)max g( x)min
变 式 : 存 在x1, x2 [3,3],使f ( x1 ) g( x2 )成 立,求 实
8、 设 函 数f ( x)、g( x), 存 在x1 A, x2 B, 使 得 f ( x1 ) g( x2 ),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例
3 2 2 已知两个函数 f x 7 x 28 x c , g x 2 x 4 x 40 x ,
对任意 x 3,3 ,都有 f x g x 成立,求实数 值域是 g(x)值域的子集
c 的取值范围.
解:f x 7 x 2 28x c 最大值f(-3)=147-c,最小值f(2)=-c-28
2 g x 2 x3 4 x 2 40 x ∵ g x 6 x 8 x 40 2 3x 10 x 2 ,
������(������)������������������ ≤ ������(������)������������������
c 的取值范围.
解:f x 7 x 2 28x c 最大值f(-3)=147-c,最小值f(2)=-c-28
2 g x 2 x3 4 x 2 40 x ∵ g x 6 x 8 x 40 2 3x 10 x 2 ,
������(������)������������������ ≤ ������(������)������������������
c 的取值范围.
变式 3:存在 x1 , x2 3,3 ,都有 f x1 g x2 ,求实数
������(������)������������������ ≤ ������(������)������������������
������(������)������������������ ≤ ������(������)������������������
c 的取值范围.
变式 3:存在 x1 , x2 3,3 ,都有 f x1 g x2 ,求实数
������(������)������������������ ≤ ������(������)������������������
g(x)在(-3,2)递减,在(2,3)递增, ∴g(2)=-48,g(-3)=102,g(3)=12
最大值 g(-3)=102,最小值 g(2)=-48
所以,-c-28≤102,即c≥-130
-3
2
3
-3
2
3
例
3 2 2 已知两个函数 f x 7 x 28 x c , g x 2 x 4 x 40 x ,
方法一:只须 ������ (( ������ )) 方法一:只须 ������ ������ ≥ ������ ������即可 即可.. ������������������ ������������������ ≥
������������ ������������ 方法二: 方法二: (参变分离) (参变分离) 在 在 ������ ������∈ ∈[[ −������ −������ , ,������ ������ ]] 成立 恒成立 ������������≥ ≥−������������ −������������ + +������������ ������������ + +������������������ ������������������
c 的取值范围.
变式 4.1:是否存在实数 c,使得对于任意 x1 3,3 ,总存在 x0 3,3 使 f(x1)=g(x0)成立,若存在,求出 c 的取值范围,若不存在,请说明理由。
������ ������ = ������(������) ⊆ ������ ������ = ������(������)
������ ������ 令 令������ ,������ ������ ∈ ∈ [[−������ −������,,������ ������]] ������ ������ ������ = = −������������ −������������������ + + ������������ ������������������ + + ������������������ ������������������,
������(������)������������������ ≤ ������(������)������������������
c 的取值范围.
变式 3:存在 x1 , x2 3,3 ,都有 f x1 g x2 ,求实数
������(������)������������������ ≤ ������(������)������������������
最大值 g(-3)=102,最小值 g(2)=-48
所以, 147-c≤102, -c-28≥-48, c≥45 c≤20
∴ ������ ∈ ������
-3
2
3
-3
2
3
例
3 2 2 已知两个函数 f x 7 x 28 x c , g x 2 x 4 x 40 x ,
练习:已知 f ( x) ax ln x 3(a R) , g ( x) xe1 x ,是否存在
4 x [ e , e ], 正实数 a (e 1 , e 4 ) ,对任意的 x (0, e] ,都有唯一 的 .. 0
使得 g(x)=f(x0)成立,若存在,求出 a 的取值范围;若不存在,请说明理由。
对任意 x 3,3 ,都有 f x g x 成立,求实数 c 的取值范围.
变式 1:存在 x
3,3 ,使 f x g x 成立,求实数 c 的取值范围.
变式 2:对任意 x1 , x2 3,3 ,都有 f x1 g x2 ,求实数
对任意 x 3,3 ,都有 f x g x 成立,求实数 c 的取值范围.
变式 1:存在 x
3,3 ,使 f x g x 成立,求实数 c 的取值范围.
变式 2:对任意 x1 , x2 3,3 ,都有 f x1 g x2 ,求实数
∴ ∴ ������ ������ ≥ ≥ ������ ������( (������ ������) )������������������ ������������������
例
3 2 2 已知两个函数 f x 7 x 28 x c , g x 2 x 4 x 40 x ,
对任意 x 3,3 ,都有 f x g x 成立,求实数 c 的取值范围.
变式 1:存在 x
3,3 ,使 f x g x 成立,求实数 c 的取值范围.
变式 2:对任意 x1 , x2 3,3 ,都有 f x1 g x2 ,求实数
变式 4.2:是否存在实数 c,使得对于任意 x0 3,3 ,总存在 x1,x23,3 使 g(x1)≤f(x0)≤g(x2)成立,若存在,求出 c 的取值范围,若不存在,请说明 理由。
h(x2)
同变式4.1
小结
1、任意的 x1 A,x2 B,f(x1)>g(x2) f(x)min>g(x)max 2、存在 x1 A,x2 B,f(x1)>g(x2) f(x)max> g(x)min 3、任意的 x1 A, 存在 x2 B, f(x1)>g(x2) f(x)min> g(x)min 4、存在的 x1 A, 任意 x2 B, f(x1)>g(x2) f(x)max> g(x)max 5、任意的 x1 A, 存在 x2 B, f(x1)=g(x2) f(x)的值域是 g(x)值域的子集
含双重量词的不等式 恒成立与存在性问题
复习
对于恒成立问题与存在性问题有以下两个基本事实
① 若∀������ ∈ ������,有 a<f(x)恒成立 ⟺ a<f(x)min
②若∃������ ∈ ������,有 a<f(x)成立 ⟺ a<f(x)max
同样地,
① 若∀������ ∈ ������,有 a>f(x)恒成立 ⟺ a>f(x)max
解:f x 7 x 2 28x c 最大值f(-3)=147-c,最小值f(2)=-c-28
2 g x 2 x3 4 x 2 40 x ∵ g x 6 x 8 x 40 2 3x 10 x 2 ,
g(x)在(-3,2)递减,在(2,3)递增, ∴g(2)=-48,g(-3)=102,g(3)=12
类型
单变量
任意 x D,f(x)>g(x) ⟹ f(x)- g(x)>0
思想方法
双变量
1、任意的 x1 A,x2 B,f(x1)>g(x2) f(x)min>g(x)max 2、存在 x1 A,x2 B,f(x1)>g(x2) f(x)max> g(x)min 3、任意的 x1 A, 存在 x2 B, f(x1)>g(x2) f(x)min> g(x)min 4、存在的 x1 A, 任意 x2 B, f(x1)>g(x2) f(x)max> g(x)max 5、任意的 x1 A, 存在 x2 B, f(x1)=g(x2)
c 的取值范围.
变式 4.1:是否存在实数 c,使得对于任意 x1 3,3 ,总存在 x0 3,3 使 f(x1)=g(x0)成立,若存在,求出 c 的取值范围,若不存在,请说明理由。
������ ������ = ������(������) ⊆ ������ ������ = ������(������)
g(x)在(-3,2)递减,在(2,3)递增, ∴g(2)=-48,g(-3)=102,g(3)=12